HASIL DAN PEMBAHASAN. Algoritma Cepat Penduga GS

Ukuran: px
Mulai penontonan dengan halaman:

Download "HASIL DAN PEMBAHASAN. Algoritma Cepat Penduga GS"

Transkripsi

1 HASIL DAN PEMBAHASAN Algoritma Cepat Penduga GS Sebagaimana halnya dengan algoritma cepat penduga S, algoritma cepat penduga GS dikembangkan dengan mengkombinasikan algoritma resampling dan algoritma I-step. Dalam hal ini, algoritma resamping dan algoritma I-step yang digunakan dalam algoritma cepat penduga S dimodifikasi guna menyelaraskan formula yang diterapkan dengan rumusan yang dipakai dalam penghitungan penduga GS. Inti dari modifikasi ini terletak pada penggantian skala sisaan dengan skala selisih sisaan dalam semua penghitungan. Untuk algoritma resampling, hasil modifikasi dimaksud diintegrasikan dalam langkah penghitungan algoritmik yang dibahas pada paragraf di bawah ini. Sementara untuk algoritma I-step, formula iteratif yang telah dimodifikasi dapat dilihat pada Persamaan (8) dan Persamaan (9). Algoritma resampling untuk algoritma cepat penduga GS diawali dengan pengambilan secara acak resampel berukuran dari data untuk mendapatkan dan yang merupakan nilai awal kandidat dugaan kekar parameter regresi dan kandidat dugaan kekar skala sisaan pada resampel ke- dengan 1,,. Dalam hal ini, adalah dugaan kuadrat terkecil yang dihitung dengan data resampel dan ialah dugaan kekar skala selisih sisaan yang diperoleh dengan data asli dengan rumus,1. Proses ini diilustrasikan dengan. diagram alir Gambar 6. Sementara itu, untuk algoritma I-step, formula iteratif penghitungan dugaan kekar skala sisaan ke- 1, yang dirumuskan sebagai: 1, 8

2 22 Start Untuk 1sampai dengan Ambil subsampel berukuran Hitung dugaan kuadrat terkecil berdasarkan data resampel ke- Dengan data asli, hitung sisaan Hitung selisih sisaan Hitung dugaan kekar skala End Gambar 6 Diagram alir algoritma resampling untuk penduga GS dan dugaan kekar regresi dari penyelesaian persamaan:, 0 9 dengan,,1 dimana untuk fungsi pada Persamaan (3). Misalkan hasil yang diperoleh di sini dilambangkan dengan dan. Diagram alir algoritma I-step dalam konteks ini diilustrasikan pada Gambar 7 dan proses penghitungannya dijabarkan sebagai berikut: Untuk 0,1, hitung: 1 bobot,,1 ;

3 23 2 dengan menyelesaikan persamaan, 0; 3 sisaan,1 ; 4 selisih sisaan,1 ; 5 skala selisih sisaan yang diperbaiki. Start Untuk 1 sampai dengan Masukkan Untuk 0, 1, 2, Hitung bobot,,1, 0, 1, 2, Hitung dari, 0 Hitung sisaan, 1 Hitung selisih sisaan, 1 Hitung End Gambar 7 Diagram alir algoritma I-step untuk penduga GS

4 24 Seperti yang diterapkan pada penduga S, hasil yang diperoleh dengan algoritma resampling dan algoritma I-step, yang diterapkan sebanyak 3 ulangan, dalam membangun algoritma cepat penduga GS merupakan kandidat dugaan yang mesti diperbaiki dengan penghitungan lebih lanjut hingga hasil yang dapat bersifat konvergen. Dalam hal ini, penghitungan juga dilakukan hanya untuk 5 kandidat dugaan terbaik dan proses dilalui dijabarkan sebagai berikut: 1 Untuk 1, hitung dan, 0,1,2,, hingga konvergen dengan algoritma I-step untuk nilai awal dan, bangun gugus pasangan dugaan,, 1 dan misalkan max ; 2 untuk, jika maka hitung dan hingga konvergen dengan algoritma I-step, perbaharui gugus pasangan, yang sudah ada dengan mensubstitusi nilai dugaan dan yang baru diperoleh dan mengeluarkan pasangan yang hasilkan pada iterasi sebelumnya, dan hitung kembali max ; 3 ulangi langkah 2 hingga. Misalkan dugaan regresi dan dugaan kekar skala sisaan yang dihasilkan pada tahap ini adalah dan, 1. Diagram alir untuk pendekatan di atas diilustrasikan pada Gambar 8.

5 25 Start Untuk 1sampai dengan Masukkan nilai dan Ya Hitung dengan I-step dan, hingga konvergen Tidak Bangun gugus pasangan dugaan, Hitung sebagai max Ya Hitung dengan I-step hingga konvergen dan Tidak Perbaharui gugus pasangan dugaan dengan substitusi nilai yang baru diperoleh, Hitung kembali sebagai max End Gambar 8 Diagram alir penghitungan kandidat terbaik dalam algoritma cepat penduga GS

6 26 Berdasarkan pembahasan di atas, algoritma cepat penduga GS untuk pendugaan parameter model regresi linear berganda dapat disarikan seperti berikut: 1 ambil resampel berukuran yang tidak kolinear dari data asli, hitung dugaan, 1,, dengan metoda kuadrat terkecil dengan menggunakan data resampel, dan hitung dengan data asli; 2 terapkan kali I-step dengan nilai awal dan untuk memperoleh dugaan regresi dan dugaan kekar skala selisih sisaan yang diperbaiki yang dilambangkan dengan dan ; 3 hitung dugaan regresi dan dugaan kekar skala selisih sisaan menerapkan I-step untuk kandidat penduga yang memenuhi syarat hingga konvergen dengan nilai awal dan dan menghasilkan dan, 1 ; 4 ambil dugaan dengan dugaan kekar skala selisih sisaan yang minimal sebagai dugaan regresi. Diagram alir untuk langkah di atas diilustrasikan dengan Gambar 9. Dugaan parameter yang dihasilkan pada langkah di atas kemudian digunakan dalam pendugaan intersep yang dipandang sebagai sisaan. Dugaan intersep didapatkan dengan menggunakan pendugaan M lokasi dengan dugaan skala diketahui. Formula yang dipakai dalam penghitungan ini didasarkan pada pendekatan yang dikemukakan Maronna et al. (2006, 39). Berikut ini proses yang dimaksud. 1 Masukkan nilai. 2 Hitung sisaan, dugaan awal intersep med, skala. med, dan bobot awal, di mana untuk fungsi pada

7 27 Persamaan (3) namun tuning constant yang digunakan pada fungsi adalah Untuk 0, 1, 2, a hitung,, b hitung, ; ; c berhenti jika 10. Diagram alir untuk langkah penghitungan ini diilustrasikan dengan Gambar 10 dan kode R untuk semua langkah di atas dilampirkan pada Lampiran 1. Start Masukkan data ambil resampel berukuran, hitung dugaan, 1,, terapkan kali I-step untuk memperoleh dan dengan nilai awal dan hitung dugaan dan, 1 dengan I-step untuk kandidat penduga yang memenuhi syarat hingga konvergen dengan nilai awal dan ambil dugaan dengan dugaan kekar skala sisaan yang minimal sebagai dugaan regresi End Gambar 9 Diagram alir algoritma cepat penduga GS

8 28 Start Masukkan Hitung sisaan Hitung dugaan awal intersep med Hitung skala med. Hitung bobot awal, Misalkan eps = 1e-20, error = 1, dan 0 Tidak error > eps? Ya Hitung,, Hitung, Hitung Hitung 1 End Gambar 10 Diagram alir penghitungan intersep pada algoritma cepat penduga GS

9 29 Dengan merangkum ulasan tentang penduga S, algoritma cepat penduga S, penduga GS, dan algoritma cepat penduga GS yang telah dikemukakan sebelumnya, perbandingan proses penghitungan keempat pendekatan tersebut dapat ditunjukkan dengan Tabel 1. Tabel 1 Perbandingan cara kerja penduga S, algoritma cepat penduga S, penduga GS, dan algoritma cepat penduga GS Metoda Komputasi Keterangan Metoda projection pursuit Dikemukakan oleh Rousseeuw dan Yohai (1984) Penduga S Kombinasi algoritma resampling Dikemukakan oleh dan langkah perbaikan lokal Ruppert (1992 diacu dalam Salibian- Barrera dan Yohai 2006) Algoritma cepat Penduga S Penduga GS Algoritma cepat Penduga GS Kombinasi algoritma resampling dan algoritma I-step Kombinasi algoritma resampling dan langkah perbaikan lokal Kombinasi algoritma resampling dan algoritma I-step Dikemukakan oleh Salibian-Barrera dan Yohai (2006) Dikemukakan oleh Croux et al. (1994) Selanjutnya, perbedaan spesifik antara penduga S dan penduga GS dapat disarikan seperti Tabel 2. Tabel 2 Perbedaan Penduga S dan Penduga GS Kriteria Penduga S Penduga GS Besaran skala yang Skala sisaan Skala selisih sisaan digunakan Tuning constant dalam fungsi biweight Tukey Aplikasi pada model dengan atau tanpa intersep Dugaan intersep Bisa digunakan untuk pendugaan model dengan atau tanpa intersep Diperoleh bersamaan dengan parameter yang lain Hanya bisa digunakan untuk model dengan intersep Tidak bisa dihitung secara langsung dalam pendugaan parameter melainkan diduga secara terpisah dengan dugaan kekar lokasi

10 30 Pembangkitan Data Data dibangkitkan dengan menggunakan model regresi 1 untuk jumlah peubah penjelas 2 dan 1 untuk 5. Pada kedua kondisi, data yang dibangkitkan berukuran contoh 60 untuk kasus tanpa nilai pencilan dan dengan nilai pencilan, yakni dengan proporsi 0.05, dan Pencilan yang dibangkitkan adalah pencilan sisaan dengan rataan 10 dan 100 dan ragam 1 dan 3. Di samping itu, data juga dibangkitkan dengan mengunakan model untuk jumlah peubah penjelas 2 dan untuk 5. Data yang dibangkitkan yang berukuran contoh 60 untuk kasus tanpa nilai pencilan dan dengan nilai pencilan dengan proporsi 0.05, dan 0.15, namun data hanya memuat pencilan sisaan dengan rataan 10 dan ragam 1. Berdasarkan salah satu gugus data yang dibangkitkan untuk data dengan model 1 untuk nilai seeding 1, diperoleh plot terhadap dan plot seperti Gambar 11 s.d. 14. Residuals vs Fitted 58 Residuals Fitted values lm(y1 ~ x) Gambar 11 Plot terhadap untuk data yang dibangkitkan dengan ukuran contoh 60, jumlah peubah 2, model 1, dan proporsi pencilan 5% yang memiliki rataan 10 dan ragam 1

11 31 Normal Q-Q Standardized residuals Theoretical Quantiles lm(y1 ~ x) Gambar 12 Plot untuk satu data yang dibangkitkan dengan ukuran contoh 60, jumlah peubah 2, model 1, dan proporsi pencilan 5% yang memiliki rataan 10 dan ragam 1 Residuals vs Fitted Residuals Fitted values lm(y2 ~ x) Gambar 13 Plot terhadap untuk satu data yang dibangkitkan dengan ukuran contoh 60, jumlah peubah 2, model 1, dan proporsi pencilan 15% yang memiliki rataan 10 dan ragam 1

12 32 Normal Q-Q Standardized residuals Theoretical Quantiles lm(y2 ~ x) Gambar 14 Plot untuk satu data yang dibangkitkan dengan ukuran contoh 60, jumlah peubah 2, model 1, dan proporsi pencilan 15% yang memiliki rataan 10 dan ragam 1 Plot yang diperoleh pada Gambar 11 dan 12 menunjukkan bahwa pembangkitan data dengan 5% nilai pencilan sisaan menghasilkan tepat 5% (tiga data) pencilan sisaaan. Sedangkan Gambar 13 dan 14 memperlihatkan bahwa pembangkitan data dengan 15% nilai pencilan sisaan tidak tepat menghasilkan 15% (sembilan data) yang juga nilai pencilan sisaaan. Akan tetapi, secara visual sembilan data tersebut tidak mengikuti pencaran 51 data yang lain. Kondisi yang serupa juga ditemukan pada pembangkitan data dengan ukuran contoh 60 dan jumlah peubah 5, model 1, dan proporsi pencilan 5%, 15%. Efisiensi Relatif Algoritma Cepat Penduga S dan Algoritma Cepat Penduga GS Berdasarkan simulasi di atas, kinerja algoritma cepat penduga GS dibandingkan dengan algoritma cepat S dengan memperhatikan nilai efisiensi relatif dugaan yang diperoleh yang dihitung untuk data tanpa pencilan dan pada data dengan 5% pencilan. Dalam hal ini pembandingan dilakukan pada dua kondisi, yakni kasus dengan jumlah peubah penjelas 2 dan 5.

13 33 Pembandingan pada kasus pertama dilakukan dengan menggunakan data yang dibangkitkan dengan model 1 untuk nilai pencilan dengan rataan 10 dan 100 dan ragam 1 dan 3. Hal yang sama juga dilakukan pada kasus dengan jumlah peubah penjelas 5 yang menggunakan model pembangkit 1. Hasil penghitungan untuk 2 ditampilkan pada Tabel 3 dan untuk 5 pada Tabel 4. Tabel 3 Efisiensi relatif untuk data dengan dua peubah penjelas Proporsi Pencilan Rataan Pencilan Ragam Pencilan Efisiensi Relatif FAST S FAST GS Simp Simp Rataan Rataan Baku Baku % tanpa pencilan Tabel 4 Efisiensi relatif untuk data dengan lima peubah penjelas Proporsi Pencilan Rataan Pencilan Ragam Pencilan Efisiensi Relatif FAST S FAST GS Simp Simp Rataan Rataan Baku Baku % tanpa pencilan Berdasarkan Tabel 3 dan Tabel 4, algoritma cepat penduga GS memiliki rataan efisiensi relatif yang lebih kecil dari pada algoritma cepat penduga S dalam semua kondisi. Hasil ini menunjukkan bahwa algoritma cepat penduga GS memiliki efisiensi yang lebih baik dari pada algoritma cepat penduga S. Sehingga aplikasi algoritma cepat penduga GS pada data yang tidak begitu jauh menyimpang dari asumsi normalitas galat memberikan hasil yang lebih mendekati hasil yang diperoleh dengan metoda kuadrat terkecil dari pada aplikasi algoritma cepat penduga S. Bahkan untuk data tanpa pencilan algoritma cepat penduga GS

14 34 memiliki kinerja yang baik yang ditandai dengan efisiensi relatif yang mendekati 1. Berbeda dengan hasil yang diperoleh untuk dugaan yang akan diulas pada bagian berikut, nilai efisiensi relatif dipengaruhi oleh nilai rataan dan ragam pencilan yang ditunjukkan oleh perbedaan rataan nilai efisiensi relatif yang signifikan antara data tanpa pencilan, data dengan pencilan yang mempunyai rataan 10, dan data dengan pencilan yang memiliki rataan 100 untuk kedua kasus pada Tabel 3 dan Tabel 4. Perbedaan ini terjadi karena kekekaran penduga S dan penduga GS hanya untuk dugaan bukan untuk nilai fitted. Namun demikian, kondisi ini tidak menjadi masalah karena aspek yang diperhatikan pada tinjauan tentang efisiensi relatif hanya pada perilaku hasil penghitungan untuk data yang tidak begitu menyimpang dari asumsi normalitas atau bahkan dengan sempurna memenuhi asumsi normalitas. Proporsi, rataan, dan ragam pencilan bukanlah aspek yang dipertimbangkan dalam melihat efisiensi relatif. Perbandingan Metoda Kuadrat Terkecil, Algoritma Cepat Penduga S, dan Algoritma Cepat Penduga GS Data simulasi di atas, kinerja algoritma cepat penduga GS juga dapat dibandingkan dengan algoritma cepat S dan metoda kuadrat terkecil dengan memperhatikan nilai dugaan yang diperoleh dari ketiga pendekatan. Dalam hal ini pembandingan dilakukan pada dua kondisi, yakni kasus dengan model yang sama dan model yang berbeda. Pembandingan pada kasus model yang sama dilakukan dengan menggunakan data yang dibangkitkan dengan model 1 untuk jumlah peubah penjelas 2 dan dengan model 1 untuk 5. Hasil dimaksud ditampilkan pada Tabel 5 dan Tabel 6. Sedangkan pembandingan pada kasus dua model yang berbeda dilaksanakan dengan menggunakan data yang dibangkitkan dengan model 1 dan untuk jumlah peubah penjelas 2 dan dengan model 1 dan untuk 5. Namun hasil yang diamati hanya pada data

15 35 dengan nilai pencilan yang memiliki rataan 10 dan ragam 1. Hasil pembandingan yang kedua ini ditampilkan pada Tabel 7. Tabel 5 Perbandingan dugaan untuk data dengan nilai pencilan Rataan Pencilan Ragam Pencilan OLS Fast S Fast GS 2 peubah penjelas dengan 5% data pencilan peubah penjelas dengan 15% data pencilan peubah penjelas dengan 5% data pencilan peubah penjelas dengan 15% data pencilan Berdasarkan Tabel 5, dugaan yang diperoleh dengan algoritma cepat penduga GS lebih kecil dari pada yang didapatkan dengan metoda kuadrat terkecil dan algoritma cepat penduga S untuk jumlah peubah penjelas, proporsi, rataan, dan ragam pencilan yang sama. Hasil ini menunjukkan bahwa dugaan yang diperoleh dengan algoritma cepat penduga GS untuk data dengan pencilan mempunyai efisiensi yang lebih baik dari pada yang diperoleh dengan metoda metoda kuadrat terkecil dan algoritma cepat penduga S dalam semua kondisi. Hal ini sesuai dengan teori penduga GS mempunyai efisiensi yang lebih baik dari pada penduga S.

16 36 Tabel di atas juga memperlihatkan bahwa dugaaan yang diperoleh dengan algoritma cepat penduga GS maupun algoritma cepat penduga S pada suatu proporsi pencilan tertentu memiliki nilai yang sama meskipun data dibangkitkan dengan pencilan yang mempunyai rataan dan ragam yang berbeda. Hasil ini menunjukkan perilaku kekekaran penduga GS dan penduga S. Kedua penduga resisten terhadap pencilan. Namun tidak demikian halnya dengan dugaan yang diperoleh dengan metoda kuadrat terkecil. Dugaan kuadrat terkecil sangat sensitif terhadap pencilan. Sehingga peningkatan rataan pencilan mengakibatkan peningkatan dugaan secara signifikan. Akan tetapi peningkatan ragam pencilan hanya mengakibatkan sedikit menurunkan nilai. Penurunan nilai ini disebabkan oleh fakta bahwa peningkatan ragam menyebabkan nilai pencilan yang dihasilkan lebih menyebar sehingga pencilan yang diperoleh akan mendekati data yang bukan pencilan. Di sisi lain, Tabel 5 juga menunjukkan bahwa pertambahan jumlah peubah penjelas juga diikuti dengan peningkatan nilai dugaan yang diperoleh dari ketiga pendekatan. Peningkatan ini lebih dipengaruhi oleh bertambahnya suku positif pada penjumlahan yang digunakan dalam penghitungan karena merupakan jumlah kuadrat. Sehingga penambahan jumlah peubah penjelas mengakibatkan peningkatan suku positif yang dijumlahkan. Peningkatan nilai juga seiring dengan pertambahan proporsi pencilan untuk dugaan yang dihasilkan dengan algoritma cepat penduga GS dan metoda kuadrat terkecil. Sebaliknya, nilai dugaan yang didapatkan dengan algoritma cepat penduga S cenderung menurun, namun bila dibandingkan dengan dugaan dari algoritma cepat GS maka nilai yang dihasilkan tetap lebih besar. Hal ini menunjukkan bahwa algoritma cepat penduga GS mempunyai efisiensi yang semakin baik bila digunakan pada data dengan proporsi pencilan yang semakin rendah. Kondisi yang lebih ekstrim dapat ditemukan pada data tanpa pencilan. Pada data tanpa pencilan, dugaan yang diperoleh dengan algoritma cepat penduga GS mendekati nilai yang diperoleh dengan metoda kuadrat terkecil. Sementara itu, nilai yang diperoleh dengan algoritma cepat penduga S lebih besar

17 37 dari apa yang diperoleh dari kedua pendekatan tersebut. Fakta ini sesuai dengan perilaku penduga S yang merupakan penduga kekar yang memiliki nilai titik breakdown yang tinggi namun mempunyai efisiensi yang rendah. Penggunaan penduga S untuk pendugaan parameter model pada data yang tidak begitu jauh menyimpang dari asumsi normalitas menghasilkan nilai dugaan yang tidak baik. Perbandingan dugaan pada data tanpa pencilan dapat dilihat pada Tabel 6. Tabel 6 Perbandingan dugaan untuk data tanpa nilai pencilan Jumlah Peubah Penjelas OLS Fast S Fast GS Seperti yang telah dikemukakan sebelumnya, pembangkitan data dalam penelitian ini juga dilakukan dengan menggunakan model yang berbeda. Tabel 7 menampilkan perbandingan dugaan yang diperoleh dari ketiga pendekatan. Tabel 7 Perbandingan dugaan untuk dua model berbeda Model OLS Fast S Fast GS 2 peubah penjelas dengan 5% data pencilan peubah penjelas dengan 15% data pencilan peubah penjelas dengan 5% data pencilan peubah penjelas dengan 15% data pencilan Keterangan : 1 : 1 2 : : 1 4 :

18 38 Tabel 7 memperlihatkan bahwa jika data dibangkitkan secara simultan dengan rataan dan ragam pencilan yang bernilai sama, maka dugaan yang diperoleh untuk dua model yang berbeda akan bernilai sama pula. Hal ini disebabkan oleh fakta bahwa perbedaan model yang digunakan pada pembangkitan data hanya mengakibatkan penambahan atau pengurangan pada nilai dugaan. Sebagai contoh, misalkan data dibangkitkan dengan menggunakan model yang berkoefisien,, dan menghasilkan dugaan,,, maka untuk,, dengan diperoleh,, dengan dimana sebarang konstanta dan 1,,1. Akibatnya,.

ALGORITMA CEPAT (FAST ALGORITHM) PENDUGA GENERALIZED-S (GS) UNTUK PENDUGAAN KEKAR PARAMETER MODEL REGRESI LINEAR BERGANDA DODI VIONANDA

ALGORITMA CEPAT (FAST ALGORITHM) PENDUGA GENERALIZED-S (GS) UNTUK PENDUGAAN KEKAR PARAMETER MODEL REGRESI LINEAR BERGANDA DODI VIONANDA ALGORITMA CEPAT (FAST ALGORITHM) PENDUGA GENERALIZED-S (GS) UNTUK PENDUGAAN KEKAR PARAMETER MODEL REGRESI LINEAR BERGANDA DODI VIONANDA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2010 PERNYATAAN

Lebih terperinci

TINJAUAN PUSTAKA. Gambar 1 Plot jenis pengamatan pencilan.

TINJAUAN PUSTAKA. Gambar 1 Plot jenis pengamatan pencilan. TINJAUAN PUSTAKA Pencilan Aunuddin (1989) mendefinisikan pencilan sebagai nilai ektstrim yang menyimpang agak jauh dari kumpulan pengamatan lainnya, yang secara kasar berada pada jarak sejauh tiga atau

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Deskripsi Data Simulasi Plot pencaran titik data antara peubah respon dengan peubah penjelas dapat dilihat pada Gambar 5. Gambar tersebut mengungkapkan bahwa secara keseluruhan pola

Lebih terperinci

, dengan. Karakteristik dari vektor peubah acak X dan Y sebagai berikut:

, dengan. Karakteristik dari vektor peubah acak X dan Y sebagai berikut: 3 TINJAUAN PUSTAKA Analisis Korelasi Kanonik Analisis korelasi kanonik (AKK) yang diperkenalkan oleh Hotelling pada tahun 1936, bertujuan untuk mengidentifikasi dan menghitung hubungan linier antara dua

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA 1 PENDAHULUAN Latar Belakang Analisis regresi berguna dalam menelaah hubungan antara sepasang peubah atau lebih, dan terutama untuk menelusuri pola hubungan yang modelnya belum diketahui sempurna sehingga

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA = (2.2) =

BAB 2 TINJAUAN PUSTAKA = (2.2) = BAB 2 TINJAUAN PUSTAKA 2.1. Regresi Linear Berganda Regresi linear berganda adalah regresi dimana variabel terikatnya dihubungkan atau dijelaskan dengan lebih dari satu variabel bebas,,, dengan syarat

Lebih terperinci

BAB I PENDAHULUAN. menyelidiki hubungan di antara dua atau lebih peubah prediktor X terhadap peubah

BAB I PENDAHULUAN. menyelidiki hubungan di antara dua atau lebih peubah prediktor X terhadap peubah BAB I PENDAHULUAN 1.1 Latar Belakang Analisis regresi linier berganda merupakan analisis yang digunakan untuk menyelidiki hubungan di antara dua atau lebih peubah prediktor X terhadap peubah respon Y yang

Lebih terperinci

(α = 0.01). Jika D i > , maka x i atau pengamatan ke-i dianggap pencilan (i = 1, 2,..., 100). HASIL DAN PEMBAHASAN

(α = 0.01). Jika D i > , maka x i atau pengamatan ke-i dianggap pencilan (i = 1, 2,..., 100). HASIL DAN PEMBAHASAN 4 karena adanya perbedaan satuan pengukuran antar peubah. 1.. Memastikan tidak adanya pencilan pada data dengan mengidentifikasi adanya pencilan pada data. Pengidentifikasian pencilan dilakukan dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. satu peubah prediktor dengan satu peubah respon disebut analisis regresi linier

BAB II TINJAUAN PUSTAKA. satu peubah prediktor dengan satu peubah respon disebut analisis regresi linier BAB II TINJAUAN PUSTAKA 2.1 Analisis Regresi Linier Berganda Analisis regresi pertama kali dikembangkan oleh Sir Francis Galton pada abad ke-19. Analisis regresi dengan satu peubah prediktor dan satu peubah

Lebih terperinci

TINJAUAN PUSTAKA. Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan

TINJAUAN PUSTAKA. Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan 4 II. TINJAUAN PUSTAKA 2.1 Definisi Pencilan Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan yang bervariasi (beragam). Keberagaman data ini, di satu sisi sangat dibutuhkan dalam

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN 6 telah dibangkitkan. Kemudian peubah X dan Y diregresikan dengan OLS sehingga diperoleh kuadrat galat. Kuadrat galat diurutkan dari ang terkecil sampai dengan ang terbesar, lalu dilakukan pemangkasan.

Lebih terperinci

PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN

PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN E-Jurnal Matematika Vol. 3, No.2 Mei 2014, 45-52 ISSN: 2303-1751 PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN NI PUTU NIA IRFAGUTAMI 1, I GUSTI

Lebih terperinci

TINJAUAN PUSTAKA Kalibrasi Ganda Regresi Kuadrat Terkecil Parsial ( Partial Least Squares/PLS) 1. Model PLS

TINJAUAN PUSTAKA Kalibrasi Ganda Regresi Kuadrat Terkecil Parsial ( Partial Least Squares/PLS) 1. Model PLS TINJAUAN PUSTAKA Kalibrasi Ganda Kalibrasi adalah suatu fungsi matematik dengan data empirik dan pengetahuan untuk menduga informasi pada Y yang tidak diketahui berdasarkan informasi pada X yang tersedia

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ini terdiri dari dua bagian. Pada bagian pertama berisi tinjauan pustaka dari penelitian-penelitian sebelumnya dan beberapa teori penunjang berisi definisi-definisi yang digunakan

Lebih terperinci

PENDEKATAN WINSOR PADA ANALISIS REGRESI DENGAN PENCILAN MURIH PUSPARUM

PENDEKATAN WINSOR PADA ANALISIS REGRESI DENGAN PENCILAN MURIH PUSPARUM PENDEKATAN WINSOR PADA ANALISIS REGRESI DENGAN PENCILAN MURIH PUSPARUM DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2015 PERNYATAAN MENGENAI SKRIPSI

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi merupakan suatu metode analisis dalam statistika yang digunakan untuk mencari hubungan antara suatu variabel terhadap variabel lain. Dalam

Lebih terperinci

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan

TINJAUAN PUSTAKA. Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan 4 II. TINJAUAN PUSTAKA 2.1 Konsep Dasar Matriks 2.1.1 Matriks Matriks adalah suatu susunan bilangan berbentuk segi empat. Bilangan-bilangan dalam susunan itu disebut anggota dalam matriks tersebut. Suatu

Lebih terperinci

METODOLOGI HASIL DAN PEMBAHASAN

METODOLOGI HASIL DAN PEMBAHASAN 3 berada pada jarak sejauh tiga atau empat kali simpangan baku dari nilai tengahnya (Aunuddin 1989). Pendekatan pencilan dapat dilakukan dengan melihat plot peluang normal. Apabila terdapat loncatan vertikal

Lebih terperinci

BAB I PENDAHULUAN. Analisis regresi merupakan metode analisis yang menjelaskan tentang

BAB I PENDAHULUAN. Analisis regresi merupakan metode analisis yang menjelaskan tentang BAB I PENDAHULUAN A. Latar Belakang Analisis regresi merupakan metode analisis yang menjelaskan tentang hubungan antara dua atau lebih variabel. Variabel dalam analisis regresi, dibedakan menjadi dua yaitu

Lebih terperinci

METODE ORDINARY LEAST SQUARES DAN LEAST TRIMMED SQUARES DALAM MENGESTIMASI PARAMETER REGRESI KETIKA TERDAPAT OUTLIER

METODE ORDINARY LEAST SQUARES DAN LEAST TRIMMED SQUARES DALAM MENGESTIMASI PARAMETER REGRESI KETIKA TERDAPAT OUTLIER Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 163-168. METODE ORDINARY LEAST SQUARES DAN LEAST TRIMMED SQUARES DALAM MENGESTIMASI PARAMETER REGRESI KETIKA TERDAPAT OUTLIER

Lebih terperinci

HASIL DAN PEMBAHASAN. dengan hipotesis nolnya adalah antar peubah saling bebas. Statistik ujinya dihitung dengan persamaan berikut:

HASIL DAN PEMBAHASAN. dengan hipotesis nolnya adalah antar peubah saling bebas. Statistik ujinya dihitung dengan persamaan berikut: . Menyiapkan gugus data pencilan dengan membangkitkan peubah acak normal ganda dengan parameter µ yang diekstrimkan dari data contoh dan dengan matriks ragam-peragam yang sama dengan data contoh. Proses

Lebih terperinci

Pengaruh Outlier Terhadap Estimator Parameter Regresi dan Metode Regresi Robust

Pengaruh Outlier Terhadap Estimator Parameter Regresi dan Metode Regresi Robust Pengaruh Outlier Terhadap Estimator Parameter Regresi dan Metode Regresi Robust I GUSTI AYU MADE SRINADI Jurusan Matematika Universitas Udayana, srinadiigustiayumade@yahoo.co.id Abstrak. Metode kuadrat

Lebih terperinci

ANALISIS REGRESI ROBUST ESTIMASI-S MENGGUNAKAN PEMBOBOT WELSCH DAN TUKEY BISQUARE

ANALISIS REGRESI ROBUST ESTIMASI-S MENGGUNAKAN PEMBOBOT WELSCH DAN TUKEY BISQUARE 48 Jurnal Matematika Vol 6 No 1 Tahun 2017 ANALISIS REGRESI ROBUST ESTIMASI-S MENGGUNAKAN PEMBOBOT WELSCH DAN TUKEY BISQUARE S-ESTIMATION OF ROBUST REGRESSION ANALYSIS USES WELSCH AND TUKEY BISQUARE WEIGHTING

Lebih terperinci

Kode R algoritma cepat penduga GS

Kode R algoritma cepat penduga GS LAMPIRAN 43 Lampiran 1 Kode R algoritma cepat penduga GS fast.gs

Lebih terperinci

PENERAPAN METODE BOOTSTRAP RESIDUAL DALAM MENGATASI BIAS PADA PENDUGA PARAMETER ANALISIS REGRESI

PENERAPAN METODE BOOTSTRAP RESIDUAL DALAM MENGATASI BIAS PADA PENDUGA PARAMETER ANALISIS REGRESI PENERAPAN METODE BOOTSTRAP RESIDUAL DALAM MENGATASI BIAS PADA PENDUGA PARAMETER ANALISIS REGRESI Ni Made Metta Astari 1, Ni Luh Putu Suciptawati 2, I Komang Gde Sukarsa 3 1 Jurusan Matematika, Fakultas

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN 2 5. Pemilihan Pohon Contoh BAB V HASIL DAN PEMBAHASAN Pohon contoh yang digunakan dalam penyusunan tabel volume ini adalah jenis nyatoh (Palaquium spp.). Berikut disajikan tabel penyebaran pohon contoh

Lebih terperinci

TINJAUAN PUSTAKA. Gambar 1 Diagram kotak garis

TINJAUAN PUSTAKA. Gambar 1 Diagram kotak garis TINJAUAN PUSTAKA Diagram Kotak Garis Metode diagram kotak garis atau boxplot merupakan salah satu teknik untuk memberikan gambaran tentang lokasi pemusatan data, rentangan penyebaran dan kemiringan pola

Lebih terperinci

BAB I PENDAHULUAN. hubungan ketergantungan variabel satu terhadap variabel lainnya. Apabila

BAB I PENDAHULUAN. hubungan ketergantungan variabel satu terhadap variabel lainnya. Apabila BAB I PENDAHULUAN A. Latar Belakang Analisis regresi merupakan metode analisis yang dapat digunakan untuk menganalisis data dan mengambil kesimpulan yang bermakna tentang hubungan ketergantungan variabel

Lebih terperinci

BAB III MINIMUM VOLUME ELLIPSOID PADA ANALISIS KOMPONEN UTAMA ROBUST. Pada bab ini akan dikaji bahasan utama yaitu pencilan dan analisis

BAB III MINIMUM VOLUME ELLIPSOID PADA ANALISIS KOMPONEN UTAMA ROBUST. Pada bab ini akan dikaji bahasan utama yaitu pencilan dan analisis BAB III MINIMUM VOLUME ELLIPSOID PADA ANALISIS KOMPONEN UTAMA ROBUST Pada bab ini akan dikaji bahasan utama yaitu pencilan dan analisis komponen utama robust sebagai konsep pendukung serta metode Minimum

Lebih terperinci

3 METODE. 3.1 Data = 0 1. time 0, =1, 2,,, =1, 2,, dengan n = 100 dan m = 5.

3 METODE. 3.1 Data = 0 1. time 0, =1, 2,,, =1, 2,, dengan n = 100 dan m = 5. 11 3 METODE 3.1 Data Data dalam penelitian ini terdiri dari dua sumber yaitu data simulasi dan data terapan. Data simulasi berguna untuk mengukur kinerja penduga kekar Huber pada data longitudinal. Data

Lebih terperinci

homogen jika titik-titik tersebar secara merata atau seimbang baik di atas maupun dibawah garis, dengan maksimum ragam yang kecil.

homogen jika titik-titik tersebar secara merata atau seimbang baik di atas maupun dibawah garis, dengan maksimum ragam yang kecil. 8 koefisien regresi berganda dari variabel tak bebas Y terhadap variabel bebas Xi. Pada kasus ini, persamaan mengandung arti sebagai berikut, seperti yang telah dimodelkan Merdun (23) di Sungai Saluda,

Lebih terperinci

METODE PENELITIAN Sumber Data

METODE PENELITIAN Sumber Data 13 METODE PENELITIAN Sumber Data Data yang digunakan dalam penelitian ini merupakan hasil simulasi melalui pembangkitan dari komputer. Untuk membangkitkan data, digunakan desain model persamaan struktural

Lebih terperinci

Minimum Variance Unbiased Estimator (MVUE) K-Fold Cross Validation

Minimum Variance Unbiased Estimator (MVUE) K-Fold Cross Validation 6 Individu kemudian diseleksi dengan metode Roulette Wheel, dengan peluang suatu individu untuk terpilih dinyatakan dengan persamaan sebagai berikut: 4. Pindah silang (cross-over) Metode pindah silang

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 10 Analisis Korelasi & Regresi (1)

STK511 Analisis Statistika. Pertemuan 10 Analisis Korelasi & Regresi (1) STK511 Analisis Statistika Pertemuan 10 Analisis Korelasi & Regresi (1) Analisis Hubungan Jenis/tipe hubungan Ukuran Keterkaitan Skala pengukuran peubah Pemodelan Keterkaitan anang kurnia (anangk@apps.ipb.ac.id)

Lebih terperinci

BAB I PENDAHULUAN. lebih variabel independen. Dalam analisis regresi dibedakan dua jenis variabel

BAB I PENDAHULUAN. lebih variabel independen. Dalam analisis regresi dibedakan dua jenis variabel BAB I PENDAHULUAN A. Latar Belakang Analisis regresi linier merupakan teknik dalam statistika yang digunakan untuk membentuk model hubungan antara variabel dependen dengan satu atau lebih variabel independen.

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 25 BAB 3 METODOLOGI PENELITIAN 3.1. Analisis Permasalahan Pada regresi berganda terdapat beberapa masalah yang dapat terjadi sehingga dapat menyebabkan estimasi koefisien regresi menjadi tidak stabil.

Lebih terperinci

KAJIAN TELBS PADA REGRESI LINIER DENGAN KASUS PENCILAN

KAJIAN TELBS PADA REGRESI LINIER DENGAN KASUS PENCILAN KAJIAN TELBS PADA REGRESI LINIER DENGAN KASUS PENCILAN Nurul Gusriani 1), Firdaniza 2), Novi Octavianti 3) 1,2,3) Departemen Matematika FMIPA Universitas Padjadjaran, Jalan Raya Bandung- Sumedang Km. 21

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN Konsentrasi lemak ikan (%) Kandungan zat aktif (absorban) HASIL DAN PEMBAHASAN Deskripsi Data Berdasarkan data yang digunakan dalam penelitian ini, akan dilakukan pengidentifikasian multikolinieritas.

Lebih terperinci

PERBANDINGAN METODE MCD-BOOTSTRAP DAN LAD- BOOTSTRAP DALAM MENGATASI PENGARUH PENCILAN PADA ANALISIS REGRESI LINEAR BERGANDA

PERBANDINGAN METODE MCD-BOOTSTRAP DAN LAD- BOOTSTRAP DALAM MENGATASI PENGARUH PENCILAN PADA ANALISIS REGRESI LINEAR BERGANDA PERBANDINGAN METODE MCD-BOOTSTRAP DAN LAD- BOOTSTRAP DALAM MENGATASI PENGARUH PENCILAN PADA ANALISIS REGRESI LINEAR BERGANDA Ni Luh Putu Ratna Kumalasari 1, Ni Luh Putu Suciptawati 2,, Made Susilawati

Lebih terperinci

IV. METODOLOGI PENELITIAN. Penelitian ini dilakukan di Kecamatan Tanjungpinang Timur,

IV. METODOLOGI PENELITIAN. Penelitian ini dilakukan di Kecamatan Tanjungpinang Timur, IV. METODOLOGI PENELITIAN 4.1 Tempat dan Waktu Penelitian Penelitian ini dilakukan di Kecamatan Tanjungpinang Timur, Tanjungpinang, Kepulauan Riau. Pemilihan lokasi dilakukan secara sengaja (purposive)

Lebih terperinci

IV. METODE PENELITIAN. Penelitian ini dilakukan di Desa Purwasari, Kecamatan Dramaga,

IV. METODE PENELITIAN. Penelitian ini dilakukan di Desa Purwasari, Kecamatan Dramaga, IV. METODE PENELITIAN 4.1. Lokasi dan Waktu Penelitian Penelitian ini dilakukan di Desa Purwasari, Kecamatan Dramaga, Kabupaten Bogor, Provinsi Jawa Barat. Pemilihan lokasi ini dilakukan secara tertuju

Lebih terperinci

BAB I PENDAHULUAN. untuk membentuk model hubungan antara variabel dependen dengan satu atau

BAB I PENDAHULUAN. untuk membentuk model hubungan antara variabel dependen dengan satu atau BAB I PENDAHULUAN A. Latar Belakang Analisis regresi linier merupakan teknik dalam statistika yang digunakan untuk membentuk model hubungan antara variabel dependen dengan satu atau lebih variabel independen.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Analisa Regresi Regresi pertama kali dipergunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis Galton. Galton melakukan studi tentang kecenderungan tinggi badan

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi dan Waktu Penelitian Penelitian mengenai faktor-faktor yang mempengaruhi realisasi KUR di wilayah perkotaan ini dilakukan di Bank Rakyat Indonesia (BRI). Bank ini dipilih

Lebih terperinci

PENERAPAN BOOTSTRAP DALAM METODE MINIMUM COVARIANCE DETERMINANT (MCD) DAN LEAST MEDIAN OF SQUARES (LMS) PADA ANALISIS REGRESI LINIER BERGANDA

PENERAPAN BOOTSTRAP DALAM METODE MINIMUM COVARIANCE DETERMINANT (MCD) DAN LEAST MEDIAN OF SQUARES (LMS) PADA ANALISIS REGRESI LINIER BERGANDA PENERAPAN BOOTSTRAP DALAM METODE MINIMUM COVARIANCE DETERMINANT (MCD) DAN LEAST MEDIAN OF SQUARES (LMS) PADA ANALISIS REGRESI LINIER BERGANDA Ni Putu Iin Vinny Dayanti 1, Ni Luh Putu Suciptawati 2, Made

Lebih terperinci

PENDAHULUAN. Latar Belakang. Tujuan Penelitian

PENDAHULUAN. Latar Belakang. Tujuan Penelitian PENDAHULUAN Latar Belakang Fungsi Cobb-Douglas dengan galat aditif merupakan salah satu fungsi produksi yang dapat digunakan untuk menganalisis hubungan antara hasil produksi dan faktor-faktor produksi.

Lebih terperinci

EFISIENSI ESTIMASI SCALE (S) TERHADAP ESTIMASI LEAST TRIMMED SQUARES (LTS) PADA PRODUKSI PADI DI PROVINSI JAWA TENGAH

EFISIENSI ESTIMASI SCALE (S) TERHADAP ESTIMASI LEAST TRIMMED SQUARES (LTS) PADA PRODUKSI PADI DI PROVINSI JAWA TENGAH EFISIENSI ESTIMASI SCALE (S) TERHADAP ESTIMASI LEAST TRIMMED SQUARES (LTS) PADA PRODUKSI PADI DI PROVINSI JAWA TENGAH May Cristanti, Yuliana Susanti, dan Sugiyanto Program Studi Matematika FMIPA UNS ABSTRAK.

Lebih terperinci

ESTIMASI REGRESI ROBUST M PADA FAKTORIAL RANCANGAN ACAK LENGKAP YANG MENGANDUNG OUTLIER

ESTIMASI REGRESI ROBUST M PADA FAKTORIAL RANCANGAN ACAK LENGKAP YANG MENGANDUNG OUTLIER ESTIMASI REGRESI ROBUST M PADA FAKTORIAL RANCANGAN ACAK LENGKAP YANG MENGANDUNG OUTLIER Siswanto 1, Raupong 2, Annisa 3 ABSTRAK Dalam statistik, melakukan suatu percobaan adalah salah satu cara untuk mendapatkan

Lebih terperinci

dimana n HASIL DAN PEMBAHASAN

dimana n HASIL DAN PEMBAHASAN 5. Proses penghilangan data dilakukan secara acak untuk memenuhi asumsi mekanisme kehilangan data yang acak (MAR). 6. Ulangan yang digunakan sebanyak 1 kali pada setiap simulasi untuk memberikan peluang

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam sebuah penelitian di bidang statistika, peneliti akan berhubungan dengan data pengamatan, baik data kualitatif atau data kuantitatif yang akan diproses

Lebih terperinci

BAB I PENDAHULUAN. Statistika adalah salah satu cabang ilmu yang mempelajari prosedur-prosedur

BAB I PENDAHULUAN. Statistika adalah salah satu cabang ilmu yang mempelajari prosedur-prosedur BAB I PENDAHULUAN 1.1 Latar Belakang Statistika adalah salah satu cabang ilmu yang mempelajari prosedur-prosedur yang digunakan dalam pengumpulan, penyajian, analisis dan interpretasi data. Statistika

Lebih terperinci

BAB 1 PENDAHULUAN. awal peradaban manusia. Pada awal zaman Masehi, bangsa-bangsa

BAB 1 PENDAHULUAN. awal peradaban manusia. Pada awal zaman Masehi, bangsa-bangsa BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Pengolahan informasi statistik mempunyai sejarah jauh ke belakang sejak awal peradaban manusia. Pada awal zaman Masehi, bangsa-bangsa mengumpulkan data statistik

Lebih terperinci

DATA DAN METODE Sumber Data

DATA DAN METODE Sumber Data 14 DATA DAN METODE Sumber Data Data yang digunakan dalam penelitian ini adalah data hasil simulasi dan data dari paket Mclust ver 3.4.8. Data simulasi dibuat dalam dua jumlah amatan yaitu 50 dan 150. Tujuan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Absorbsi Near Infrared Sampel Tepung Ikan Absorbsi near infrared oleh 50 sampel tepung ikan dengan panjang gelombang 900 sampai 2000 nm berkisar antara 0.1 sampai 0.7. Secara grafik

Lebih terperinci

STUDI KOMPARATIF METODE KUADRAT TERKECIL DENGAN METODE REGRESI ROBUST PEMBOBOT WELSCH PADA DATA YANG MENGANDUNG PENCILAN

STUDI KOMPARATIF METODE KUADRAT TERKECIL DENGAN METODE REGRESI ROBUST PEMBOBOT WELSCH PADA DATA YANG MENGANDUNG PENCILAN Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 18 26 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND STUDI KOMPARATIF METODE KUADRAT TERKECIL DENGAN METODE REGRESI ROBUST PEMBOBOT WELSCH PADA DATA YANG MENGANDUNG

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Model regresi yang baik memerlukan data yang baik pula. Suatu data dikatakan baik apabila data tersebut berada di sekitar garis regresi. Kenyataannya, terkadang terdapat

Lebih terperinci

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 PENDUGAAN PARMETER IV. PENDUGAAN PARAMETER Populasi N Sampling Sampel n Rata-rata : μ Simp. Baku : σ Ragam

Lebih terperinci

Analisis Komponen Utama (Principal component analysis)

Analisis Komponen Utama (Principal component analysis) Analisis Komponen Utama (Principal component analysis) A. LANDASAN TEORI Misalkan χ merupakan matriks berukuran nxp, dengan baris-baris yang berisi observasi sebanyak n dari p-variat variabel acak X. Analisis

Lebih terperinci

BAB III ANALISIS KORELASI KANONIK ROBUST DENGAN METODE MINIMUM COVARIANCE DETERMINAN

BAB III ANALISIS KORELASI KANONIK ROBUST DENGAN METODE MINIMUM COVARIANCE DETERMINAN BAB III ANALISIS KORELASI KANONIK ROBUST DENGAN METODE MINIMUM COVARIANCE DETERMINAN 3.1 Deteksi Pencilan Multivariat Pengidentifikasian pencilan pada kasus multivariat tidaklah mudah untuk dilakukan,

Lebih terperinci

REGRESI ROBUST DENGAN ESTIMASI-GS (GENERALIZED S-ESTIMATION ) PADA PENJUALAN TENAGA LISTRIK DI JAWA TENGAH TAHUN 2010

REGRESI ROBUST DENGAN ESTIMASI-GS (GENERALIZED S-ESTIMATION ) PADA PENJUALAN TENAGA LISTRIK DI JAWA TENGAH TAHUN 2010 REGRESI ROBUST DENGAN ESTIMASI-GS (GENERALIZED S-ESTIMATION ) PADA PENJUALAN TENAGA LISTRIK DI JAWA TENGAH TAHUN 2010 oleh YURISTA WULANSARI NIM. M 0108073 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian

Lebih terperinci

REGRESI ROBUST DENGAN METODE CONSTRAINED M ESTIMATION PADA PRODUKSI PADI SAWAH DI JAWA TENGAH. oleh IDA YUSWARA DYAH PITALOKA M

REGRESI ROBUST DENGAN METODE CONSTRAINED M ESTIMATION PADA PRODUKSI PADI SAWAH DI JAWA TENGAH. oleh IDA YUSWARA DYAH PITALOKA M REGRESI ROBUST DENGAN METODE CONSTRAINED M ESTIMATION PADA PRODUKSI PADI SAWAH DI JAWA TENGAH oleh IDA YUSWARA DYAH PITALOKA M0108046 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

BAB. IX ANALISIS REGRESI FAKTOR (REGRESSION FACTOR ANALYSIS)

BAB. IX ANALISIS REGRESI FAKTOR (REGRESSION FACTOR ANALYSIS) BAB. IX ANALII REGREI FAKTOR (REGREION FACTOR ANALYI) 9. PENDAHULUAN Analisis regresi faktor pada dasarnya merupakan teknik analisis yang mengkombinasikan analisis faktor dengan analisis regresi linier

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian Penelitian mengenai faktor-faktor yang mempengaruhi realisasi kredit BNI Tunas Usaha ini dilakukan pada Unit Kredit Kecil (UKC) Cabang Karawang. Bank

Lebih terperinci

REGRESI LINIER. b. Variabel tak bebas atau variabel respon -> variabel yang terjadi karena variabel bebas. Dapat dinyatakan dengan Y.

REGRESI LINIER. b. Variabel tak bebas atau variabel respon -> variabel yang terjadi karena variabel bebas. Dapat dinyatakan dengan Y. REGRESI LINIER 1. Hubungan Fungsional Antara Variabel Variabel dibedakan dalam dua jenis dalam analisis regresi: a. Variabel bebas atau variabel prediktor -> variabel yang mudah didapat atau tersedia.

Lebih terperinci

PERBANDINGAN METODE BOOTSTRAP DAN JACKKNIFE DALAM MENAKSIR PARAMETER REGRESI UNTUK MENGATASI MULTIKOLINEARITAS

PERBANDINGAN METODE BOOTSTRAP DAN JACKKNIFE DALAM MENAKSIR PARAMETER REGRESI UNTUK MENGATASI MULTIKOLINEARITAS Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 2 (2013), hal 137 146. PERBANDINGAN METODE BOOTSTRAP DAN JACKKNIFE DALAM MENAKSIR PARAMETER REGRESI UNTUK MENGATASI MULTIKOLINEARITAS

Lebih terperinci

PERBANDINGAN METODE KEKAR BIWEIGHT MIDCOVARIANCE DAN MINIMUM COVARIANCE DETERMINANT DALAM ANALISIS KORELASI KANONIK FREZA RIANA

PERBANDINGAN METODE KEKAR BIWEIGHT MIDCOVARIANCE DAN MINIMUM COVARIANCE DETERMINANT DALAM ANALISIS KORELASI KANONIK FREZA RIANA PERBANDINGAN METODE KEKAR BIWEIGHT MIDCOVARIANCE DAN MINIMUM COVARIANCE DETERMINANT DALAM ANALISIS KORELASI KANONIK FREZA RIANA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2012 i PERNYATAAN MENGENAI

Lebih terperinci

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT Model fungsi transfer multivariat merupakan gabungan dari model ARIMA univariat dan analisis regresi berganda, sehingga menjadi suatu model yang mencampurkan pendekatan

Lebih terperinci

REGRESI ROBUST MM-ESTIMATOR UNTUK PENANGANAN PENCILAN PADA REGRESI LINIER BERGANDA

REGRESI ROBUST MM-ESTIMATOR UNTUK PENANGANAN PENCILAN PADA REGRESI LINIER BERGANDA REGRESI ROBUST MM-ESTIMATOR UNTUK PENANGANAN PENCILAN PADA REGRESI LINIER BERGANDA SKRIPSI Disusun Oleh : SHERLY CANDRANINGTYAS J2E 008 053 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS

Lebih terperinci

BAB II LANDASAN TEORI. metode kuadrat terkecil (MKT), outlier, regresi robust, koefisien determinasi,

BAB II LANDASAN TEORI. metode kuadrat terkecil (MKT), outlier, regresi robust, koefisien determinasi, BAB II LANDASAN TEORI Beberapa teori yang diperlukan untuk mendukung pembahasan diantaranya adalah regresi linear berganda, pengujian asumsi analisis regresi, metode kuadrat terkecil (MKT), outlier, regresi

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN tersembunyi berkisar dari sampai dengan 4 neuron. 5. Pemilihan laju pembelajaran dan momentum Pemilihan laju pembelajaran dan momentum mempunyai peranan yang penting untuk struktur jaringan yang akan dibangun.

Lebih terperinci

BAB 1 PENDAHULUAN. Perkembangan dunia teknologi berkembang sangat pesat di dalam kehidupan

BAB 1 PENDAHULUAN. Perkembangan dunia teknologi berkembang sangat pesat di dalam kehidupan 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan dunia teknologi berkembang sangat pesat di dalam kehidupan manusia. Perkembangan teknologi ini ditandai dengan ditemukannya banyak penemuan penemuan

Lebih terperinci

METODE PARTIAL LEAST SQUARES UNTUK MENGATASI MULTIKOLINEARITAS PADA MODEL REGRESI LINEAR BERGANDA

METODE PARTIAL LEAST SQUARES UNTUK MENGATASI MULTIKOLINEARITAS PADA MODEL REGRESI LINEAR BERGANDA Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 169 174. METODE PARTIAL LEAST SQUARES UNTUK MENGATASI MULTIKOLINEARITAS PADA MODEL REGRESI LINEAR BERGANDA Romika Indahwati,

Lebih terperinci

viii METODE REGRESI LEAST TRIMMED SQUARES PADA DATA YANG MENGANDUNG PENCILAN ANNI FITHRIYATUL MAS UDAH

viii METODE REGRESI LEAST TRIMMED SQUARES PADA DATA YANG MENGANDUNG PENCILAN ANNI FITHRIYATUL MAS UDAH viii METODE REGRESI LEAST TRIMMED SQUARES PADA DATA YANG MENGANDUNG PENCILAN ANNI FITHRIYATUL MAS UDAH DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR

Lebih terperinci

III. METODE PENELITIAN. Jenis data yang digunakan dalam penelitian ini adalah data sekunder, time series triwulan dari

III. METODE PENELITIAN. Jenis data yang digunakan dalam penelitian ini adalah data sekunder, time series triwulan dari 34 III. METODE PENELITIAN 3.1 Jenis dan Sumber Data Jenis data yang digunakan dalam penelitian ini adalah data sekunder, time series triwulan dari tahun 2005-2012, yang diperoleh dari data yang dipublikasikan

Lebih terperinci

BAB I PENDAHULUAN. Analisis regresi merupakan sebuah alat statistik yang memberi penjelasan

BAB I PENDAHULUAN. Analisis regresi merupakan sebuah alat statistik yang memberi penjelasan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Analisis regresi merupakan sebuah alat statistik yang memberi penjelasan tentang pola hubungan (model) antara dua peubah atau lebih (Draper dan Smith, 1992).

Lebih terperinci

BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang

BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA. Analisis komponen utama adalah metode statistika multivariat yang BAB III PEREDUKSIAN RUANG INDIVIDU DENGAN ANALISIS KOMPONEN UTAMA Analisis komponen utama adalah metode statistika multivariat yang bertujuan untuk mereduksi dimensi data dengan membentuk kombinasi linear

Lebih terperinci

METODE LEAST MEDIAN OF SQUARES (LMS) PADA ANALISIS REGRESI DENGAN PENCILAN AMIR A DALIMUNTHE

METODE LEAST MEDIAN OF SQUARES (LMS) PADA ANALISIS REGRESI DENGAN PENCILAN AMIR A DALIMUNTHE METODE LEAST MEDIAN OF SQUARES (LMS) PADA ANALISIS REGRESI DENGAN PENCILAN AMIR A DALIMUNTHE DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2010 RINGKASAN

Lebih terperinci

BAB III KAJIAN SIMULASI

BAB III KAJIAN SIMULASI BAB III Kajian Simulasi 12 BAB III KAJIAN SIMULASI 3.1 Kajian simulasi tentang efektifitas pengujian 1 outlier Kajian terhadap literatur menghasilkan kesimpulan bahwa pendeteksian outlier dengan menggunakan

Lebih terperinci

S T A T I S T I K A OLEH : WIJAYA

S T A T I S T I K A OLEH : WIJAYA S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 IV. PENDUGAAN PARAMETER Populasi Sampling Sampel N n Rata-rata : μ Simp.

Lebih terperinci

III. HASIL DAN PEMBAHASAN

III. HASIL DAN PEMBAHASAN III. HASIL DAN PEMBAHASAN 3.1 Statistik Data Plot Contoh Jumlah total plot contoh yang diukur di lapangan dan citra SPOT Pankromatik sebanyak 26 plot contoh. Plot-plot contoh ini kemudian dikelompokkan

Lebih terperinci

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi

Metode Statistika Pertemuan XII. Analisis Korelasi dan Regresi Metode Statistika Pertemuan XII Analisis Korelasi dan Regresi Analisis Hubungan Jenis/tipe hubungan Ukuran Keterkaitan Skala pengukuran variabel Pemodelan Keterkaitan Relationship vs Causal Relationship

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun

BAB 2 LANDASAN TEORI. Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Analisis regresi (regression analysis) merupakan suatu teknik untuk membangun persamaan dan menggunakan persamaan tersebut untuk membuat perkiraan (prediction).

Lebih terperinci

HASIL DAN PEMBAHASAN. Model Regresi Logistik Biner untuk data Hasil Pembangkitan

HASIL DAN PEMBAHASAN. Model Regresi Logistik Biner untuk data Hasil Pembangkitan HASIL DAN PEMBAHASAN Model Regresi Logistik Biner untuk data Hasil Pembangkitan Model regresi logistik digunakan untuk menggambarkan hubungan antara peubah respon dan peubah penjelas pada data hasil pembangkitan.

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan tingkat

BAB 2 LANDASAN TEORI. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan tingkat BAB 2 LANDASAN TEORI 2.1 Pengertian Analisis Regresi dan Korelasi 2.1.1 Analisis Korelasi Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan tingkat hubungan Y dan X dalam bentuk

Lebih terperinci

BAB III MODEL REGRESI DATA PANEL. Pada bab ini akan dikemukakan dua pendekatan dari model regresi data

BAB III MODEL REGRESI DATA PANEL. Pada bab ini akan dikemukakan dua pendekatan dari model regresi data BAB III MODEL REGRESI DATA PANEL Pada bab ini akan dikemukakan dua pendekatan dari model regresi data panel, yaitu pendekatan fixed effect dan pendekatan random effect yang merupakan ide pokok dari tugas

Lebih terperinci

PEMODELAN DENGAN REGRESI LOGISTIK. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal)

PEMODELAN DENGAN REGRESI LOGISTIK. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal) PEMODELAN DENGAN REGRESI LOGISTIK 1. Data Biner Data biner merupakan data yang hanya memiliki dua kemungkinan hasil. Secara umum, kedua hasil dilambangkan dengan (sukses) dan (gagal) dengan peluang masing-masing

Lebih terperinci

Judul : Perbandingan Metode MCD Bootstrap dan. Analisis Regresi Linear Berganda. Pembimbing : 1. Dra. Ni Luh Putu Suciptawati,M.Si

Judul : Perbandingan Metode MCD Bootstrap dan. Analisis Regresi Linear Berganda. Pembimbing : 1. Dra. Ni Luh Putu Suciptawati,M.Si Judul : Perbandingan Metode MCD Bootstrap dan LAD Bootstrap Dalam Mengatasi Pengaruh Pencilan Pada Analisis Regresi Linear Berganda Nama : Ni Luh Putu Ratna Kumalasari Pembimbing : 1. Dra. Ni Luh Putu

Lebih terperinci

KOEFISIEN DETERMINASI REGRESI FUZZY SIMETRIS UNTUK PEMILIHAN MODEL TERBAIK. Iqbal Kharisudin. Jurusan Matematika FMIPA Universitas Negeri Semarang

KOEFISIEN DETERMINASI REGRESI FUZZY SIMETRIS UNTUK PEMILIHAN MODEL TERBAIK. Iqbal Kharisudin. Jurusan Matematika FMIPA Universitas Negeri Semarang KOEFISIEN DETERMINASI REGRESI FUZZY SIMETRIS UNTUK PEMILIHAN MODEL TERBAIK S-33 Iqbal Kharisudin Jurusan Matematika FMIPA Universitas Negeri Semarang Email: iqbal_kh@staff.unnes.ac.id Abstrak: Dalam analisis

Lebih terperinci

BAB I PENDAHULUAN. suatu metode yang disebut metode kuadrat terkecil (Ordinary Least Square OLS).

BAB I PENDAHULUAN. suatu metode yang disebut metode kuadrat terkecil (Ordinary Least Square OLS). BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam penaksiran koefisien-koefisien regresi linier, biasanya kita digunakan suatu metode yang disebut metode kuadrat terkecil (Ordinary Least Square OLS).

Lebih terperinci

Pencilan. Pencilan adalah pengamatan yang nilai mutlak sisaannya jauh lebih besar daripada sisaan-sisaan lainnya

Pencilan. Pencilan adalah pengamatan yang nilai mutlak sisaannya jauh lebih besar daripada sisaan-sisaan lainnya Pencilan Pencilan adalah pengamatan yang nilai mutlak sisaannya jauh lebih besar daripada sisaan-sisaan lainnya Bisa jadi terletak pada tiga atau empat simpangan baku atau lebih jauh lagi dari rata-rata

Lebih terperinci

(R.14) METODE MINIMUM COVARIANCE DETERMINANT PADA ANALISIS REGRESI LINIER BERGANDA DENGAN KASUS PENCILAN

(R.14) METODE MINIMUM COVARIANCE DETERMINANT PADA ANALISIS REGRESI LINIER BERGANDA DENGAN KASUS PENCILAN (R.14) MEODE MINIMUM COVARIANCE DEERMINAN PADA ANALISIS REGRESI LINIER BERGANDA DENGAN KASUS PENCILAN Dini Aderlina, Firdaniza, Nurul Gusriani Jurusan Matematika FMIPA Universitas Padjadjaran Jl. Raya

Lebih terperinci

Pelanggaran Asumsi Normalitas Model Multilevel Pada Galat Level yang Lebih Tinggi. Bertho Tantular 1)

Pelanggaran Asumsi Normalitas Model Multilevel Pada Galat Level yang Lebih Tinggi. Bertho Tantular 1) Pelanggaran Asumsi Normalitas Model Multilevel Pada Galat Level yang Lebih Tinggi S-28 Bertho Tantular 1) 1) Staf Pengajar Jurusan Statistika FMIPA UNPAD berthotantular@gmail.com Abstrak Secara umum model

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 19 BAB 2 LANDASAN TEORI 2.1. Metode Analisis Data 2.1.1. Uji Validitas Validitas adalah suatu ukuran yang membuktikan bahwa apa yang diamati peneliti sesuai dengan apa yang sesungguhnya ada dalam dunia

Lebih terperinci

Statistik merupakan salah satu cabang ilmu pengetahuan yang paling banyak

Statistik merupakan salah satu cabang ilmu pengetahuan yang paling banyak BAB 2 LANDASAN TEORI 2.1 Pengertian Analisis Regresi Statistik merupakan salah satu cabang ilmu pengetahuan yang paling banyak mendapatkan perhatian dan dipelajari oleh ilmuan dari hampir semua ilmu bidang

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini menggunakan data sekunder tahunan Data sekunder

III. METODE PENELITIAN. Penelitian ini menggunakan data sekunder tahunan Data sekunder III. METODE PENELITIAN A. Jenis dan Sumber Data Penelitian ini menggunakan data sekunder tahunan 2000-2011. Data sekunder tersebut bersumber dari Lampung dalam Angka (BPS), Badan Penanaman Modal Daerah

Lebih terperinci

MANAJEMEN DATA PENCILAN PADA ANALISIS REGRESI KOMPONEN UTAMA MAGRI HANDOKO

MANAJEMEN DATA PENCILAN PADA ANALISIS REGRESI KOMPONEN UTAMA MAGRI HANDOKO MANAJEMEN DATA PENCILAN PADA ANALISIS REGRESI KOMPONEN UTAMA MAGRI HANDOKO DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2011 RINGKASAN MAGRI HANDOKO. Manajemen

Lebih terperinci

Forum Statistika dan Komputasi, Oktober 2009 p : ISSN :

Forum Statistika dan Komputasi, Oktober 2009 p : ISSN : , Oktober 2009 p : 26-34 ISSN : 0853-8115 Vol 14 No.2 METODE PENDUGAAN MATRIKS RAGAM-PERAGAM DALAM ANALISIS REGRESI KOMPONEN UTAMA (RKU) (Variance-Covariance Matrix Estimation Method for Principal Component

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 9 BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Analisis Regresi Perubahan nilai suatu variabel dapat disebabkan karena adanya perubahan pada variabel - variabel lain yang mempengaruhinya. Misalnya pada kinerja

Lebih terperinci

Analisis Regresi 2. Pokok Bahasan : Asumsi sisaan dan penanganannya

Analisis Regresi 2. Pokok Bahasan : Asumsi sisaan dan penanganannya Analisis Regresi 2 Pokok Bahasan : Asumsi sisaan dan penanganannya Tujuan Instruksional Khusus : Mahasiswa dapat menjelaskan asumsi-asumsi yang melandasi analisis regresi linier sederhana dan berganda,

Lebih terperinci

BAB ΙΙ LANDASAN TEORI

BAB ΙΙ LANDASAN TEORI 7 BAB ΙΙ LANDASAN TEORI Berubahnya nilai suatu variabel tidak selalu terjadi dengan sendirinya, bisa saja berubahnya nilai suatu variabel disebabkan oleh adanya perubahan nilai pada variabel lain yang

Lebih terperinci