CHAPTER 8. Advanced Counting Techniques

Ukuran: px
Mulai penontonan dengan halaman:

Download "CHAPTER 8. Advanced Counting Techniques"

Transkripsi

1 CHAPTER 8 Advanced Counting Techniques

2 Banyak problem counting yang tidak dapat dipecahkan dengan menggunakan hanya aturan dasar, kombinasi, permutasi, dan aturan sarang merpati. Misalnya: Ada berapa banyak string biner dengan panjang n yang tidak memuat 2 angka nol berurutan? Untuk memecahkan ini, misalkan a n = banyaknya string tsb panjang n. Dapat ditunjukkan kemudian bhw a n+1 = a n + a n-1. Dengan memecahkan persamaan ini kita dapat mencari a n.

3 Relasi Recurrence Definisi. Relasi Recurrence untuk barisan {a n } adalah persamaan yang menyatakan a n dalam salah satu atau lebih bentuk a 0, a 1,, a n-1 untuk semua n dengan n n 0 dimana n 0 bilangan bulat nonnegatif. Barisan {a n } tersebut dikatakan sebagai solusi dari relasi recurrence ini bila a n memenuhi relasi recurrence.

4 8.1 APPLICATIONS OF RECURRENCE RELATIONS

5 Contoh 1 Misalkan seseorang menabung Rp. 100,000 di bank dengan bunga 12% per tahun. Berapa banyak uangnya setelah 30 tahun? Solusi. Misal P n menyatakan banyaknya uang dalam tabungan setelah n tahun. Maka, P n = P n P n-1 = (1.12) P n-1, dengan P 0 = 100,000. Dengan pendekatan iteratif: P 1 = (1.12)P 0 P 2 = (1.12)P 1 = (1.12) 2 P 0 P 3 = (1.12)P 2 = (1.12) 3 P 0 P n = (1.12)P n-1 = (1.12) n P 0

6 Contoh 2 Sepasang kelinci ditaruh di suatu pulau. Pasangan kelinci ini tidak akan beranak sampai berumur 2 bulan. Setelah berumur 2 bulan, setiap sepasang menghasilkan sepasang yg lain setiap bulannya. Tentukan relasi recurrence dari jumlah pasangan setelah n bulan, bila tidak ada kelinci yg mati. Solusi. Misalkan f n : jumlah pasangan kelinci setelah n bulan. Maka, f 1 = 1, f 2 = 1. Untuk mencari f n, tambahkan jumlah pasangan pada bulan sebelumnya, f n-1, dengan jumlah pasangan yang baru lahir, f n-2. Jadi, f n = f n-1 + f n-2.

7 Menara Hanoi Merupakan sebuah puzzle populer yang ditemukan oleh seorang matematikawan Perancis Edouard Lucas pada abad 19. Terdapat menara dengan 3 tiang untuk meletakkan sejumlah disk berukuran berbeda. Awalnya semua disk terletak secara terurut pada tiang pertama dengan disk terbesar paling bawah Aturan: Satu disk dapat dipindahkan setiap waktu dari satu tiang ke tiang lain selama disk tsb tidak berada di atas disk yang lebih kecil. Tujuan: Memindahkan semua disk ke tiang kedua dengan disk terbesar di urutan paling bawah.

8 Menara Hanoi (2) Misalkan H n : banyaknya langkah yg diperlukan untuk memindahkan n disk dalam masalah menara Hanoi. Kita mulai dengan n disk pada tiang 1. Kita dapat memindahkan n-1 disk paling atas dengan mengikuti aturan ke tiang 3 dalam H n-1 langkah. Kemudian, dengan menggunakan 1 langkah kita bisa memindahkan disk terbesar ke tiang 2. Selanjutnya, pindahkan n-1 disk dari tiang 3 ke tiang 2, dengan mengikuti aturan dalam H n-1 langkah. Sehingga kita telah memecahkan puzzle dengan banyak langkah: H n = 2H n dan H 1 = 1.

9 Menara Hanoi (3) Untuk mencari solusinya, dilakukan proses iteratif: H n = 2H n = 2(2H n-2 + 1)+1 = 2 2 H n = 2 2 (2H n-3 +1) = 2 3 H n : = 2 n-1 H n n = 2 n n n (deret geometri) = 2 n - 1 Jadi, untuk memindahkan 64 disk diperlukan langkah sebanyak: = 18,446,744,073,709,551,615.

10 Variasi Menara Hanoi Terdapat banyak variasi dari masalah Menara Hanoi. Yang tertua dan paling menarik adalah Reve s puzzle (Henry Dudeney, 1907). Reve s puzzle: Sama seperti masalah Menara Hanoi namun menggunakan 4 tiang. Hingga kini belum ditemukan jumlah langkah minimum untuk puzzle dengan n disk. Conjecture: sama dengan jumlah langkah dalam algoritma Frame dan Stewart (1939).

11 Contoh 3 Ada berapa banyak string biner dengan panjang n yang tidak memuat 2 angka nol berurutan? Misalkan a n string biner dengan panjang n yang tidak memuat 2 angka nol berurutan. Tentukan relasi recurrence untuk a n. Solusi. Periksa: a 1 = 2 dan a 2 = 3. Ada dua cara mendapatkan string biner dengan panjang n yang tidak memuat 2 angka nol berurutan: string biner dengan panjang n-1 yang tidak memuat 2 angka nol berurutan string biner dengan panjang n-2 yang tidak memuat 2 angka nol berurutan a n-1 a n-2 a n = a n-1 + a n-2

12 Contoh 4 (Enumerasi Katakode) Suatu string desimal merupakan katakode yang valid dalam suatu sistem komputer jika string tersebut memuat sejumlah genap digit 0. Contoh valid dan tidak valid. Misalkan a n banyaknya katakode valid dengan panjang n. Tentukan relasi recurrence untuk a n. Solusi. Periksa: a 1 = 9. Ada dua cara mendapatkan katakode valid panjang n: Menambahkan 1 digit selain 0 pada katakode valid panjang n-1 Menambahkan 1 digit 0 pada katakode tak valid panjang n-1 9a n-1 10 n-1 - a n-1 a n = 8a n n-1

13 Soal (Bilangan Catalan) C n adalah banyaknya cara untuk mengelompokkan perkalian n+1 bilangan x 0. x 1. x 2 x n, untuk menentukan urutan perkalian. Tentukan relasi recurrence untuk C n.

14 8.2 SOLVING LINEAR RECURRENCE RELATIONS

15 Relasi recurrence linear homogen berderajat k dengan koefisien konstan Bentuk umum: a n = c 1 a n-1 + c 2 a n c k a n-k, dengan c 1, c 2,, c k bilangan real dan c k 0. Contoh P n = (1.12)P n-1 homogen linear berderajat 1 2. f n = f n-1 + f n-2 homogen linear berderajat 2 3. H n = 2H n linear tapi tak homogen 4. a n = a n-1 + (a n-2 ) 2 tak linear 5. T n = nt n-2 koefisien tak konstan Hanya mengkaji relasi linear dengan koefisien konstan!

16 Mencari solusi Langkah dasar dalam memecahkan relasi recurrence homogen linear adalah mencari solusi dalam bentuk a n = r n dengan r konstan. a n = r n adalah solusi dari a n = c 1 a n-1 + c 2 a n c k a n-k jika dan hanya jika r n = c 1 r n-1 +c 2 r n c k r n-k. Bila kedua ruas dibagi dengan r n-k diperoleh: r k - c 1 r k-1 - c 2 r k c k-1 r - c k = 0. Persamaan ini disebut persamaan karakteristik dari relasi recurrence. Solusi dari persamaan ini disebut akar karakteristik.

17 Solusi relasi recurrence homogen orde 2 dengan akar berbeda Teorema 1 Misalkan c 1, c 2 bilangan real dan r 2 - c 1 r - c 2 = 0 mempunyai dua akar berbeda r 1 dan r 2. Maka semua solusi dari relasi recurrence a n = c 1 a n-1 + c 2 a n-2 berbentuk a n = 1 r 1 n + 2 r 2n, n=0,1,2, dengan 1 dan 2 konstan. Bukti. Lihat di buku!

18 Contoh 2 Carilah solusi dari a n = a n-1 + 2a n-2 dengan a 0 = 2 dan a 1 =7. Solusi. Persamaan karakteristiknya r 2 - r - 2 = 0, mempunyai akar r = 2 dan r = -1. Menurut Teorema 1, solusi relasi recurrence berbentuk a n = 1 2 n + 2 (-1) n. Karena a 0 = 2 dan a 1 = 7, diperoleh a n = 3 2 n - (-1) n.

19 Soal 1 Tentukan formula eksplisit dari bilangan Fibonacci. Ingat bahwa bilangan Fibonacci f n memenuhi relasi dan kondisi awal f n = f n-1 + f n-2 f 0 =1, f 1 =1

20 Solusi relasi recurrence homogen orde 2 dengan akar tunggal Teorema 2 Misalkan c 1, c 2 bilangan real dengan c 2 0 dan r 2 - c 1 r - c 2 = 0 mempunyai hanya satu akar r 0. Maka semua solusi dari relasi recurrence berbentuk a n = c 1 a n-1 + c 2 a n-2 a n = 1 r 0 n + 2 nr 0n, n=0,1,2, dengan 1 dan 2 konstan. Bukti. Latihan!

21 Soal 2 Tentukan solusi dari relasi recurrence a n = 6a n-1-9a n-2 dengan kondisi awal a 0 = 1 dan a 1 = 6.

22 Solusi relasi recurrence homogen orde n dengan akar berbeda Teorema 3 Misalkan c 1, c 2,, c k bilangan real dan persamaan karakteristik r k - c 1 r k-1 - c 2 r k c k-1 r - c k = 0 mempunyai k akar r 1, r 2,, r k yang berbeda. Maka, solusi relasi recurrence a n = c 1 a n-1 + c 2 a n c k a n-k selalu berbentuk a n = 1 r 1 n + 2 r 2 n + + k r k n, n=0,1,2, dengan i, i=0,1,,k konstan.

23 Contoh 3 Tentukan solusi dari relasi recurrence a n = 6a n-1 11a n-2 + 6a n-3 dengan kondisi awal a 0 =2, a 1 =5 dan a 2 =15. Solusi. Persamaan karakteristiknya r 3-6r r - 6 = 0. Jadi akar-akarnya r=1, r=2 dan r=3. Dengan demikian, solusinya berbentuk a n = 1 1 n n + k 3 n. Dari kondisi awalnya diperoleh a n = 1-2 n n.

24 Solusi relasi recurrence homogen Teorema 4 orde k Misal c 1, c 2,, c k bilangan real dan persamaan karakteristik r k - c 1 r k-1 - c 2 r k c k-1 r - c k = 0 mempunyai t akar r 1, r 2,, r t berbeda dengan multiplisitas m 1, m 2,, m t (m 1 + m m t = k). Maka solusi relasi recurrence selalu berbentuk a n = c 1 a n-1 + c 2 a n c k a n-k a n = ( 1,0 + 1,1 n + + 1,m1-1 n m1-1 )r 1 n + ( 2,0 + 2,1 n + + 2,m2-1 n m2-1 )r 2 n + + ( t,0 + t,1 n + + t,mt-1 n mt-1 )r t n

25 Contoh 4 Tentukan solusi dari relasi recurrence a n = -3a n-1-3a n-2 - a n-3 dengan kondisi awal a 0 = 1, a 1 = -2 dan a 2 = -1. Solusi. Persamaan karakteristiknya r 3 + 3r 2 + 3r +1 = 0. Jadi akarnya r = -1 dgn multiplisitas 3. Dengan demikian, solusinya berbentuk a n = 1,0 (-1) n + 1,1 n (-1) n + 1,2 n 2 (-1) n. Dengan memandang kondisi awalnya diperoleh a = (1 +3n-2n 2 ) (-1) n.

26 Relasi recurrence tak homogen linear dengan koefisien konstan Contoh 5. a n = 3a n-2 + 5n Secara umum, a n = c 1 a n-1 + c 2 a n c k a n-k + F(n) dengan c i, i=0,1,2, konstan dan F(n) fungsi tak nol. a n = c 1 a n-1 +c 2 a n c k a n-k disebut relasi recurrence homogen yang berkaitan. Contoh 6. a n = a n n a n = a n-1 + a n-2 + a n-3 + n!

27 Teorema 5 Jika {a n (p) } adalah solusi khusus dari relasi recurrence tak homogen linear dengan koefisien konstan a n = c 1 a n-1 + c 2 a n c k a n-k + F(n) maka setiap solusi berbentuk {a n (p) + a n (h) }, dengan {a n (h) } solusi relasi recurrence homogen yang berkaitan a n = c 1 a n-1 + c 2 a n c k a n-k.

28 Tentukan semua solusi dari relasi recurrence Solusi. Contoh 7 a n = 3a n-1 + 2n. Karena F(n) = 2n adalah polinom berderajat satu, maka kita coba polinom berderajat satu p n = cn + d, dengan c dan d konstan untuk mendapatkan solusi khusus. Didapat, p n = 3p n-1 + 2n cn+d = 3(c(n-1)+d) + 2n (-2c-2)n + (3c-2d) = 0 Sehingga c = -1 dan d = -3/2. Jadi, solusi khususnya a n (p) = -n - 3/2.

29 Contoh 7 (2) Solusi homogen dari relasi homogen yang berkaitan, a n = 3a n-1 adalah a n (h) = 3 n, dengan konstan. Menurut Teorema 5, solusi umum dari a n = 3a n-1 + 2n adalah a n = a n (p) + a n (h) = -n - 3/2 + 3 n. Jika diketahui a 1 = 3, maka solusi menjadi a n = -n - 3/2 + (11/6) 3 n.

30 Contoh 8 Tentukan semua solusi dari relasi recurrence: a n = 5a n-1-6a n n. Solusi. Solusi homogennya adalah a n (h) = 1 3 n n. Karena F(n) = 7 n, solusi khusus yg perlu dicoba adalah a n (p) = c 7 n. Maka, c 7 n = 5c 7 n-1 6c 7 n n. Diperoleh c = 49/20. Jadi, solusi umumnya: a n = 1 3 n n + 49/20 7 n.

31 Teorema 6 Misalkan {a n } memenuhi relasi recurrence tak homogen linear a n = c 1 a n-1 + c 2 a n c k a n-k + F(n) dengan c i, i=1,2,,k bilangan real dan F(n) = (b t n t + b t-1 n t b 1 n + b 0 ) s n dengan b i, i=0,1,,t dan s bilangan real. Jika s bukan akar dari persamaan karakteristik relasi recurrence homogen yang berkaitan, maka terdapat solusi khusus yang berbentuk (p t n t + p t-1 n t p 1 n + p 0 ) s n Jika s akar dari persamaan karakteristik dengan multiplisitas m, maka terdapat solusi khusus yang berbentuk F(n) = n m (p t n t + p t-1 n t p 1 n + p 0 ) s n

32 Contoh 9 Carilah solusi khusus dari relasi recurrence a n = 6a n-1-9a n-2 + F(n) bila 1. F(n) = 3 n, 2. F(n) = n 3 n, 3. F(n) = n 2 2 n, dan 4. F(n) = (n 2 +1) 3 n Solusi. Solusi homogennya adalah a n (h) = 1 3 n + 2 n3 n. Dan solusi khususnya adalah 1. a n (p) = p 0 n 2 3 n. 2. a n (p) = n 2 (p 1 n+p 0 )3 n. 3. a n (p) = (p 2 n 2 +p 1 n+p 0 )2 n. 4. a n (p) = n 2 (p 2 n 2 +p 1 n+p 0 )3 n.

33 Contoh 10 Menara Hanoi Tentukan solusi dari relasi recurrence H n = 2H n-1 + 1, H 1 = 1, dan H 2 = 3 Solusi. Relasi homogen yang berkaitan adalah H n = 2H n-1 dan solusi homogennya H n (h) = 2 n. Karena F(n) = 1 = 1 n, maka solusi khususnya adalah H n (p) = p 0 1 n = p 0. Sehingga solusi umumnya adalah H n = 2 n + p 0 Dengan memandang H 1 = 1 dan H 2 = 3 diperoleh =1 dan p 0 = -1. Jadi, H n = 2 n - 1

34 Soal 3 Ada berapa cara untuk menutup suatu papan persegi panjang berukuran 2 x n dengan menggunakan papan-papan kecil yang berukuran 1 x 2 dan 2 x 2. Misalkan a n adalah jumlah n bilangan bulat positif pertama. Berikan formula eksplisit dari a n.

Karena relasi rekurens menyatakan definisi barisan secara rekursif, maka kondisi awal merupakan langkah basis pada definisi rekursif tersebut.

Karena relasi rekurens menyatakan definisi barisan secara rekursif, maka kondisi awal merupakan langkah basis pada definisi rekursif tersebut. Relasi Rekurens 1 Relasi Rekurens Barisan (sequence) a 0, a 1, a 2,, a n dilambangkan dengan {a n } Elemen barisan ke-n, yaitu a n, dapat ditentukan dari suatu persamaan. Bila persamaan yang mengekspresikan

Lebih terperinci

Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir

Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir Relasi Rekursi *recurrence rekurens rekursi perulangan. Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir menuliskan definisi dari

Lebih terperinci

Relasi Rekursi. Matematika Informatika 4. Onggo

Relasi Rekursi. Matematika Informatika 4. Onggo Relasi Rekursi Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi Definisi 1 Suatu relasi rekursi untuk sebuah barisan {a n } merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih

Lebih terperinci

Relasi Rekursi. Definisi Relasi Rekursi

Relasi Rekursi. Definisi Relasi Rekursi Relasi Rekursi Definisi Relasi Rekursi Relasi rekursi adalah sebuah formula rekursif dimana setiap bagian dari suatu barisan dapat ditentukan menggunakan satu atau lebih bagian sebelumnya. Jika ak adalah

Lebih terperinci

Design and Analysis of Algorithms CNH2G3- Week 5 Kompleksitas waktu algoritma rekursif part 2: Metode Karakteristik

Design and Analysis of Algorithms CNH2G3- Week 5 Kompleksitas waktu algoritma rekursif part 2: Metode Karakteristik Design and Analysis of Algorithms CNH2G3- Week 5 Kompleksitas waktu algoritma rekursif part 2: Metode Karakteristik Dr. Putu Harry Gunawan (PHN Review 1. Tentukan kompleksitas waktu Big-Oh untuk relasi

Lebih terperinci

I. PENDAHULUAN. diujikan. Bahkan, seleksi penerimaan calon pegawai negeri sipil (CPNS) pun,

I. PENDAHULUAN. diujikan. Bahkan, seleksi penerimaan calon pegawai negeri sipil (CPNS) pun, 1 I. PENDAHULUAN 1.1. Latar Belakang Matematika sebagai ilmu dasar, dewasa ini sangat dirasakan interaksinya dengan bidang ilmu yang lain. Sejak Sekolah Dasar (SD) hingga bangku Sekolah Menengah Atas (SMA),

Lebih terperinci

Perluasan permutasi dan kombinasi

Perluasan permutasi dan kombinasi Perluasan permutasi dan kombinasi Permutasi dengan pengulangan Kombinasi dengan pengulangan Permutasi dengan obyek yang tidak dapat dibedakan Distribusi obyek ke dalam kotak Permutasi dengan pengulangan

Lebih terperinci

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q.

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. Diskusi Kelompok (I) Waktu: 100 menit Selasa, 23 September 2008 Pengajar: Hilda Assiyatun, Djoko Suprijanto 1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. (a) Mahasiswa perlu membawakan

Lebih terperinci

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION 5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION Rekursif Ada kalanya kita mengalami kesulitan untuk mendefinisikan suatu obyek secara eksplisit. Mungkin lebih mudah untuk mendefinisikan obyek tersebut

Lebih terperinci

Solusi Rekursif pada Persoalan Menara Hanoi

Solusi Rekursif pada Persoalan Menara Hanoi Solusi Rekursif pada Persoalan Menara Hanoi Choirunnisa Fatima 1351084 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 4013, Indonesia

Lebih terperinci

Alat Peraga Menara Hanoi untuk Pembelajaran Pola Bilangan. Oleh: Tim Unit Media Alat Peraga Matematika

Alat Peraga Menara Hanoi untuk Pembelajaran Pola Bilangan. Oleh: Tim Unit Media Alat Peraga Matematika Alat Peraga Menara Hanoi untuk Pembelajaran Pola Bilangan Oleh: Tim Unit Media Alat Peraga Matematika A. Teka-teki Menara hanoi Menara Hanoi merupakan salah satu diantara berbagai teka-teki dalam matematika.

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran bertempat di

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran bertempat di III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun ajaran 2011-2012 bertempat di Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Design and Analysis of Algorithm

Design and Analysis of Algorithm Design and Analysis of Algorithm Week 5: Kompleksitas waktu algoritma rekursif part 2 Dr. Putu Harry Gunawan 1 1 Department of Computational Science School of Computing Telkom University Dr. Putu Harry

Lebih terperinci

Rekursif. Rekursif adalah salah satu metode dalam dunia matematika dimana definisi sebuah fungsi mengandung fungsi itu sendiri.

Rekursif. Rekursif adalah salah satu metode dalam dunia matematika dimana definisi sebuah fungsi mengandung fungsi itu sendiri. Rekursif Rekursif adalah salah satu metode dalam dunia matematika dimana definisi sebuah fungsi mengandung fungsi itu sendiri. Dalam dunia pemrograman, rekursi diimplementasikan dalam sebuah fungsi yang

Lebih terperinci

ALGORITHM. 3 Rekursif Algorithm. Dahlia Widhyaestoeti, S.Kom dahlia74march.wordpress.com

ALGORITHM. 3 Rekursif Algorithm. Dahlia Widhyaestoeti, S.Kom dahlia74march.wordpress.com ALGORITHM 3 Rekursif Algorithm Dahlia Widhyaestoeti, S.Kom dahlia.widhyaestoeti@gmail.com dahlia74march.wordpress.com Rekursif adalah salah satu metode dalam dunia matematika dimana definisi sebuah fungsi

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

6.3 PERMUTATIONS AND COMBINATIONS

6.3 PERMUTATIONS AND COMBINATIONS 6.3 PERMUTATIONS AND COMBINATIONS Pengaturan dengan urutan Sering kali kita perlu menghitung banyaknya cara pengaturan obyek tertentu dengan memperhatikan urutan maupun tanpa memperhatikan urutan. Contoh

Lebih terperinci

Combinatorics dan Counting

Combinatorics dan Counting CHAPTER 6 COUNTING Combinatorics dan Counting Kombinatorik Ilmu yang mempelajari pengaturan obyek Bagian penting dari Matematika Diskrit Mulai dipelajari di abad 17 Enumerasi Penghitungan obyek dengan

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom BAB 9 RING POLINOM Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

Hendra Gunawan. 26 Februari 2014

Hendra Gunawan. 26 Februari 2014 MA1201 MATEMATIKA 2A Hendra Gunawan Semester II, 2013/2014 26 Februari 2014 9.6 Deret Pangkat Kuliah yang Lalu Menentukan selang kekonvergenan deret pangkat 9.7 Operasi pada Deret Pangkat Mlkk Melakukan

Lebih terperinci

TINJAUAN MATA KULIAH... MODUL 1: LOGIKA MATEMATIKA 1.1 Kegiatan Belajar 1: Latihan Rangkuman Tes Formatif

TINJAUAN MATA KULIAH... MODUL 1: LOGIKA MATEMATIKA 1.1 Kegiatan Belajar 1: Latihan Rangkuman Tes Formatif Daftar Isi TINJAUAN MATA KULIAH... i MODUL 1: LOGIKA MATEMATIKA 1.1 Pernyataan, Negasi, DAN, ATAU, dan Hukum De Morgan...... 1.3 Latihan... 1.18 Rangkuman... 1.20 Tes Formatif 1...... 1.20 Jaringan Logika

Lebih terperinci

Barisan dan Deret Agus Yodi Gunawan

Barisan dan Deret Agus Yodi Gunawan Barisan dan Deret Agus Yodi Gunawan Barisan. Definisi. Barisan tak hingga adalah suatu fungsi dengan daerah asalnya himpunan bilangan bulat positif dan daerah kawannya himpunan bilangan real. Notasi untuk

Lebih terperinci

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan

Lebih terperinci

Pengaplikasian Logika, Rekursi dan Rekurens, Teori Graf, dan Teori Pohon pada Video Game Professor Layton

Pengaplikasian Logika, Rekursi dan Rekurens, Teori Graf, dan Teori Pohon pada Video Game Professor Layton Pengaplikasian Logika, Rekursi dan Rekurens, Teori Graf, dan Teori Pohon pada Video Game Professor Layton Yudhi Septiadi - 13513053 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi BAB II LANDASAN TEORI Pada bab ini akan dibahas tentang landasan teori yang digunakan pada bab selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi yang diuraikan berupa definisi-definisi

Lebih terperinci

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id Kinerja yang perlu ditelaah pada algoritma: beban komputasi efisiensi penggunaan memori Yang perlu

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH GRAPH & ANALISIS ALGORITMA (SI / S1) KODE / SKS : KK / 3 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH GRAPH & ANALISIS ALGORITMA (SI / S1) KODE / SKS : KK / 3 SKS Pertemuan ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan TIK 1 Pendahuluan Penjelasan mengenai ruang lingkup mata kuliah, sasaran, tujuan dan kompetensi lulusan 2 1. Dasar-dasar 1.1. Kelahiran Teori Graph

Lebih terperinci

Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n!

Analisa Numerik. Teknik Sipil. 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah. 3x 2 x 3 + 2x 2 x + 1, f (n) (c) = n! Analisa Numerik Teknik Sipil 1 PENDAHULUAN 1.1 Deret Taylor, Teorema Taylor dan Teorema Nilai Tengah Dalam matematika, dikenal adanya fungsi transenden (fungsi eksponen, logaritma natural, invers dan sebagainya),

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan 5.3 Kalkulus Turunan Pada bagian ini kita akan membahas sejumlah aturan untuk diferensial dan aturan untuk turunan, yg mempunyai kemiripan

Lebih terperinci

Strategi Pembuktian. Finding proofs can be a challenging business

Strategi Pembuktian. Finding proofs can be a challenging business Strategi Pembuktian Finding proofs can be a challenging business Matematikawan memformulasikan conjecture dan kemudian mencoba membuktikan bahwa conjecture tersebut benar atau salah. Ketika dihadapkan

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD:

Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD: Materi Olimpiade Matematika Vektor Nasional 2016 Jenjang SD: 1. Bilangan dan Operasinya 2. Kelipatan dan Faktor 3. Angka Romawi, Pecahan dan Skala 4. Perpangkatan dan Akar 5. Waktu, Kecepatan, dan Debit

Lebih terperinci

CHAPTER 7 DISCRETE PROBABILITY

CHAPTER 7 DISCRETE PROBABILITY CHAPTER 7 DISCRETE PROBABILITY 1 7.1 AN INTRODUCTION TO DISCRETE PROBABILITY 2 Sejarah 1526: Cardano menulis Liber de Ludo Aleae (Book on Games of Chance). Abad 17: Pascal menentukan kemungkinan untuk

Lebih terperinci

Teori Bilangan (Number Theory)

Teori Bilangan (Number Theory) Bahan Kuliah ke-3 IF5054 Kriptografi Teori Bilangan (Number Theory) Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 3. Teori Bilangan Teori bilangan

Lebih terperinci

INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil

INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil INDUKSI MATEMATIS Drs. C. Jacob, M.Pd Email: cjacob@upi.edu 3. Pengantar Apakah suatu formula untuk jumlah dari n bilangan bulat positif ganjil pertama? Jumlah dari n bilangan bulat ganjil positif pertama

Lebih terperinci

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION

5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION 5.3 RECURSIVE DEFINITIONS AND STRUCTURAL INDUCTION Rekursif Ada kalanya kita mengalami kesulitan untuk mendefinisikan suatu obyek secara eksplisit. Mungkin lebih mudah untuk mendefinisikan obyek tersebut

Lebih terperinci

Selamat Datang. MA 2151 Matematika Diskrit. Semester I 2008/2009

Selamat Datang. MA 2151 Matematika Diskrit. Semester I 2008/2009 Selamat Datang di MA 2151 Matematika Diskrit Semester I 2008/2009 Hilda Assiyatun & Djoko Suprijanto 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 5 th edition. On the

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

TEKNIK MEMBILANG. b T U V W

TEKNIK MEMBILANG. b T U V W TEKNIK MEMBILANG Berikut ini teknik-teknik (cara-cara) membilang atau menghitung banyaknya anggota ruang sampel dari suatu eksperimen tanpa harus mendaftar seluruh anggota ruang sampel tersebut. A. Prinsip

Lebih terperinci

KOMBINATORIKA. Erwin Harahap

KOMBINATORIKA. Erwin Harahap KOMBINATORIKA Erwin Harahap Disampaikan pada acara Sosialisasi OLIMPIADE MATEMATIKA, FISIKA, DAN KIMIA 2011 KOPERTIS WILAYAH IV JAWA BARAT Jatinangor- Bandung, 22 Maret 2011 1 KEMENTRIAN PENDIDIKAN NASIONAL

Lebih terperinci

PROGRAM TAHUNAN MATA PELAJARAN : MATEMATIKA Kelas : VIII ( Delapan ) Tahun Pelajaran : 2013 / 2014

PROGRAM TAHUNAN MATA PELAJARAN : MATEMATIKA Kelas : VIII ( Delapan ) Tahun Pelajaran : 2013 / 2014 PROGRAM TAHUNAN MATA PELAJARAN : MATEMATKA Kelas : V ( Delapan ) Tahun Pelajaran : 2013 / 2014 Semester Standar Kompetensi Aljabar 1. Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus 1.1

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014

8/29/2014. Kode MK/ Nama MK. Matematika Diskrit 2 8/29/2014 Kode MK/ Nama MK Matematika Diskrit 1 8/29/2014 2 8/29/2014 1 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 3 8/29/2014 3 KOMBINATORIAL Tujuan 1.Mahasiswa

Lebih terperinci

1.6 RULES OF INFERENCE

1.6 RULES OF INFERENCE 1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH LOGIKA DAN ALGORITMA (MI/D3) KODE: IT SKS: 3 SKS. Kemampuan Akhir Yang Diharapkan

SATUAN ACARA PERKULIAHAN MATA KULIAH LOGIKA DAN ALGORITMA (MI/D3) KODE: IT SKS: 3 SKS. Kemampuan Akhir Yang Diharapkan SATUAN ACARA PERKULIAHAN MATA KULIAH LOGIKA DAN ALGORITMA (MI/D3) KODE: IT013323 SKS: 3 SKS Pertemuan Ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Kean Akhir Yang Diharapkan Strategi

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 009 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 009 Bagian

Lebih terperinci

LECTURE NOTES MATEMATIKA DISKRIT. Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA.

LECTURE NOTES MATEMATIKA DISKRIT. Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA. LECTURE NOTES MATEMATIKA DISKRIT Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA PONDOK CINA, MARET 2004 0 DAFTAR ISI DAFTAR ISI... 1 BAB I STRUKTUR ALJABAR...

Lebih terperinci

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1 Ringkasan Kalkulus 2, Untuk dipakai di ITB Deret Tak Hingga Pada bagian ini akan dibicarakan penjumlahan berbentuk a +a 2 + +a n + dengan a n R Sebelumnya akan dibahas terlebih dahulu pengertian barisan

Lebih terperinci

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

MODUL MATA PELAJARAN MATEMATIKA

MODUL MATA PELAJARAN MATEMATIKA KERJASAMA DINAS PENDIDIKAN KOTA SURABAYA DENGAN FAKULTAS MIPA UNIVERSITAS NEGERI SURABAYA MODUL MATA PELAJARAN MATEMATIKA Bilangan dan Aljabar untuk kegiatan PELATIHAN PENINGKATAN MUTU GURU DINAS PENDIDIKAN

Lebih terperinci

Menghitung Ketinggian Rata-Rata Pohon Terurut

Menghitung Ketinggian Rata-Rata Pohon Terurut Menghitung Ketinggian Rata-Rata Pohon Terurut Archie Anugrah - 13508001 Jurusan Teknik Informatika Institut Teknologi Bandung Jalan Ganesha nomor 10, Bandung e-mail: if18001@students.if.itb.ac.id ABSTRAK

Lebih terperinci

II. TINJAUAN PUSTAKA. iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui

II. TINJAUAN PUSTAKA. iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui II. TINJAUAN PUSTAKA Untuk menuju ketahap pembahasan mengenai keberadaan dan ketunggalan dari iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui beberapa bagian dari persamaaan

Lebih terperinci

PERANGKAT PEMBELAJARAN

PERANGKAT PEMBELAJARAN PERANGKA PEMBELAJARAN MAA KULIAH KODE DOSEN : MAEMAIKA DISKRI : MKK629515 : EDY MULYONO, M.Pd. PROGRAM SUDI PENDIDIKAN MAEMAIKA AKULAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSIAS VEERAN BANGUN NUSANARA SUKOHARJO

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya.

Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya. Pertemuan 1 STRUKTUR DATA Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya. Pemakaian Struktur Data yang

Lebih terperinci

Table of Contents. Table of Contents 1

Table of Contents. Table of Contents 1 Table of Contents Table of Contents 1 1 Pendahuluan 2 1.1 Koreksi dan deteksi pola kesalahan....................... 5 1.2 Laju Informasi.................................. 6 1.3 Efek dari penambahan paritas..........................

Lebih terperinci

BILANGAN BERPANGKAT. Jika a bilangan real dan n bilangan bulat positif, maka a n adalah

BILANGAN BERPANGKAT. Jika a bilangan real dan n bilangan bulat positif, maka a n adalah BILANGAN BERPANGKAT Jika a bilangan real dan n bilangan bulat positif, maka a n adalah perkalian a sebanyak n faktor. Bilangan berpangkat, a disebut bilangan pokok dan n disebut pangkat atau eksponen.

Lebih terperinci

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK

BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK BAB 3 REVIEW SIFAT-SIFAT STATISTIK PENDUGA KOMPONEN PERIODIK 3. Perumusan Penduga Misalkan N adalah proses Poisson non-homogen pada interval 0, dengan fungsi intensitas yang tidak diketahui. Fungsi intensitas

Lebih terperinci

CHAPTER 3 ALGORITHMS 3.1 ALGORITHMS

CHAPTER 3 ALGORITHMS 3.1 ALGORITHMS CHAPTER 3 ALGORITHMS 3.1 ALGORITHMS Algoritma Definisi 1. Algoritma adalah himpunan hingga perintah yang terinci dalam melakukan perhitungan atau pemecahan masalah. Contoh 1. Program komputer adalah suatu

Lebih terperinci

Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya.

Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya. Pertemuan 1 STRUKTUR DATA Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya. Pemakaian Struktur Data yang

Lebih terperinci

Penulis : Rahmad AzHaris. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.com

Penulis : Rahmad AzHaris. Copyright 2013 pelatihan-osn.com. Cetakan I : Oktober Diterbitkan oleh : Pelatihan-osn.com Penulis : Rahmad AzHaris Copyright 2013 pelatihan-osn.com Cetakan I : Oktober 2012 Diterbitkan oleh : Pelatihan-osn.com Kompleks Sawangan Permai Blok A5 No.12 A Sawangan, Depok, Jawa Barat 16511 Telp.

Lebih terperinci

BAB 5 Bilangan Berpangkat dan Bentuk Akar

BAB 5 Bilangan Berpangkat dan Bentuk Akar BAB 5 Bilangan Berpangkat dan Bentuk Akar Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu: Kompetensi Dasar : 1. Mengidentifikasi sifat-sifat bilangan berpangkat dan bentuk akar 2. Melakukan operasi

Lebih terperinci

Saat menemui penjumlahan langsung pikirkan hasilnya dengan cepat lalu lakukan penjumlahan untuk setiap jawaban yang diperoleh.

Saat menemui penjumlahan langsung pikirkan hasilnya dengan cepat lalu lakukan penjumlahan untuk setiap jawaban yang diperoleh. TRIK PENJUMLAHAN DENGAN BERPIKIR LANGSUNG HASILNYA Penjumlahan merupakan salah satu dari proses berpikir dan menghapal. Keahlian menjumlahkan secara cepat tidak bisa didapat begitu saja melainkan harus

Lebih terperinci

Selamat Datang. MA 2151 Matematika Diskrit. Semester I, 2012/2013. Rinovia Simanjuntak & Edy Tri Baskoro

Selamat Datang. MA 2151 Matematika Diskrit. Semester I, 2012/2013. Rinovia Simanjuntak & Edy Tri Baskoro Selamat Datang di MA 2151 Matematika Diskrit Semester I, 2012/2013 Rinovia Simanjuntak & Edy Tri Baskoro 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 7 th edition, 2007.

Lebih terperinci

Tujuan Pembelajaran : Setelah mempelajari bab ini, diharapkan kalian dapat

Tujuan Pembelajaran : Setelah mempelajari bab ini, diharapkan kalian dapat Contoh Soal Barisan dan Deret Aritmatika Geometri, Pengertian, Rumus, Sifat-sifat Notasi Sigma, Tak Hingga, Hitung Keuangan, Bunga Tunggal Majemuk Anuitas, Matematika 4:00 PM Pernahkah kalian mengamati

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 PANDUAN MATERI MATEMATIKA Program Keahlian Akuntansi dan Penjualan PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG

Lebih terperinci

PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA

PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA PETUNJUK UMUM OLMIPA UB 2013 BIDANG MATEMATIKA 1. Sebelum mengerjakan soal, telitilah dahulu jumlah dan nomor halaman yang terdapat pada naskah soal. Pada naskah soal ini terdiri dari 30 soal pilihan ganda

Lebih terperinci

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid

Bab 2 Daerah Euclid. 2.1 Struktur Daerah Euclid Bab 2 Daerah Euclid Pada bab ini akan dijelaskan mengenai daerah Euclid beserta struktur lain yang terkait nya. Beberapa struktur aljabar tersebut selanjutnya akan digunakan untuk melihat struktur gelanggang

Lebih terperinci

MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN SEMSTER GENAP

MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN SEMSTER GENAP MODUL MATEMATIKA XI IPA SUKU BANYAK SMA SANTA ANGELA TAHUN PELAJARAN 05 06 SEMSTER GENAP STANDAR KOMPETENSI 4. Menggunakan aturan sukubanyak dalam penyelesaian masalah. KOMPETENSI DASAR 4. Menggunakan

Lebih terperinci

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada bab III nanti, di antaranya model matematika penyebaran penyakit,

Lebih terperinci

KOMBINATORIKA. Berapa banyak cara menyusun sebuah bilangan yang terdiri dari empat buah angka yang tidak mengandung angka yang berulang?

KOMBINATORIKA. Berapa banyak cara menyusun sebuah bilangan yang terdiri dari empat buah angka yang tidak mengandung angka yang berulang? P a g e 1 KOMBINATORIKA Beberapa prinsip penting dalam menyelesaikan masalah kombinatorika yaitu permutasi dan kombinasi, prinsip inklusi-eksklusi, koefisien binomial, prinsip sarang merpati (pigeon hole

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian,

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 5 KUANTOR II: METODE MEMILIH (c) Hendra Gunawan (2015) 2 Masih Berurusan dengan Kuantor Sekarang kita akan membahas metode memilih,

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

PEMBELAJARAN BILANGAN KELAS IX

PEMBELAJARAN BILANGAN KELAS IX MAKALAH PEMBELAJARAN BILANGAN KELAS IX Disusun Dalam Rangka Memenuhi Tugas Mata Kuliah Kapita Selekta Matematika SMP Dosen Pengampu : UMMU SHOLIHAH, M.Si. Oleh: KELOMPOK 4 TMT 1-E 1. MARIA ULFA 1724143152

Lebih terperinci

BAB V BARISAN DAN DERET BILANGAN

BAB V BARISAN DAN DERET BILANGAN BAB V BARISAN DAN DERET BILANGAN Peta Konsep Barisan dan Deret Bilangan mempelajari Pola bilangan Barisan bilangan Deret bilangan jenis jenis Aritmatika Geometri Aritmatika Geometri mempelajari Sifat Rumus

Lebih terperinci

SOLUSI PERSAMAAN DIOPHANTINE DENGAN IDENTITAS BILANGAN FIBONACCI DAN BILANGAN LUCAS. Ayu Puspitasari 1, YD Sumanto 2, Widowati 3

SOLUSI PERSAMAAN DIOPHANTINE DENGAN IDENTITAS BILANGAN FIBONACCI DAN BILANGAN LUCAS. Ayu Puspitasari 1, YD Sumanto 2, Widowati 3 SOLUSI PERSAMAAN DIOPHANTINE DENGAN IDENTITAS BILANGAN FIBONACCI DAN BILANGAN LUCAS Ayu Puspitasari 1, YD Sumanto 2, Widowati 3 1 Program Studi S1 Matematika, Departemen Matematika FSM Universitas Diponegoro

Lebih terperinci

Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya.

Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya. Pertemuan 1 STRUKTUR DATA Struktur Data adalah : suatu koleksi atau kelompok data yang dapat dikarakteristikan oleh organisasi serta operasi yang didefinisikan terhadapnya. Pemakaian Struktur Data yang

Lebih terperinci

KISI-KISI SOAL OLIMPIADE MATEMATIA VEKTOR NASIONAL (OMVN) 2015 HIMPUNAN MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS NEGERI MALANG

KISI-KISI SOAL OLIMPIADE MATEMATIA VEKTOR NASIONAL (OMVN) 2015 HIMPUNAN MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS NEGERI MALANG KISI-KISI SOAL OLIMPIADE MATEMATIA VEKTOR NASIONAL (OMVN) 2015 HIMPUNAN MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS NEGERI MALANG TINGKAT SD 1. Bilangan dan Operasinya 2. Kelipatan dan Faktor 3. Angka Romawi,

Lebih terperinci

Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang

Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang Sebuah pewarnaan dari graph G adalah sebuah pemetaan warna-warna ke simpulsimpul dari G sedemikian hingga simpul relasinya mempunyai warna warna yang berbeda. Bilangan kromatik dari G adalah jumlah warna

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Dasar 1 Kode / SKS : IT012314 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 & 2 HIMPUNAN BILANGAN Mahasiswa memahami konsep himpunan

Lebih terperinci

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner

Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Pencarian Akar pada Polinom dengan Kombinasi Metode Newton-Raphson dan Metode Horner Hendy Sutanto - 13507011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Selamat Datang. MA 2251 Matematika Diskrit. Semester II, 2016/2017. Rinovia Simanjuntak & Saladin Uttunggadewa

Selamat Datang. MA 2251 Matematika Diskrit. Semester II, 2016/2017. Rinovia Simanjuntak & Saladin Uttunggadewa Selamat Datang di MA 2251 Matematika Diskrit Semester II, 2016/2017 Rinovia Simanjuntak & Saladin Uttunggadewa 1 Referensi Pustaka Kenneth H. Rosen, Discrete Mathematics and its Applications, 7 th edition,

Lebih terperinci

BAB I INDUKSI MATEMATIKA

BAB I INDUKSI MATEMATIKA BAB I INDUKSI MATEMATIKA 1.1 Induksi Matematika Induksi matematika adalah suatu metode yang digunakan untuk memeriksa validasi suatu pernyataan yang diberikan dalam suku-suku bilangan asli. Dalam pembahasan

Lebih terperinci

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. KOMBINATORIAL DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. ENUMERASI Sebuah sandi-lewat (password)

Lebih terperinci

KISI-KISI UJIAN SEKOLAH

KISI-KISI UJIAN SEKOLAH KISI-KISI UJIAN SEKOLAH Matematika SEKOLAH MENENGAH PERTAMA DAERAH KHUSUS IBUKOTA (DKI) JAKARTA TAHUN PELAJARAN 2012-2013 KISI KISI PENULISAN SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2012-2013 Jenjang : SMP

Lebih terperinci

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya.

DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. KOMBINATORIAL DEFINISI Kombinatorial adalah cabang matematika untuk menghitung jumlah penyusunan objek-objek tanpa harus mengenumerasi semua kemungkinan susunannya. ENUMERASI Sebuah sandi-lewat (password)

Lebih terperinci

BAB III PERSAMAAN DIFERENSIAL LINIER

BAB III PERSAMAAN DIFERENSIAL LINIER BAB III PERSAMAAN DIFERENSIAL LINIER Bentuk umum PD orde-n adalah PD yang tidak dapat dinyatakan dalam bentuk di atas dikatakan tidak linier. Contoh: Jika F(x) pada persamaan (3.1) sama dengan nol maka

Lebih terperinci

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN

Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Materi Pembinaan Olimpiade SMA I MAGELANG TEORI BILANGAN Oleh. Nikenasih B 1.1 SIFAT HABIS DIBAGI PADA BILANGAN BULAT Untuk dapat memahami sifat habis dibagi pada bilangan bulat, sebelumnya perhatikan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Mata Pelajaran : Matematika Kelas/ Semester: XI Program IPA/2 Alokasi Waktu: 8 jam Pelajaran (4 Pertemuan) A. Standar Kompetensi Menggunakan aturan sukubanyak dalam penyelesaian

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB

Kombinatorial. Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir. Program Studi Teknik Informatika ITB Kombinatorial Bahan Kuliah IF2120 Matematika Diskrit Oleh: Rinaldi Munir Program Studi Teknik Informatika ITB 1 Pendahuluan Sebuah kata-sandi (password) panjangnya 6 sampai 8 karakter. Karakter boleh berupa

Lebih terperinci

Pembentukan Pohon Pencarian Solusi dalam Persoalan N-Ratu (The N-Queens Problem)

Pembentukan Pohon Pencarian Solusi dalam Persoalan N-Ratu (The N-Queens Problem) Pembentukan Pohon Pencarian Solusi dalam Persoalan N-Ratu (The N-ueens Problem) Pradipta Yuwono NIM 350603 Prodi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi andung, Jalan

Lebih terperinci

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga, DERET TAK HINGGA Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan Definisi Deret tak hingga,, konvergen dan mempunyai jumlah S, apabila barisan jumlah jumlah parsial konvergen menuju S.

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik pencacahan dalam bentuk definisi dan teorema yang berhubungan dengan penelitian yang akan dilakukan. 2.1

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

L/O/G/O KOMBINATORIK. By : ILHAM SAIFUDIN

L/O/G/O KOMBINATORIK. By : ILHAM SAIFUDIN L/O/G/O KOMBINATORIK By : ILHAM SAIFUDIN Senin, 09 Mei 2016 1.2 Kaidah Dasar menghitung BAB 4. KOMBINATORIK 1.1 Pendahuluan 1.2 Kaidah Dasar Menghitung 1.3 Permutasi 1.4 Kombinasi 1.5 Permutasi dan Kombinasi

Lebih terperinci