BAB IV PENGOLAHAN DATA DAN PEMBAHASAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV PENGOLAHAN DATA DAN PEMBAHASAN"

Transkripsi

1 BAB IV PENGOLAHAN DATA DAN PEMBAHASAN 4.1. UJI SIFAT FISIK Parameter uji sifat fisik dari sampel batuan didapatkan dengan melakukan perhitungan terhadap data berat natural contoh batuan (Wn), berat jenuh contoh batuan (Ws), berat contoh batuan di dalam air ( Ww), dan dan berat kering contoh batuan (Wo) menggunakan rumus-rumus sebagai berikut : a. Bobot isi asli (natural density) b. Bobot isi kering (dry density) c. Bobot isi jenuh (saturated density) Wn Ww Ws Wo Ww Ws Ww Ww Ws Wn Wo d. Kadar air asli (natural water content) 1% Wo Ww Wo e. Kadar air jenuh (saturated water content) 1% Wo Ww Wo f. Porositas (porosity), n 1% Ww Ws n g. Nisbah Void (void ratio), e 1% 1 n Hasil uji sifat fisik menunjukkan standar deviasi yang kecil untuk setiap parameter sehingga dapat dikatakan karakteristik fisik contoh batuan relatif seragam, kecuali untuk parameter kadar air jenuh. Hal ini disebabkan oleh perbedaan kadar air asli y ang memang sudah cukup besar antara setiap contoh batuan sebelum uji sifat fisik dilakukan. Hasil pengujian sifat fisik diberikan pada Tabel 4.1 berikut. IV-1

2 Tabel 4.1 Hasil Uji Sifat Fisik Batuan No Kode Sampel d s w S n (gr/cm 3 ) (gr/cm 3 ) (gr/cm 3 ) % % % 1 SF-PTFI-1 2,66 2,63 2,67,96 79,22 3,21,3 2 SF-PTFI-2 2,66 2,64 2,67,89 79,17 2,96,3 3 SF-PTFI-3 2,83 2,81 2,84,76 8, 2,69,3 4 SF-PTFI-4 2,69 2,66 2,69,83 71,43 3,1,3 Rata-rata,86 77,45 2,99,3 Standar Deviasi,7 3,49,19, e Rekapitulasi data uji sifat fisik selengkapnya dapat dilihat pada lampiran A UJI KUAT TEKAN Uji kuat tekan uniaksial ini bertujuan untuk mengetahui seberapa besar nilai tegangan yang harus diberikan pada saat uji emisi akusti k dilakukan. Telah dijelaskan sebelumnya bahwa tegangan yang diberikan terhadap contoh batuan pada saat uji emisi akustik tidak boleh melebihi batas elastis dari contoh uji. Sehingga harus diketahui nilai tegangan maksimum yang boleh diberikan pada saat uj i emisi akustik agar contoh batuan tidak pecah. Dalam uji kuat tekan dilakukan pendekatan secara sederhana. Namun demikian, dalam menginterpretasikan hasil uji yang diperoleh diperlukan kehati -hatian dan ketelitian.sifat dan komposisi batuan, serta kondis i contoh akan mempengaruhi reaksi yang dihasilkan. Untuk batuan dengan mineralogi yang sama, kuat tekan uniaksial (σ c ) akan berkurang seiring dengan meningkatnya porositas, derajat pelapukan, dan kadar air. IV-2

3 Dalam pengujian ini data yang diperoleh adalah data tegangan, regangan aksial, dan regangan lateral dari contoh batuan. Dari data-data tersebut akan dibuat suatu grafik tegangan terhadap regangan dari contoh batuan seperti ditunjukkan oleh Gambar 4.1. Kurva Tegangan - Regangan UCS AE , σc 12, 1, σe (MPa) 8, 6, 4, 2, σcc σc 127,39 Mpa σe 1,32 MPa σcc 27,7 Mpa E 15,556 Gpa,18, -,8 -,3,2,7 1,2 (%) Axial Lateral Volumetric Gambar 4.1 Kurva Tegangan-Regangan Rekapitulasi data uji kuat tekan selengkapnya dapat dilihat pada lampiran B. IV-3

4 4.3. UJI EMISI AKUSTIK Pengujian emisi akustik ini dilakukan dengan memberikan pembebanan uniaksial terhadap contoh batuan yang menghasilkan aktivitas emisi akusti k (hits). Hits adalah jumlah suara yang terekam untuk setiap kn beban yang diberikan terhadap contoh batuan. Pembebanan dilakukan dalam siklus yang bervariasi tergantung dari kekuatan batuan. Besarnya tekanan yang diberikan harus lebih kecil daripada nila i rata-rata kuat tekan batuan dan berada pada daerah elastis, yaitu daerah di antara closing crack dan yield point dimana tidak terjadi deformasi yang permanen pada saat tekanan dibuat nol Grafik Keluaran Uji Emisi Akustik Menggunakan Mistras 21 Software uji emisi akustik Mistras 21 dapat menampilkan lebih dari 12 jenis grafik. Parameter grafik keluaran dapat disesuaikan dengan kebutuhan. Gambar 4.2 Berbagai Grafik Keluaran Program Mistras 21 IV-4

5 Pada penelitian ini, grafik hasil uji AE yang dipil ih adalah grafik jumlah sinyal emisi akustik (hits) terhadap gaya (kn) seperti ditunjukkan oleh Gambar 4.3. Gambar 4.3 Grafik Hits Vs Gaya Keluaran Program Mistras 21 Pada gambar terlihat bahwa pada awal pembebanan aktivitas emisi akustik tinggi, na mun turun secara konstan seiring dengan meningkatnya pembebanan. Hal ini disebabkan karena aktivitas penutupan rekahan yang menghasilkan sinyal emisi akustik yang kuat. Seiring dengan tertutupnya rekahan -rekahan pada contoh batuan, akan terjadi fase kompaksi dan deformasi linier. Hal ini ditunjukkan dengan penurunan kurva emisi akustik yang relatif stabil. Fase selanjutnya, yaitu fase terjadinya rekahan mikro dengan propagasi stabil akan menyebabkan aktivitas emisi akustik kembali mengalami peningkatan. Kenaikan aktivitas emisi akustik saat propagasi stabil inilah yang disebut dengan efek Kaiser. IV-5

6 Penentuan Efek Kaiser Secara Grafis Hasil yang ingin diketahui dalam uji emisi akustik adalah nilai tegangan pada saat efek Kaiser terdeteksi, yakni saat terjadi p eningkatan aktivitas emisi akustik. Pembacan efek Kaiser ini dilakukan secara grafis. Penarikan garis dilakukan berdasarkan kecenderungan aktivitas emisi akustik yang terjadi. Gambar 4.4 Pembacaan Efek Kaiser Secara Grafis Efek Kaiser ditentukan berdasarkan perpotongan antara garis yang menyatakan posisi terakhir dari penurunan aktivitas emisi akustik yang cenderung stabil dengan garis yang mewakili nilai kenaikan kurva uji emisi akustik. IV-6

7 4.4. PERHITUNGAN TEGANGAN IN SITU Data Masukan Data masukan yang diperlukan dalam estimasi nilai tegangan in situ adalah data hasil uji emisi akustik. Data ini didapatkan dengan pembacaan efek Kaiser secara grafis pada grafik keluaran uji emisi akustik seperti telah ditunjukkan sebelumnya. Ser ingkali untuk suatu contoh batuan, efek Kaiser yang terdeteksi pada siklus yang berlainan menghasilkan pembacaan tegangan (σ KE ) yang nilainya berbeda. Sehingga diambil suatu nilai σ KE rata-rata untuk menyatakan nilai tegangan in situ bagi sebuah contoh bat uan. Nilai σ KE rata-rata untuk setiap contoh batuan, dengan orientasinya diberikan dalam tabel 4.2 berikut. Tabel 4.2 Nilai σ KE Rata-rata dan Orientasi Setiap Contoh Batuan Kode Sampel Dip Direction Dip σ KE (MPa) AE AE AE AE AE AE Rekapitulasi data σ KE hasil uji emisi akustik untuk setiap siklus dapat dilihat pada lampiran C. IV-7

8 Penentuan Cosinus Arah Contoh Batuan Dengan menggunakan persamaan [2.47], [2.48], dan [2.49], komponen tensor tegangan untuk setiap contoh batuan pada arah sumbu koordinat kartesian ( x,y,z) dapat diketahui. Sebagai contoh, perhitungan cosinus arah untuk contoh AE -1 (AE-1 x, AE-1 y, AE-1 z ) dilakukan sebagai berikut : Tensor : AE-1 Dip Direction (Φ) 329 Dip (θ ) Perhitungan nilai komponen-komponen tensor tegangan AE-1 : AE-1 x cos(θ).cos(φ) cos( ).cos(329 ),85717 AE-1 y cos(θ).sin (Φ) cos( ).sin(329 ) -,5154 AE-1 z cos(9 -θ) cos(9 - ) Pembuktian ketegaklurusan komponen-koponen tensor tegangan : (AE-1 x ) 2 + (AE-1 x ) 2 + (AE-1 x ) 2, , , IV-8

9 Data hasil perhitungan cosinus arah untuk setiap contoh batuan diberikan dalam tabel 4.3 berikut Tabel 4.3 Cosinus Arah Contoh Batuan Tensor AE-1 AE-2 AE-3 AE-4 AE-5 AE-6 Cosinus Arah x,85717 y -,5154 z x,5138 y,85391 z,8716 x -,4489 y -,7471 z,99619 x,17632 y -,82952 z,52992 x -,22722 y,74319 z,62932 x,76287 y,14829 z,62932 Syarat Cosinus Arah (x 2 +y 2 +z 2 ) Pembentukan Persamaan Matriks dan Perhitungan Dengan data masukan dari tabel 4.3, persamaan [2.45] akan menjadi : 32,24 17,5 12,81 31,98 12,65 31,45,73474,26325,21,318,5163,58196,26526,72915,558,6889,55233,2199,76,9924,2881,3964,3964,88295,87624,671,29252,33773,22625,14885,14885,87915,9354,18664,8944,8944,18687,28598,9618 x y z xy yz xz IV-9

10 IV-1 atau [A] [B] [C] Dan berdasarkan persamaan [2.46] persamaan matriks menjadi : xz yz xy z y x 1,9618,18664,22625,3964,2199,58196,28598,9354,33773,3964,55233,5163,18687,87915,29252,2881,6889,318,8944,14885,671,9924,558,21,8944,14885,87624,76,72915,26325,88295,26526, ,45 12,65 31,98 12,81 17,5 32,24 atau [C] [B] -1 [A] Dengan menghitung invers dari matriks B, persamaan matriks yang dipe rluas menjadi : xz yz xy z y x 1,15,324,579,694,584,64,252,667,348,268,114,19,87,411,384,32,727,147,13,13,94,78,87,4,569,721,418,32,152,91,699,721,513,758 1,239 31,45 12,65 31,98 12,81 17,5 32,24 Sehingga didapatkan xz yz xy z y x 14,8 6,3 8,4 13,2 24,3 25

11 Dalam bentuk matriks tensor tegangan : 25-8,4 14,8 8, 4 24,3 6,3 MPa 14,8 6,3 13, PERHITUNGAN NILAI DAN ARAH TEGANGAN UTAMA Perhitungan Nilai Tegangan Utama Nilai tegangan utama ditentukan dengan menggunakan invarian tegangan (I). Penentuan nilai invarian tegangan dilakukan dengan menggunakan persamaan [2.24], [2.25], dan [2.26] berdasarkan data nilai tegangan in situ [ σ] sebagai berikut : I 1 25,4 + 24, ,16 62,54 I 2 (25,4).(24,34) + (24,34).(13,16) + (13,16).(25,4) - ((-8,36) 2 + (14,79) 2 + (-6,3) 2 ) 931,38 I 3 σ x σ y σ z + 2 σ xy σ yz σ zx (σ x σ 2 yz + σ y σ 2 zx + σ z σ 2 xy ) 2344,36 Input ketiga nilai invarian pada persamaan [2.19] akan menghasilkan persamaan derajat tiga berikut: σ p 3 62,54σ p ,38σ p 2344,36 Dengan menyelesaikan persamaan derajat tiga diatas, akan didapatkan nilai -nilai dari tegangan utama yang bekerja, yaitu : σ 1 41,4 MPa, σ 2 18, MPa σ 3 3,1 MPa. IV-11

12 atau dalam bentuk matriks tensor tegangan : principal 41,4 18, Mpa 3, 1 Pembuktian syarat kesetimbangan tegangan dilakukan berdasarkan persamaan [2.27] sebagai berikut : 41, , ,3 + 13,2 62,5 62,5 ( Terbukti ) Penentuan Arah Sumbu Utama Akan dihitung arah (azimuth) dan kemiringan (dip) dari tegangan utama mayor ( σ 1 ). Nilai A 1, B 1, dan C 1 dari σ 1 dihitung berdasarkan persamaan [2.31], [2.32], dan [2.33] dengan data masukan nilai tegangan in situ dan tegangan utama mayor sebagai berikut : A 1 24, 3 41,4 6, 3 6, 3 13,2 41,4 17,1 6, 3 6, 3 28, 2 442,53 B , 8 6, 3 13,2 41, , 3 14, 8-28,2-33,12 IV-12

13 C , , 8 17, 1 6, 3 24, 3 41, 4 6, 3 36 Sehingga : λ x1 442,53 (442,53)2 ( 33,12)2 (36)2 442, 53,71 (cos 45,49 ) 631, 23 λ y1-33,12 (442,53)2 ( 33,12)2 (36)2 33, 12 -,523 (cos 121,52 ) 631, 23 λ z1 36 (442,53)2 ( 33,12)2 (36)2 36,485 (cos 61 ) 631, 23 Syarat cosinus arah : (λ x1 ) 2 + (λ y1 ) 2 + (λ z1 ) 2 1 (,71) 2 + (-,523) 2 + (,485) 2,494 +,272 +,234 1 (terbukti) Perhitungan azimuth dilakukan dengan substitusi nilai λ x1 dan λ y1 pada persamaan [2.47] dan [2.48] : λ x λ cos θ 1 cos Φ 1 λ cos 45,36 λ cos 29 cos Φ 1,73,875 cos Φ 1,83 cos Φ 1 (nilai cosinus positif jika Φ 1 9 dan 27 Φ 1 36 ) λ y λ cos θ 1 sin Φ 1 λ cos 121,45 λ cos 29 sin Φ 1 -,522,875. sin Φ 1 -,596 sin Φ 1 (nilai sinus negatif jika 27 Φ1 36 dan 27 Φ1 36 ) IV-13

14 Disini dapat dilihat bahwa nilai Φ 1 yang memenuhi syarat dari kedua persamaan diatas adalah 27 Φ Karena cos Φ 1 cos (36 - Φ 1 ), dan 27 Φ 1 36, maka : Φ arc cosinus (,83) 36-36,58 323,42 Perhitungan kemiringan dilakukan dengan substitusi nilai λ z1 pada persamaan [2.14] : λ z λ cos (9 - θ 1 ) λ cos 61 λ cos (9 - θ 1 ) cos 61 cos (9 - θ 1 ) θ θ 1 29 Jadi sumbu utama satu memiliki arah N 323,42 E dan kemiringan sebesar 29. Dengan cara yag sama, sumbu utama 2 dan sumbu utama 3 akan dapat ditentukan orientasinya. Rekapitulasi hasil perhitungan besar dan arah dari ketiga tegangan utama diberikan dalam tabel 4.4 berikut ini. Tabel 4.4 Nilai Tegangan Utama dan Orientasi Sumbu Utama Tegangan Utama Nilai Tegangan Orientasi (MPa) Arah (N E) Kemiringan Maximum 41,4 323,38 28,93 Intermediet 18 62,18 15,47 Minimum 3,1 356,86 33,5 IV-14

15 Syarat orthogonalitas untuk ketiga sumbu utama dipenuhi oleh persamaan [2.35], [2.36], dan [2.37]. Periksa ketegaklurusan sumbu utama 1 terhadap sumbu utama 2 : λ x1 λ x2 + λ y1 λ y2 + λ z1 λ z2 (,71)(-,448)+(-,523)(-,856)+(,485)((-,258),8 (terbukti) Periksa ketegaklurusan sumbu utama 3 terhadap sumbu utama 1 : λ x3 λ x1 + λ y3 λ y1 + λ z3 λ z1 (,556)(,71)+(-,27)(-,523)+(-,83)(,485),13 (terbukti) Periksa ketegaklurusan sumbu utama 2 terhadap sumbu utama 3 : λ x2 λ x3 + λ y2 λ y3 + λ z2 λ z3 (-,48)(,556)+(-,856)(-,27)+(,258)(-,83),1 (terbukti) 4.6. Pembahasan Pengujian ini dilakukan pada contoh batuan Diorite yang berasal dari AB Tunnel PT Freeport Indonesia, Papua. Kedalaman lokasi pemboran contoh batuan adalah 751 m. Dengan densitas rata-rata batuan yang sebesar 2,71 ton/m 3, perhitungan tegangan vertikal secara teoritis menggunakan persamaan [2. 37] menghasilkan nilai 2,352 MPa, sementara dari persamaan [2. 38] akan dihasilkan nilai tegangan vertikal sebesar 2,277 MPa. Sedangkan nilai tegangan vertikal hasil perhitungan yang didapat adalah sebesar 13,16 MPa. Untuk tegangan horizontal, berdasarkan persamaan [2. 41] akan dihasilkan rentang nilai,43 < k < 2,5. Perhitungan lebih lanjut dengan persamaan [2.3 9] akan memberikan estimasi nilai σ H dalam rentang 8,72 MPa < σ H < 5,69 MPa. Sementara hasil perhitungan untuk kedua tegangan horizontal adalah 25,4 MPa dan 24,34 MPa. Dari sini IV-15

16 dapat dilihat bahwa tegangan horizontal hasil perhitungan berada dalam rentang estimasi tegangan hasil pendekatan secara teoritis. Adapun penerapan persamaan [2. 42] hasil penelitian Hergett, deng an kedalaman 751 m akan didapatkan H average v 1,66. Uji emisi akustik memberikan nilai H average v sebesar 1,876. Data tegangan in situ hasil pengujian memperlihatkan kecocokan dengan teori, yakni nilai tegangan horizontal lebih b esar dibandingkan tegangan vertikalnya. Perbedaan hasil tegangan in situ vertikal hasil perhitungan dengan pendekatan secara teoritis dapat terjadi karena berbagai faktor, seperti adanya bidang lemah pada daerah pemboran contoh batuan yang akan secara lan gsung mempengaruhi besar tegangan yang bekerja. Namun pembahasan tentang hal ini tidak dapat dilakukan lebih jauh karena keterbatasan data geologi. Sebagai gantinya, akan dibahas parameter terukur berupa parameter-parameter selama pengujian yang dapat memp engaruhi nilai tegangan in situ hasil perhitungan. Faktor lain yang dapat mempengaruhi nilai tegangan in situ hasil pengujian contoh batuan ini adalah : Kondisi contoh batuan Struktur mikro contoh batuan yang meliputi bentuk, ukuran, dan orientasi butir contoh batuan dapat mempengaruhi transmisi sinyal akustik selama pembebanan. Butiran contoh dapat mengakibatkan gelombang yang merambat mengalami pembiasan. Laju Pembebanan pada saat uji emisi akustik dilakukan Semakin cepat laju pembebanan, maka batuan ce nderung semakin kuat. Hal ini karena tidak terdapat waktu untuk propagasi rekahan dan pergeseran bidang lemah. Pembebanan secara konstan dapat dilakukan dengan mesin kuat tekan yang dilengkapi servo control. IV-16

17 Medium kontak dan posisi transduser Transduser direkatkan pada contoh batuan dengan cairan perekat. Jika terdapat rongga udara antara contoh batuan dan transduser, maka sinyal emisi akustik yang terekam akan berkurang. Untuk menghindari hal ini, sebelum pengujian perlu dipastikan bahwa keseluruhan per mukaan transduser dapat menempel dengan baik pada contoh batuan. Penggunaan cairan perekat juga diharapkan dapat mengisi rongga udara sehingga sinyal emisi akustik dapat sampai. Posisi transduser yang berada dalam satu garis lurus dimaksudkan agar dapat me ndeteksi sinyal emisi akustik dengan lebih baik. Waktu tunggu Waktu tunggu adalah selang waktu yang telah dilalui contoh batuan sejak saat pengeboran dilakukan. Waktu tunggu akan berpengaruh terhadap nilai tegangan efek Kaiser pada contoh batuan. Hal in i dapat terjadi karena berlangsungnya proses relaksasi dari batuan sehingga jarak antar fragmennya bertambah, yang pada akhirnya membuat nilai tegangan efek Kaiser pada contoh batuan tersebut meningkat. Pada penelitian ini, nilai tegangan hasil perhitung an tidak memperhitungkan pengaruh waktu tunggu contoh batuan. Sehingga ada kemungkinan estimasi nilai tegangan in situ dan nilai tegangan utama yang didapatkan dari perhitungan jauh lebih besar nilainya. IV-17

BAB III PELAKSANAAN PENGUJIAN

BAB III PELAKSANAAN PENGUJIAN BAB III PELAKSANAAN PENGUJIAN Pengujian dilakukan di Laboratorium Geomekanika, Fakultas Teknik Pertambangan dan Perminyakan, Institut Teknologi Bandung. Pengujian diawali dengan kegiatan pengeboran dan

Lebih terperinci

BAB III METODE PENGUJIAN

BAB III METODE PENGUJIAN BAB III METODE PENGUJIAN Pengujian dilaksanakan seluruhnya di Laboratorium Geomekanika, Program Studi Teknik Pertambangan-ITB. Pengujian meliputi preparasi contoh batuan, uji sifat fisik, uji ultrasonik,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 UJI SIFAT FISIK Uji sifat fisik pada penelitian ini dilakukan terhadap tiga contoh batuan andesit. Dari hasil perhitungan uji ini akan akan diperoleh sifat-sifat fisik batuan

Lebih terperinci

BAB II DASAR TEORI. Elastik Linier (reversible)

BAB II DASAR TEORI. Elastik Linier (reversible) 6 BAB II DASAR TEORI 2.1 erilaku Batuan Batuan mempunyai perilaku yang berbeda-beda pada saat menerima beban. erilaku ini dapat ditentukan dengan pengujian di laboratorium yaitu dengan pengujian kuat tekan.

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1. Pengumpulan Data Pengumpulan data lapangan dilakukan pada lokasi terowongan Ciguha Utama level 500 sebagaimana dapat dilihat pada lampiran A. Metode pengumpulan

Lebih terperinci

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt.

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt. 1. Pengertian Gelombang Berjalan Gelombang berjalan adalah gelombang yang amplitudonya tetap. Pada sebuah tali yang panjang diregangkan di dalam arah x di mana sebuah gelombang transversal sedang berjalan.

Lebih terperinci

BAB I TEGANGAN DAN REGANGAN

BAB I TEGANGAN DAN REGANGAN BAB I TEGANGAN DAN REGANGAN.. Tegangan Mekanika bahan merupakan salah satu ilmu yang mempelajari/membahas tentang tahanan dalam dari sebuah benda, yang berupa gaya-gaya yang ada di dalam suatu benda yang

Lebih terperinci

SIFAT FISIK DAN MEKANIK BATUAN UTUH

SIFAT FISIK DAN MEKANIK BATUAN UTUH SIFAT FISIK DAN MEKANIK BATUAN UTUH YULIADI, S.T.,M.T 3.1 Proses Penyelidikan Geoteknkik Proses perancangan sebuah tambang terbuka dan tambang bawah tanah biasanya mengikuti tahapan berikut : Pengeboran

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI

FUNGSI DAN GRAFIK FUNGSI FUNGSI DAN GRAFIK FUNGSI Apabila suatu besaran y memiliki nilai yang tergantung dari nilai besaran lain x, maka dikatakan bahwa besaran y tersebut merupakan fungsi besaran x. secara umum ditulis: y= f(x)

Lebih terperinci

PENGGUNAAN METODE EMISI AKUSTIK UNTUK PENENTUAN TEGANGAN IN SITU DI AB TUNNEL PT FREEPORT INDONESIA TUGAS AKHIR MUHAMMAD INSAN KAMIL

PENGGUNAAN METODE EMISI AKUSTIK UNTUK PENENTUAN TEGANGAN IN SITU DI AB TUNNEL PT FREEPORT INDONESIA TUGAS AKHIR MUHAMMAD INSAN KAMIL PENGGUNAAN METODE EMISI AKUSTIK UNTUK PENENTUAN TEGANGAN IN SITU DI AB TUNNEL PT FREEPORT INDONESIA TUGAS AKHIR Sebagai salah satu syarat untuk gelar Sarjana Teknik Pertambangan di Institut Teknologi Bandung

Lebih terperinci

MAKALAH MEKANIKA BATUAN

MAKALAH MEKANIKA BATUAN MAKALAH MEKANIKA BATUAN SIFAT MEKANIK BATUAN DISUSUN OLEH ARDI PURNAWAN 1309055026 S1 TEKNIK PERTAMBANGAN FAKULTAS TEKNIK UNIVERSITAS MULAWARMAN SAMARINDA 2016 BAB I PENDAHULUAN Latar Belakang Mekanika

Lebih terperinci

matematis dari tegangan ( σ σ = F A

matematis dari tegangan ( σ σ = F A TEORI PERAMBATAN GELOMBANG SEISMIk Gelombang seismik merupakan gelombang yang merambat melalui bumi. Perambatan gelombang ini bergantung pada sifat elastisitas batuan. Gelombang seismik dapat ditimbulkan

Lebih terperinci

Analisis Tegangan dan Regangan

Analisis Tegangan dan Regangan a home base to ecellence Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : 3 SKS Analisis Tegangan dan Regangan Pertemuan - 10 a home base to ecellence TIU : Mahasiswa dapat menganalisis tegangan normal

Lebih terperinci

FAKTOR FAKTOR YANG MEMPENGARUHI TINGKAT FRAGMENTASI

FAKTOR FAKTOR YANG MEMPENGARUHI TINGKAT FRAGMENTASI FAKTOR FAKTOR YANG MEMPENGARUHI TINGKAT FRAGMENTASI Tingkat fragmentasi batuan hasil peledakan merupakan suatu petunjuk yang sangat penting dalam menilai keberhasilan dari suatu kegiatan peledakan, dimana

Lebih terperinci

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang.

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang. KOMPETENSI DASAR 3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata INDIKATOR 3.11.1. Mendeskripsikan gejala gelombang mekanik 3.11.2. Mengidentidikasi

Lebih terperinci

Scientific Echosounders

Scientific Echosounders Scientific Echosounders Namun secara secara elektronik didesain dengan amplitudo pancaran gelombang yang stabil, perhitungan waktu yang lebih akuran dan berbagai menu dan software tambahan. Contoh scientific

Lebih terperinci

BAB VI KESIMPULAN DAN SARAN

BAB VI KESIMPULAN DAN SARAN BAB VI KESIMPULAN DAN SARAN 6.1 Kesimpulan Dari studi yang telah dilakukan, maka dapat diambil beberapa kesimpulan sebagai berikut: 1. Setelah melakukan pengujian dilaboratorium, pengaruh proses pengeringan

Lebih terperinci

PENGEMBANGAN PETA BENCANA LONGSORAN PADA RENCANA WADUK MANIKIN DI NUSA TENGGARA TIMUR

PENGEMBANGAN PETA BENCANA LONGSORAN PADA RENCANA WADUK MANIKIN DI NUSA TENGGARA TIMUR PENGEMBANGAN PETA BENCANA LONGSORAN PADA RENCANA WADUK MANIKIN DI NUSA TENGGARA TIMUR Hikmat NRP : 9021020 NIRM: 41077011900138 Pembimbing : Ir. Theo F. Najoan, M.Eng FAKULTAS TEKNIK JURUSAN SIPIL UNIVERSITAS

Lebih terperinci

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT

Pembebanan Batang Secara Aksial. Bahan Ajar Mekanika Bahan Mulyati, MT Pembebanan Batang Secara Aksial Suatu batang dengan luas penampang konstan, dibebani melalui kedua ujungnya dengan sepasang gaya linier i dengan arah saling berlawanan yang berimpit i pada sumbu longitudinal

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

ANALISA STABILITAS DINDING PENAHAN TANAH (RETAINING WALL) AKIBAT BEBAN DINAMIS DENGAN SIMULASI NUMERIK ABSTRAK

ANALISA STABILITAS DINDING PENAHAN TANAH (RETAINING WALL) AKIBAT BEBAN DINAMIS DENGAN SIMULASI NUMERIK ABSTRAK VOLUME 6 NO., OKTOBER 010 ANALISA STABILITAS DINDING PENAHAN TANAH (RETAINING WALL) AKIBAT BEBAN DINAMIS DENGAN SIMULASI NUMERIK Oscar Fithrah Nur 1, Abdul Hakam ABSTRAK Penggunaan simulasi numerik dalam

Lebih terperinci

GRAFIK HUBUNGAN ( angka pori dengan kadar air) Pada proses pengeringan

GRAFIK HUBUNGAN ( angka pori dengan kadar air) Pada proses pengeringan ( angka pori dengan kadar air) Pada proses pengeringan 1,550 Grafik e VS Wc 1,500 1,450 1,400 1,350 e 1,300 1,250 1,200 1,150 1,100 0 10 20 30 40 50 60 Wc (%) Siklus 1 Siklus 2 Siklus 4 Siklus 6 ( kohesi

Lebih terperinci

MEKANIKA TANAH KRITERIA KERUNTUHAN MOHR - COULOMB. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224

MEKANIKA TANAH KRITERIA KERUNTUHAN MOHR - COULOMB. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224 MEKANIKA TANAH KRITERIA KERUNTUHAN MOHR - COULOMB UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 154 KRITERIA KERUNTUHAN MOHR COULOMB Keruntuhan geser (shear

Lebih terperinci

Hukum Hooke. Diktat Kuliah 4 Mekanika Bahan. Ir. Elisabeth Yuniarti, MT

Hukum Hooke. Diktat Kuliah 4 Mekanika Bahan. Ir. Elisabeth Yuniarti, MT Hukum Hooke Diktat Kuliah 4 Mekanika Bahan Ir. lisabeth Yuniarti, MT Hubungan Tegangan dan Regangan (Stress-Strain Relationship) Untuk merancang struktur yang dapat berfungsi dengan baik, maka kita memerlukan

Lebih terperinci

TRIAKSIAL PADA KONDISI UNCONSOLIDATED-UNDRAINED (ASTM D (1999))

TRIAKSIAL PADA KONDISI UNCONSOLIDATED-UNDRAINED (ASTM D (1999)) XII. TRIAKSIAL PADA KONDISI UNCONSOLIDATED-UNDRAINED (ASTM D 2850-95 (1999)) I. MAKSUD Maksud percobaan adalah untuk menentukan parameter geser tanah dengan alat triaksial pada kondisi unconsolidated undrained

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1 HASIL PENGUMPULAN DATA Berdasarkan hasil studi literatur yang telah dilakukan, pada penelitian ini parameter tanah dasar, tanah timbunan, dan geotekstil yang digunakan adalah

Lebih terperinci

BAB III TEORI FISIKA BATUAN. Proses perambatan gelombang yang terjadi didalam lapisan batuan dikontrol oleh

BAB III TEORI FISIKA BATUAN. Proses perambatan gelombang yang terjadi didalam lapisan batuan dikontrol oleh BAB III TEORI FISIA BATUAN III.1. Teori Elastisitas Proses perambatan gelombang yang terjadi didalam lapisan batuan dikontrol oleh sifat elastisitas batuan, yang berarti bahwa bagaimana suatu batuan terdeformasi

Lebih terperinci

UJI GESER LANGSUNG (DIRECT SHEAR TEST) ASTM D

UJI GESER LANGSUNG (DIRECT SHEAR TEST) ASTM D 1. LINGKUP Pedoman ini mencakup metode pengukuran kuat geser tanah menggunakan uji geser langsung UU. Interpretasi kuat geser dengan cara ini bersifat langsung sehingga tidak dibahas secara rinci. 2. DEFINISI

Lebih terperinci

BAB 3 DINAMIKA GERAK LURUS

BAB 3 DINAMIKA GERAK LURUS BAB 3 DINAMIKA GERAK LURUS A. TUJUAN PEMBELAJARAN 1. Menerapkan Hukum I Newton untuk menganalisis gaya-gaya pada benda 2. Menerapkan Hukum II Newton untuk menganalisis gerak objek 3. Menentukan pasangan

Lebih terperinci

MEKANIKA TANAH (CIV -205)

MEKANIKA TANAH (CIV -205) MEKANIKA TANAH (CIV -205) OUTLINE : Tipe lereng, yaitu alami, buatan Dasar teori stabilitas lereng Gaya yang bekerja pada bidang runtuh lereng Profil tanah bawah permukaan Gaya gaya yang menahan keruntuhan

Lebih terperinci

BAB I PENDAHULUAN. Font Tulisan TNR 12, spasi 1,5 1.1 Latar Belakang

BAB I PENDAHULUAN. Font Tulisan TNR 12, spasi 1,5 1.1 Latar Belakang BAB I PENDAHULUAN Font Tulisan TNR 12, spasi 1,5 1.1 Latar Belakang Batuan adalah benda padat yang terbentuk secara alami dan terdiri atas mineral-mineral tertentu yang tersusun membentuk kulit bumi. Batuan

Lebih terperinci

PENDEKATAN TEORITIK. Elastisitas Medium

PENDEKATAN TEORITIK. Elastisitas Medium PENDEKATAN TEORITIK Elastisitas Medium Untuk mengetahui secara sempurna kelakuan atau sifat dari suatu medium adalah dengan mengetahui hubungan antara tegangan yang bekerja () dan regangan yang diakibatkan

Lebih terperinci

l l Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial

l l Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial Bab 2 Sifat Bahan, Batang yang Menerima Beban Axial 2.1. Umum Akibat beban luar, struktur akan memberikan respons yang dapat berupa reaksi perletakan tegangan dan regangan maupun terjadinya perubahan bentuk.

Lebih terperinci

Identifikasi Kekuatan Batu Kumbung (Batu Putih) Sebagai Salah Satu Alternatif Bahan Bangunan ABSTRAK

Identifikasi Kekuatan Batu Kumbung (Batu Putih) Sebagai Salah Satu Alternatif Bahan Bangunan ABSTRAK Volume 2, Nomor 1, Pebruari 2007 Jurnal APLIKASI Identifikasi Kekuatan Batu Kumbung (Batu Putih) Sebagai Salah Satu Alternatif Bahan Bangunan Moh Muntaha Dosen D3 Teknik Sipil FTSP-ITS email: mohamad_m74@ce.its.ac.id

Lebih terperinci

BAB III. TEORI DASAR. benda adalah sebanding dengan massa kedua benda tersebut dan berbanding

BAB III. TEORI DASAR. benda adalah sebanding dengan massa kedua benda tersebut dan berbanding 14 BAB III. TEORI DASAR 3.1. Prinsip Dasar Metode Gayaberat 3.1.1. Teori Gayaberat Newton Teori gayaberat didasarkan oleh hukum Newton tentang gravitasi. Hukum gravitasi Newton yang menyatakan bahwa gaya

Lebih terperinci

BAB III TEORI DASAR. Metode seismik refleksi merupakan suatu metode yang banyak digunakan dalam

BAB III TEORI DASAR. Metode seismik refleksi merupakan suatu metode yang banyak digunakan dalam BAB III TEORI DASAR 3.1 Seismik Refleksi Metode seismik refleksi merupakan suatu metode yang banyak digunakan dalam eksplorasi hidrokarbon. Telah diketahui bahwa dalam eksplorasi geofisika, metode seismik

Lebih terperinci

2.1 Zat Cair Dalam Kesetimbangan Relatif

2.1 Zat Cair Dalam Kesetimbangan Relatif PERTEMUAN VI 1.1 Latar Belakang Zat cair dalam tangki yang bergerak dengan kecepatan konstan tidak mengalami tegangan geser karena tidak adanya gerak relative antar partikel zat cair atau antara partikel

Lebih terperinci

BAB V ANALISIS 5.1 Penampang Hasil Curve Matching

BAB V ANALISIS 5.1 Penampang Hasil Curve Matching BAB V ANALISIS 5.1 Penampang Hasil Curve Matching Penampang hasil pengolahan dengan perangkat lunak Ipi2win pada line 08 memperlihatkan adanya struktur antiklin. Struktur ini memiliki besar tahanan jenis

Lebih terperinci

BAB II PELENGKUNG TIGA SENDI

BAB II PELENGKUNG TIGA SENDI BAB II PELENGKUNG TIGA SENDI 2.1 UMUM Struktur balok yang ditumpu oleh dua tumpuan dapat menahan momen yang ditimbulkan oleh beban-beban yang bekerja pada struktur tersebut, ini berarti sebagian dari penempangnya

Lebih terperinci

Laporan Tugas Akhir Analisis Pondasi Jembatan dengan Permodelan Metoda Elemen Hingga dan Beda Hingga BAB III METODOLOGI

Laporan Tugas Akhir Analisis Pondasi Jembatan dengan Permodelan Metoda Elemen Hingga dan Beda Hingga BAB III METODOLOGI a BAB III METODOLOGI 3.1 Umum Pada pelaksanaan Tugas Akhir ini, kami menggunakan software PLAXIS 3D Tunnel 1.2 dan Group 5.0 sebagai alat bantu perhitungan. Kedua hasil perhitungan software ini akan dibandingkan

Lebih terperinci

Variasi IV. C (MPa) 12,49. (MPa) (MPa) ( o ) 37,90 1 5,00 75, ,50 100, ,00 130, ,00 153, ,00 180,09. 3 = Confining Pressure

Variasi IV. C (MPa) 12,49. (MPa) (MPa) ( o ) 37,90 1 5,00 75, ,50 100, ,00 130, ,00 153, ,00 180,09. 3 = Confining Pressure Variasi IV No 3 1 C 12,49 ( o ) 37,90 1 5,00 75,06 2 12,50 100,21 3 19,00 130,02 4 25,00 153,10 5 30,00 180,09 3 = Confining Pressure 1 = Axial Pressure c = Cohesion = Friction angle KRITERIA BIENIAWSKI

Lebih terperinci

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut :

II LANDASAN TEORI. Misalkan adalah suatu fungsi skalar, maka turunan vektor kecepatan dapat dituliskan sebagai berikut : 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam menyusun karya ilmiah ini. Teori-teori tersebut meliputi sistem koordinat silinder, aliran fluida pada pipa lurus, persamaan

Lebih terperinci

UJI BERAT ISI DAN KADAR AIR TANAH ASTM C-29 DAN ASTM D

UJI BERAT ISI DAN KADAR AIR TANAH ASTM C-29 DAN ASTM D UJI BERAT ISI DAN KADAR AIR TANAH ASTM C-29 DAN ASTM D-2216-98 1. LINGKUP Kontainer atau wadah kecil Percobaan ini dilakukan untuk mengukur berat isi dengan menggunakan uji ring gamma dan kadar air alami

Lebih terperinci

BAB 4 DATA, ANALISIS DATA DAN PEMBAHASAN

BAB 4 DATA, ANALISIS DATA DAN PEMBAHASAN BAB 4 DATA, ANALISIS DATA DAN PEMBAHASAN 4.1. Hasil Pengujian Bahan Dasar 4.1.1. Hasil Pengujian Agregat Halus Pengujian terhadap agregat halus yang dilakukan dalam penelitian ini meliputi pengujian kadar

Lebih terperinci

MEKANIKA TANAH KEMAMPUMAMPATAN TANAH. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224

MEKANIKA TANAH KEMAMPUMAMPATAN TANAH. UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 15224 MEKANIKA TANAH KEMAMPUMAMPATAN TANAH UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang Selatan 5224 KOMPONEN PENURUNAN (SETTLEMENT) Penambahan beban di atas suatu permukaan

Lebih terperinci

Untuk tanah terkonsolidasi normal, hubungan untuk K o (Jaky, 1944) :

Untuk tanah terkonsolidasi normal, hubungan untuk K o (Jaky, 1944) : TEKANAN TANAH LATERAL Tekanan tanah lateral ada 3 (tiga) macam, yaitu : 1. Tekanan tanah dalam keadaan diam atau keadaan statis ( at-rest earth pressure). Tekanan tanah yang terjadi akibat massa tanah

Lebih terperinci

BAB I TEGANGAN DAN REGANGAN

BAB I TEGANGAN DAN REGANGAN BAB I TEGANGAN DAN REGANGAN.. Tegangan Dalam mekanika bahan, pengertian tegangan tidak sama dengan vektor tegangan. Tegangan merupakan tensor derajat dua, sedangkan vektor, vektor apapun, merupakan tensor

Lebih terperinci

BAB 2 KONSEP PENGOLAHAN DATA SIDE SCAN SONAR

BAB 2 KONSEP PENGOLAHAN DATA SIDE SCAN SONAR BAB 2 KONSEP PENGOLAHAN DATA SIDE SCAN SONAR Pengolahan data side scan sonar terdiri dari dua tahap, yaitu tahap real-time processing dan kemudian dilanjutkan dengan tahap post-processing. Tujuan realtime

Lebih terperinci

ANALISIS BALOK BERSUSUN DARI KAYU LAPIS DENGAN MENGGUNAKAN PAKU SEBAGAI SHEAR CONNECTOR (EKSPERIMENTAL) TUGAS AKHIR

ANALISIS BALOK BERSUSUN DARI KAYU LAPIS DENGAN MENGGUNAKAN PAKU SEBAGAI SHEAR CONNECTOR (EKSPERIMENTAL) TUGAS AKHIR ANALISIS BALOK BERSUSUN DARI KAYU LAPIS DENGAN MENGGUNAKAN PAKU SEBAGAI SHEAR CONNECTOR (EKSPERIMENTAL) TUGAS AKHIR Diajukan untuk Melengkapi Tugas-tugas dan Memenuhi Syarat untuk Menempuh Ujian Sarjana

Lebih terperinci

Gambar 7.1. Stabilitas benda di atas berbagai permukaan

Gambar 7.1. Stabilitas benda di atas berbagai permukaan Bab 7 Kolom 7.1. Stabilitas Kolom Dalam bab sebelumnya telah dibicarakan bahwa agar struktur dan elemen-elemennya dapat berfungsi mendukung beban harus memenuhi persyaratan keku-atan, kekakuan dan stabilitas.

Lebih terperinci

Bab V : Analisis 32 BAB V ANALISIS

Bab V : Analisis 32 BAB V ANALISIS Bab V : Analisis 32 BAB V ANALISIS 5.1 Distribusi Tegangan Dari bab sebelumnya terlihat bahwa semua hasil perhitungan teoritik cocok dengan perhitungan dengan metode elemen hingga. Hal ini ditunjukkan

Lebih terperinci

BAB III PEMODELAN DAN HASIL PEMODELAN

BAB III PEMODELAN DAN HASIL PEMODELAN BAB III PEMODELAN DAN HASIL PEMODELAN Data-data yang telah didapatkan melalui studi literatur dan pencarian data di lokasi penambangan emas pongkor adalah : 3.1 Lokasi Penelitian Penelitian dilakukaan

Lebih terperinci

III. TEORI DASAR. melalui bagian dalam bumi dan biasa disebut free wave karena dapat menjalar

III. TEORI DASAR. melalui bagian dalam bumi dan biasa disebut free wave karena dapat menjalar III. TEORI DASAR 3.1. Jenis-jenis Gelombang Seismik 3.1.1. Gelombang Badan (Body Waves) Gelombang badan (body wave) yang merupakan gelombang yang menjalar melalui bagian dalam bumi dan biasa disebut free

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN A. Hasil Pengujian Kuat Tekan Bebas Hasil uji kuat tekan bebas berupa hubungnan tegangan aksial dan regangan untuk berbagai macam campuran kapur-abu sekam padi (LRHA) dan serat

Lebih terperinci

DIKTAT MEKANIKA KEKUATAN MATERIAL

DIKTAT MEKANIKA KEKUATAN MATERIAL 1 DIKTAT MEKANIKA KEKUATAN MATERIAL Disusun oleh: Asyari Darami Yunus Teknik Mesin Universitas Darma Persada Jakarta 010 KATA PENGANTAR Untuk memenuhi buku pegangan dalam perkuliahan, terutama yang menggunakan

Lebih terperinci

BAB 4 PENGUJIAN LABORATORIUM

BAB 4 PENGUJIAN LABORATORIUM BAB 4 PENGUJIAN LABORATORIUM Uji laboratorium dilakukan untuk mengetahui kekuatan dan perilaku struktur bambu akibat beban rencana. Pengujian menjadi penting karena bambu merupakan material yang tergolong

Lebih terperinci

TIN107 - Material Teknik #5 - Mechanical Failure #1. TIN107 Material Teknik

TIN107 - Material Teknik #5 - Mechanical Failure #1. TIN107 Material Teknik #5 - Mechanical Failure #1 1 TIN107 Material Teknik Pembahasan 2 Jenis Perpatahan Mekanisme Perpatahan Perambatan Retakan Perpatahan Intergranular Mekanika Perpatahan Pemusatan Tekanan Ductile vs Brittle

Lebih terperinci

Strain, Stress, dan Diagram Mohr

Strain, Stress, dan Diagram Mohr TUGAS GL-2212 GEOLOGI STRUKTUR Strain, Stress, dan Diagram Mohr Oleh: Hafidha Dwi Putri Aristien NIM 12111003 Program Studi Teknik Pertambangan Fakultas Teknik Pertambangan dan Perminyakan Institut Teknologi

Lebih terperinci

Soal Pembahasan Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal

Soal Pembahasan Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal Soal Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal Hukum Newton I Σ F = 0 benda diam atau benda bergerak dengan kecepatan konstan / tetap atau percepatan gerak benda nol atau benda bergerak lurus

Lebih terperinci

DAFTAR ISI ABSTRACT KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN 1 1.

DAFTAR ISI ABSTRACT KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN 1 1. DAFTAR ISI Judul Pengesahan Persetujuan Persembahan ABSTRAK ABSTRACT KATA PENGANTAR DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN Halaman i ii iii iv i vi vii iiii xii

Lebih terperinci

Untuk mengetahui klasifikasi sesar, maka kita harus mengenal unsur-unsur struktur (Gambar 2.1) sebagai berikut :

Untuk mengetahui klasifikasi sesar, maka kita harus mengenal unsur-unsur struktur (Gambar 2.1) sebagai berikut : Landasan Teori Geologi Struktur Geologi struktur adalah bagian dari ilmu geologi yang mempelajari tentang bentuk (arsitektur) batuan akibat proses deformasi serta menjelaskan proses pembentukannya. Proses

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN digilib.uns.ac.id BAB IV HASIL DAN PEMBAHASAN 4. Hasil Pengujian Sampel Tanah Berdasarkan pengujian yang dilakukan sesuai dengan standar yang tertera pada subbab 3.2, diperoleh hasil yang diuraikan pada

Lebih terperinci

HASIL DAN PEMBAHASAN Karakteristik Guludan dan Tunggul Tebu Sisa Panen

HASIL DAN PEMBAHASAN Karakteristik Guludan dan Tunggul Tebu Sisa Panen HASIL DAN PEMBAHASAN Karakteristik Guludan dan Tunggul Tebu Sisa Panen Kondisi lahan di PG Jatitujuh setelah penebangan umumnya tertutup oleh serasah atau pucuk-pucuk tebu sisa pemanenan. Serasah tersebut

Lebih terperinci

Cara uji modulus elastisitas batu dengan tekanan sumbu tunggal

Cara uji modulus elastisitas batu dengan tekanan sumbu tunggal Standar Nasional Indonesia Cara uji modulus elastisitas batu dengan tekanan sumbu tunggal ICS 93.010 Badan Standardisasi Nasional Daftar isi Halaman Daftar isi...i Prakata...ii 1 Ruang lingkup... 1 2

Lebih terperinci

BAB X UJI KUAT TEKAN BEBAS

BAB X UJI KUAT TEKAN BEBAS BAB X UJI KUAT TEKAN BEBAS A. TUJUAN Tujuan perobaan ini adalah untuk menentukan kuat tekan tanah pada arah aksial dan karakteristik tegangan regangan. B. ALAT DAN BAHAN Alat utama yang digunakan pada

Lebih terperinci

BAB 2 LANDASAN TEORITIS PERMASALAHAN

BAB 2 LANDASAN TEORITIS PERMASALAHAN BAB LANDASAN TEORITIS PERMASALAHAN. PRINSIP DASAR GRAVITASI Gaya tarik-menarik antara dua buah partikel sebanding dengan perkalian massa kedua partikel tersebut dan berbanding terbalik dengan kuadrat jarak

Lebih terperinci

BAB IV ANALISIS KINEMATIK

BAB IV ANALISIS KINEMATIK BAB IV ANALISIS KINEMATIK Pada prinsipnya terdapat dua proses untuk melakukan evaluasi kestabilan suatu lereng batuan. Langkah pertama adalah menganalisis pola-pola atau orientasi diskontinuitas yang dapat

Lebih terperinci

SIFAT FISIK TANAH DAN BATUAN. mekanika batuan dan dapat dikelompokkan menjadi dua, yaitu :

SIFAT FISIK TANAH DAN BATUAN. mekanika batuan dan dapat dikelompokkan menjadi dua, yaitu : REKAYASA TANAH & BATUAN 1 SIFAT FISIK TANAH DAN BATUAN Batuan mempunyai sifat-sifat tertentu yang perlu diketahui dalam mekanika batuan dan dapat dikelompokkan menjadi dua, yaitu : a. Sifat fisik batuan

Lebih terperinci

DAFTAR ISI. Judul DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN RUMUSAN MASALAH TUJUAN PENELITIAN 2

DAFTAR ISI. Judul DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR NOTASI DAN SINGKATAN BAB I PENDAHULUAN RUMUSAN MASALAH TUJUAN PENELITIAN 2 DAFTAR ISI Halaman Judul i Pengesahan ii Persetujuan iii KATA PENGANTAR iv ABSTRAK vi ABSTRACT vii DAFTAR TABEL viii DAFTAR GAMBAR x DAFTAR LAMPIRAN xiii DAFTAR NOTASI DAN SINGKATAN xiv BAB I PENDAHULUAN

Lebih terperinci

BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika

BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika 25 BAB 3 DINAMIKA Tujuan Pembelajaran 1. Menerapkan Hukum I Newton untuk menganalisis gaya pada benda diam 2. Menerapkan Hukum II Newton untuk menganalisis gaya dan percepatan benda 3. Menentukan pasangan

Lebih terperinci

Tegangan Dalam Balok

Tegangan Dalam Balok Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS Tegangan Dalam Balok Pertemuan 9, 0, TIU : Mahasiswa dapat menghitung tegangan yang timbul pada elemen balok akibat momen lentur, gaya normal, gaya

Lebih terperinci

GAYA PEMBENTUK GEOLOGI STRUKTUR

GAYA PEMBENTUK GEOLOGI STRUKTUR GAYA PEMBENTUK GEOLOGI STRUKTUR Gaya a) Gaya merupakan suatu vektor yang dapat merubah gerak dan arah pergerakan suatu benda. b) Gaya dapat bekerja secara seimbang terhadap suatu benda (gaya gravitasi

Lebih terperinci

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana Teknik Sipil Disusun oleh: SURYADI

Lebih terperinci

Metode Kekakuan Langsung (Direct Stiffness Method)

Metode Kekakuan Langsung (Direct Stiffness Method) Metode Kekakuan angsung (Direct Stiffness Method) matriks kekakuan U, P U, P { P } = [ K ] { U } U, P U 4, P 4 gaya perpindahan P K K K K 4 U P K K K K 4 U P = K K K K 4 U P 4 K 4 K 4 K 4 K 44 U 4 P =

Lebih terperinci

ANALISA STRUKTUR METODE MATRIKS (ASMM)

ANALISA STRUKTUR METODE MATRIKS (ASMM) ANAISA STRUKTUR METODE MATRIKS (ASMM) Endah Wahyuni, S.T., M.Sc., Ph.D Matrikulasi S Bidang Keahlian Struktur Jurusan Teknik Sipil ANAISA STRUKTUR METODE MATRIKS Analisa Struktur Metode Matriks (ASMM)

Lebih terperinci

BAB IV ANALISA PENELITIAN

BAB IV ANALISA PENELITIAN BAB IV ANALISA PENELITIAN 4.1 ANALISA AGREGAT 4.1.1 Agregat Halus 4.1.1.1 Pengujian Berat Jenis dan Absorpsi Pengujian ini dilakukan berdasarkan standar ASTM C 128-93. Tujuan pengujian berat jenis dan

Lebih terperinci

Mekanika Bahan TEGANGAN DAN REGANGAN

Mekanika Bahan TEGANGAN DAN REGANGAN Mekanika Bahan TEGANGAN DAN REGANGAN Sifat mekanika bahan Hubungan antara respons atau deformasi bahan terhadap beban yang bekerja Berkaitan dengan kekuatan, kekerasan, keuletan dan kekakuan Tegangan Intensitas

Lebih terperinci

MECHANICAL FAILURE (KERUSAKAN MEKANIS)

MECHANICAL FAILURE (KERUSAKAN MEKANIS) 1 MECHANICAL FAILURE (KERUSAKAN MEKANIS) TIN107 Material Teknik Jenis Perpatahan (Fracture) 2 Perpatahan sederhana adalah pemisahan material menjadi dua atau lebih sebagai reaksi terhadap tegangan statis

Lebih terperinci

BAB III DASAR TEORI. 3.1 Prinsip Pengeboran

BAB III DASAR TEORI. 3.1 Prinsip Pengeboran BAB III DASAR TEORI 3.1 Prinsip Pengeboran Hampir dalam semua bentuk penambangan, batuan keras diberai dengan pengeboran dan peledakan. Pengeboran dan peledakan dibutuhkan di sebagian besar tambang terbuka

Lebih terperinci

Gambar 1 Hubungan antara Tegangan Utama Mayor dan Minor pada Kriteria Keruntuhan Hoek-Brown dan Kriteria Keruntuhan Mohr-Coulomb (Wyllie & Mah, 2005)

Gambar 1 Hubungan antara Tegangan Utama Mayor dan Minor pada Kriteria Keruntuhan Hoek-Brown dan Kriteria Keruntuhan Mohr-Coulomb (Wyllie & Mah, 2005) Kekuatan Massa Batuan Sebagai alternatif dalam melakukan back analysis untuk menentukan kekuatan massa batuan, sebuahh metode empirik telah dikembangkan oleh Hoek and Brown (1980) dengan kekuatan geser

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Proses Melting Route Aluminum foam Jika semua tahapan proses pembuatan aluminum foam dengan metode melt route dilakukan, maka dihasilkan produk aluminum foam utuh

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci

BAB II DASAR TEORI 2.1 Spin Coating Metode Spin Coating

BAB II DASAR TEORI 2.1 Spin Coating Metode Spin Coating BAB II DASAR TEORI 2.1 Spin Coating Spin coating telah digunakan selama beberapa dekade untuk aplikasi film tipin. Sebuah proses khas melibatkan mendopositokan genangan kecil dari cairan resin ke pusat

Lebih terperinci

KUAT GESER 5/26/2015 NORMA PUSPITA, ST. MT. 2

KUAT GESER 5/26/2015 NORMA PUSPITA, ST. MT. 2 KUAT GESER Mekanika Tanah I Norma Puspita, ST. MT. 5/6/05 NORMA PUSPITA, ST. MT. KUAT GESER =.??? Kuat geser tanah adalah gaya perlawanan yang dilakukan oleh butiran tanah terhadap desakan atau tarikan.

Lebih terperinci

BAB IV DATA HASIL PENELITIAN

BAB IV DATA HASIL PENELITIAN BAB IV DATA HASIL PENELITIAN 4.1 PEMBUATAN SAMPEL 4.1.1 Perhitungan berat komposit secara teori pada setiap cetakan Pada Bagian ini akan diberikan perhitungan berat secara teori dari sampel komposit pada

Lebih terperinci

BAB II LANDASAN TEORI CORE WALL

BAB II LANDASAN TEORI CORE WALL BAB II LANDASAN TEORI CORE WALL.1. Karakterisitik Bentuk dan Letak Core Wall Struktur core wall yang bisa dijumpai dalam aplikasi konstruksi bangunan tinggi dewasa ini ada bermacam-macam. Antara lain adalah

Lebih terperinci

IX. UJI TEKAN BEBAS (ASTM D )

IX. UJI TEKAN BEBAS (ASTM D ) IX. UJI TEKAN BEBAS (ASTM D 2166-00) I. MAKSUD 1. Maksud percobaan adalah untuk menentukan kuat tekan bebas tanah kohesif. Pemeriksaan kuat tekan bebas dapat dilakukan pada tanah asli atau contoh tanah

Lebih terperinci

ANALISA KEKUATAN CRANKSHAFT DUA-SILINDER KAPASITAS 650 CC DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

ANALISA KEKUATAN CRANKSHAFT DUA-SILINDER KAPASITAS 650 CC DENGAN MENGGUNAKAN METODE ELEMEN HINGGA JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SIDANG TUGAS AKHIR: ANALISA KEKUATAN CRANKSHAFT DUA-SILINDER KAPASITAS 650 CC DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

Lebih terperinci

BAB IV PERHITUNGAN DAN ANALISIS

BAB IV PERHITUNGAN DAN ANALISIS BAB IV PERHITUNGAN DAN ANALISIS 4.1 Umum Dalam mendesain suatu pondasi bored pile, ada beberapa hal yang harus diperhatikan. Langkah pertama adalah menentukan jenis pondasi yang akan digunakan. Dalam mengambil

Lebih terperinci

.1. Kekuatan Bahan BAB ANALISIS TEGANGAN DAN REGANGAN Suatu sistem struktur yang menanggung beban luar (external forces) akan menyebabkan timbulnya gaya dalam (internal forces) pada elemen-elemen penyusun

Lebih terperinci

BAB II - Keseimbangan di bawah Pengaruh Gaya-gaya yang Berpotongan

BAB II - Keseimbangan di bawah Pengaruh Gaya-gaya yang Berpotongan BAB II - Keseimbangan di bawah Pengaruh Gaya-gaya yang Berpotongan Soal 2-11 Perhatikan gambar 2-9 diketahui berat beban adalah 600N tentukanlah T 1 &? T 1 gambar 2-9 600N Diketahui : = 600N Jawab y y

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

BAB 2 TINJAUAN PUSTAKA. karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari BAB 2 TINJAUAN PUSTAKA II.1. Material baja Baja yang akan digunakan dalam struktur dapat diklasifikasikan menjadi baja karbon, baja paduan rendah mutu tinggi, dan baja paduan. Sifat-sifat mekanik dari

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

BAB I PENDAHULUAN. Perkembangan teknologi sebagai pendukung kelengkapan sistem

BAB I PENDAHULUAN. Perkembangan teknologi sebagai pendukung kelengkapan sistem BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan teknologi sebagai pendukung kelengkapan sistem trasportasi menjadi suatu hal tersendiri dalam penyempurnaan dan pendesainan mesin diesel agar menjadi

Lebih terperinci

Cara uji tekan triaksial pada batu di laboratorium

Cara uji tekan triaksial pada batu di laboratorium SNI 2815:2009 Standar Nasional Indonesia Cara uji tekan triaksial pada batu di laboratorium ICS 93.020 Badan Standardisasi Nasional BSN 2011 Hak cipta dilindungi undang-undang. Dilarang menyalin atau menggandakan

Lebih terperinci

BAB III STUDI KASUS 1 : Model Geologi dengan Struktur Lipatan

BAB III STUDI KASUS 1 : Model Geologi dengan Struktur Lipatan BAB III STUDI KASUS 1 : Model Geologi dengan Struktur Lipatan Dalam suatu eksplorasi sumber daya alam khususnya gas alam dan minyak bumi, para eksplorasionis umumnya mencari suatu cekungan yang berisi

Lebih terperinci

Gelombang sferis (bola) dan Radiasi suara

Gelombang sferis (bola) dan Radiasi suara Chapter 5 Gelombang sferis (bola) dan Radiasi suara Gelombang dasar lain datang jika jarak dari beberapa titik dari titik tertentu dianggap sebagai koordinat relevan yang bergantung pada variabel akustik.

Lebih terperinci

V. INTERPRETASI DAN ANALISIS

V. INTERPRETASI DAN ANALISIS V. INTERPRETASI DAN ANALISIS 5.1.Penentuan Jenis Sesar Dengan Metode Gradien Interpretasi struktur geologi bawah permukaan berdasarkan anomali gayaberat akan memberikan hasil yang beragam. Oleh karena

Lebih terperinci

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH

MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH MEKANIKA TANAH DASAR DASAR DISTRIBUSI TEGANGAN DALAM TANAH UNIVERSITAS PEMBANGUNAN JAYA Jl. Boulevard Bintaro Sektor 7, Bintaro Jaya Tangerang

Lebih terperinci

4 PERHITUNGAN DAN ANALISIS

4 PERHITUNGAN DAN ANALISIS Bab 4 4 PERHITUNGAN DAN ANALISIS 4.1 PENENTUAN PARAMETER TANAH 4.1.1 Parameter Kekuatan Tanah c dan Langkah awal dari perencanaan pembangunan terowongan adalah dengan melakukan kegiatan penyelidikan tanah.

Lebih terperinci