KARAKTERISTIK FUNGSI HAZARD RATE DISTRIBUSI GENERALIZED WEIBULL. (Skripsi) Oleh MUTIA ADILLAH

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "KARAKTERISTIK FUNGSI HAZARD RATE DISTRIBUSI GENERALIZED WEIBULL. (Skripsi) Oleh MUTIA ADILLAH"

Transkripsi

1 KARAKTERISTIK FUNGSI HAZARD RATE DISTRIBUSI GENERALIZED WEIBULL (Skripsi) Oleh MUTIA ADILLAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2016

2 ABSTRACT CHARACTERISTIC OF HAZARD RATE FUNCTION FOR GENERALIZED WEIBULL DISTRIBUTION By Mutia Adillah Survival Analysis is usually used in predicting the probability of survival, recurrence of disease, death and others event until a certain time period. Survival time is the data that measure time to a certain event. The distribution of survival times is usually described or characterized by three functions: the probability density function, the survival function, and the hazard function. The hazard function is used to express the hazard rate. Hazard rate is measure of the failure rate at a particular time. The shape of hazard rate can be increasing, decreasing, bathub, upside-down bathub and constant. The hazard rate has a shape that is different for the different distribution. Therefore, the purpose of the research is to know the characteristic of hazard rate function for generalized weibull distribution. The characteristic of hazard rate function can be analyzed by using Glaser rules that defined by =. The characteristic of hazard rate function for Generalized Weibull distribution are increasing, decreasing and constant. Key Word : Generalized Weibull Distribution, Hazard Rate, Survival Analysis.

3 ABSTRAK KARAKTERISTIK FUNGSI HAZARD RATE DISTRIBUSI GENERALIZED WEIBULL Oleh Mutia Adillah Analisis survival atau analisis kelangsungan hidup biasanya digunakan dalam menduga probabilitas kelangsungan hidup, kekambuhan suatu penyakit, kematian dan peristiwa-peristiwa lainnya sampai pada periode waktu tertentu. Waktu kelangsungan hidup merupakan data yang mengukur waktu pada kejadian tertentu. Distribusi dari waktu kelangsungan hidup biasanya digambarkan oleh tiga fungsi yaitu : Fungsi kepadatan peluang, fungsi kelangsungan hidup (fungsi survival), dan fungsi hazard. Fungsi hazard digunakan untuk menyatakan hazard rate. Hazard rate adalah ukuran laju kegagalan pada waktu tertentu. Hazard rate memiliki bentuk yang berbeda-beda, yaitu dapat berupa increasing, decreasing, bathub, upside-down bathub dan konstan. Hazard rate memiliki bentuk yang berbeda-beda untuk distribusi yang berbeda pula. Oleh karena itu, tujuan dari penelitian ini untuk mengetahui karakteristik hazard rate distribusi Generalized Weibull. Karakteristik Fungsi Hazard Rate dapat dianalisis dengan menggunakan aturan Glaser yang didefinisikan dengan =. Karakteristik fungsi hazard rate distribusi Generalized Weibull adalah increasing (meningkat), decreasing (menurun) dan konstan. Kata Kunci : Distribusi Generalized Weibull, Survival Analysis, Laju Kegagalan (Hazard Rate)

4 KARAKTERISTIK FUNGSI HAZARD RATE DISTRIBUSI GENERALIZED WEIBULL Oleh MUTIA ADILLAH Skripsi Sebagai Salah Satu Syarat untuk Mencapai gelar SARJANA SAINS Pada Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2016

5

6

7

8 RIWAYAT HIDUP Penulis di lahirkan di Bandar Lampung tepatnya pada tanggal 19 September 1994, sebagai putri ke tiga dari pasangan Bapak Yurni Kesuma Youdha dan (Alm) Ibu Hartini. Penulis menamatkan pendidikan Sekolah Dasar (SD) di SD Al-kautsar pada tahun 2006, Sekolah Menengah Pertama (SMP) di SMP Al-kautsar pada tahun 2009, dan Sekolah Menengah Atas (SMA) di SMA Negeri 9 Bandar Lampung pada tahun Pada tahun 2012 penulis terdaftar sebagai Mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam jurusan Matematika, melalui jalur SNMPTN Tulis. Selama menjadi mahasiswa, penulis bergabung di Himpunan Mahasiswa Matematika (HIMATIKA) yang diamanahkan sebagai Anggota Biro Kesekretariatan periode Pada bulan Januari 2015 penulis melaksanakan Kuliah Kerja Nyata (KKN) di Desa Mekar Indah Jaya, Kecamatan Banjar Baru, Kabupaten Tulang Bawang. Pada bulan Agustus 2015 penulis melaksanakan Kerja Praktek (KP) di Badan Pusat Statistik (BPS) Kota Bandar Lampung guna mengaplikasikan ilmu yang telah didapatkan sewaktu kuliah.

9 KATA INSPIRASI Jangan ragu dengan kekuatan Allah SWT. Karena banyak fakta yang bisa kita jadikan bukti kebesarannya Tidak ada masalah yang tidak bisa diselesaikan selama ada kemauan untuk menyelesaikannya. Kita akan sukes jika belajar dari kesalahan

10 PERSEMBAHAN Kupersembahkan karya kecilku ini teruntuk : Dua nama yang sangat berjasa yaitu Ayahku Yurni Kesuma Youdha dan Alm. Mamahku Hartini serta kakak-kakak dan adikku yang selalu memberikan doa, semangat, dorongan, nasihat, dukungan moril maupun materil, kasih sayang serta pengorbanan yang tak tergantikan. Alhamdulillahirobil alamin, atas izin-nya lah skripsi ini dapat terselesaikan. Semoga dapat berguna dan memberikan manfaat yang tidak terputus.

11 SANWACANA Puji syukur kehadirat Allah SWT berkat rahmat dan karunia Nya penulis dapat menyelesaikan skripsi yang berjudul KARAKTERISTIK FUNGSI HAZARD RATE DISTRIBUSI GENERALIZED WEIBULL. Dalam penyusunan skripsi ini banyak pihak yang telah terlibat sehingga dapat terselesaikan dengan baik dan tepat waktu. Oleh karena itu penulis ingin mengucapkan terima kasih kepada : 1. Bapak Ir. Warsono, M.S., Ph.D, selaku Dosen Pembimbing 1 yang telah meluangkan waktu dan membimbing penulis selama menyusun skripsi. 2. Bapak Drs. Eri Setiawan, M.Si, selaku Dosen Pembimbing 2 yang telah memberi banyak masukan dan arahan kepada penulis. 3. Bapak Amanto, S.Si., M.Si, selaku Dosen Pembahas yang memberi masukan dan evaluasi kepada penulis selama menyusun skripsi. 4. Ibu Dian Kurniasari S.Si., M.Sc, yang telah membimbing dan memberikan ilmu dan arahan kepada penulis dalam penyusunan skripsi ini. 5. Bapak Drs. Suharsono S., M.S, M.Sc., Ph.D, selaku dosen pembimbing akademik yang selalu memberikan pengarahan selama masa perkuliahan. 6. Bapak Drs. Tiryono Ruby, M.Sc., Ph.D, selaku Ketua Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam.

12 7. Bapak Prof. Warsito, S.Si., DEA., Ph.D, selaku Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas lampung. 8. Dosen, staf, dan karyawan Jurusan Matematika FMIPA Universitas Lampung yang telah memberikan ilmu serta bantuan kepada penulis. 9. Ayah, Mamah (Alm), Kakak -kakak dan Adikku tercinta yang selalu memberikan motivasi, doa, kasih sayang dan dukungan moril maupun materil kepada penulis. 10. M. Faisal Wijaya yang selalu memberikan semangat, doa dan dukungannya kepada penulis. 11. Sahabat seperjuangan Merda Gustina yang selalu membantu saling mendoakan dan memberikan dukungan kepada penulis. 12. Elva, Dwi, Agnes, Putri, Erni yang selalu memberikan semangat, bantuan dan dukungan kepada penulis. 13. Gery, Yefta, Ica, Ernia, Lina dan teman-teman angkatan 2012 lainnya yang telah banyak membantu dan memberikan motivasi kepada penulis. 14. Seluruh pihak yang telah membantu penulis dalam menyusun skripsi ini. Penulis menyadari bahwa skripsi ini masih jauh dari kata sempurna, sehingga kritik dan saran yang membangun sangat penulis harapkan. Akhir kata, semoga skripsi ini dapat berguna bagi pembaca sebagai acuan di penelitian selanjutnya. Bandar Lampung, April 2016 Penulis Mutia Adillah

13 DAFTAR ISI Halaman DAFTAR GAMBAR... iii I. PENDAHULUAN 1.1. Latar Belakang dan Masalah Tujuan Penelitian Manfaat Penelitian Batasan Masalah... 3 II. TINJAUAN PUSTAKA 2.1 Analisis Survival (Analisis Kelangsungan Hidup) Fungsi Waktu Kelangsungan Hidup Fungsi Kepadatan Peluang (pdf) Fungsi Survival Fungsi Hazard Distribusi Weibull Distribusi Generalized Weibull Analisis Bentuk Fungsi Hazard dengan Aturan Glaser III. METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian Metode Penelitian IV. HASIL DAN PEMBAHASAN 4.1 Fungsi Distribusi Kumulatif Distribusi Generalized Weibull Nilai Harapan Distribusi Generalized Weibull Ragam Distribusi Generalized Weibull Fungsi Ketahanan Hidup Distribusi Generalized Weibull Fungsi Hazard Distribusi Generalized Weibull... 22

14 4.4 Turunan Pertama dari Fungsi Kepadatan Peluang Distribusi Generalized Weibull Nilai Turunan Pertama ( ) Karakteristik Fungsi Hazard Rate Distribusi Generalized Weibull Grafik Fungsi Hazard Rate Distribusi Generalized Weibull. 28 V. KESIMPULAN DAFTAR PUSTAKA LAMPIRAN ii

15 DAFTAR GAMBAR Gambar Halaman 4.1 Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat = 0,3 = 1 = 0, Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat = 1 = 0,3 = 0, Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat = 0,5 = 3 = 0, Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat = 3 = 0,5 = 0, Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat berubah tetap dan tetap ( = 0.3) Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat tetap berubah dan tetap ( = 0,4) Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat tetap tetap dan berubah (0 < < 1) Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat, dan berubah (0 < < 1) Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat > 0, > 1, = Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat = 0,5 = 1 = Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat = 0,5 = 1 = Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat, berubah dan tetap ( > 1) Grafik Fungsi Hazard Rate Distribusi Generalized Weibull pada saat = dan berubah ( > 1)... 40

16 I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Statistika merupakan alat analisis yang banyak digunakan dalam berbagai bidang terapan. Salah satu analisis statistika yaitu analisis survival ( survival analysis) atau analisis kelangsungan hidup. Analisis ini biasanya digunakan dalam menduga probabilitas kelangsungan hidup, kekambuhan suatu penyakit, kematian dan peristiwa-peristiwa lainnya sampai pada periode waktu tertentu. Analisis kelangsungan hidup adalah suatu metode statistik yang dapat digunakan untuk menjawab pertanyaan apakah dan kapan suatu kejadian menarik terjadi. Pada analisis survival (survival analysis) terdapat dua fungsi utama, yaitu fungsi kelangsungan hidup ( survival) dan fungsi hazard. Fungsi kelangsungan hidup menyatakan peluang suatu sistem atau individu tidak mengalami kegagalan lebih dari waktu. Fungsi ini didefinisikan sebagai: = P( > ) = 1 Sedangkan fungsi hazard adalah laju kegagalan sesaat antara selang waktu yang sempit dan + dengan asumsi obyek telah bertahan sampai waktu ke Fungsi ini digunakan untuk menyatakan hazard rate. Hazard rate adalah ukuran laju kegagalan pada waktu tertentu. Hazard rate sangat bermanfaat dalam

17 2 menganalisis data kelangsungan hidup. Hazard rate merupakan perbandingan dari fungsi kepadatan peluang terhadap fungsi kelangsungan hidup ( ). Hazard rate memiliki bentuk yang berbeda-beda, yaitu dapat berupa increasing, decreasing, bathub, upside-down bathub dan konstan. Hazard rate memiliki bentuk yang berbeda-beda untuk distribusi yang berbeda pula. Hal itu juga berlaku pada distribusi Generalized Weibull. Selain itu, dalam memilih model peluang terbaik dalam data kelangsungan hidup bukanlah sesuatu hal yang mudah untuk dilakukan. Satu pendekatan untuk mengatasi masalah ini adalah dengan menggunakan model-model umum (general models). Salah satu model umum yang dapat digunakan adalah model distribusi Generalized Weibull karena memiliki potensi yang akurat untuk mencocokkan data kelangsungan hidup. Distribusi Generalized Weibull merupakan perluasan dari distribusi weibull. Distribusi weibull sering digunakan dalam permodelan analisis kelangsungan hidup. Distribusi ini diperkenalkan oleh seorang matematikawan yang bernama Wallodi Weibull. Distribusi weibull memiliki dua parameter, yaitu β (Paramater skala yang menunjukan besarnya keragaman data distribusi weibull) dan δ (parameter bentuk). Sedangkan pada disrtribusi Generalized Weibull menambahkan satu parameter lokasi, sehingga distribusi Generalized Weibull memiliki tiga parameter yaitu parameter lokasi, parameter skala dan parameter bentuk. Oleh karena itu, pada penelitian ini penulis tertarik untuk meneliti bagaimana karakteristik bentuk fungsi hazard rate pada distribusi Generalized Weibull.

18 3 1.2 Tujuan Penelitian Tujuan dari penulisan skripsi ini adalah : 1. Mengetahui fungsi kelangsungan hidup dan fungsi hazard distribusi Generalized Weibull. 2. Mengetahui karakteristik hazard rate yang meliputi increasing, decreasing, bathub, upside-down bathub dan konstan distribusi Generalized Weibull. 3. Membuat grafik fungsi hazard distribusi Generalized Weibull menggunakan software R. 1.3 Batasan Masalah Agar tidak memperluas pembahasan maka penelitian ini dibatasi pada hal-hal berikut: 1. Distibusi yang digunakan adalah distribusi Generalized Weibull dengan 3 parameter (,, ). 2. Mencari karakterisik dari hazard rate yang meliputi increasing, decreasing, bathub, upside-down bathub dan konstan pada distribusi Generalized Weibull berdasarkan aturan Glaser. 1.4 Manfaat Penulisan Manfaat dari penulisan skripsi ini adalah hasil dari penelitian ini dapat memberikan informasi yang lebih mendalam kepada peneliti lain mengenai fungsi

19 4 kelangsungan hidup, fungsi hazard dan juga karakteristiknya yang berhubungan dengan distribusi Generalized Weibull.

20 II. TINJAUAN PUSTAKA 2.1 Analisis Survival (Analisis Kelangsungan Hidup) Analisis survival atau lebih dikenal dengan analisis kelangsungan hidup (survival analysis) merupakan analisis statistika khusus yang membantu menganalisis suatu kasus yang tidak dapat diselesaikan dengan analisis statistika pada umumnya. Analisis ini digunakan ketika kasus berkaitan dengan waktu dan lama waktu hingga terjadi peristiwa tertentu dan kemungkinan adanya data tersensor merupakan karakteristik khas yang membedakan dengan analisis lain. Misalnya peristiwa timbulnya suatu penyakit, kambuhnya penyakit, kesembuhan dan kematian (Kleinbaum dan Klein, 2012). Analisis survival adalah suatu metode yang berhubungan dengan waktu, mulai dari time origin atau start point sampai dengan terjadinya suatu kejadian khusus atau end point. Di dalam analisis survival dibutuhkan beberapa waktu pengukuran, yaitu: 1) Waktu awal pencatatan (start point) yang didefinisikan dengan baik. 2) Waktu akhir pencatatan (end point) yang terdefinisi dengan baik untuk mengetahui status tersensor maupun tidak tersensor suatu data.

21 6 3) Skala waktu pengukuran yang jelas. Skala diukur dalam hari, minggu atau tahun (Collet, 2003). Aplikasi analisis survival biasanya digunakan sebagai alasan untuk menjelaskan, mengukur, dan menganalisis kejadian dari suatu peristiwa untuk membuat prediksi tentang tidak hanya bertahan hidup tetapi juga 'dari waktu - sampai ke proses kejadian '- lamanya waktu sampai perubahan status atau terjadinya suatu peristiwa seperti sejak hidup sampai mati, sejak single sampai menikah, atau sejak sehat sampai sakit (Xian Liu, 2012). 2.2 Fungsi Waktu Kelangsungan Hidup Waktu kelangsungan hidup merupakan data yang mengukur waktu pada kejadian tertentu seperti kegagalan, kematian, respon, kekambuhan suatu penyakit, perkembangan suatu penyakit dan lainnya. Distribusi dari waktu kelangsungan hidup biasanya digambarkan atau di karakteristikkan oleh tiga fungsi yaitu : Fungsi kepadatan peluang, fungsi kelangsungan hidup (fungsi survival), dan fungsi hazard. Ketiga fungsi ini equivalen, hal ini berarti jika satu dari ketiganya diberikan maka dua lainnya bisa diperoleh. Misalkan T dinotasikan sebagai waktu kelangsungan hidup. Distribusi dari T bisa digolongkan oleh ketiga fungsi equivalen tersebut (Lee dan Wang, 2003).

22 Fungsi Kepadatan Peluang (pdf) Fungsi kepadatan peluang merupakan peluang suatu individu mengalami event, gagal atau mati dalam interval waktu sampai ( + ) yang dinotasikan dengan. Fungsi ini dirumuskan sebagai berikut: = lim P( < < + ) = lim ( + ) (2.1) merupakan variabel random non negatif dalam interval [0, ), merupakan fungsi distribusi kumulatif (cdf) dari. Fungsi ini didefinisikan sebagai peluang suatu individu mengalami event sampai dengan waktu yang dapat dituliskan sebagai berikut: = P( ) = (2.2) Fungsi kepadatan peluang memiliki 2 sifat yaitu : 1. adalah fungsi non negatif 0, untuk semua 0 = 0, untuk semua < 0 2. Luas daerah antara kurva kepadatan dengan sumbu sama dengan 1 yaitu =1 (Lee dan Wang, 2003).

23 Fungsi Survival Menurut Lee dan Wang (2003) fungsi kelangsungan hidup (fungsi survival) didefinisikan sebagai peluang suatu individu yang bertahan hidup lebih dari waktu yang dinotasikan dengan, yakni sebagai berikut : = (suatu individu bertahan lebih dari t) = ( > ) = (2.3) Dengan menggunakan definisi fungsi distribusi kumulatif = ( ), maka fungsi survival dapat dituliskan sebagai berikut : = ( > ) =1 ( ) =1 ( ) = = (1 ) ( ) = (2.4) Secara teori fungsi survival dapat diplot sebagai kurva survival yang menggambarkan peluang kelangsungan suatu individu pada waktu dalam interval 0 sampai. Fungsi survival mempunyai karakteristik, yaitu sebagai berikut: a. Fungsi survival merupakan fungsi monoton tak naik. b. Pada saat, = 0, = (0) = 1 Pada awal dimulainya penelitian, karena belum ada individu yang mengalami event maka probabilitas survival pada saat = 0 adalah satu.

24 9 c. Pada saat, =, 0 Secara teori, apabila periode penelitian meningkat tanpa batas, maka diakhir waktu tidak ada seorang individu yang akan bertahan hidup, sehingga kurva survival akan bergerak menuju nol (Klein dan Kleinbaum, 2012) Fungsi Hazard Fungsi hazard atau fungsi kegagalan dikenal juga sebagai hazard rate yang dinotasikan dengan ℎ. Menurut Lee dan Wang (2003), fungsi kegagalan dari waktu tahan hidup T didefinisikan sebagai peluang suatu individu gagal di dalam interval waktu yang sangat kecil, dengan diasumsikan bahwa individu memiliki hidup yang lebih lama pada awal dari interval, atau sebagai limit dari peluang individu gagal dalam interval yang sangat kecil, ke matematis dapat dinyatakan sebagai berikut: ℎ = lim = lim = lim = lim = lim = P( < < + ) < + ) ( )] /( ) P[( < P[( < < + P( ) )] P( < < + ) (1 ) 1 +. (t + t) F(t) (1 ) lim (1 ) F(t + t) F(t) Fungsi kegagalannya secara

25 10 = = (1 ) Dimana adalah fungsi kepekatan (density function) dan kelangsungan hidup. (2.5) adalah fungsi Fungsi hazard kumulatif didefinisikan sebagai : = ℎ (2.6) Dari persamaan (2.5) di atas, telah diketahui bahwa = ℎ = = =, sehingga ℎ dapat dinyatakan sebagai berikut :. 1 ln Selanjutnya dengan mengintegralkan persamaan (2.8) dari 0 sampai t, maka (2.7) diperoleh : ℎ ℎ = = ln ln = ln = ln ln (0) Karena (0) = 1 maka ln (0) = ln 1 = 0, sehingga persamaan diatas menjadi :

26 11 ℎ = ln = ln (2.8) Dan diperoleh persamaan untuk fungsi kelangsungan hidup, yaitu : [ ] = = [ln ] [ ] (2.9) Dari persamaan (2.6) dihubungkan dengan persamaan (2.9) akan diperoleh : = ℎ ℎ ; 0 (2.10) Menurut McDonald dan Richard (1978) untuk mengetahui karakteristik fungsi hazardnya, ℎ diturunkan terhadap t sehingga: ℎ ℎ ℎ = = = ( ) + + Setelah diperoleh turunan pertama dari ℎ, untuk mengetahui kapan ℎ naik, turun atau konstan maka langkah selanjutnya adalah membuat ℎ =0 + =0 = =0

27 12 = Dari persamaan di atas sekarang dapat diketahui bahwa sebuah distribusi akan 1. Memiliki laju hazard naik (increasing) jika 2. Memiliki laju hazard turun (decreasing) jika 3. Memiliki laju hazard konstan jika >, =. < Syarat cukup sebuah fungsi kepekatan bukan merupakan suatu kondisi yang diperlukan untuk menentukan karakteristik laju hazardnya. Fungsi hazard juga dapat diplot sebagai kurva fungsi hazard terhadap seperti fungsi survival. Akan tetapi, terdapat perbedaan antara kedua fungsi tersebut. Pada fungsi hazard, kurva ℎ tidak harus dimulai dari satu dan bergerak menuju nol, tetapi kurva ℎ dapat dimulai dari nilai berapapun dengan syarat ℎ 0 dan dapat bergerak ke atas maupun ke bawah terhadap waktu (Klein dan Kleinbaum, 2012). 2.3 Distribusi Weibull Distribusi Weibull diperkenalkan oleh seorang matematikawan yang bernama Wallodi Weibull. Distribusi Weibull sering digunakan dalam permodelan analisis kelangsungan hidup yang memiliki daerah fungsi peluang densitas positif dengan peubah acak kontinu. Distribusi Weibull memiliki dua parameter, yaitu: β : Paramater skala yang menunjukan besarnya keragaman data distribusi Weibull. δ : Parameter bentuk

28 13 Misalkan X adalah peubah acak dari distribusi Weibull dengan dua parameter, maka fungsi kepekatan peluang dari peubah acak Weibull adalah sebagai berikut: = 0 (2.1)(2,k ; ; 0, > 0, >0; k(2.11) Fungsi distribusi kumulatif dari distribusi Weibull didefinisikan sebagai: = 1- Nilai harapan dari distribusi Weibull adalah: = Г 1+ Ragam (variance) distribusi Weibull adalah: = Г 1+ Г 1+ (Kundu dan Mangalick, 2004). 2.4 Distribusi Generalized Weibull Distribusi Generalized Weibull (Generalized Weibull Distribution) merupakan perluasan dari distribusi Weibull dengan menambahkan satu parameter lokasi, sehingga distribusi Generalized Weibull memiliki tiga parameter yaitu parameter lokasi, parameter skala dan parameter bentuk. Model distribusi Generalized Weibull merupakan salah satu model umum yang dapat diterapkan dalam data hidup.

29 14 Misalkan X adalah peubah acak dari distribusi Generalized Weibull dengan tiga parameter, fungsi kepekatan peluang dari peubah acak tersebut adalah = ; dengan < <, 0, > 0, >0 (2.12) : Peubah acak yang didefinisikan sebagai waktu gagal (failure time) : Parameter lokasi yang menunjukkan lokasi waktu, dimana pada saat lokasi waktu tersebut belum ada objek pengamatan yang gagal maupun hilang : Parameter skala yang menunjukkan besarnya keragaman data distribusi kkkkkkweibull : Parameter bentuk yang menunjukkan laju kematian/kerusakan data distribusi Generalized Weibull (Jhonson dan Kotz, 1970). 2.5 Analisis Bentuk Fungsi Hazard Rate dengan Aturan Glaser Untuk melihat bagaimana laju hazard yang dipengaruhi oleh kombinasi dari nilainilai parameter maka Glaser (1980) membuat metode untuk menentukan bentuk laju hazard dengan satu turning point (titik belok). Dalam metodenya, Glaser menggunakan fungsi kepekatan peluang. Titik belok (turning point) dari suatu fungsi adalah suatu titik maksimum atau minimum dalam suatu fungsi atau kurva dan didefinisikan sebagai berikut : = (2.13)

30 15 Fungsi ini memiliki peranan penting dalam mengkaji karakteristik fungsi dan bentuk laju hazard. Aturan Glaser (1980) sendiri adalah sebagai berikut : a. Jika > 0 untuk semua > 0, maka Increasing (I) b. Jika < 0 untuk semua > 0, maka Decreasing (D) > 0, sehingga < 0 untuk semua є (0, ), = 0, c. Misal terdapat dan > 0 untuk semua > Jika lim Jika lim d. Misal terdapat dan = 0, maka Increasing (I), maka Bathub (U) > 0, sehingga < 0 untuk semua > Jika lim Jika lim, > 0 untuk semua є (0, ), = 0,, = 0, maka Upside-down Bathub ( ), maka Decreasing (D) (Glaser, 1980).

31 III. METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015, bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung. 3.2 Metode Penelitian Penulisan skripsi ini dilakukan dengan menggunakan studi literatur secara sistematis yang diperoleh dari buku-buku atau media lain untuk mendapatkan informasi sebanyak mungkin untuk mendukung penulisan skripsi ini. Adapun langkah-langkah yang dilakukan dalam penelitian ini adalah sebagai berikut: 1. Mencari fungsi distribusi kumulatif dari distribusi Generalized Weibull. 2. Mencari fungsi ketahanan hidup dari distribusi Generalized Weibull. 3. Mencari fungsi hazard dari distribusi Generalized Weibull. 4. Mencari nilai turunan pertama dari fungsi kepekatan peluang pada distribusi Generalized Weibull. 5. Mencari nilai = dan nilai (turunan pertamanya). 16

32 17 6. Mengkaji karakteristik fungsi hazard dengan menggunakan aturan Glaser (1980) sebagi berikut: a. Jika > 0 untuk semua > 0, maka Increasing (I) b. Jika < 0 untuk semua > 0, maka Decreasing (D) c. Misal terdapat > 0, sehingga < 0 untuk semua є (0, ), = 0, > 0 untuk semua >, dan Jika lim = 0, maka Increasing (I) Jika lim, maka Bathub (U) d. Misalkan terdapat > 0, sehingga > 0 untuk semua є (0, ), < 0 untuk semua >, dan Jika lim = 0, maka Upside-down Bathub ( ) Jika lim, maka Decreasing (D) 7. Membuat grafik fungsi hazard dari distribusi Generalized Weibull dengan menggunakan software R.

33 V. KESIMPULAN Berdasarkan hasil dari penelitian yang telah dilakukan, maka dapat ditarik kesimpulan sebagai berikut : 1. Fungsi Kelangsungan hidup distribusi Generalized Weibull adalah Sedangkan fungsi hazard distribusi Generalized Weibull adalah. 2. Karakteristik Hazard Rate distribusi Generalized Weibull yang telah dianalisis berdasarkan aturan Glaser berbentuk Increasing apabila parameter bentuk bernilai > 1, berbentuk Decreasing apabila parameter bentuk bernilai 0 < < 1. Selain itu, karakteristik Hazard Rate distribusi Generalized Weibull apabila parameter bentuk bernilai = 1 berbentuk konstan. 3. Secara grafis, karakteristik Hazard Rate distribusi Generalized Weibull juga berbentuk Increasing (meningkat), Decreasing (menurun) dan Konstan.

34 DAFTAR PUSTAKA Collet, D Modelling Survival Data in Medical Research - Second Edition. Chapman and Hall, London. Glaser, R.E Bathub Related Failure Rate Characterizations. Journal of the American Statistical Association. Vol 75 (371). Jhonshon, N.L. and Kotz, S Continous Unvariate Distribution. John Wiley, New York. Kleinbaum, David. G. dan Klein, Mitchel Survival Analysis A Self Learning Text. Springer Verlag, New York. Kundu, D. dan Manglick, A Discriminating Between The Weibull and Log-normal Distribution. Journal of Applied Statistical Sciences. 20: Lee, E. T., dan Wang, J. W Statistical Methods for Survival Data Analysis Third Edition. John Wiley & Sons, Inc, New Jersey. McDonald, J.B dan Richard, D.O Hazard Rate and Generalized Beta Distribution. IEEE Transaction Realibility. R-36. Xian Liu Survival Analysis Models and Applications. John Wiley & Sons, Ltd, United Kingdom.

IDENTIFIKASI KARAKTERISTIK HAZARD RATE DISTRIBUSI GENERALIZED EXPONENTIAL. (Skripsi) Oleh MERDA GUSTINA

IDENTIFIKASI KARAKTERISTIK HAZARD RATE DISTRIBUSI GENERALIZED EXPONENTIAL. (Skripsi) Oleh MERDA GUSTINA IDENTIFIKASI KARAKTERISTIK HAZARD RATE DISTRIBUSI GENERALIZED EXPONENTIAL (Skripsi) Oleh MERDA GUSTINA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2016 ABSTRAK IDENTIFIKASI

Lebih terperinci

MODEL REGRESI COX PROPORTIONAL HAZARD PADA LAJU TAMAT MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS ANDALAS

MODEL REGRESI COX PROPORTIONAL HAZARD PADA LAJU TAMAT MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS ANDALAS Jurnal Matematika UNAND Vol. VI No. 1 Hal. 33 41 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND MODEL REGRESI COX PROPORTIONAL HAZARD PADA LAJU TAMAT MAHASISWA JURUSAN MATEMATIKA UNIVERSITAS ANDALAS

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI LOG-LOGISTIK PADA DATA SURVIVAL TERSENSOR TIPE II

ESTIMASI PARAMETER DISTRIBUSI LOG-LOGISTIK PADA DATA SURVIVAL TERSENSOR TIPE II ESTIMASI PARAMETER DISTRIBUSI LOG-LOGISTIK PADA DATA SURVIVAL TERSENSOR TIPE II Ryndha, Anna 2, Nasrah 3 ABSTRAK Data survival adalah data yang menunjukkan waktu suatu individu atau objek dapat bertahan

Lebih terperinci

Analisis Survival Parametrik Pada Data Tracer Study Universitas Sriwijaya

Analisis Survival Parametrik Pada Data Tracer Study Universitas Sriwijaya Analisis Survival Parametrik Pada Data Tracer Study Universitas Sriwijaya Alfensi Faruk Jurusan Matematika, Fakultas MIPA, Universitas Sriwijaya e-mail: alfensifaruk@unsri.ac.id Abstract: In this study,

Lebih terperinci

METODOLOGI PENELITIAN. Untuk melihat karakteristik laju hazard distribusi Gompertz dalam penelitian ini

METODOLOGI PENELITIAN. Untuk melihat karakteristik laju hazard distribusi Gompertz dalam penelitian ini III. METODOLOGI PENELITIAN 3. Langkah-langkah Penelitian Untuk melihat karakteristik laju hazard distribusi Gompertz dalam penelitian ini peneliti menggunkan aturan Glaser (98). Adapun lagkah-langkah yang

Lebih terperinci

Jurnal EKSPONENSIAL Volume 5, Nomor 2, Nopember 2014 ISSN

Jurnal EKSPONENSIAL Volume 5, Nomor 2, Nopember 2014 ISSN Jurnal EKSPONENSIAL Volume 5, Nomor 2, Nopember 204 ISSN 2085-7829 Perbandingan Aplikasi Metode Parametrik (Distribusi Log logistik) dan Non Parametrik (Nelson-Aalen Estimator) dalam Analisis Data Uji

Lebih terperinci

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi

II. LANDASAN TEORI. karakteristik dari generalized Weibull distribution dibutuhkan beberapa fungsi II. LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan teorema yang berkaitan dengan penelitian penulis. Dalam menyelesaikan momen, kumulan dan fungsi karakteristik dari generalized Weibull

Lebih terperinci

ESTIMASI PARAMETER UNTUK DATA WAKTU HIDUP YANG BERDISTRIBUSI RAYLEIGH PADA DATA TERSENSOR TIPE II DENGAN METODE MAKSIMUM LIKELIHOOD SKRIPSI

ESTIMASI PARAMETER UNTUK DATA WAKTU HIDUP YANG BERDISTRIBUSI RAYLEIGH PADA DATA TERSENSOR TIPE II DENGAN METODE MAKSIMUM LIKELIHOOD SKRIPSI 0 ESTIMASI PARAMETER UNTUK DATA WAKTU HIDUP YANG BERDISTRIBUSI RAYLEIGH PADA DATA TERSENSOR TIPE II DENGAN METODE MAKSIMUM LIKELIHOOD SKRIPSI JULHAIDI 09083045 PROGRAM STUDI SARJANA MATEMATIKA DEPARTEMEN

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 2, Tahun 2014, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 3, Nomor 2, Tahun 2014, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 2, Tahun 2014, Halaman 173-181 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian MODEL REGRESI COX PROPORTIONAL HAZARDS PADA DATA LAMA STUDI

Lebih terperinci

ANALISIS TAHAN HIDUP DATA TERSENSOR TIPE II MENGGUNAKAN MODEL DISTRIBUSI WEIBULL PADA PENDERITA HEPATITIS C

ANALISIS TAHAN HIDUP DATA TERSENSOR TIPE II MENGGUNAKAN MODEL DISTRIBUSI WEIBULL PADA PENDERITA HEPATITIS C ANALISIS TAHAN HIDUP DATA TERSENSOR TIPE II MENGGUNAKAN MODEL DISTRIBUSI WEIBULL PADA PENDERITA HEPATITIS C oleh BUDI SANTOSO M0110013 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang

BAB II KAJIAN TEORI. Analisis survival atau analisis ketahanan hidup adalah metode yang BAB II KAJIAN TEORI BAB II KAJIAN TEORI A. Analisis Survival Analisis survival atau analisis ketahanan hidup adalah metode yang berhubungan dengan jangka waktu, dari awal pengamatan sampai suatu kejadian

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman 781-790 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS KETAHANAN HIDUP PENDERITA TUBERKULOSIS DENGAN MENGGUNAKAN

Lebih terperinci

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi

II.TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi II.TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik pendugaan distribusi generalized weibull menggunakan metode generalized momen ini, penulis menggunakan definisi dan konsep dasar

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis survival (survival analysis) atau analisis kelangsungan hidup bertujuan

II. TINJAUAN PUSTAKA. Analisis survival (survival analysis) atau analisis kelangsungan hidup bertujuan II. TINJAUAN PUSTAKA 2.1 Analisis Survival Analisis survival (survival analysis) atau analisis kelangsungan hidup bertujuan menduga probabilitas kelangsungan hidup, kekambuhan, kematian, dan peristiwaperistiwa

Lebih terperinci

SISTEM INFORMASI PENJUALAN HANDPHONE PADA GEMAR CELLULAR BERBASIS WEB. (Tugas Akhir) Oleh Rika Rosmalasari

SISTEM INFORMASI PENJUALAN HANDPHONE PADA GEMAR CELLULAR BERBASIS WEB. (Tugas Akhir) Oleh Rika Rosmalasari SISTEM INFORMASI PENJUALAN HANDPHONE PADA GEMAR CELLULAR BERBASIS WEB (Tugas Akhir) Oleh Rika Rosmalasari FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI D3 SISTEM INFORMASI

Lebih terperinci

BAB II TINJAUAN PUSTAKA. diperhatikan adalah jangka waktu dari awal pengamatan sampai suatu event

BAB II TINJAUAN PUSTAKA. diperhatikan adalah jangka waktu dari awal pengamatan sampai suatu event BAB II TINJAUAN PUSTAKA A. Analisis Survival Analisis survival merupakan suatu analisis data dimana variabel yang diperhatikan adalah jangka waktu dari awal pengamatan sampai suatu event terjadi dengan

Lebih terperinci

KAJIAN DATA KETAHANAN HIDUP TERSENSOR TIPE I BERDISTRIBUSI EKSPONENSIAL DAN SIX SIGMA. Victoria Dwi Murti 1, Sudarno 2, Suparti 3

KAJIAN DATA KETAHANAN HIDUP TERSENSOR TIPE I BERDISTRIBUSI EKSPONENSIAL DAN SIX SIGMA. Victoria Dwi Murti 1, Sudarno 2, Suparti 3 JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 241-248 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian KAJIAN DATA KETAHANAN HIDUP TERSENSOR TIPE I BERDISTRIBUSI EKSPONENSIAL DAN

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum

II. TINJAUAN PUSTAKA. Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum 4 II. TINJAUAN PUSTAKA Dalam bab ini akan dijelaskan pengertian tentang distribusi Weibull, maximum likelihood estimation, penyensoran, bias relatif, penduga parameter distribusi Weibull dan beberapa istilah

Lebih terperinci

Model Cox Extended dengan untuk Mengatasi Nonproportional Hazard pada Kejadian Bersama

Model Cox Extended dengan untuk Mengatasi Nonproportional Hazard pada Kejadian Bersama SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Model Cox Extended dengan untuk Mengatasi Nonproportional Hazard pada Kejadian Bersama Anita Nur Vitriana, Rosita Kusumawati Program Studi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Analisis survival adalah suatu metode yang berhubungan dengan waktu, mulai dari time origin atau start point sampai terjadinya suatu kejadian khusus atau end point.

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Analisis Survival

BAB 2 LANDASAN TEORI. 2.1 Analisis Survival BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan bab selanjutnya dan pembahasan utama dalam penelitian

Lebih terperinci

Distribusi Weibull Power Series

Distribusi Weibull Power Series Distribusi Weibull Power Series Maulida Yanti 1, Sarini S.Si.,M.Stats 2 1 Mahasiswa Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424 2 Staff Pengajar Departemen Matematika, FMIPA UI, Kampus UI Depok,

Lebih terperinci

ANALISIS RELIABILITAS PADA MESIN MEISA KHUSUSNYA KOMPONEN PISAU PAPER BAG UNTUK MEMPEROLEH JADUAL PERAWATAN PREVENTIF

ANALISIS RELIABILITAS PADA MESIN MEISA KHUSUSNYA KOMPONEN PISAU PAPER BAG UNTUK MEMPEROLEH JADUAL PERAWATAN PREVENTIF Prosiding Seminar Nasional Matematika dan Pendidikan Matematika (SESIOMADIKA) 2017 ISBN: 978-602-60550-1-9 Statistika, hal. 42-51 ANALISIS RELIABILITAS PADA MESIN MEISA KHUSUSNYA KOMPONEN PISAU PAPER BAG

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 621-630 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS REGRESI KEGAGALAN PROPORSIONAL DARI COX PADA DATA WAKTU

Lebih terperinci

LANDASAN TEORI. penelitian mengenai pendekatan distribusi GE ke distribusi GLL(,,

LANDASAN TEORI. penelitian mengenai pendekatan distribusi GE ke distribusi GLL(,, 4 II. LANDASAN TEORI Pada bab ini akan dijelaskan beberapa definisi yang berhubungan dengan penelitian mengenai pendekatan distribusi GE ke distribusi GLL melalui distribusi eksponensial dengan menyamakan

Lebih terperinci

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang.

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang. MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL Winda Faati Kartika 1, Triastuti Wuryandari 2 1, 2) Program Studi Statistika Jurusan Matematika FMIPA Universitas Diponegoro

Lebih terperinci

PERLUASAN REGRESI COX DENGAN PENAMBAHAN PEUBAH TERIKAT-WAKTU

PERLUASAN REGRESI COX DENGAN PENAMBAHAN PEUBAH TERIKAT-WAKTU E-Jurnal Matematika Vol. 3 3), Agustus 2014, pp. 86-91 ISSN: 2303-1751 PERLUASAN REGRESI COX DENGAN PENAMBAHAN PEUBAH TERIKAT-WAKTU Luh Putu Ari Dewiyanti 1, Ni Luh Putu Suciptawati 2, I Wayan Sumarjaya

Lebih terperinci

RESIDUAL COX-SNELL DALAM MENENTUKAN MODEL TERBAIK DALAM ANALISIS SURVIVAL

RESIDUAL COX-SNELL DALAM MENENTUKAN MODEL TERBAIK DALAM ANALISIS SURVIVAL Jurnal Dinamika, September 204, halaman - ISSN 2087-7889 Vol. 05. No. 2 RESIDUAL COX-SNELL DALAM MENENTUKAN MODEL TERBAIK DALAM ANALISIS SURVIVAL Rahmat Hidayat Program Studi Matematika, Fakultas Sains

Lebih terperinci

PERLUASAN DISTRIBUSI CHEN (DISTRIBUSI XTG)

PERLUASAN DISTRIBUSI CHEN (DISTRIBUSI XTG) PERLUASAN DISTRIBUSI CHEN (DISTRIBUSI XTG) Ana Zuliastuti 1, Sarini 2 1 Mahasiswa Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424 2 Staff Pengajar Departemen Matematika, FMIPA UI, Kampus UI Depok,

Lebih terperinci

HALAMAN PENGESAHAN. : Perancangan Sistem Penjualan Sepeda Motor Second Berbasis Web Dengan Menggunakan PHP dan MySQL. MENYETUJUI

HALAMAN PENGESAHAN. : Perancangan Sistem Penjualan Sepeda Motor Second Berbasis Web Dengan Menggunakan PHP dan MySQL. MENYETUJUI HALAMAN PENGESAHAN Judul Nama : Perancangan Sistem Penjualan Sepeda Motor Second Berbasis Web Dengan Menggunakan PHP dan MySQL. : Raden Usman NPM : 0907051057 Fakultas Jurusan Prodi : Matematika dan Ilmu

Lebih terperinci

HETEROSKEDASTISITAS DALAM ANALISIS REGRESI LINIER SKRIPSI. Oleh: YOGIE DANA INSANI NIM

HETEROSKEDASTISITAS DALAM ANALISIS REGRESI LINIER SKRIPSI. Oleh: YOGIE DANA INSANI NIM HETEROSKEDASTISITAS DALAM ANALISIS REGRESI LINIER SKRIPSI Diajukan Untuk Memenuhi Persyaratan Penyelesaian Program Sarjana Sains Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

PENDUGAAN FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK NADIROH

PENDUGAAN FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK NADIROH PENDUGAAN FUNGSI SEBARAN DAN FUNGSI KEPEKATAN PELUANG WAKTU TUNGGU PROSES POISSON PERIODIK NADIROH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2011

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari manusia selalu dihadapkan dengan berbagai macam kejadian/peristiwa (event). Meskipun begitu, tidak semua peristiwa tersebut menjadi

Lebih terperinci

HALAMAN PENGESAHAN. : TUTORIAL PENGGUNAAN SISTEM INFORMASI OpenEMR. : Matematika dan Ilmu Pengetahuan Alam. MENYETUJUI 1.

HALAMAN PENGESAHAN. : TUTORIAL PENGGUNAAN SISTEM INFORMASI OpenEMR. : Matematika dan Ilmu Pengetahuan Alam. MENYETUJUI 1. HALAMAN PENGESAHAN Judul Nama : TUTORIAL PENGGUNAAN SISTEM INFORMASI OpenEMR : Muhammad Fadli NPM : 0907051055 Fakultas Jurusan Prodi : Matematika dan Ilmu Pengetahuan Alam : Ilmu Komputer : D3 Manajemen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 21 Beberapa Pengertian Definisi 1 [Ruang Contoh] Ruang contoh adalah himpunan semua hasil yang mungkin dari suatu percobaan acak, dan dinotasikan dengan (Grimmet dan Stirzaker,1992)

Lebih terperinci

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. BAB 2 LANDASAN TEORI 2.1 Ruang Sampel dan Kejadian Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S. Tiap hasil dalam ruang sampel disebut

Lebih terperinci

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 5. Beberapa jenis Distribusi Variabel Acak. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 5. Beberapa jenis Distribusi Variabel Acak Prima Kristalina April 215 1 Outline 1. Beberapa macam

Lebih terperinci

PENERAPAN REGRESI COX DAN REGRESI PARAMETRIK UNTUK ANALISIS SURVIVAL PASIEN JANTUNG MENGGUNAKAN R SOFTWARE

PENERAPAN REGRESI COX DAN REGRESI PARAMETRIK UNTUK ANALISIS SURVIVAL PASIEN JANTUNG MENGGUNAKAN R SOFTWARE PENERAPAN REGRESI COX DAN REGRESI PARAMETRIK UNTUK ANALISIS SURVIVAL PASIEN JANTUNG MENGGUNAKAN R SOFTWARE Diah Ayu Novitasari *) *) Jurusan Manajemen, Fakultas Ekonomi Universitas Islam Lamongan Email

Lebih terperinci

PENERAPAN REGRESI COX DAN REGRESI PARAMETRIK UNTUK ANALISIS SURVIVAL PASIEN JANTUNG MENGGUNAKAN R SOFTWARE

PENERAPAN REGRESI COX DAN REGRESI PARAMETRIK UNTUK ANALISIS SURVIVAL PASIEN JANTUNG MENGGUNAKAN R SOFTWARE PENERAPAN REGRESI COX DAN REGRESI PARAMETRIK UNTUK ANALISIS SURVIVAL PASIEN JANTUNG MENGGUNAKAN R SOFTWARE Diah Ayu Novitasari * * Jurusan Manajemen, Fakultas Ekonomi Universitas Islam Lamongan Email :

Lebih terperinci

MODEL REGRESI WEIBULL DENGAN ADDITIVE FRAILTIES PADA DATA SURVIVAL. Universitas Hasanuddin

MODEL REGRESI WEIBULL DENGAN ADDITIVE FRAILTIES PADA DATA SURVIVAL. Universitas Hasanuddin MODEL REGRESI WEIBULL DENGAN ADDITIVE FRAILTIES PADA DATA SURVIVAL 1 Rima Ruktiari, 2 Sri Astuti Thamrin, 3 Armin Lawi 1,2,3 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

ANALISIS DATA UJI HIDUP

ANALISIS DATA UJI HIDUP DESKRIPSI MATA KULIAH ANALISIS DATA UJI HIDUP Setelah mengikuti mata kuliah ini diharapkan mahasiswa memiliki pengetahuan, pemahaman dan kemampuan untuk mengkaji distribusi-distribusi waktu hidup, serta

Lebih terperinci

: Diploma III Manajemen Informatika. : Matematika dan Ilmu Pengetahuan Alam. MENYETUJUI, 1. Komisi Pembimbing, Mengetahui,

: Diploma III Manajemen Informatika. : Matematika dan Ilmu Pengetahuan Alam. MENYETUJUI, 1. Komisi Pembimbing, Mengetahui, Judul Tugas Akhir Nama Mahasiswa : MEDIA PEMBELAJARAN INTERAKTIF PELAJARAN PENGENALAN KOMPUTER SMP DENGAN MACROMEDIA FLASH : Ari Yoga Wicaksono Nomor Pokok Mahasiswa : 0807051020 Program Studi Fakultas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. (Kleinbaum dan Klein, 2005). Persson (2002) mengatakan data sintasan adalah

BAB II TINJAUAN PUSTAKA. (Kleinbaum dan Klein, 2005). Persson (2002) mengatakan data sintasan adalah BAB II TINJAUAN PUSTAKA 2.1. Analisis Sintasan 2.1.1. Pengertian Analisis Sintasan Analisis sintasan adalah kumpulan dari proses statistik untuk menganalisis data yang mana peubah yang diteliti adalah

Lebih terperinci

PEMBENTUKAN DISTRIBUSI TRANSMUTED EXPONENTIATED EXPONENTIAL MENGGUNAKAN METODE QUADRATIC RANK TRANSMUTATION MAP (QRTM)

PEMBENTUKAN DISTRIBUSI TRANSMUTED EXPONENTIATED EXPONENTIAL MENGGUNAKAN METODE QUADRATIC RANK TRANSMUTATION MAP (QRTM) Jurnal LOG!K@, Jilid 6, No. 2, 2016, Hal. 144-151 ISSN 1978 8568 PEMBENTUKAN DISTRIBUSI TRANSMUTED EXPONENTIATED EXPONENTIAL MENGGUNAKAN METODE QUADRATIC RANK TRANSMUTATION MAP (QRTM) Siti Nurrohmah, Ida

Lebih terperinci

PENGGUNAAN ANALISIS KETAHANAN HIDUP UNTUK PENENTUAN PERIODE GARANSI DAN HARGA PRODUK PADA DATA WAKTU HIDUP LAMPU NEON

PENGGUNAAN ANALISIS KETAHANAN HIDUP UNTUK PENENTUAN PERIODE GARANSI DAN HARGA PRODUK PADA DATA WAKTU HIDUP LAMPU NEON ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 463-476 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENGGUNAAN ANALISIS KETAHANAN HIDUP UNTUK PENENTUAN PERIODE

Lebih terperinci

PENGEMBANGAN APLIKASI PERMAINAN LIST COLOURING MENGGUNAKAN GRAF BIPARTITE DAN GRAF CATERPILLAR. (Skripsi) Oleh HUSTNY KHOTIMAH

PENGEMBANGAN APLIKASI PERMAINAN LIST COLOURING MENGGUNAKAN GRAF BIPARTITE DAN GRAF CATERPILLAR. (Skripsi) Oleh HUSTNY KHOTIMAH PENGEMBANGAN APLIKASI PERMAINAN LIST COLOURING MENGGUNAKAN GRAF BIPARTITE DAN GRAF CATERPILLAR (Skripsi) Oleh HUSTNY KHOTIMAH FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data antar kejadian (time-to-event data) adalah data lama waktu sampai suatu peristiwa terjadi atau sering disebut data survival. Untuk memperoleh data antar

Lebih terperinci

SKRIPSI. Disusun oleh LANDONG PANAHATAN HUTAHAEAN

SKRIPSI. Disusun oleh LANDONG PANAHATAN HUTAHAEAN MODEL REGRESI COX PROPORTIONAL HAZARDS PADA DATA LAMA STUDI MAHASISWA (Studi Kasus Di Fakultas Sains dan Matematika Universitas Diponegoro Semarang Mahasiswa Angkatan 2009) SKRIPSI Disusun oleh LANDONG

Lebih terperinci

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI

ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI ESTIMASI PARAMETER µ DAN σ 2 PADA DISTRIBUSI EKSPONENSIAL TERGENERALISIR DUA VARIABEL MENGGUNAKAN FUNGSI PEMBANGKIT MOMEN SKRIPSI GHAZALI WARDHONO 090823040 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS 4.1 Data Hasil Pengujian Pengujian yang dilakukan menguji masa hidup baterai dengan alat uji masa hidup baterai yang telah dirancang dan dimplementasikan. Pengujian dilakukan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA. Pendahuluan Uji perbandingan dua distribusi merupakan suatu tekhnik analisis ang dilakukan untuk mencari nilai parameter ang baik diantara dua distribusi. Tekhnik uji perbandingan

Lebih terperinci

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu.

LANDASAN TEORI. Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. II. LANDASAN TEORI Distribusi Gamma adalah salah satu keluarga distribusi probabilitas kontinu. Distribusi ini merupakan distribusi fungsi padat yang terkenal luas dalam bidang matematika. Distribusi gamma

Lebih terperinci

ISSN: X 27 MODEL COX EXTENDED UNTUK MENGATASI NONPROPORTIONAL HAZARD PADA KEJADIAN BERSAMA

ISSN: X 27 MODEL COX EXTENDED UNTUK MENGATASI NONPROPORTIONAL HAZARD PADA KEJADIAN BERSAMA ISSN: 067X 7 MODEL COX EXTENDED UNTUK MENGATASI NONPROPORTIONAL HAZARD PADA KEJADIAN BERSAMA Anita Nur Vitriana a, Rosita Kusumawati b a Program Studi Matematika FMIPA UNY Jl. Colombo No. Yogyakarta, anitavtrn@gmail.com

Lebih terperinci

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi

BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi BAB III SURVIVAL ANALYSIS UNTUK MENGUJI RELIABILITAS PRODUK DAN PENENTUAN GARANSI PRODUK 3.1 Garansi Garansi dapat diartikan sebagai jaminan yang diberikan secara tertulis oleh pabrik atau supplier kepada

Lebih terperinci

PENENTUAN PELUANG BERTAHAN DALAM MODEL RISIKO KLASIK DENGAN MENGGUNAKAN TRANSFORMASI LAPLACE AMIRUDDIN

PENENTUAN PELUANG BERTAHAN DALAM MODEL RISIKO KLASIK DENGAN MENGGUNAKAN TRANSFORMASI LAPLACE AMIRUDDIN PENENTUAN PELUANG BERTAHAN DALAM MODEL RISIKO KLASIK DENGAN MENGGUNAKAN TRANSFORMASI LAPLACE AMIRUDDIN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Lebih terperinci

SKRIPSI NITA MULIA SARI

SKRIPSI NITA MULIA SARI PENERAPAN REGRESI COX PROPORTIONAL HAZARD PADA ANALISIS SURVIVAL DAN IDENTIFIKASI FAKTOR LAMA STUDI MAHASISWA S-1 MANAJEMEN FAKULTAS EKONOMI UNIVERSITAS SUMATERA UTARA SKRIPSI NITA MULIA SARI 100803015

Lebih terperinci

ANALISIS KETAHANAN DAN APLIKASINYA UNTUK PEMODELAN INTERVAL KELAHIRAN ANAK PERTAMA HARNANTO

ANALISIS KETAHANAN DAN APLIKASINYA UNTUK PEMODELAN INTERVAL KELAHIRAN ANAK PERTAMA HARNANTO ANALISIS KETAHANAN DAN APLIKASINYA UNTUK PEMODELAN INTERVAL KELAHIRAN ANAK PERTAMA HARNANTO SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan

Lebih terperinci

PEMODELAN LAJU KESEMBUHAN PASIEN RAWAT INAP TYPHUS ABDOMINALIS

PEMODELAN LAJU KESEMBUHAN PASIEN RAWAT INAP TYPHUS ABDOMINALIS PEMODELAN LAJU KESEMBUHAN PASIEN RAWAT INAP TYPHUS ABDOMINALIS (DEMAM TIFOID) MENGGUNAKAN MODEL REGRESI KEGAGALAN PROPORSIONAL DARI COX (Studi Kasus di RSUD Kota Semarang) SKRIPSI Disusun oleh: Nama :

Lebih terperinci

APLIKASI REGRESI COX PROPORTIONAL HAZARD

APLIKASI REGRESI COX PROPORTIONAL HAZARD APLIKASI REGRESI COX PROPORTIONAL HAZARD PADA ANALISIS KESINTASAN DAN IDENTIFIKASI FAKTOR RESIKO (Studi Kasus Penderita Kanker Serviks Pasien RSUP. H. Adam Malik Medan Tahun 2009) SKRIPSI NOVITA SARI 070803026

Lebih terperinci

OLEH : Riana Ekawati ( ) Dosen Pembimbing : Dra. Farida Agustini W, M.S

OLEH : Riana Ekawati ( ) Dosen Pembimbing : Dra. Farida Agustini W, M.S OLEH : Riana Ekawati (1205 100 014) Dosen Pembimbing : Dra. Farida Agustini W, M.S Salah satu bagian penting dari statistika inferensia adalah estimasi titik. Estimasi titik mendasari terbentuknya inferensi

Lebih terperinci

PERENCANAAN PERSEDIAAN KNIFE TC 63 mm BERDASARKAN ANALISIS RELIABILITAS (Studi Kasus di PT. FILTRONA INDONESIA)

PERENCANAAN PERSEDIAAN KNIFE TC 63 mm BERDASARKAN ANALISIS RELIABILITAS (Studi Kasus di PT. FILTRONA INDONESIA) TUGAS AKHIR - ST 1325 PERENCANAAN PERSEDIAAN KNIFE TC 63 mm BERDASARKAN ANALISIS RELIABILITAS (Studi Kasus di PT. FILTRONA INDONESIA) RENI FANDANSARI NRP 1307100521 Dosen Pembimbing Dra. Sri Mumpuni R.,

Lebih terperinci

Mega Khoirunnisak Pembimbing: Prof. Drs. Nur Iriawan, MIkom, PhD

Mega Khoirunnisak Pembimbing: Prof. Drs. Nur Iriawan, MIkom, PhD Pemodelan Faktor-faktor Yang Mempengaruhi Mahasiswa Berhenti Studi (Drop Out) di Institut Teknologi Sepuluh Nopember Menggunakan Analisis Bayesian Mixture Survival Mega Khoirunnisak 1308.100.501 Pembimbing:

Lebih terperinci

KARAKTERISTIK BILANGAN CATALAN DENGAN LATTICE PATH DAN KOMBINATORIAL. (Skripsi) Oleh IRA NURDIANA

KARAKTERISTIK BILANGAN CATALAN DENGAN LATTICE PATH DAN KOMBINATORIAL. (Skripsi) Oleh IRA NURDIANA KARAKTERISTIK BILANGAN CATALAN DENGAN LATTICE PATH DAN KOMBINATORIAL (Skripsi) Oleh IRA NURDIANA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2016 ABSTRACT CHARACTERISTIC

Lebih terperinci

TINJAUAN PUSTAKA Perilaku konsumen

TINJAUAN PUSTAKA Perilaku konsumen TINJAUAN PUSTAKA Perilaku konsumen Perilaku konsumen adalah semua kegiatan, tindakan serta proses psikologis yang mendorong tindakan tersebut pada saat sebelum membeli, ketika membeli, menggunakan, menghabiskan

Lebih terperinci

PROBABILITAS PUNCAK EPIDEMI MODEL RANTAI MARKOV DENGAN WAKTU DISKRIT SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS)

PROBABILITAS PUNCAK EPIDEMI MODEL RANTAI MARKOV DENGAN WAKTU DISKRIT SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) PROBABILITAS PUNCAK EPIDEMI MODEL RANTAI MARKOV DENGAN WAKTU DISKRIT SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) oleh IQROK HENING WICAKSANI M0109038 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

PENDEKATAN DISTRIBUSI GENERALIZED BETA II TERHADAP DISTRIBUSI PARETO MELALUI DISTRIBUSI SINGH-MADDALA, DAGUM, FISK DAN LOG NORMAL.

PENDEKATAN DISTRIBUSI GENERALIZED BETA II TERHADAP DISTRIBUSI PARETO MELALUI DISTRIBUSI SINGH-MADDALA, DAGUM, FISK DAN LOG NORMAL. PENDEKATAN DISTRIBUSI GENERALIZED BETA II TERHADAP DISTRIBUSI PARETO MELALUI DISTRIBUSI SINGH-MADDALA, DAGUM, FISK DAN LOG NORMAL (Skripsi) Oleh SUDESTI VINDI PRATIWI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

ANALISIS SURVIVAL DALAM MEMODELKAN SISWA PUTUS SEKOLAH

ANALISIS SURVIVAL DALAM MEMODELKAN SISWA PUTUS SEKOLAH 123 Jurnal Scientific Pinisi, Volume 3, Nomor 2, Oktober 2017, hlm. 123-127 ANALISIS SURVIVAL DALAM MEMODELKAN SISWA PUTUS SEKOLAH Rahmat Hidayat 1, Yuli Hastuti 2 Program Studi Matematika, Fakultas Sains

Lebih terperinci

PENGGUNAAN METODE KAPLAN-MEIER DAN LIFE TABLE ANALISIS SURVIVAL UNTUK DATA TERSENSOR. Rahmat Hidayat

PENGGUNAAN METODE KAPLAN-MEIER DAN LIFE TABLE ANALISIS SURVIVAL UNTUK DATA TERSENSOR. Rahmat Hidayat Jurnal Dinamika, April 2016, halaman 1-8 ISSN 2087-7889 Vol. 07. No.1 PENGGUNAAN METODE KAPLAN-MEIER DAN LIFE TABLE ANALISIS SURVIVAL UNTUK DATA TERSENSOR Rahmat Hidayat Program Studi Matematika Fakultas

Lebih terperinci

ANALISIS MODEL PELUANG BERTAHAN HIDUP DAN APLIKASINYA SUNARTI FAJARIYAH

ANALISIS MODEL PELUANG BERTAHAN HIDUP DAN APLIKASINYA SUNARTI FAJARIYAH ANALISIS MODEL PELUANG BERTAHAN HIDUP DAN APLIKASINYA SUNARTI FAJARIYAH SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 2 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan

Lebih terperinci

KAJIAN METODE SUKSESIF INTERVAL (MSI) DALAM MENGUBAH DATA ORDINAL MENJADI DATA INTERVAL DAN DAMPAKNYA TERHADAP DISTRIBUSI SKRIPSI

KAJIAN METODE SUKSESIF INTERVAL (MSI) DALAM MENGUBAH DATA ORDINAL MENJADI DATA INTERVAL DAN DAMPAKNYA TERHADAP DISTRIBUSI SKRIPSI KAJIAN METODE SUKSESIF INTERVAL (MSI) DALAM MENGUBAH DATA ORDINAL MENJADI DATA INTERVAL DAN DAMPAKNYA TERHADAP DISTRIBUSI SKRIPSI MHD. FAHMI NASUTION 120803004 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA

Lebih terperinci

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI LOG-LOGISTIK ABSTRAK

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI LOG-LOGISTIK ABSTRAK JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 83-92 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI LOG-LOGISTIK Ibnu

Lebih terperinci

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM.

HUKUM ITERASI LOGARITMA. TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. HUKUM ITERASI LOGARITMA TUGAS AKHIR untuk memenuhi sebagian persyaratan memperoleh gelar sarjana sains SORTA PURNAWANTI NIM. 00290 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

PENDUGAAN PARAMETER BEBERAPA SEBARAN POISSON CAMPURAN DAN BEBERAPA SEBARAN DISKRET DENGAN MENGGUNAKAN ALGORITME EM ADE HARIS HIMAWAN

PENDUGAAN PARAMETER BEBERAPA SEBARAN POISSON CAMPURAN DAN BEBERAPA SEBARAN DISKRET DENGAN MENGGUNAKAN ALGORITME EM ADE HARIS HIMAWAN PENDUGAAN PARAMETER BEBERAPA SEBARAN POISSON CAMPURAN DAN BEBERAPA SEBARAN DISKRET DENGAN MENGGUNAKAN ALGORITME EM ADE HARIS HIMAWAN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2008 PERNYATAAN

Lebih terperinci

MODEL EPIDEMI STOKASTIK SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS)

MODEL EPIDEMI STOKASTIK SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) MODEL EPIDEMI STOKASTIK SUSCEPTIBLE INFECTED SUSCEPTIBLE (SIS) oleh SILVIA KRISTANTI M0109060 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika

Lebih terperinci

PRODI S1 STATISTIKA FMIPA-ITS RENCANA PEMBELAJARAN Analisis Survival Kode/SKS: SS / (2/1/0) Dosen : SWP Semester :

PRODI S1 STATISTIKA FMIPA-ITS RENCANA PEMBELAJARAN Analisis Survival Kode/SKS: SS / (2/1/0) Dosen : SWP Semester : RP-S1-SLK-03 Kurikulum 2014, Edisi : September-2014.Revisi : 00 Hal: 1 dari 5 A. CAPAIAN PEMBELAJARAN : 1. CP 3.2 : Melakukan analisis data dengan menggunakan program statistik 2. CP 5.1 : Menganalisis

Lebih terperinci

BAB III LANDASAN TEORI. analisis kesintasan bertujuan menaksir probabilitas kelangsungan hidup, kekambuhan,

BAB III LANDASAN TEORI. analisis kesintasan bertujuan menaksir probabilitas kelangsungan hidup, kekambuhan, 17 BAB III LANDASAN TEORI 3.1 Data Analisis Survival (Survival Analysis) Analisis survival (survival analysis) atau analisis kelangsungan hidup atau analisis kesintasan bertujuan menaksir probabilitas

Lebih terperinci

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER

ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER 1 ESTIMASI PARAMETER DISTRIBUSI WEIBULL DENGAN TRANSFORMASI MODEL REGRESI MENGGUNAKAN METODE KUADRAT TERKECIL LINIER A. Musdalifa, Raupong, Anna Islamiyati Abstrak Estimasi parameter adalah merupakan hal

Lebih terperinci

PENYELESAIAN PROGRAM LINIER STOKASTIK DENGAN MARKOV CHAIN

PENYELESAIAN PROGRAM LINIER STOKASTIK DENGAN MARKOV CHAIN PENYELESAIAN PROGRAM LINIER STOKASTIK DENGAN MARKOV CHAIN TESIS Oleh HINDRA 107021010/MT FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA MEDAN 2013 PENYELESAIAN PROGRAM LINIER

Lebih terperinci

SISTEM TRANSLITERASI DAN TRANSKRIPSI ARAB LATIN INDONESIA BERBASIS WEB (STUDI KASUS AL-QUR AN JUZ 30) (Skripsi) Oleh MARDHIAH

SISTEM TRANSLITERASI DAN TRANSKRIPSI ARAB LATIN INDONESIA BERBASIS WEB (STUDI KASUS AL-QUR AN JUZ 30) (Skripsi) Oleh MARDHIAH SISTEM TRANSLITERASI DAN TRANSKRIPSI ARAB LATIN INDONESIA BERBASIS WEB (STUDI KASUS AL-QUR AN JUZ 30) (Skripsi) Oleh MARDHIAH 0817032033 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG

Lebih terperinci

OPTIMASI PERSEDIAAN SUKU CADANG UNTUK PROGRAM PEMELIHARAAN PREVENTIP BERDASARKAN ANALISIS RELIABILITAS

OPTIMASI PERSEDIAAN SUKU CADANG UNTUK PROGRAM PEMELIHARAAN PREVENTIP BERDASARKAN ANALISIS RELIABILITAS Program Studi MMT-ITS, Surabaya 4 Agustus 27 OPTIMASI PERSEDIAAN SUKU CADANG UNTUK PROGRAM PEMELIHARAAN PREVENTIP BERDASARKAN ANALISIS RELIABILITAS (Studi Kasus di PT. Terminal Peti Kemas Surabaya) Agus

Lebih terperinci

UNIVERSITAS INDONESIA MODEL COX STRATIFIKASI SKRIPSI DWI ANJAR FERIANA

UNIVERSITAS INDONESIA MODEL COX STRATIFIKASI SKRIPSI DWI ANJAR FERIANA UNIVERSITAS INDONESIA MODEL COX STRATIFIKASI SKRIPSI DWI ANJAR FERIANA 0706261612 FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI SARJANA MATEMATIKA DEPOK JULI 2011 UNIVERSITAS INDONESIA MODEL

Lebih terperinci

ANALISIS POLA KELAHIRAN MENURUT UMUR STUDI KASUS DI INDONESIA TAHUN 1987 DAN TAHUN 1997 SUMIHAR MEINARTI

ANALISIS POLA KELAHIRAN MENURUT UMUR STUDI KASUS DI INDONESIA TAHUN 1987 DAN TAHUN 1997 SUMIHAR MEINARTI ANALISIS POLA KELAHIRAN MENURUT UMUR STUDI KASUS DI INDONESIA TAHUN 1987 DAN TAHUN 1997 SUMIHAR MEINARTI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Lebih terperinci

RELIABILITAS & FUNGSI HAZARD. 05/09/2012 MK. Analisis Reliabilitas Darmanto, S.Si.

RELIABILITAS & FUNGSI HAZARD. 05/09/2012 MK. Analisis Reliabilitas Darmanto, S.Si. RELIABILITAS & FUNGSI HAZARD 1 RELIABILITAS Peluang bahwa suatu produk atau jasa akan beroperasi dengan baik dalam jangka waktu tertentu (durabilitas) pada kondisi pengoperasian sesuai dengan desain (suhu,

Lebih terperinci

RIWAYAT HIDUP. Penulis dilahirkan di Gedung Gumanti pada tanggal 08 Juni 1985 sebagai anak

RIWAYAT HIDUP. Penulis dilahirkan di Gedung Gumanti pada tanggal 08 Juni 1985 sebagai anak RIWAYAT HIDUP Penulis dilahirkan di Gedung Gumanti pada tanggal 08 Juni 1985 sebagai anak ke empat dari enam bersaudara dari pasangan Ayahanda Hasan Gumanti dan Ibunda Tina. Jenjang pendidikan yang pernah

Lebih terperinci

SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT RO FAH NUR RACHMAWATI

SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT RO FAH NUR RACHMAWATI SEBARAN ASIMTOTIK PENDUGA KOMPONEN PERIODIK FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT RO FAH NUR RACHMAWATI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2010 PERNYATAAN

Lebih terperinci

ANALISIS DATA KELEMBABAN UDARA PROVINSI JAWA TIMUR DENGAN MODEL REGRESI BETA SKRIPSI. Oleh. Riska Setyowati NIM

ANALISIS DATA KELEMBABAN UDARA PROVINSI JAWA TIMUR DENGAN MODEL REGRESI BETA SKRIPSI. Oleh. Riska Setyowati NIM i ANALISIS DATA KELEMBABAN UDARA PROVINSI JAWA TIMUR DENGAN MODEL REGRESI BETA SKRIPSI Oleh Riska Setyowati NIM 071810101038 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

BAB I PENDAHULUAN. Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang

BAB I PENDAHULUAN. Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang BAB I PENDAHULUAN 1.1 Latar Belakang Waktu hidup adalah waktu terjadinya suatu peristiwa. Peristiwa yang dimaksud di sini adalah peristiwa kegagalan yang dapat berupa tidak berfungsinya benda tersebut

Lebih terperinci

SKRIPSI. Disusun oleh : OKA AFRANDA

SKRIPSI. Disusun oleh : OKA AFRANDA ANALISIS REGRESI KEGAGALAN PROPORSIONAL DARI COX PADA DATA WAKTU TUNGGU SARJANA DENGAN SENSOR TIPE I (Studi Kasus di Fakultas Sains dan Matematika Universitas Diponegoro) SKRIPSI Disusun oleh : OKA AFRANDA

Lebih terperinci

HALAMAN PENGESAHAN : RANCANGAN SISTEM INFORMASI PENJUALAN RUMAH SECARA TUNAI DAN KREDIT DI PERUMAHAN BUMI PUSPA KENCANA 3

HALAMAN PENGESAHAN : RANCANGAN SISTEM INFORMASI PENJUALAN RUMAH SECARA TUNAI DAN KREDIT DI PERUMAHAN BUMI PUSPA KENCANA 3 HALAMAN PENGESAHAN Judul Nama : RANCANGAN SISTEM INFORMASI PENJUALAN RUMAH SECARA TUNAI DAN KREDIT DI PERUMAHAN BUMI PUSPA KENCANA 3 : Ardanu Prasetyo NPM : 0907051017 Fakultas Jurusan Prodi : Matematika

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ANALISIS DATA UJI HIDUP KODE MATA KULIAH : MAA 516 3 SKS MINGGU 1 Pendahuluan dan - Pengertian Dasar soal-soal 2 Konsep-Konsep Dasar untuk Hidup Model Kontinu 1.

Lebih terperinci

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer

BAB I PENDAHULUAN. penerbangan, kedokteran, teknik mesin, software komputer, bahkan militer BAB I PENDAHULUAN A. Latar Belakang Statistika merupakan salah satu ilmu matematika yang terus berkembang dari waktu ke waktu. Di dalamnya mencakup berbagai sub pokok-sub pokok materi yang sangat bermanfaat

Lebih terperinci

RIWAYAT HIDUP. ke jenjang lanjutan tingkat pertama di SMP Negeri 1 Bukit kemuning diselesaikan

RIWAYAT HIDUP. ke jenjang lanjutan tingkat pertama di SMP Negeri 1 Bukit kemuning diselesaikan RIWAYAT HIDUP Penulis dilahirkan di Kecamatan Bukit kemuning, Kabupaten Lampung utara, Provinsi Lampung pada tanggal 09 November 1988. Penulis merupakan putera sulung dari 2 bersaudara pasangan Bapak Satiri

Lebih terperinci

PERBANDINGAN HIDROGRAF SATUAN TERUKUR DENGAN HIDROGRAF SATUAN SINTETIS PADA DAS WAY KUALA GARUNTANG DAN DAS WAY SIMPANG KIRI. Oleh RINA FEBRINA.

PERBANDINGAN HIDROGRAF SATUAN TERUKUR DENGAN HIDROGRAF SATUAN SINTETIS PADA DAS WAY KUALA GARUNTANG DAN DAS WAY SIMPANG KIRI. Oleh RINA FEBRINA. PERBANDINGAN HIDROGRAF SATUAN TERUKUR DENGAN HIDROGRAF SATUAN SINTETIS PADA DAS WAY KUALA GARUNTANG DAN DAS WAY SIMPANG KIRI Oleh RINA FEBRINA Tesis Sebagai Salah Satu Syarat Untuk Mencapai Gelar MAGISTER

Lebih terperinci

TINJAUAN PUSTAKA Kredit

TINJAUAN PUSTAKA Kredit TINJAUAN PUSTAKA Kredit Kredit adalah kemampuan untuk melaksanakan suatu pemberian atau mengadakan suatu pinjaman dengan suatu janji pembayarannya akan dilakukan pada suatu jangka waktu yang disepakati.

Lebih terperinci

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X

Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga. ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X Sumbu X (horizontal) memiliki range (rentang) dari minus takhingga ( ) hingga positif takhingga (+ ). Kurva normal memiliki puncak pada X = 0. Perlu diketahui bahwa luas kurva normal adalah satu (sebagaimana

Lebih terperinci

APLIKASI METODE TRANSFORMASI ANALISIS HOMOTOPI (HATM) PADA PERSAMAAN + =

APLIKASI METODE TRANSFORMASI ANALISIS HOMOTOPI (HATM) PADA PERSAMAAN + = APLIKASI METODE TRANSFORMASI ANALISIS HOMOTOPI (HATM) PADA PERSAMAAN + = (Skripsi) Oleh NOVIANTI SAGITA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG 2016 ABSTRAK

Lebih terperinci

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM)

ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) ESTIMASI PARAMETER MODEL MIXTURE AUTOREGRESSIVE (MAR) MENGGUNAKAN ALGORITMA EKSPEKTASI MAKSIMISASI (EM) oleh MIKA ASRINI M0108094 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh

Lebih terperinci

REGRESI COX MULTIVARIAT DENGAN DISTRIBUSI WIEBULL MULTIVARIAT

REGRESI COX MULTIVARIAT DENGAN DISTRIBUSI WIEBULL MULTIVARIAT 1 Seminar Nasional Statistika IX Institut Teknologi Sepuluh Nopember, 7 November 2009 REGRESI COX MULTIVARIAT DENGAN DISTRIBUSI WIEBULL MULTIVARIAT 1 Irfan Wahyudi 1 Mahasiswa S-3 Statistika FMIPA ITS,

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi

Mata Kuliah Pemodelan & Simulasi Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probabilitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

RENCANA SAMPLING PENERIMAAN MELALUI KETERANDALAN SISTEM PADA DATA TERSENSOR TIPE I BERDISTRIBUSI LOG WEIBULL. (Skripsi) Oleh ERNIA NURUL FITRI

RENCANA SAMPLING PENERIMAAN MELALUI KETERANDALAN SISTEM PADA DATA TERSENSOR TIPE I BERDISTRIBUSI LOG WEIBULL. (Skripsi) Oleh ERNIA NURUL FITRI RENCANA SAMPLING PENERIMAAN MELALUI KETERANDALAN SISTEM PADA DATA TERSENSOR TIPE I BERDISTRIBUSI LOG WEIBULL (Skripsi) Oleh ERNIA NURUL FITRI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG

Lebih terperinci