BAB I PENDAHULUAN. klasik dan mempunyai dua cabang utama yaitu mekanika klasik Newtonian dan teori

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN. klasik dan mempunyai dua cabang utama yaitu mekanika klasik Newtonian dan teori"

Transkripsi

1 BAB I PENDAHULUAN A. Latar Belakang Masalah Fisika yang berkembang sampai akhir abad yang ke 19 dikenal sebagai fisika klasik dan mempunyai dua cabang utama yaitu mekanika klasik Newtonian dan teori medan elektromagnetik. Mekanika klasik dicirikan oleh kehadiran partikel sebagai suatu yang terkurung di dalam ruang. Istilah terkurung secara sederhana dapat dikatakan adanya batas yang jelas antara materi dengan lingkungan diluar dirinya. Hasil eksprimen menunjukkan bahwa konsep-konsep fisika yang berdasarkan hukumhukum newton tidak bisa digunakan untuk menjelaskan konsep baru yang tidak sama dengan fisika klasik Pengembangan konsep baru ini merupakan hasil kerja sama antara dugaan yang radikal yang diusulkan oleh teoritis dengan hasil eksprimen yang brillian yang diperoleh oleh kelompok eksprimen yang menghasilkan teori baru dalam fisika yang disebut dengan teori kuantum (Beiser, 1992). Perkembangan fisika klasik bertumpu pada hukum-hukum Newton, baik dalam bidang mekanika, panas, gelombang dan listrik magnet, namun dalam pendeskripsian dinamika gerak partikel dalam masing-masing bidang tersebut disamping menggunakan persamaan-persamaan dari hukum newton, persamaan Hamiltonian dan lagrange juga banyak digunakan. Persamaan Hamiltonian pada dasarnya juga dijabarkan berdasarkan bentuk persamaan energi total yang merupakan jumlah energi kinetik dan energi potensial partikel tersebut, dan dari Hamiltonian 1

2 juga dapat dijabarkan hukum newton II. Persamaan Hamiltonian terutama diaplikasikan pada sistem yang komplek, misalnya sistem banyak partikel. Sedangkan gelombang elektromagnetik, dideskripsikan oleh potensial vektor dan skalar (Cari dan Suparmi, 2012). Untuk benda-benda yang mikroskopis mekanika klasik tidak dapat menjelaskannya karena tidak dapat diamati secara langsung, jadi harus menggunakan konsep baru yang dapat menjelaskan benda-benda yang bersifat mikroskopis. Pengembangan konsep baru ini merupakan hasil kerja sama antara dugaan yang radikal yang diusulkan oleh teoritis dengan hasil eksprimen yang brillian yang diperoleh oleh kelompok eksprimen yang menghasilkan teori baru dalam fisika yang disebut dengan teori kuantum. Mekanika kuantum merupakan cabang dari ilmu fisika yang membahas tentang benda-benda yang bersifat mikroskopis serta menjelaskan perilaku materi serta interaksinya dengan energi pada skala atom dan partikel subatomik (Suparmi, 2011). Pada mekanika kuantum membahas tentang partikel-partikel baik nonrelativistik maupun relativistik. Partikel yang berisfat nonrelativitak seperti pada persamaan schrodinger yang digunakan untuk mencari fungsi dan energi gelombang sedangkan pendeskripsian relativistik partikel dengan membatasinya dengan hanya pada gerakan relativistik partikel yang biasanya digambarkan menggunakan persamaan Klein-Gordon atau persamaan Dirac tergantung pada karakter spin partikel. Partikel nol misalnya pada meson, dapat dijelaskan oleh persamaan Kleinperpustakaan.uns.ac.id 2

3 Gordon Sedangkan partikel spin-setengah seperti elektron, dijelaskan oleh persamaan Dirac ( Yahya, 2010). Dalam hal ini kita menyelesaian sebuah solusi persamaan Dirac dengan metode dan model potensial yang berbeda. Penyelesaian Persamaan Dirac diselesaikan dengan beberapa kasus seperti atom hidrogen dan harmonik selain itu juga persamaan dirac telah diselesaikan secara analitis untuk beberapa potensial seperti jenis potensial seperti Woods Saxon, Hulthen, Eckart, Hylleraas, dan Manning Rosen. model potensial paling berguna untuk menggambarkan interaksi antara dua atom dalam molekul diatomik Berbagai metode telah diadopsi untuk mencari solusi dari persamaan Dirac Metode ini termasuk metode faktorisasi, metode aljabar, mekanika kuantum metode Supersymmetrik, metode iterasi asimtotik, metode Nikiforov - Uvarov dan lain-lain. (Ikot dan Louis, 2012). Akpan N. Ikot menyelesaian persamaan Dirac dengan potensial umum Hylleraas dengan metode Nikiforov-Uvarov (NU), kemudian Yahya menyelesaikan persamaan Dirac menggunakan potensial skalar dan vektor Eckart dengan metode Nikivorof-uvarof. Ferhat Taskın dan Gokhan Kocak menyelesaikan persamaan dirac untuk potensial Posch Teller, dan Kayode John Oyewumi menyelesaikan persamaan Dirac dengan potensial Rosen Morse. Persamaan Dirac juga dapat diselesaikan untuk beberapa kasus seperti spin simetri dan pseudospin simetri untuk beberapa potensial sentral dengan menggunakan metode seperti metode Nikivarov Uvarov,polynomial Romanovski, hipergeometri dan lain-lain. Perilaku partikel bergantung pada medan potensial yang 3

4 mempengaruhi partikel tersebut. Terdapat beberapa tipe potensial dalam kuantum untuk menggambarkan dinamika partikel di mekanika kuantum. Beberapa contoh dari potensial tersebut adalah potensial Coloumb, Morse, Rosen-Morse, Manning Rosen, kelompok Poschl-Teller, kelompok Gendensthein, Symetrical Top, Eckart, Scraft dan Kepler dalam hypersphere (Suparmi, 2011b). dan potensial - potensial tesebut dapat diselsesaikan dengan persamaan dirac. seperti Potensial Scarft Rosen- Morse. Potensial Rosen-Morse merupakan potensial matematis yang dapat menggambarkan dinamika gluon pada Quantum Cronodynamics (QCD) (Jasso dan Kirbach, 2006). Dengan demikian, kombinasi dari kedua potensial ini dapat menggambarkan dinamika gluon yang tersusun secara teratur pada Quantum Cronodynamics (QCD). Berdasarkan uraian diatas kami mencoba untuk menyelesaikan persamaan Dirac untuk kasus spin simetri dan pseudospin simetri pada potensial Rosen Morse, potensial Scarf trigonometrik dan potensial Scarf hiperbolik dengan metode polynomial Romanovski. Kami memilih menggunakan potensial tersebut karena potensial tersebut belum banyak yang menggunakannya dan juga ketiga potensial tersebut mengandung. B. Rumusan Masalah Berdasarkan uraian dari latar belakang di atas, maka dapat dituliskan perumusan masalah sebagai berikut: 4

5 1. Bagaimana pengaruh persamaan Dirac untuk potensial Rosen Morse trigonometrik dan Scarft trigonometrik dan hiperbolik untuk kasus spin simetri dan pseudospin simetri menggunakan metode polynomial Romanovski? 2. Bagaimana bentuk penyelesaian persamaan Dirac untuk potensial Rosen Morse dan Scarft trigonometrik dan hiperbolik untuk kasus spin simetri dan pseudospin simetri menggunakan metode polynomial Romanovski? 3. Bagaimana bentuk visualisasi persamaan Dirac untuk Rosen Morse dan Scarft trigonometrik dan hiperbolik menggunakan spin symetri dengan metode polynomial Romanovski menggunakan software matlab 2011? C. Tujuan Penelitian Sesuai dengan rumusan masalah, tujuan penelitian ini antara lain adalah: 1. Menentukan pengaruh persamaan Dirac untuk potensial Rosen Morse dan Scarft trigonometrik dan hiperbolik untuk kasus spin simetri dan pseudospin simetri dengan metode menggunakan polynomial Romanovski 2. Menentukan bagaimana bentuk energi dan fungsi gelombang persamaan Dirac untuk potensial Rosen Morse dan Scarft trigonometrik dan hiperbolik untuk kasus spin simetri dan pseudospin simetri dengan metode polynomial Romanovski 3. memvisualisasikan persamaan Dirac untuk Rosen Morse dan Scarft trigonometrik dan hiperbolik untuk kasus spin simetri dan pseudospin simetri dengan metode polynomial Romanovski menggunakan software matlab

6 D. Batasan Masalah Pembatasan pada penelitian ini dibatasi pada: 1. Persamaan Dirac diselesaikan dengan metode polynomial Romanovski Jenis potensial yang digunakan adalah potensial Rosen Morse dan Scarft trigonometrik dan hiperbolik untuk kasus spin simetri dan pseudospin simetri 2. Visualisasi grafik persamaan Dirac dengan menggunakan matlab 2011 E. Manfaat Penelitian 1. Manfaat teoritis Persamaan Dirac dapat diselsaikan untuk kasus spin simetri dan pseudospin simetri pada potensial Rosen Morse,Scarf trigonometric dan Scarf hiperbolik dengan menggunakan metode polynomial Romanovski. Langkah-langkah penyelesaiannya dengan metode polynomial Romanovski dapat digunakan sebagai alternative untuk menyelesaikan persamaan Dirac dengan potensial yang lain yang memiliki tipe yang sama. 2. Manfaat praktis Hasil energi dan fungsi gelombang pada masing-masing potensial diharapkan mampu memberikan pemahaman tentang mekanika kuantum khususnya bidan fisika teori. 6

SOLUSI PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI UNTUK POTENSIAL SCARF TRIGONOMETRIK PLUS COULOMB LIKE TENSOR DENGAN METODE POLINOMIAL ROMANOVSKI

SOLUSI PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI UNTUK POTENSIAL SCARF TRIGONOMETRIK PLUS COULOMB LIKE TENSOR DENGAN METODE POLINOMIAL ROMANOVSKI SOLUSI PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI UNTUK POTENSIAL SCARF TRIGONOMETRIK PLUS COULOMB LIKE TENSOR DENGAN METODE POLINOMIAL ROMANOVSKI Alpiana Hidayatulloh 1, Suparmi, Cari Jurusan Ilmu Fisika

Lebih terperinci

Alpiana Hidayatulloh Dosen Tetap pada Fakultas Teknik UNTB

Alpiana Hidayatulloh Dosen Tetap pada Fakultas Teknik UNTB 6 Jurnal Sangkareang Mataram ISSN No. -99 SOLUSI PERSAMAAN DIRAC DENGAN PSEUDOSPIN SIMETRI UNTUK POTENSIAL SCARF TRIGONOMETRIK PLUS COULOMB LIKE TENSOR DENGAN MENGGUNAKAN METODE POLYNOMIAL ROMANOVSKI Oleh:

Lebih terperinci

PENYELESAIAN PERSAMAAN DIRAC UNTUK POTENSIAL ROSEN MORSE HIPERBOLIK DENGAN COULOMB LIKE TENSOR UNTUK SPIN SIMETRI MENGGUNAKAN METODE HIPERGEOMETRI

PENYELESAIAN PERSAMAAN DIRAC UNTUK POTENSIAL ROSEN MORSE HIPERBOLIK DENGAN COULOMB LIKE TENSOR UNTUK SPIN SIMETRI MENGGUNAKAN METODE HIPERGEOMETRI PENYELESAIAN PERSAMAAN DIRAC UNTUK POTENSIAL ROSEN MORSE HIPERBOLIK DENGAN COULOMB LIKE TENSOR UNTUK SPIN SIMETRI MENGGUNAKAN METODE HIPERGEOMETRI Tri Jayanti 1, Suparmi, Cari Program Studi Ilmu Fisika

Lebih terperinci

SOLUSI PERSAMAAN DIRAC UNTUK POTENSIAL SCARF II TRIGONOMETRI TERDEFORMASI-Q PLUS TENSOR TIPE COULOMB DENGAN MENGGUNAKAN METODE NIKIFOROV UVAROV

SOLUSI PERSAMAAN DIRAC UNTUK POTENSIAL SCARF II TRIGONOMETRI TERDEFORMASI-Q PLUS TENSOR TIPE COULOMB DENGAN MENGGUNAKAN METODE NIKIFOROV UVAROV Salatiga, Juni 4, Vol 5, No., ISSN :87-9 SOLUSI PERSAMAAN DIRAC UNTUK POTENSIAL SCARF II TRIGONOMETRI TERDEFORMASI-Q PLUS TENSOR TIPE COULOMB DENGAN MENGGUNAKAN METODE NIKIFOROV UVAROV ST. Nurul Fitriani,

Lebih terperinci

Spektra: Jurnal Fisika dan Aplikasinya, Vol. 16, No. 2, Oktober 2015

Spektra: Jurnal Fisika dan Aplikasinya, Vol. 16, No. 2, Oktober 2015 Spektra: Jurnal Fisika dan Aplikasinya, Vol. 16, No., Oktober 15 Analisis Persamaan Dirac untuk Potensial Pöschl-Teller Trigonometrik dan Potensial Scarf Trigonometrik pada Kasus Spin Simetri Bagian Radial

Lebih terperinci

Disusun oleh: BETA NUR PRATIWI M SKRIPSI. Diajukan untuk memenuhi sebagian persyaratan mendapatkan gelar Sarjana Sains

Disusun oleh: BETA NUR PRATIWI M SKRIPSI. Diajukan untuk memenuhi sebagian persyaratan mendapatkan gelar Sarjana Sains PENYELESAIAN SIMETRI SPIN PERSAMAAN DIRAC DENGAN POTENSIAL P SCHL-TELLER TERMODIFIKASI DAN POTENSIAL NON-SENTRAL SCARF II TRIGONOMETRIK MENGGUNAKAN ASYMPTOTIC ITERATION METHOD (AIM) Disusun oleh: BETA

Lebih terperinci

Universitas Sebelas Maret, Jl. Ir. Sutami no 36A Kentingan Surakarta Ph , Fax

Universitas Sebelas Maret, Jl. Ir. Sutami no 36A Kentingan Surakarta Ph , Fax 41 Analisis Spektrum Energi dan Fungsi Gelombang Potensial Non-Sentral Poschl-Teller Termodifikasi plus Potensial Scarf Trigonometri Menggunakan Persamaan Hipergeometri Suparmi, Cari, Hadma Yuliani, Dwi

Lebih terperinci

Solusi Persamaan Schrödinger untuk Potensial Hulthen + Non-Sentral Poschl-Teller dengan Menggunakan Metode Nikiforov-Uvarov

Solusi Persamaan Schrödinger untuk Potensial Hulthen + Non-Sentral Poschl-Teller dengan Menggunakan Metode Nikiforov-Uvarov ISSN:89 33 Indonesian Journal of Applied Physics (3) Vol.3 No. Halaman 69 Oktober 3 Solusi Persamaan Schrödinger Potensial Hulthen + Non-Sentral Poschl-Teller dengan Menggunakan Metode Nikiforov-Uvarov

Lebih terperinci

PENYELESAIAN PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI DAN PSEUDOSPIN SIMETRI DENGAN POTENSIAL SCARF II TRIGONOMETRI PLUS

PENYELESAIAN PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI DAN PSEUDOSPIN SIMETRI DENGAN POTENSIAL SCARF II TRIGONOMETRI PLUS PENYELESAIAN PERSAMAAN DIRAC PADA KASUS SPIN SIMETRI DAN PSEUDOSPIN SIMETRI DENGAN POTENSIAL SCARF II TRIGONOMETRI PLUS POTENSIAL NON-SENTRAL P SCHL-TELLER TRIGONOMETRI MENGGUNAKAN ASYMPTOTIC ITERATION

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Atom Pion Atom pion sama seperti atom hidrogen hanya elektron nya diganti menjadi sebuah pion negatif. Partikel ini telah diteliti sekitar empat puluh tahun yang lalu, tetapi

Lebih terperinci

ANALISA FUNGSI ENERGI DAN FUNGSI GELOMBANG DARI POTENSIAL ECKART PLUS HULTHEN DIMENSI-D DENGAN METODE NIKIFOROV UVAROV

ANALISA FUNGSI ENERGI DAN FUNGSI GELOMBANG DARI POTENSIAL ECKART PLUS HULTHEN DIMENSI-D DENGAN METODE NIKIFOROV UVAROV ANALISA FUNGSI ENERGI DAN FUNGSI GELOMBANG DARI POTENSIAL ECKART PLUS HULTHEN DIMENSI-D DENGAN METODE NIKIFOROV UVAROV Luqman Hakim 1, Cari 2, Suparmi 2 1 Mahasiswa Program Studi Ilmu Fisika Pascasarjana,

Lebih terperinci

ANALISIS ENERGI RELATIVISTIK DAN FUNGSI

ANALISIS ENERGI RELATIVISTIK DAN FUNGSI ANALISIS ENERGI RELATIVISTIK DAN FUNGSI GELOMBANG PERSAMAAN DIRAC UNTUK POTENSIAL RADIAL ECKART PLUS MANNING ROSEN YANG DIKOPLING DENGAN POTENSIAL TENSOR TIPE- COULOMB UNTUK EXACT SPIN SIMETRI DAN EXACT

Lebih terperinci

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator ISSN:2089 0133 Indonesian Journal of Applied Physics (2012) Vol.2 No.1 halaman 6 April 2012 Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator Fuzi Marati Sholihah

Lebih terperinci

SOLUSI PERSAMAAN SCHRÖDINGER UNTUK KOMBINASI POTENSIAL HULTHEN DAN NON-SENTRAL POSCHL- TELLER DENGAN METODE NIKIFOROV-UVAROV

SOLUSI PERSAMAAN SCHRÖDINGER UNTUK KOMBINASI POTENSIAL HULTHEN DAN NON-SENTRAL POSCHL- TELLER DENGAN METODE NIKIFOROV-UVAROV SOLUSI PERSAMAAN SCHRÖDINGER UNTUK KOMBINASI POTENSIAL HULTHEN DAN NON-SENTRAL POSCHL- TELLER DENGAN METODE NIKIFOROV-UVAROV Disusun oleh : NANI SUNARMI M0209036 SKRIPSI Diajukan untuk memenuhi sebagian

Lebih terperinci

Gaya merupakan besaran yang menentukan sistem gerak benda berdasarkan Hukum Newton. Beberapa fenomena sistem gerak benda jika dianalisis menggunakan

Gaya merupakan besaran yang menentukan sistem gerak benda berdasarkan Hukum Newton. Beberapa fenomena sistem gerak benda jika dianalisis menggunakan Gaya merupakan besaran yang menentukan sistem gerak benda berdasarkan Hukum Newton. Beberapa fenomena sistem gerak benda jika dianalisis menggunakan konsep gaya menjadi lebih rumit, alternatifnya menggunakan

Lebih terperinci

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5 Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani Program Studi Pendidikan Fisika FKIP Universitas Jember email: schrodinger_risma@yahoo.com

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Atom Bohr Pada tahun 1913, Niels Bohr, fisikawan berkebangsaan Swedia, mengikuti jejak Einstein menerapkan teori kuantum untuk menerangkan hasil studinya mengenai spektrum

Lebih terperinci

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. ILMU FISIKA Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. DEFINISI ILMU FISIKA? Ilmu Fisika dalam Bahasa Yunani: (physikos), yang artinya alamiah, atau (physis), Alam

Lebih terperinci

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein BAB II DASAR TEORI Sebagaimana telah diketahui dalam kinematika relativistik, persamaanpersamaannya diturunkan dari dua postulat relativitas. Dua kerangka inersia yang bergerak relatif satu dengan yang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan Diferensial Parsial (PDP) digunakan oleh Newton dan para ilmuwan pada abad ketujuhbelas untuk mendeskripsikan tentang hukum-hukum dasar pada fisika.

Lebih terperinci

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM POKOK-POKOK MATERI FISIKA KUANTUM PENDAHULUAN Dalam Kurikulum Program S-1 Pendidikan Fisika dan S-1 Fisika, hampir sebagian besar digunakan untuk menelaah alam mikro (= alam lelembutan micro-world): Fisika

Lebih terperinci

SOLUSI PERSAMAAN SCHRODINGER D-DIMENSI UNTUK POTENSIAL NON SENTRAL SHAPE INVARIANT DENGAN METODE NIKIFOROV-UVAROV

SOLUSI PERSAMAAN SCHRODINGER D-DIMENSI UNTUK POTENSIAL NON SENTRAL SHAPE INVARIANT DENGAN METODE NIKIFOROV-UVAROV SOLUSI PERSAMAAN SCHRODINGER D-DIMENSI UNTUK POTENSIAL NON SENTRAL SHAPE INVARIANT DENGAN METODE NIKIFOROV-UVAROV TESIS Untuk Memenuhi Sebagian Persyaratan untuk Mencapai Derajat Magister Program Studi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Potensial Coulomb untuk Partikel yang Bergerak Dalam bab ini, akan dikemukakan teori-teori yang mendukung penyelesaian pembahasan pengaruh koreksi relativistik potensial Coulomb

Lebih terperinci

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu:

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu: KB.2 Fisika Molekul 2.1 Prinsip Pauli. Konsep fungsi gelombang-fungsi gelombang simetri dan antisimetri berlaku untuk sistem yang mengandung partikel-partikel identik. Ada perbedaan yang fundamental antara

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA

SOLUTION INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA INSTITUT TEKNOLOGI BANDUNG FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI FISIKA FI-5002 Mekanika Statistik SEMESTER/ Sem. 2-2016/2017 QUIZ 2 Waktu : 120 menit (TUTUP BUKU) 1. Misalkan sebuah

Lebih terperinci

BA B B B 2 Ka K ra r kt k eri r s i tik i k S is i tem Ma M kr k o r s o ko k p o i p k i Oleh Endi Suhendi

BA B B B 2 Ka K ra r kt k eri r s i tik i k S is i tem Ma M kr k o r s o ko k p o i p k i Oleh Endi Suhendi BAB Karakteristik Sistem Makroskopik Dalam termodinamika dibahas perilaku dan dinamika temperatur sistem makroskopik. Sistem diparameterisasi oleh volume, tekanan, temperatur dan kapasitas panas jenis

Lebih terperinci

ASAL USUL PERKEMBANGAN FISIKA YANG TERCATAT SEJARAH. Oleh : Agus Sudarmanto

ASAL USUL PERKEMBANGAN FISIKA YANG TERCATAT SEJARAH. Oleh : Agus Sudarmanto ASAL USUL PERKEMBANGAN FISIKA YANG TERCATAT SEJARAH Oleh : Agus Sudarmanto I. PENDAHULUAN Dalam era sekarang ini, untuk memahami fisika modern kita harus mengenali lebih dalam kejadian-kejadian penting

Lebih terperinci

ANALISIS ENERGI DAN FUNGSI GELOMBANG POTENSIAL NON SENTRAL ROSEN MORSE PLUS HULTHEN, ROSEN MORSE, DAN COULOMB MENGGUNAKAN POLINOMIAL ROMANOVSKI

ANALISIS ENERGI DAN FUNGSI GELOMBANG POTENSIAL NON SENTRAL ROSEN MORSE PLUS HULTHEN, ROSEN MORSE, DAN COULOMB MENGGUNAKAN POLINOMIAL ROMANOVSKI ANALISIS ENERGI DAN FUNGSI GELOMBANG POTENSIAL NON SENTRAL ROSEN MORSE PLUS HULTHEN, ROSEN MORSE, DAN COULOMB MENGGUNAKAN POLINOMIAL ROMANOVSKI TESIS Untuk Memenuhi Sebagian Persyaratan untuk Mencapai

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) GARIS-GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) MATA KULIAH KODE MATA KULIAH/SKS DESKRIPSI SINGKAT : MEKANIKA : PAF 4201/ 4 SKS : Matakuliah ini dapat memberikan penjelasan dan pemahaman analisis & deskriptif

Lebih terperinci

BAB I PENDAHULUAN. akibat dari interaksi di antara penyusun inti tersebut. Penyusun inti meliputi

BAB I PENDAHULUAN. akibat dari interaksi di antara penyusun inti tersebut. Penyusun inti meliputi BAB I PENDAHULUAN A. Latar Belakang Masalah Sistem inti dapat dipelajari melalui kesatuan sistem penyusun inti sebagai akibat dari interaksi di antara penyusun inti tersebut. Penyusun inti meliputi proton

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Manusia adalah ciptaan Tuhan yang sangat istimewa. Manusia diberi akal budi oleh sang pencipta agar dapat mengetahui dan melakukan banyak hal. Hal lain yang

Lebih terperinci

Teori Atom Mekanika Klasik

Teori Atom Mekanika Klasik Teori Atom Mekanika Klasik -Thomson -Rutherford -Bohr -Bohr-Rutherford -Bohr-Sommerfeld Kelemahan Teori Atom Bohr: -Bohr hanya dapat menjelaskan spektrum gas hidrogen, tidak dapat menjelaskan spektrum

Lebih terperinci

FISIKA HAKIKAT FISIKA

FISIKA HAKIKAT FISIKA K-13 Kelas X FISIKA HAKIKAT FISIKA TuJuAN PEmBElAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan. 1. Memahami pengertian fisika. 2. Memahami hakikat fisika sebagai produk, fisika

Lebih terperinci

SOLUSI PERSAMAAN SCHRODINGER UNTUK POTENSIAL NON SENTRAL KOMBINASI POTENSIAL COULOMB, ECKART PLUS POTENSIAL PÖSCHL-TELLER I MENGGUNAKAN METODE

SOLUSI PERSAMAAN SCHRODINGER UNTUK POTENSIAL NON SENTRAL KOMBINASI POTENSIAL COULOMB, ECKART PLUS POTENSIAL PÖSCHL-TELLER I MENGGUNAKAN METODE digilib.uns.ac.id SOLUSI PERSAMAAN SCHRODINGER UNTUK POTENSIAL NON SENTRAL KOMBINASI POTENSIAL COULOMB, ECKART PLUS POTENSIAL PÖSCHL-TELLER I MENGGUNAKAN METODE NIKIFOROV-UVAROV TESIS Untuk Memenuhi Sebagian

Lebih terperinci

10. Mata Pelajaran Fisika Untuk Paket C Program IPA

10. Mata Pelajaran Fisika Untuk Paket C Program IPA 10. Mata Pelajaran Fisika Untuk Paket C Program IPA A. Latar Belakang Ilmu Pengetahuan Alam (IPA) bukan hanya kumpulan pengetahuan yang berupa fakta-fakta, konsep-konsep, atau prinsip-prinsip saja tetapi

Lebih terperinci

RANCANGAN PEMBELAJARAN KIMIA FISIKA III

RANCANGAN PEMBELAJARAN KIMIA FISIKA III RANCANGAN PEMBELAJARAN KIMIA FISIKA III Nama / Kode Matakuliah : Kimia Fisika III / 301 H310 3 / 3 sks Komptensi Sasaran : 1. Kompetensi Utama : Memiliki kemampuan dalam menerapkan pengetahuan dasar Kimia.

Lebih terperinci

STANDAR KOMPETENSI DAN KOMPETENSI DASAR MATA PELAJARAN FISIKA

STANDAR KOMPETENSI DAN KOMPETENSI DASAR MATA PELAJARAN FISIKA STANDAR KOMPETENSI DAN KOMPETENSI DASAR MATA PELAJARAN FISIKA A. Latar Belakang Ilmu Pengetahuan Alam (IPA) berkaitan dengan cara mencari tahu tentang fenomena alam secara sistematis, sehingga IPA bukan

Lebih terperinci

Penentuan Spektrum Energi dan Fungsi Gelombang Potensial Morse dengan Koreksi Sentrifugal Menggunakan Metode SWKB dan Operator SUSY

Penentuan Spektrum Energi dan Fungsi Gelombang Potensial Morse dengan Koreksi Sentrifugal Menggunakan Metode SWKB dan Operator SUSY ISSN:2089 0133 Indonesian Journal of Applied Physics (2012) Vol.2 No.2 halaman 112 Oktober 2012 Penentuan Spektrum Energi dan Fungsi Gelombang Potensial Morse dengan Koreksi Sentrifugal Menggunakan Metode

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN Mata Kuliah : Fisika Kode/SKS : FIS 100 / 3 (2-3) Deskrisi : Mata Kuliah Fisika A ini diberikan untuk mayor yang berbasis IPA tetapi tidak memerlukan dasar fisika yang

Lebih terperinci

Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon

Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon F. Manfaat Penelitian Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon di dalam inti atom yang menggunakan potensial Yukawa. 2. Dapat

Lebih terperinci

FISIKA MODERN. Staf Pengajar Fisika Departemen Fisika,, FMIPA, IPB

FISIKA MODERN. Staf Pengajar Fisika Departemen Fisika,, FMIPA, IPB FISIKA MODERN Staf Pengajar Fisika Departemen Fisika,, FMIPA, IPB 1 MANFAAT KULIAH Memberikan pemahaman tentang fenomena alam yang tidak dapat dijelaskan melalui fisika klasik Fenomena alam yang berkaitan

Lebih terperinci

52. Mata Pelajaran Fisika untuk Sekolah Menengah Atas (SMA)/Madrasah Aliyah (MA) A. Latar Belakang B. Tujuan

52. Mata Pelajaran Fisika untuk Sekolah Menengah Atas (SMA)/Madrasah Aliyah (MA) A. Latar Belakang B. Tujuan 52. Mata Pelajaran Fisika untuk Sekolah Menengah Atas (SMA)/Madrasah Aliyah (MA) A. Latar Belakang Ilmu Pengetahuan Alam (IPA) berkaitan dengan cara mencari tahu tentang fenomena alam secara sistematis,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Struktur atom Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN Mata Kuliah : Fisika Umum Kode/SKS : FIS 102 / 2 (2-0) Deskrisi : Mata Kuliah Fisika A ini diberikan untuk mayor yang berbasis IPA tetapi tidak memerlukan dasar fisika

Lebih terperinci

Apa itu Atom? Miftachul Hadi. Applied Mathematics for Biophysics Group. Physics Research Centre, Indonesian Institute of Sciences (LIPI)

Apa itu Atom? Miftachul Hadi. Applied Mathematics for Biophysics Group. Physics Research Centre, Indonesian Institute of Sciences (LIPI) Apa itu Atom? Miftachul Hadi Applied Mathematics for Biophysics Group Physics Research Centre, Indonesian Institute of Sciences (LIPI) Kompleks Puspiptek, Serpong, Tangerang 15314, Banten, Indonesia E-mail:

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Telah banyak model fisika partikel yang dikembangkan oleh fisikawan untuk mencoba menjelaskan keberadaan partikel-partikel elementer serta interaksi yang menyertainya.

Lebih terperinci

I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat

I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat 1 I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat : Tidak Ada IV. Status Matakuliah : Wajib V. Deskripsi Mata Kuliah Mata kuliah ini merupakan mata kuliah wajib Program Studi

Lebih terperinci

TEORI GANGGUAN UNTUK MENENTUKAN KOREKSI ENERGI ELEKTRON PADA ATOM BERUKURAN INTI TERTENTU

TEORI GANGGUAN UNTUK MENENTUKAN KOREKSI ENERGI ELEKTRON PADA ATOM BERUKURAN INTI TERTENTU digilib.uns.ac.id TEORI GANGGUAN UNTUK MENENTUKAN KOREKSI ENERGI ELEKTRON PADA ATOM BERUKURAN INTI TERTENTU Disusun oleh : LILA SYUKURILLA M0208010 SKRIPSI Diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam perkembangan dunia sains, ilmu fisika mempunyai peran penting untuk memahami fenomena alam dari yang sederhana sampai yang kompleks. Hal itu dapat dilihat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Defenisi Medan Bila bicara tentang partikel-partikel, maka akan selalu terkait dengan apa yang disebut dengan medan. Medan adalah sesuatu yang muncul merambah ruang waktu, tidak

Lebih terperinci

BAB I PENDAHULUAN (1-1)

BAB I PENDAHULUAN (1-1) BAB I PENDAHULUAN Penelitian tentang analisis system fisis vibrasi molekuler yang berada dalam pengaruh medan potensial Lenard-Jones atau dikenal pula dengan potensial 6-2 sudah dilakukan. Kajian tentang

Lebih terperinci

Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini

Semua informasi tentang buku ini, silahkan scan QR Code di cover belakang buku ini KIMIA KUANTUM DASAR, oleh Dr. I Made Kirna, M.Si. Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id Hak Cipta dilindungi

Lebih terperinci

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3)

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3) 2. Osilator Harmonik Pada mekanika klasik, salah satu bentuk osilator harmonik adalah sistem pegas massa, yaitu suatu beban bermassa m yang terikat pada salah satu ujung pegas dengan konstanta pegas k.

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron PENDAHUUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

Partikel Elementer dan Interaksi Alamiah

Partikel Elementer dan Interaksi Alamiah Partikel Elementer dan Interaksi Alamiah By. Agus Mulyono Atom adalah partikel kecil dengan ukuran jari-jari 1 Amstrong. Atom bukanlah partikel elementer. John Dalton (1766-1844) pada tahun 1803 memberikan

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Fisika Kuantum - Latihan Soal Doc. Name: AR12FIS0799 Version: 2012-09 halaman 1 01. Daya radiasi benda hitam pada suhu T 1 besarnya 4 kali daya radiasi pada suhu To, maka T 1

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 1.4. Hipotesis 1. Model penampang hamburan Galster dan Miller memiliki perbedaan mulai kisaran energi 0.3 sampai 1.0. 2. Model penampang hamburan Galster dan Miller memiliki kesamaan pada kisaran energi

Lebih terperinci

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford.

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford. 1 BAB FISIKA ATOM Perkembangan teori atom Model Atom Dalton 1. Atom adalah bagian terkecil dari suatu unsur yang tidak dapat dibagi-bagi 2. Atom-atom suatu unsur semuanya serupa dan tidak dapat berubah

Lebih terperinci

HUKUM NEWTON TENTANG GERAK DINAMIKA PARTIKEL 1. PENDAHULUAN

HUKUM NEWTON TENTANG GERAK DINAMIKA PARTIKEL 1. PENDAHULUAN HUKUM NEWTON TENTANG GERAK DINAMIKA PARTIKEL 1. PENDAHULUAN Pernahkah Anda berpikir; mengapa kita bisa begitu mudah berjalan di atas lantai keramik yang kering, tetapi akan begitu kesulitan jika lantai

Lebih terperinci

Aristoteles. Leukipos dan Demokritos. John Dalton. Perkembangan Model Atom. J.J. Thomson. Rutherford. Niels Bohr. Mekanika Kuatum

Aristoteles. Leukipos dan Demokritos. John Dalton. Perkembangan Model Atom. J.J. Thomson. Rutherford. Niels Bohr. Mekanika Kuatum What is an Atom? Aristoteles Leukipos dan Demokritos Perkembangan Model Atom John Dalton J.J. Thomson Rutherford Niels Bohr Mekanika Kuatum 1. Pendapat Aristoteles Materi bersifat kontinue, artinya materi

Lebih terperinci

PERKEMBANGAN MODEL ATOM DI SUSUN OLEH YOSI APRIYANTI A1F012044

PERKEMBANGAN MODEL ATOM DI SUSUN OLEH YOSI APRIYANTI A1F012044 PERKEMBANGAN MODEL ATOM DI SUSUN OLEH YOSI APRIYANTI A1F012044 PERKEMBANGAN MODEL ATOM Seorang filsuf Yunani yang bernama Democritus berpendapat bahwa jika suatu benda dibelah terus menerus, maka pada

Lebih terperinci

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron Tes Formatif 1 Petunjuk: Jawablah semua soal di bawah ini pada lembar jawaban yang disediakan! =============================================================== 1. Sebuah elektron ditempatkan dalam sebuah

Lebih terperinci

Keunggulan Pendekatan Penyelesaian Masalah Fisika melalui Lagrangian dan atau Hamiltonian dibanding Melalui Pengkajian Newton

Keunggulan Pendekatan Penyelesaian Masalah Fisika melalui Lagrangian dan atau Hamiltonian dibanding Melalui Pengkajian Newton Keunggulan Pendekatan Penyelesaian Masalah Fisika melalui Lagrangian dan atau Hamiltonian dibanding Melalui Pengkajian Newton Nugroho Adi P January 19, 2010 1 Pendekatan Penyelesaian Masalah Fisika 1.1

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN

GARIS-GARIS BESAR PROGRAM PENGAJARAN GARIS-GARIS BESAR PROGRAM PENGAJARAN JUDUL MATA KULIAH : FISIKA DASAR NOMOR KODE / SKS : FIS 101 / 3(2-3) DESKRIPSI SINGKAT : Mata kuliah Fisika Dasar ini diberikan di TPB untuk membekali seluruh mahasiswa

Lebih terperinci

Artikel Fisika. : Purnomo Satria NIM : Astronut dan bumi mengalami kaidah jatuh bebas akibat gaya gravitasi

Artikel Fisika. : Purnomo Satria NIM : Astronut dan bumi mengalami kaidah jatuh bebas akibat gaya gravitasi Nama : Purnomo Satria NIM : 1133467162 Artikel Fisika Astronut dan bumi mengalami kaidah jatuh bebas akibat gaya gravitasi Fisika (bahasa Yunani: φυσικός (fysikós), "alamiah", dan φύσις (fýsis), "alam")

Lebih terperinci

Gerak lurus dengan percepatan konstan (GLBB)

Gerak lurus dengan percepatan konstan (GLBB) Jenis Sekolah : SMA Mata Pelajaran : FISIKA Kurikulum : IRISAN (994, 2004, 2006) Program : ILMU PENGETAHUAN ALAM KISI-KISI PENULISAN SOAL TRY OUT UJI SMA NEGERI DAN SWASTA SA No. Urut 2 STANDAR KOMPETENSI

Lebih terperinci

BAB 19 A T O M. A. Pendahuluan

BAB 19 A T O M. A. Pendahuluan BAB 19 A T O M A. Pendahuluan Pemikiran ke arah penemuan atom dan inti atom telah berkembang di setiap peradaban sejak manusia mengenal tulisan atau yang lebih dikenal sebagai zaman permulaan sejarah.

Lebih terperinci

KISI-KISI PENULISAN SOAL (KODE A )

KISI-KISI PENULISAN SOAL (KODE A ) KISI-KISI PENULISAN SOAL (KODE A ) Jenis Sekolah : SMK Alokasi Waktu menit Mata Pelajaran : FISIKA Jumlah Soal butir Kurikulum : K- Guru Penyusun Iksan, S.Pd NO STANDAR KOMPETENSI KLS / BENTUK UR MATERI

Lebih terperinci

Momentum Linier. Hoga saragih. hogasaragih.wordpress.com

Momentum Linier. Hoga saragih. hogasaragih.wordpress.com Momentum Linier Hoga saragih 1. Momentum dan Hubungannya dengan Gaya Momentum linier dari sebuah benda didefinisikan sebagai hasil kali massa dan kecepatannya Momentum dinyatakan dengan simbol P P=mv m

Lebih terperinci

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator ISSN:089 033 Indonesian Journal of Applied Physics (0) Vol. No. halaman 6 April 0 Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator Fuzi Marati Sholihah, Suparmi,

Lebih terperinci

FUNGSI GELOMBANG. Persamaan Schrödinger

FUNGSI GELOMBANG. Persamaan Schrödinger Persamaan Schrödinger FUNGSI GELOMBANG Kuantitas yang diperlukan dalam mekanika kuantum adalah fungsi gelombang partikel Ψ. Jika Ψ diketahui maka informasi mengenai kedudukan, momentum, momentum sudut,

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN No. 01/ 01 / XI

RENCANA PELAKSANAAN PEMBELAJARAN No. 01/ 01 / XI RENCANA PELAKSANAAN PEMBELAJARAN No. 01/ 01 / XI SATUAN PENDIDIKAN : SMA NEG. KHUSUS RAHA MATA PELAJARAN : F I S I K A KELAS / SEM./ PROGRAM : XI / 1 / IPA ALOKASI WAKTU : 2 x 45 I. STANDAR KOMPETENSI

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Skema Teori Listrik dan Magnetik Untuk mempelajari tentang ilmu kelistrikan dan ilmu kemagnetikan diperlukan dasar dari kelistrikan dan kemagnetikan yang ditunjukkan oleh gambar

Lebih terperinci

MATERIAL TEKNIK. 2 SKS Ruang B2.3 Jam Dedi Nurcipto, MT

MATERIAL TEKNIK. 2 SKS Ruang B2.3 Jam Dedi Nurcipto, MT MATERIAL TEKNIK 2 SKS Ruang B2.3 Jam 8.40-11.10 Dedi Nurcipto, MT dedinurcipto@dsn.dinus.ac.id Struktur Atom Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta elektron bermuatan

Lebih terperinci

BAB VIII STRUKTUR ATOM

BAB VIII STRUKTUR ATOM BAB VIII STRUKTUR ATOM Pengertian mengenai struktur atom berguna untuk menjelaskan gaya-gaya diantara atom yang akhirnya mengarah pada pembentukan molekul. Dalam bab ini akan dipelajari struktur listrik

Lebih terperinci

Wacana, Salatiga, Jawa Tengah. Salatiga, Jawa Tengah Abstrak

Wacana, Salatiga, Jawa Tengah. Salatiga, Jawa Tengah   Abstrak Kajian Metode Analisa Data Goal Seek (Microsoft Excel) untuk Penyelesaian Persamaan Schrödinger Dalam Menentukan Kuantisasi ergi Dibawah Pengaruh Potensial Lennard-Jones Wahyu Kurniawan 1,, Suryasatriya

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

PETA MATERI FISIKA SMA UN 2015

PETA MATERI FISIKA SMA UN 2015 PETA MATERI FISIKA SMA UN 2015 Drs. Setyo Warjanto setyowarjanto@yahoo.co.id 081218074405 SK 1 Ind 1 Memahami prinsip-prinsip pengukuran dan melakukan pengukuran besaran fisika secara langsung dan tidak

Lebih terperinci

Setelah Anda mempelajari KB-1 di atas, simaklah dan hafalkan beberapa hal penting di. dapat dihitung sebagai beriktut: h δl l'

Setelah Anda mempelajari KB-1 di atas, simaklah dan hafalkan beberapa hal penting di. dapat dihitung sebagai beriktut: h δl l' Rangkuman: bawah ini! Setelah Anda mempelajari KB-1 di atas, simaklah dan hafalkan beberapa hal penting di 1. Elemen-elemen matrik L lm,l'm' = h l ( l +1) δ ll' L l m, l 'm' dapat dihitung sebagai beriktut:

Lebih terperinci

PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA

PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA PILLAR OF PHYSICS, Vol. 1. April 2014, 17-24 PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA Hanifah Rahmayani *), Hidayati **) dan

Lebih terperinci

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON Rif ati Dina Handayani 1 ) Abstract: Suatu partikel yang bergerak dengan momentum p, menurut hipotesa

Lebih terperinci

Doc. Name: SBMPTN2015FIS999 Version:

Doc. Name: SBMPTN2015FIS999 Version: SBMPTN 2015 Fisika Kode Soal Doc. Name: SBMPTN2015FIS999 Version: 2015-09 halaman 1 16. Posisi benda yang bergerak sebagai fungsi parabolik ditunjukkan pada gambar. Pada saat t 1 benda. (A) bergerak dengan

Lebih terperinci

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) SEMESTER GANJIL 2012/2013

RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) SEMESTER GANJIL 2012/2013 RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER (RPKPS) SEMESTER GANJIL 2012/2013 Mata Kuliah : Fisika Dasar/Fisika Pertanian Kode / SKS : PAE 112 / 3 (2 Teori + 1 Praktikum) Status : Wajib Mata Kuliah

Lebih terperinci

#2 Dualisme Partikel & Gelombang (Sifat Partikel dari Gelombang) Fisika Modern Eka Maulana, ST., MT., MEng. Teknik Elektro Universitas Brawijaya

#2 Dualisme Partikel & Gelombang (Sifat Partikel dari Gelombang) Fisika Modern Eka Maulana, ST., MT., MEng. Teknik Elektro Universitas Brawijaya #2 Dualisme Partikel & Gelombang (Sifat Partikel dari Gelombang) Fisika Modern Eka Maulana, ST., MT., MEng. Teknik Elektro Universitas Brawijaya Kerangka materi Tujuan: Memberikan pemahaman tentang sifat

Lebih terperinci

model atom mekanika kuantum

model atom mekanika kuantum 06/05/014 FISIKA MODERN Pertemuan ke-11 NURUN NAYIROH, M.Si Werner heinsberg (1901-1976), Louis de Broglie (189-1987), dan Erwin Schrödinger (1887-1961) merupakan para ilmuwan yang menyumbang berkembangnya

Lebih terperinci

Buku Ajar FISIKA TEKNIK. Disusun Oleh Wahidin Abbas

Buku Ajar FISIKA TEKNIK. Disusun Oleh Wahidin Abbas Buku Ajar FISIKA TEKNIK Disusun Oleh Wahidin Abbas abbas@uny.ac.id JURUSAN PENDIDIKAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA 2013 KATA PENGANTAR Dalam penyusunan Buku Ajar Fisika Teknik

Lebih terperinci

ORBITAL DAN IKATAN KIMIA ORGANIK

ORBITAL DAN IKATAN KIMIA ORGANIK ORBITAL DAN IKATAN KIMIA ORGANIK Objektif: Pada Bab ini, mahasiswa diharapkan untuk dapat memahami, Teori dasar orbital atom dan ikatan kimia organik, Orbital molekul orbital atom dan Hibridisasi orbital

Lebih terperinci

STRUKTUR ATOM. Perkembangan Teori Atom

STRUKTUR ATOM. Perkembangan Teori Atom STRUKTUR ATOM Perkembangan Teori Atom 400 SM filsuf Yunani Demokritus materi terdiri dari beragam jenis partikel kecil 400 SM dan memiliki sifat dari materi yang ditentukan sifat partikel tersebut Dalton

Lebih terperinci

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara BAB I PENDAHULUAN Latar Belakang Masalah Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara metode-metode

Lebih terperinci

#2 Dualisme Partikel & Gelombang Fisika Modern Eka Maulana, ST., MT., MEng. Teknik Elektro Universitas Brawijaya

#2 Dualisme Partikel & Gelombang Fisika Modern Eka Maulana, ST., MT., MEng. Teknik Elektro Universitas Brawijaya #2 Dualisme Partikel & Gelombang Fisika Modern Eka Maulana, ST., MT., MEng. Teknik Elektro Universitas Brawijaya Kerangka materi Tujuan: Memberikan pemahaman tentang sifat dualisme partikel dan gelombang

Lebih terperinci

ENERGI DAN MOMENTUM. Staf Pengajar Fisika Departemen Fisika, FMIPA, IPB

ENERGI DAN MOMENTUM. Staf Pengajar Fisika Departemen Fisika, FMIPA, IPB ENERGI DAN MOMENTUM Staf Pengajar Fisika Departemen Fisika, FMIPA, IPB KONSEP KERJA-ENERGI Merupakan konsep alternatif untuk menyelesaikan persoalan gerak Dikembangkan dari konsep gaya dan gerak Merupakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Atom dan Molekul Definisi molekul yang sederhana yaitu bagian yang terkecil dari suatu zat yang masih mempunyai sifat yang sama dengan zat tersebut. Sebagai contoh, suatu molekul

Lebih terperinci

SEJARAH FISIKA. Anwar Astuti Sari Dewi_Fisika_2008 1

SEJARAH FISIKA. Anwar Astuti Sari Dewi_Fisika_2008 1 SEJARAH FISIKA Fisika (Bahasa Yunani: φυσικός (physikos), "alamiah", dan φύσις (physis), "Alam") adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak

Lebih terperinci

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD. BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD hanisantosa@gmail.com 2 BAB 1 PENDAHULUAN Atom, Interaksi Fundamental, Syarat Matematika, Syarat Fisika, Muatan Listrik, Gaya Listrik, Pengertian

Lebih terperinci

BAB I BESARAN DAN SISTEM SATUAN

BAB I BESARAN DAN SISTEM SATUAN 1.1. Pendahuluan BAB I BESARAN DAN SISTEM SATUAN Fisika berasal dari bahasa Yunani yang berarti Alam. Karena itu Fisika merupakan suatu ilmu pengetahuan dasar yang mempelajari gejala-gejala alam dan interaksinya

Lebih terperinci

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10 ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 1 Syahrul Humaidi 1,a), Tua Raja Simbolon 1,b), Russell Ong 1,c), Widya Nazri Afrida

Lebih terperinci

dan penggunaan angka penting ( pembacaan jangka sorong / mikrometer sekrup ) 2. Operasi vektor ( penjumlahan / pengurangan vektor )

dan penggunaan angka penting ( pembacaan jangka sorong / mikrometer sekrup ) 2. Operasi vektor ( penjumlahan / pengurangan vektor ) 1. 2. Memahami prinsipprinsip pengukuran dan melakukan pengukuran besaran fisika secara langsung dan tidak langsung secara cermat, teliti, dan obyektif Menganalisis gejala alam dan keteraturannya dalam

Lebih terperinci

Pertanyaan Final (rebutan)

Pertanyaan Final (rebutan) Pertanyaan Final (rebutan) 1. Seseorang menjatuhkan diri dari atas atap sebuah gedung bertingkat yang cukup tinggi sambil menggenggam sebuah pensil. Setelah jatuh selama 2 sekon orang itu terkejut karena

Lebih terperinci

Fisika Panas 2 SKS. Adhi Harmoko S

Fisika Panas 2 SKS. Adhi Harmoko S Fisika Panas SKS Adhi Harmoko S Balon dicelupkan ke Nitrogen Cair Balon dicelupkan ke Nitrogen Cair Bagaimana fenomena ini dapat diterangkan? Apa yang terjadi dengan molekul-molekul gas di dalam balon?

Lebih terperinci