Modul 9. (Pertemuan 19 s/d 26) INTEGRAL FOURIER

Ukuran: px
Mulai penontonan dengan halaman:

Download "Modul 9. (Pertemuan 19 s/d 26) INTEGRAL FOURIER"

Transkripsi

1 Mol 9. Prtmn 9 s/ 6 INTEGRAL OURIER DEINISI INTEGRAL OURIER Mr t mngsmsn ons yng brt :. lm ons stbl Drhlt t-t ntrvl trbts -LL.. M Torm Intgrl orr : onvrgn j ntgrs bsolt lm -LL. { A os B } sn A mn B os sn Dngn mlht hsl j lh st tt snmbngn. J lh st tt snmbngn t hrs mnggntn ngn srt ss Drt orr. Jngn tt bhw t ts ons-ons lh tt rl. Prsmn n ngn brssn hsl nt Drt orr lh nyt. Ss tngn nn ng-ng sbt st Prlsn Intgrl orr. Torm Intgrl orr J ngs ontn sotong m sotong st ntrvl brhngg mml rvt r mn rvt nn str tt n ntgrl b b lm lm m t rrsntsn olh ntgrl orr.

2 74 { A os B sn } A mn B os sn D tt mn t ontn nl ntrvl sm ngn rt-rt r lmt r n lmt nn tt trsbt. Contoh : Cr rrsnts ntgrl orr r ngs j j < > Pnylsn : A os os os os [ ] os os [ sn ] sn sn [ sn sn] sn A. B. sn sn sn sn [ ] sn os os os [ os os ] B. { A os B } sn sn os sn sn [ ] sn os

3 75 Lthn Sol : Crlh rrsnts ntgrl orr ngs - j < j j > Kn Jwbny : os sn INTEGRAL COSINUS DAN INTEGRAL SINUS OURIER J ngs gn m ntgrn os mrn ngs gn lm n sn ngs gnjl lm. Dngn mn : B sn os os { A os B } A sn { A os } A os yng mrn Intgrl Cosns orr. J ngs gnjl m ntgrn os mrn ngs gnjl lm n sn ngs gn lm. Dngn mn :

4 76 A os sn sn B { A os B } sn { B } sn B sn yng mrn Intgrl Sns orr. Contoh : Cr Intgrl Cosns n Intgrl Sns orr r > > Pnylsn : A os os os A lm { } os lm os sn A lm os sn os A. B sn sn sn sn B lm sn lm os { sn }

5 77 os sn os sn lm B B. M Intgrl Cosns orr : A os os os. M Intgrl Sns orr : B sn sn sn. Sol Lthn :. Crlh rrsnts Intgrl Cosns orr ngs > < < j j Kn Jwbn : os sn. Crlh rrsnts Intgrl Sns orr ngs > < < j j

6 78 Kn Jwbn : os sn sn ORMAT PADANAN DARI TOREMA INTEGRAL OURIER Torm Intgrl orr t jg tls lm bnt : os 3 4 mn j t ontn sblh r hrs gnt ngn. Ths rslts n b sml somwht s thr n o or n vn nton n w hv : os os s vn 5 sn sn s o 6

7 79 9. DEINISI TRANSORMASI OURIER Dns ngs sbt trnsorms orr r ngs tls bl r 4 n rolh brt n : { }. 7 Sngn ngs n tls sbt trnsorms orr nvrs r ngs bl { }. 8 Contoh : Crlh trnsorms orr r ngs bl bl < > mn onstnt ost. Gmbrlh gr r { } trsbt. n

8 8 - Sols 4 sn sn 4 sn 4 J. sn bl bl

9 8 Sol - sol. Crlh trnsorms orr r ngs mn onstnt ost. bl bl < >. Crlh trnsorms orr r ngs bl bl < >. TRANSORMASI COSINUS OURIER Bl ngs gn btn bhw : n { } os { } os.

10 8 Sols os os 4 os sn os ] sn [os mngngt bhw os lh ngs gn n sn lh ngs gnjl ny trh vrbl. b os os 4 os sn os ] sn [os mngngt lh ngs gn yt nt t mn lh Trnsorms osns orr orr Cosn Trnsorm

11 83 TRANSORMASI SINUS OURIER Dns tls ngs sbt trnsorms sns orr r ngs n s { } s s bl s sn. ngs Sngn ngs n tls s sbt trnsorms sns orr nvrs r bl { } s s s sn mngngt lh ngs gnjl yt s s nt t mn lh Trnsorms Sns orr orr Sn Trnsorm s

12 84 Contoh-ontoh. Crlh trnsorms sns orr r ngs > < <. bl bl Sols os os os os os sn sn sn S S. Crlh trnsorms osns orr r ngs. Sols sn os sn os sn os os os os lm lm lm

13 85 J Sol - sol. Crlh trnsorms osns orr r ngs bl bl < < >.. Crlh trnsorms sns orr r ngs-ngs : - b SIAT-SIAT TRANSORMASI OURIER Dlm hl n gnn nots nt mnnjn sngn trnsorms { }

14 86 { } St-st Elmntr. Lnrts Bl n m onstnt.. Tm-shtng Bl m. 3. rqny-shtng Bl m.

15 87 4. Slng Bl n t sm ngn nol brl m nt onstnt yng brnl nyt rl. 5. Tm-rvrsl Bl m. 6. Smtr Bl m.

16 88 Contoh-ontoh. Btn st lnrts ts. Sols ] [ ] [ ] [ ] [ mn ostnt.. Btn st rqny-shtng ts. Sols. ] [ ] [ Sol 3. Btn st-st tm-shtng slng tm-rvrsl n smtr ts.

MODUL 9. (Pertemuan 17 s/d 26) INTEGRAL FOURIER

MODUL 9. (Pertemuan 17 s/d 26) INTEGRAL FOURIER MODUL 9. Prtmn 7 / 6 INTEGRAL OURIER 9. DEINISI INTEGRAL OURIER Mr t mngmn on yng brt :. lm on tbl Drhlt t-t ntrvl trbt -LL.. onvrgn j ntgr bolt lm -LL. M Torm Intgrl orr : mn { A o B } n A B o n Dngn

Lebih terperinci

4. INTEGRAL FUNGSI KOMPLEKS

4. INTEGRAL FUNGSI KOMPLEKS Intgrl Fungs Komplks 4 INTEGRAL FUNGSI KOMPLEKS Sprt hlny dlm fungs rl, dlm fungs komplks jug dknl stlh ntgrl fungs komplks srt sft-sftny Sft knltkn sutu fungs dlm sutu lntsn trtutup pntng dlm prhtungn

Lebih terperinci

7. APLIKASI INTEGRAL. 7.1 Menghitung Luas Daerah. a.misalkan daerah D = {( x, Luas D =? f(x) Langkah : Contoh : Hitung luas daerah yang dibatasi oleh

7. APLIKASI INTEGRAL. 7.1 Menghitung Luas Daerah. a.misalkan daerah D = {( x, Luas D =? f(x) Langkah : Contoh : Hitung luas daerah yang dibatasi oleh 7. APLIKASI INTEGRAL MA KALKULUS I 7. Menghtung Lus erh.mslkn erh {(,, f ( ) Lus? f() Lngkh :. Irs menj n gn n lus stu uh rsn hmpr oleh lus perseg pnjng engn tngg f() ls(ler) A f ( ). Lus hmpr oleh jumlh

Lebih terperinci

4.2. Vektor dalam Ruang Dimensi Tiga

4.2. Vektor dalam Ruang Dimensi Tiga 4.. Vetor dlm Rng Dmens Tg Seenrny pengertn etor pd dng dmens d sm hlny pengertn etor dlm rng dmens tg, etor pd sng mempny d omponen, m etor dlm rng mempny tg omponen. Yt ;,,,, Dmn merpn etor stn t etor

Lebih terperinci

Mengenal IIR Filter. Oleh: Tri Budi Santoso Lab Sinyal, EEPIS-ITS ITS 11/23/2006 1

Mengenal IIR Filter. Oleh: Tri Budi Santoso Lab Sinyal, EEPIS-ITS ITS 11/23/2006 1 Mngnl IIR Filtr Olh: Tri Budi Sntoso L Sinyl, EEPIS-ITS ITS /23/26 Konsp Dsr Infinit Impus Rspons IIR dlm hl ini ngn diphmi sgi sutu kondisi rspons impuls dri - ~ dn rkhir smpi ~ Lih tpt diphmi sgi sutu

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Kalkulus Kode : CIV 101. Limit Fungsi. Pertemuan - 2 Respet, Proessionalism, & Entrepreneurship Mata Kuliah : Kalkulus Kode : CIV 101 SKS : 3 SKS Limit Fungsi Pertemuan - Respet, Proessionalism, & Entrepreneurship Kemampuan Akhir yang Diharapkan Mahasiswa

Lebih terperinci

BAB VII TRANSFORMASI LAPLACE

BAB VII TRANSFORMASI LAPLACE BAB VII TRANSFORMASI APACE Tujun Pmbljrn Slh mmpljr bb n, dhrpkn mhw mmlk kmmpun unuk mmbu bnuk-bnuk Trnform plc dr brbg jn fung. Dmkn jug dngn nvr Trnform plc yng dbuny. Slnjuny dhrpkn gr mhw mmpu mrubh

Lebih terperinci

9.1 Representasi Aritmetika Dengan Tree

9.1 Representasi Aritmetika Dengan Tree Tlh t thu rsm hw pnrpn rph mupun ju tr lm n omputr snt ny. Bn n mmhs mn mto untu mlun pnlusurn unsurunsur (vrt-vrt) r rph tu tr trsut. Ju mn mmut jlur r stu vrt vrt ln yn pln optmun. Brp lortm yn n hs

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Limit Fungsi Pertemuan - 2 a home base to eellene Mata Kuliah : Kalkulus Kode : TSP 0 SKS : 3 SKS Limit Fungsi Pertemuan - a home base to eellene TIU : Mahasiswa dapat memahami it ungsi TIK : Mahasiswa mampu menyelesaikan it ungsi

Lebih terperinci

VeryPDF. Persamaan Magnel 4/21/20144

VeryPDF. Persamaan Magnel 4/21/20144 04 VryPDF VryPDFcom nc Prsmn gnl 4//044 DSR PERENCNN r H rmyn, T nntukn Bsrn Krn ts, Krn wh Prncnn Pnmpng yng mmkul n lntur Jrk Krn ts k cgc = kt tu k Jrk Krn wh k cgc = k Jrk cgc k srt ts = Yt tu Jrk

Lebih terperinci

*Upacara satu bulan sekali, setiap Senin kedua pukul WIB

*Upacara satu bulan sekali, setiap Senin kedua pukul WIB Kelas I A 07.20-07.55 Agama - TT S. Rupa - EK Pramuka - VB Matematika - TS 07.55-08.30 Agama - TT S. Rupa - EK Pramuka - VB B. Mandarin - JZ Matematika - TS 08.30-09.05 B. Inggris - PP S. Musik - MN Olahraga

Lebih terperinci

KUMPULAN RUMUS MATEMATIKA SMA BERSAMA Q&A CERDASKAN BANGSA! A D E M A U L A N A Y. A K U B E L A J A R B U K A N.

KUMPULAN RUMUS MATEMATIKA SMA BERSAMA Q&A CERDASKAN BANGSA! A D E M A U L A N A Y. A K U B E L A J A R B U K A N. D E L N Y. KPLN RS TETIK S ERS Q& CERDSKN NGS! E s P t K E L J R K N N T K K S E N D I R I, E L I N K N N T K E R S 7 : @th : thts.@gl.o : uslo RS-RS TETIK Olh ul Yusu th Q&. EKSPONEN. l.,. 4. 5. 6. 7.

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

Bentuk Umum Perluasan Teorema Pythagoras

Bentuk Umum Perluasan Teorema Pythagoras Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem

Lebih terperinci

3 Berapa jumlah maksimum dan jumlah minimum simpul pada graf sederhana yang mempunyai 12 buah sisi dan tiap simpul berderajat 3?

3 Berapa jumlah maksimum dan jumlah minimum simpul pada graf sederhana yang mempunyai 12 buah sisi dan tiap simpul berderajat 3? GRF No Sol Untuk stip sol i wh, sutkn pkh gr srhn ngn lim simpul (vrtx) yng mmiliki rjt untuk msing-msing simpul sgi rikut? Jik, gmr grny! ),,,, ),,,, ),,,, ),,,, Mungkinkh iut gr-srhn simpul ngn rjt msing-msing

Lebih terperinci

m 2 BUDIDAYA PEMBESARAN IKAN LELE

m 2 BUDIDAYA PEMBESARAN IKAN LELE P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) B U D I D A Y A P E M B E S A R A N I K A N L E L E P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) B U D I D A Y A P E M B E S A

Lebih terperinci

BAB IV METODA ANALISIS RANGKAIAN

BAB IV METODA ANALISIS RANGKAIAN 6 BAB METODA ANALSS RANGKAAN Metod nlss rngkn sebenrny merupkn slh stu lt bntu untuk menyeleskn sutu permslhn yng muncul dlm mengnlss sutu rngkn, blmn konsep dsr tu hukum-hukum dsr sepert Hukum Ohm dn

Lebih terperinci

htt://meetbied.wordress.com SMN oneone, Luwu Utr, SulSel Jngn tkut untuk mengmbil stu lngkh besr bil memng itu dierlukn. nd tk kn bis melomti jurng dengn du lomtn kecil (Dvid Lloyd George) [RUMUS EPT MTEMTIK]

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

BAB 6 INTEGRAL DAN PENGGUNAANNYA

BAB 6 INTEGRAL DAN PENGGUNAANNYA Dik Klih TK Memik BB 6 INTEGRL DN PENGGUNNNY 6 Inegrl Tken nirnn) F Fngsi F ise nirnn inegrl) ri f p inervl I jik f ) Jik ng ikehi lh f), nk menpkn F) ilkkn penginegrln Secr mm ilis, engn lh konsn Simol

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

USAHA KONVEKSI PAKAIAN JADI

USAHA KONVEKSI PAKAIAN JADI P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R I A H ) U S A H A K O N V E K S I P A K A I A N J A D I P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H (

Lebih terperinci

Bab IV Analisis Dinamik

Bab IV Analisis Dinamik V Anlii ini. Poln Mi pl Sipl hnling ol rpn gr igr n ng hn nggrn g-g p ing r ng lipi g lrl p ro n g ri. Mol i irn ngn nggnn prn ingn ΣM og n Σ. Gr. Sipl hnling ol ni pn r Gr. nnjn ipl hnling ol ni pn. L

Lebih terperinci

BAB III VEKTOR DALAM R 2 DAN R 3. Bab III Vektor dalam R 2 dan R 3

BAB III VEKTOR DALAM R 2 DAN R 3. Bab III Vektor dalam R 2 dan R 3 Bb III Vetor dlm R dn R BAB III VEKTOR DALAM R DAN R Dlm bgn n n dbhs mslh eto-etor dlm rng berdmens dn berdmens, opers-opers rtmet pd etor g n ddefnsn dn beberp sft-sft dsr opers-opers tersebt... VEKTOR

Lebih terperinci

Menimbang'' fffi,*:,;1r:il;f.,i'l'&1ti,t;t',ff:,';ffi:.,,";1tltxl otil" trihh

Menimbang'' fffi,*:,;1r:il;f.,i'l'&1ti,t;t',ff:,';ffi:.,,;1tltxl otil trihh SALNAN KTSAN KAN FAKLTAS KOLO MANSA NSTTT RTANAN BOOR Nmr 0B /1T.9 /K /20 Tntng NNKAN/NASAN OSN KLAH AN RAKTKM MAHASSWA RORAM SARANA [S1 MAYOR MNOR SMSTR ANL TAHN AKAMK 201.4/201 ARTMN LM KLARA AN KONSMN

Lebih terperinci

KETIADAAN RUANG FOCK BAGI NEUTRINO FLAVOR

KETIADAAN RUANG FOCK BAGI NEUTRINO FLAVOR Jrl ro Vol. o. Arl 00 9 KTIADAA RAG FOCK BAGI TRIO FAVOR r R Asr : Tl w mg mmg rg Foc g flor. S rg Foc rgg r ro flor rgg rmr mss yg fss. I m osrs mms yg crs rls fss. K Kc : Rg Foc K Flor PDAHA ro mr sl

Lebih terperinci

RING BERSIH KANAN. Ring (Cyrenia Novella Krisnamurti)

RING BERSIH KANAN. Ring (Cyrenia Novella Krisnamurti) ISSN: 088-687X ING ESIH KNN Cyen Novell Ksnmt Pogm Std Penddkn Mtemtk FKIP USD Kmps III Pngn, Mgwohjo,Slemn, yennovell@gmlom STK Peneltn n etjn ntk mengenl, memhm mennjkkn hw sft-sft pd ng esh elk ntk

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

PENDAHULUAN. X dikatakan peubah acak kontinu, jika ada sebuah fungsi non negatif f, yang didefinisikan pada semua bilangan real, x (,

PENDAHULUAN. X dikatakan peubah acak kontinu, jika ada sebuah fungsi non negatif f, yang didefinisikan pada semua bilangan real, x (, EUBAH ACAK KONTINU ENDAHULUAN diktkn puh ck kontinu, jik d suh ungsi non ngti, yng didinisikn pd smu ilngn rl,,, Mmpunyi sit hw untuk smrng himpunn ilngn rl B B d B Fungsi disut sgi ungsi kpktn plung Brp

Lebih terperinci

MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK SKS TEKNIK ELEKTRO UDINUS Integrl Fungs Kompleks 4 INTEGRAL FUNGSI KOMPLEKS Sepert hlny dlm fungs rl, dlm fungs kompleks jug dkenl stlh ntegrl fungs kompleks sert sft-sftny Sft kenltkn

Lebih terperinci

JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1

JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1 JURNAL MATEMATIKA DAN PEMBELAJARANNYA 6 VOLUME, NO.. ISSN -99 PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN! = Amr Hs Dos STKIP Pmg Idosi Mkssr 85 557 6956, E-mil: mrhs@yhoo.co.id ABSTRAK Pmkti! = dt dilkk dri

Lebih terperinci

5. Persamaan Diferensial (2) (Orde Dua) Sudaryatno Sudirham

5. Persamaan Diferensial (2) (Orde Dua) Sudaryatno Sudirham Drulic www.drulic.com 5. Prmn Difrnil Ord Du Sudrno Sudirhm 5.. Prmn Difrnil Linir Ord Du Scr umum rmn difrnil linir ord du rnuk d d c f 5. d d Pd rmn difrnil ord u ki lh mlih hw olui ol rdiri dri du komonn

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

P r o f i l U s a h. a A s p e k P a s a r P e r m i n t a a n H a r g a...

P r o f i l U s a h. a A s p e k P a s a r P e r m i n t a a n H a r g a... P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R I A H ) I N D U S T R I S O H U N P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R I A H

Lebih terperinci

BAB VI. FUNGSI TRANSENDEN

BAB VI. FUNGSI TRANSENDEN BAB VI. FUNGSI TRANSENDEN 6.. FUNGSI LOGARITMA NATURAL ASLI) 6.. FUNGSI INVERS DAN TURUNANNYA 6.3. FUNGSI EKSPONEN NATURAL 6.4. FUNGSI EKSPONEN DAN LOGARITMA UMUM 6.5. PENGGUNAAN FUNGSI LOGARITMA DAN EKSPONEN

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : husnrifh@uny.c.id Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

Dosen: Dr. Ir. Adi Surjosatyo, M.Eng. Asisten: Hafif dafiqurrohman Sumber:

Dosen: Dr. Ir. Adi Surjosatyo, M.Eng. Asisten: Hafif dafiqurrohman Sumber: Dosen: Dr. Ir. A Surjostyo, M.Eng. Assten: qurrohmn Sumer: htt://osen.t.t../~mornto/ienas/eknk%0elektro/el% 0ermonmk.t ERMODINAMIKA PROSES-PROSES ERMODINAMIKA Proses Isork () eknn konstn Proses Isoterms

Lebih terperinci

CATATAN KULIAH Pertemuan II: Analisis Keseimbangan Statik dan Arti Keseimbangan

CATATAN KULIAH Pertemuan II: Analisis Keseimbangan Statik dan Arti Keseimbangan CATATAN KULIAH ertemun II: Anl Keemngn Sttk n Art Keemngn A. engertn Ekulrum Ekulrum: kumpuln vrle-vrel terplh yng lng erhuungn tu engn lnny lm moel, yng er lm ken (tte) tk keenerungn yng melekt untuk

Lebih terperinci

um Y Gmu ol P Mu 6 3 mo ol mu m o l mo P l yu c u lm y c c y K 0 l lm y c - 4 c y /m l - 8 /m l 00 u K ) m ol l P j mu o oul w o o - m l ol mu u u m u

um Y Gmu ol P Mu 6 3 mo ol mu m o l mo P l yu c u lm y c c y K 0 l lm y c - 4 c y /m l - 8 /m l 00 u K ) m ol l P j mu o oul w o o - m l ol mu u u m u J ST J ul Toolo 1) 01 : 35 S SN : 087 548 P ol Mu o T Gmu Y um T Toolo Jul lm S Lm Pl Uv Ru mw B N oz L ooum T R Km Juu T K m Uv Ru Pu Kmu Bwy Jl HR Su Km15 Pu 893 E- ml: y u@uc F c P w w wc v ow colo

Lebih terperinci

MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI

MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI MATERI DAN SOAL MATEMATIKA SMP Mter Dn Sol Mtetk SMP GEOMETRI Geoetr dn MODUL Bnun Run PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI STANDAR KOMPETENSI LULUSAN. Meh

Lebih terperinci

Transformasi Laplace

Transformasi Laplace TKS 43 Matematika II Transformasi Laplace (Laplace Transform) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PENDAHULUAN Pengertian Transformasi Transformasi adalah teknik atau formula

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

Kemagnetan : Fenomena besi oksida di magnesia (asia tengah), menarik besi.

Kemagnetan : Fenomena besi oksida di magnesia (asia tengah), menarik besi. Elctct-Mgnts(QUE-PROJECT) 44 CHPTER 5 MGNETISM 5.. G dn dn gnt 5.. Huu suls dn gnt p 5.. G utn dl dn gnt 5.4. Mn dpl gnt 5.5. Kgntn dl hn 5.. G dn dn gnt Kgntn : Fnn s sd d gns (s tngh), n s. Kgunn :.

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

Isi Pembahasan Week 5: Antena Aperture. Mudrik Alaydrus, Univ. Mercu Buana, 2008 Presentasi 5 1

Isi Pembahasan Week 5: Antena Aperture. Mudrik Alaydrus, Univ. Mercu Buana, 2008 Presentasi 5 1 Isi Pmhsn Wk 5: Antn Aptu Mudik Alydus, Univ. Mcu Bun, 008 Psntsi 5 1 Antn Aptu/ Antn Bidng wvguid ptu Jnis lin: ntn clh (slt ntnn) clh clh Mudik Alydus, Univ. Mcu Bun, 008 Psntsi 5 Mudik Alydus, Univ.

Lebih terperinci

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN

KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM (PPDU) TELKOM UNIVERSITY IV. TURUNAN KALKULUS I MUGA4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY IV. TURUNAN Turunan di satu titik Pendahuluan dua masalah dalam satu tema KONSEP TURUNAN a. Garis Singgung Kemiringan tali busur

Lebih terperinci

Ringkasan Materi Kuliah PERSAMAAN DIFERENSIAL LINEAR. 1. Pendahuluan Bentuk umum persamaan diferensial linear orde n adalah

Ringkasan Materi Kuliah PERSAMAAN DIFERENSIAL LINEAR. 1. Pendahuluan Bentuk umum persamaan diferensial linear orde n adalah Rigks Mtri Klih PERSAMAAN DIFERENSIAL LINEAR Pdhl Btk mm rsm dirsil lir ord dlh () dg koisi-koisi d () mrk gsigsi g koti d slg I d tk sti I Slg I disbt slg diisi (slg sl) dri rsm dirsil it Jik gsi () =

Lebih terperinci

CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga

CONTOH SOAL BERIKUT KUNCI JAWABNYA. Dimensi Tiga ONO SOL RIKU KUNI JWNY imensi ig. ikethui kubus. dengn rusuk. Mellui digonl dn titik tengh rusuk dibut bidng dtr. entukn lus bgin bidng di dlm kubus! Q L Q.Q... 6. Kubus. berusuk cm. itik, Q dn R dlh titik-titik

Lebih terperinci

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga

Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga Rset Opers Probblstk Teor Permnn (Gme Theor) Deprtement of Mthemtcs FMIPA UNS Lecture 4: Med Strteg A. Metode Cmpurn (Med Strteg) D dlm permnn d mn permnn tersebut tdk mempun ttk peln, mk pr pemn kn bersndr

Lebih terperinci

KEPUTUSAN DIREKTUR JENDERAL BEA DAN CUKAI NOMOR : KEP-20/BC/1998 TENTANG KEMASAN PENJUALAN ECERAN HASIL TEMBAKAU DIREKTUR JENDERAL BEA DAN CUKAI,

KEPUTUSAN DIREKTUR JENDERAL BEA DAN CUKAI NOMOR : KEP-20/BC/1998 TENTANG KEMASAN PENJUALAN ECERAN HASIL TEMBAKAU DIREKTUR JENDERAL BEA DAN CUKAI, DEPARTEMEN KEUANGAN REPUBLIK INDONESIA DIREKTORAT JENDERAL BEA DAN CUKAI KEPUTUSAN DIREKTUR JENDERAL BEA DAN CUKAI NOMOR : KEP-20/BC/1 TENTANG KEMASAN PENJUALAN ECERAN HASIL TEMBAKAU DIREKTUR JENDERAL

Lebih terperinci

MATEMATIKA INTEGRAL SUBSTITUSI TRIGONOMETRI. Teknik substitusi aljabar yang telah dipelajari sebelumnya memiliki bentuk

MATEMATIKA INTEGRAL SUBSTITUSI TRIGONOMETRI. Teknik substitusi aljabar yang telah dipelajari sebelumnya memiliki bentuk MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 04 Sesi NGAN INTEGRAL SUBSTITUSI TRIGONOMETRI Teknik substitusi ljbr yng telh dipeljri sebelumny memiliki bentuk n+ n n u [ f ( )] f ( ) u n + + Di mn: u f()

Lebih terperinci

Neutrino Majorana dan Osilasinya

Neutrino Majorana dan Osilasinya JURNAL EKNIK POIS Vol No () -6 Ntno jon n Oslsny n St Hnngt Ϯ n Ags Pwnto ђ Jsn Fs Flts tt n Il Pngtn Al Insttt nolog Sl Nob (IS) Jl A Rn H Sby 6 E-l: Ϯ n_q@ yssts ђ wnto@yssts Abst Ass ol stn bw tl ntno

Lebih terperinci

1 Sifat Penambahan Selang

1 Sifat Penambahan Selang BAB : INTEGRAL TOPIK: Sift-sift Integrl Tentu Kometensi yng iukur lh kemmun mhsisw menyelesikn integrl tentu engn menggunkn sift-sift integrl tentu. Sift Penmbhn Selng. UAS Klkulus, Semester Penek 4 no.

Lebih terperinci

"*Lilffiui#+if"ffiffif Nomor

*Lilffiui#+ifffiffif Nomor KPUTUSAN "*ilffiui#+if"ffiffif Nmr RANI{*AN z 487 I.0l.l.22lHI(3, DAl4 TNTANG PNGANGKATAI\ TNAGA PNGAARPROGRAM S1 KURIKUUM 2013 AKUTAS KDOKTRAN HWATI UNTYRSITAS GADAII MADA Mnimbng Mngingt DKAN AKUTAS

Lebih terperinci

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.

PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1. PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn

Lebih terperinci

(t) F] < F. i-i fi. <tr. ? > ; se:gg ; EH 'B EE;E-" B sf, X =E. 2 F; EE5 *3.:SlE3fr. ,.r?e EE$; Vl\r o-*, E ;g t$ffnsslrss. E :o gr zl '5r=::-'

(t) F] < F. i-i fi. <tr. ? > ; se:gg ; EH 'B EE;E- B sf, X =E. 2 F; EE5 *3.:SlE3fr. ,.r?e EE$; Vl\r o-*, E ;g t$ffnsslrss. E :o gr zl '5r=::-' 9 c5 e, CJ e ' ] ] fl < l O. J O,. l l'l fl R n( l{ {f < > ii fi ] < f l l,', i 3,O _ g.e.. "*",, h l ffi6. er,g*c.4 9 3 5 l :; S g* "j "R"J.9, ' "?g gs? f, 5 :." ;g nl,.? ; l *, 2 ; 5 *3.:Sl3f X "1' ";X:,

Lebih terperinci

M O D U L ANALISIS VARIABEL KOMPLEK

M O D U L ANALISIS VARIABEL KOMPLEK M O D U L ANALISIS VARIABEL KOMPLEK Y r cs, sn r cs, sn Y r y y r X X Y X Y X y r r y r cs, sn r cs, sn O l h Dw Purnm PROGRAM STUDI PENDIDIKAN MATEMATIKA IKIP BUDI UTOMO MALANG TAHUN 0 DAFTAR ISI Hlmn

Lebih terperinci

Bab 7 TRANSFORMASI LINEAR

Bab 7 TRANSFORMASI LINEAR B 7 ANSFOMASI LINEA Ser mm trnsformsi (pemetn) iefinisin ri st himpnn e himpnn lin. P ini it n mempeljri trnsformsi ri st rng etor e rng etor yng lin sehingg opersi stnr p rng etor (penjmlhn n perlin engn

Lebih terperinci

LAMPIRAN PERATURAN BUPATI CIAMIS NOMOR : 52 Tahun 2015 TANGGAL : 2 Desember f e. I. Model PDH Linmas A. PNS Pria

LAMPIRAN PERATURAN BUPATI CIAMIS NOMOR : 52 Tahun 2015 TANGGAL : 2 Desember f e. I. Model PDH Linmas A. PNS Pria LAMPIRAN PERATURAN BUPATI CIAMIS NOMOR : 52 Tun 2015 TANGGAL : 2 Dsmr 2015 I. Mol PDH Lnms A. PNS Pr m j k l n o p. kmj lnn pnk. lmn LINMAS. tulsn Provns Jw Brt. ppn nm. l u. kr rr n truk. monorm LINMAS.

Lebih terperinci

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 83 TAHUN 2000 TENTANG

PERATURAN PEMERINTAH REPUBLIK INDONESIA NOMOR 83 TAHUN 2000 TENTANG PTUN PMNTH PUBLK NONS NOMO 83 THUN 2000 TNTNG PUBHN TS PTUN PMNTH NOMO 14 THUN 1993 TNTNG PNYLNGGN POGM JMNN SOSL TNG KJ SBGMN TLH UBH NGN PTUN PMNTH NOMO 79 THUN 1998 Mnimbng : Mnging : PSN PUBLK NONS,.

Lebih terperinci

Matematika Dasar VOLUME BENDA PUTAR

Matematika Dasar VOLUME BENDA PUTAR OLUME BENDA PUTAR Ben putr yng seerhn pt kit mil ontoh lh tung engn esr volume lh hsilkli lus ls ( lus lingkrn ) n tinggi tung. olume ri en putr ser umum pt ihitung ri hsilkli ntr lus ls n tinggi. Bil

Lebih terperinci

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok :

LEMBAR KEGIATAN SISWA. : Menemukan Teorema Pythagoras Sekolah/Satuan Pendidikan:... Kelas/Semester :... Anggota Kelompok : LEMBAR KEGATAN SSWA Topik : Menemukn Teorem Pythgors Sekolh/Stun Pendidikn:... Kels/Semester :... Anggot Kelompok : 1.... 2.... 3.... 4. 5.... Tnggl Mengerjkn LKS :. Petunjuk Umum: 1. Setelh mengerjkn

Lebih terperinci

2 lh uu lh g lol u ool lm u l m mu gcu g - g, u g lu h mu lu oom mj lh cug lm mg g g j uug olh h j Bh h h of Cofc Wol Y Wom ol I mu) Thu Iol (Kof 1975

2 lh uu lh g lol u ool lm u l m mu gcu g - g, u g lu h mu lu oom mj lh cug lm mg g g j uug olh h j Bh h h of Cofc Wol Y Wom ol I mu) Thu Iol (Kof 1975 1 EN ENALAN UU G m Rum : 2012 7 ggl: T Bogo m: T K g 0 197 hu j mul lh mu - mug mgu mol h lh g jl hl Ah mu mu hw om uh D oom mgu gf m mmcl mmu hu h mu mmh hw m Dg u hl mm j, mllu mmu mml mu g g, g lm g

Lebih terperinci

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal.

BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal. BASIS ORTOGONA Bts Bl V rg Ecldes S V dsebt Hmp Ortogol bl tp d sr S ortogol DAI J S hmp ortogol yg terdr dr K bh etor t ol dlm rg Ecldes V m S bebs ler V hssy bl dmes V S bss t V dsebt Bss ortogol DAI

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

CATATAN KULIAH Pertemuan XIV: Analisis Dinamik dan Integral (2) Oleh karena bukan angka, maka integral di atas didefinisikan sebagai:

CATATAN KULIAH Pertemuan XIV: Analisis Dinamik dan Integral (2) Oleh karena bukan angka, maka integral di atas didefinisikan sebagai: CATATAN KULIAH Prtmun XIV: Anlisis Dinmik dn Intgrl (2) A. Intgrl Tk Wjr (Impropr Intgrl) Intgrsi dngn Limit Tk Hingg Bntuk intgrl tk wjr jnis ini s: f ) ( d dn f ( ) Olh krn ukn ngk, mk intgrl di ts didfinisikn

Lebih terperinci

0 akar-akarnya adalah p dan q. 0 akar-akarnya 2p dan r.

0 akar-akarnya adalah p dan q. 0 akar-akarnya 2p dan r. Mengenng Jejk Sebgin Kecil Bngs Indonesi Yng Pernh Mengikuti Ujin Sekolh Pd Awl Ms Kemerdekn UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 5. SMA 5 Berkh m gr suy fungsi nili rel dri? Syrt fungsi

Lebih terperinci

Lampiran 1 LEMBAR PENJELASAN KEPADA CALON SUBYEK PENELITIAN

Lampiran 1 LEMBAR PENJELASAN KEPADA CALON SUBYEK PENELITIAN Lampiran 1 LEMBAR PENJELASAN KEPADA CALON SUBYEK PENELITIAN Bapak/Ibu/Sdr/i Yth. Saya sedang meneliti tentang Gambaran simtom depresif pada pasien pasca stroke dengan menggunakan skala penilaian beck depression

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

TS1019: ANALISA STRUKTUR I

TS1019: ANALISA STRUKTUR I TS09: ANALISA STRUKTUR I Progrm Stui Teknik Sipil Universits Bnr Lmpung UJIAN AKHIR SEMESTER Kmis, 9 Juni 2008 Pukul 08:00.20 Wi Sift Ujin: Open Book Dosen: Ronny H. Pur, ST., MSCE. Nm : NPM : 2 3 4 (tn

Lebih terperinci

Ruang Vektor Umum. V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan

Ruang Vektor Umum. V dinamakan ruang vektor jika terpenuhi aksioma : 1. V tertutup terhadap operasi penjumlahan /8/5 Mtris & Rng Vetor Rng Vetor Umm Strt Rng Vetor Umm Misln v w V dn l Riil V dinmn rng vetor ji terpenhi siom :. V terttp terhdp opersi penjmlhn Unt setip v V m v V.. v v ( v w ) ( v ) w. Terdpt V sehingg

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

(c) lim. (d) lim. (f) lim

(c) lim. (d) lim. (f) lim FMIPA - ITB. MA Mtemtik A Semester, 6-7. Pernytn enr dn slh. () ()! e Solusi. Benr. Fungsi eksonensil (enyeut) memesr leih cet drid fungsi olinom (emilng) sehingg emginny menghsilkn nili Dengn Hoitl s

Lebih terperinci

Two-Stage Nested Design

Two-Stage Nested Design Mteri #13 TIN309 DESAIN EKSPERIMEN Two-Stge Nested Design Nested design dlh slh stu ksus dri desin multi fktor dimn level dri slh stu fktor (misl: fktor B) serup tpi tidk identik untuk setip level yng

Lebih terperinci

KUESIONER. PENGARUH KUALITAS JASA TERHADAP KEPUASAN KONSUMEN DI 9 SQUARE Bar & Resto BANDUNG. (Survei Pada Konsumen 9 SQUARE Bar & Resto Kota Bandung)

KUESIONER. PENGARUH KUALITAS JASA TERHADAP KEPUASAN KONSUMEN DI 9 SQUARE Bar & Resto BANDUNG. (Survei Pada Konsumen 9 SQUARE Bar & Resto Kota Bandung) KUESIONER PENGARUH KUALITAS JASA TERHADAP KEPUASAN KONSUMEN DI SQUARE Bar & Resto BANDUNG (Survei Pada Konsumen SQUARE Bar & Resto Kota Bandung) Responden Yth, Bersama dengan ini saya sebarkan kuesioner

Lebih terperinci

Isi Pembahasan Wek 3: Elektromagnetika pada Antenna. Solusi untuk antena elementar. Antena hertz loop

Isi Pembahasan Wek 3: Elektromagnetika pada Antenna. Solusi untuk antena elementar. Antena hertz loop si mbhsn Wk 3: lkmgnik pd Annn Slusi unuk nn lmn Ann hz dipl Ann hz lp Mudik Alydus, Univ. Mcu Bun, 008 snsi 3 lkmgnik pd Ann smn Mxwll dngnsinylhmnis smn Mxwll dngnsinylhmnis J ε μ μ ε 0 Vk yning (Dy

Lebih terperinci

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua )

Vektor di R2 ( Baca : Vektor di ruang dua ) adalah Vektor- di ruang dua ) A Pengertin Vektor Di R Vektor di R ( B : Vektor di rung du ) dlh Vektor- di rung du ) dlh Vektor-vektor ng terletk pd idng dtr pengertin vektor ng leih singkt dlh sutu esrn ng memiliki esr dn rh tertentu

Lebih terperinci

Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS

Metode Numerik. Regresi. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2008 PENS-ITS Metode Numerk Regres Um S dh Polteknk Elektronk Neger Surb 008 PENS-ITS 1 Metode Numerk Topk Regres Lner Regres Non Lner PENS-ITS Metode Numerk Metode Numerk Regres vs Interpols REGRESI KUADRAT TERKECIL

Lebih terperinci

UJIAN AKHIR SEMESTER SEMESTER GENAP TAHUN 2012 (KELAS REGULER PAGI)

UJIAN AKHIR SEMESTER SEMESTER GENAP TAHUN 2012 (KELAS REGULER PAGI) TMN NN NSON UUSN TN S OGM STU TN S FUTS TN UNVSTS MTM ln. Majapahit 62 Mataram 3125, Telp. 0370-636126, 63436 UN H SMST SMST GN THUN 2012 (S GU G) Mata kuliah : Mekanika Teknik (elas Genap) Hari, tanggal

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1

Kegiatan Belajar 5. Aturan Sinus. Kegiatan 5.1 Pge of 8 Kegitn eljr 5. Tujun Pembeljrn Setelh mempeljri kegitn beljr 5, dihrpkn sisw dpt. Menentukn unsur-unsur segitig dengn turn sinus b. Menentukn unsur-unsur segitig dengn turn kosinus. Menghitung

Lebih terperinci

I z. s\3 ; E AEE 7 2 J8EE. 3 Ai 3o:: bheee .E E 2,98. s.9 H. fii.f 5 E EE-O. FHi. ts R,E ;Kg ? J, F. I (l. lg.e. E ra E = E ^6 FI. qp = 3 E E E 49, ;

I z. s\3 ; E AEE 7 2 J8EE. 3 Ai 3o:: bheee .E E 2,98. s.9 H. fii.f 5 E EE-O. FHi. ts R,E ;Kg ? J, F. I (l. lg.e. E ra E = E ^6 FI. qp = 3 E E E 49, ; c..l cn b >l h/n ; i 46 C.) 96 bb C.)! G' ( ]! ] &! c). ] l u.9 cc' h0 c. ' * il Q ) 3 Ri.f, cn.. _ ;. 2,98.,1c4 R, ;K?, (..6 l. jcc cc> c6 " l < > ifi i< h l l (n 7 2 8. ;i.. 16S i.! i,?p66 63 j n 6 9!

Lebih terperinci

SISTEM KENDALI OTOMATIS Analisa Respon Sistem

SISTEM KENDALI OTOMATIS Analisa Respon Sistem SISTEM KENDALI OTOMATIS Analisa Respon Sistem Analisa Respon Sistem Analisa Respon sistem digunakan untuk: Kestabilan sistem Respon Transient System Error Steady State System Respon sistem terbagi menjadi

Lebih terperinci

7. APLIKASI INTEGRAL

7. APLIKASI INTEGRAL 7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

BAB VI RANDOM VARIATE DISTRIBUSI KONTINU

BAB VI RANDOM VARIATE DISTRIBUSI KONTINU BAB VI ANDOM VAIATE DISTIBUSI KONTINU Dlm mlkukn simulsi komputr, hrus dpt dilkukn pnrikn rndom numr dri dn mllui progrm komputr. Pnrikn rndom numr mllui komputr ini sngt rgntung pd fungsi tu distriusi

Lebih terperinci

E-LEARNING MATEMATIKA

E-LEARNING MATEMATIKA MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli

Lebih terperinci

Tim Penyusun : 1. Yesi Nina Karlinda ( ) 2. Galuh Jevani Pambawati ( ) KELAS 2010B KELAS 3 SEMESTER 2

Tim Penyusun : 1. Yesi Nina Karlinda ( ) 2. Galuh Jevani Pambawati ( ) KELAS 2010B KELAS 3 SEMESTER 2 3b Tm Pnyusun : 1. Ys Nn Krlnd (10-800-0082) 2. Gluh Jvn Pmbw (10-800-0090) KELAS 2010B KELAS 3 SEESTER 2 K Smbun Puj syuur m pnjn pd Tuhn Yng h Es, rn br rhm dn hdyh-ny m dp mnylsn buu jr m SD ls III

Lebih terperinci

ss 5 E Sl? EEH i:-e af:t S? E T E RI 3XE 5 Hry,$s iee H=+=; ^te :sinl ; A 4 BE ;!t E t3e fii F 5 = 3E A i E EErEst gs s s E Zi_Ee: 3 FE 9 * E ::ih5*

ss 5 E Sl? EEH i:-e af:t S? E T E RI 3XE 5 Hry,$s iee H=+=; ^te :sinl ; A 4 BE ;!t E t3e fii F 5 = 3E A i E EErEst gs s s E Zi_Ee: 3 FE 9 * E ::ih5* ce CJ G (J G' f 'V.,.Y,/l i':u 1 1 1 J 1. & i! k),i ii l< b l j _ i 3Z:l :l l < :'i C l.9f;9+l!vl.9 '5 l T R ; 4 5 Sl? 4

Lebih terperinci

Integral Tak Tentu. Aturan Pangkat dari Integral TakTentu, Bagian I. Konstanta dari Integrasi. AntiTurunan (Antiderivative)

Integral Tak Tentu. Aturan Pangkat dari Integral TakTentu, Bagian I. Konstanta dari Integrasi. AntiTurunan (Antiderivative) AntiTrnn (Antiderivtive) AntiTrnn dri seh fngsi f dl seh fngsi F sedemiin hingg F = f Pernytn: Integrl T Tent f dic integrl t tent dri f terhdp, Artiny dl mendptn sem ntitrnn dri f. E. AntiTrnn dri f =

Lebih terperinci

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor)

Aljabar Linear. Pertemuan 12_14 Aljabar Vektor (Perkalian vektor) Aljbr Liner Pertemun 12_14 Aljbr Vektor (Perklin vektor) Pembhsn Perklin vektor dengn sklr Rung vektor Perklin Vektor dengn Vektor: Dot Product - Model dot product - Sift dot product Pendhulun Penmbhn

Lebih terperinci

kimia LARUTAN PENYANGGA K e l a s Kurikulum 2013 A. Pengenalan Larutan Penyangga dan Penggunaannya

kimia LARUTAN PENYANGGA K e l a s Kurikulum 2013 A. Pengenalan Larutan Penyangga dan Penggunaannya Kurikulum 2013 kimi K e l s XI LARUTAN PENYANGGA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi pengertin lrutn penyngg dn penggunnny dlm kehidupn sehri-hri.

Lebih terperinci

Yijk = µ + Ai + Bj(i) + є ijk

Yijk = µ + Ai + Bj(i) + є ijk XI. RANCANGAN ACAK LENGKAP POLA TERSARANG Rncngn Ack Lengkp Pol Tersrng dlh rncngn percon dengn mteri homogen t tnp peh penggngg, terdiri dri d peh es t fktor dlm klsfiksi tersrng yit Fktor A terdiri dri

Lebih terperinci

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =

IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = = IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri

Lebih terperinci

INTEGRAL. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

INTEGRAL. Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. INTEGRAL Instruktur : Ferry Whyu Wibowo, S.Si., M.Cs. . Integrl tk tentu b. Integrl tertentu Contoh : Tentukn turunn berikut ini. y b. y. y d. y y y d. - y y. y y b. y y. Jwb: F() F () ---------- C ---

Lebih terperinci