PERCOBAAN I HUKUM NEWTON

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERCOBAAN I HUKUM NEWTON"

Transkripsi

1 PERCOBAAN I HUKUM NEWTON I. Tujuan Mepelajai geak luus beubah beauan pada bidang daa dengan banuan ai ack ail unuk enenukan hubungan anaa jaak, waku, kecepaan, dan waku, sea hubungan anaa assa, pecepaan dan gaya. II. Ruang Lingkup Besaanbesaan beiku dienukan unuk geak luus beubah beauan :. Jaak yang diepuh sebagai ungsi waku.. Kecepaan sebagai ungsi waku. 3. Pecepaan sebagai ungsi assa yang dipecepa. 4. Pecepaan sebagai ungsi gaya. A. Teoi Singka Isaac Newon dala kaya ebesanya Pincipia engeukakan iga buah hoku dasa bagi pesoalan geak yang dikenal dengan 3 huku Newon yaiu :. Huku Newon Peaa: Seiap benda akan eap beada dala keadaan yang dia aau begeak luus beauan, kecuali bila dipaksa beubah dai keadaannya oleh gayagaya yang esulannya idak nol yang bekeja padanya.

2 Huku ini dikenal pula sebagai hoku inesial hoku kelebaan.. Huku Newon Kedua: Kecepaan dan aah peubahan oenu suau benda ehadap waku adalah sebanding dan seaah dengan gaya yang dikenakan pada benda esebu. v Aau = F. Pada uunya assa dianggap konsan, aka: v v = = a F aau a = F = a. 3. Huku Newon Keiga: Seiap gaya aksi pada sau benda ke benda lain akan enibulkan gaya eaksi yang besanya saa dan aahnya belawanan dengan gaya aksi esebu. Aau F aksi = F eaksi Keiga huku Newon di aas eupakan dasa dai eoi ekanika klasik yang encapai kebehasilan yang sanga engagukan kaena hape dapa enjelaskan seua enoena geak, bahkan encakup pegeakan plane. Keleahan ekanika klasik adalah gagal unuk enjelaskan bebeapa hasil pecobaan yang dilakukan pada awal abad 0, sehingga endoong ibulnya Mekanika elavisik dan Mekanika kuanu. Naun Mekanika klasik asih cukup akua unuk dieapkan pada enoena geak dala skala ako dan kehidupan sehaihai. Unuk enunjukkan kebenaan Huku Newon, khususnya yang kedua, dipakai ai ack glide yang benuknya sepei pada gaba beiku:

3 Dai pesaaan. dipeoleh a dala benuk veco posisi: d a d.3 Apabila suau gaya konsan bekeja pada suau benda, aka: F v =..4 Kalau diandaikan bahwa : v 0 = 0; 0 = 0.5 Maka veko kedudukan assa adalah F =..6 Unuk geakan aka : F g g ; g:pecepaan gaviasi.7 Dai Gaba.3 dapa dipeoleh:

4 Kalau assa oal peluncu glide adalah, aka pesaaan geak sise adalah :. a = g.9 Kecepaannya adalah: Veko kedudukannya enjadi: g v = v =..0 g = s =.. B. Daa Ala No. Naa Ala Kode Tipe Koniguasi. Ligh Baie LB0 Fok Type Ligh Baie buah Tipod Base buah Suppo Rod, 40 c buah Righ Angle Clap buah. Pecission Pulley KATROL0 Tanpa ekan Pecission Pulley buah Tipod Base buah 3. Sloed Weigh BEBAN0 0 g 0 buah 4. Sloed Weigh BEBAN0 50 g 4 buah 5. Sloed Weigh BEBAN03 g 0 buah 6. Weigh Holde WH0 g 7. Silk Thead BENANG Glide GLIDER0 Unuk Ai Tack Glide buah Hook, dengan Plug buah Magne, dengan Plug buah 9. Sceen LAYAR0 Dengan Plug, 5 0. Sceen LAYAR0 Dengan Plug, 00. Sae Syse STARTER0. Blowe BLOWER0 0 VAC Blowe buah Pessue Tube,5 buah Kabel Powe buah 3. Coune/Tie TIMER0 4 Digi Coune/Tie buah Kabel Powe buah 4. Balance LG 3 NERACA0 4 beas 5. Ai Tack Rail RAIL0 6. Connecing Cod KABEL0, Red 7. Connecing Cod KABEL0, Blue 8. Connecing Cod KABEL03, Red 9. Connecing Cod KABEL04, Yellow 0. Connecing Cod KABEL05, Yellow. Connecing Cod KABEL06, Yellow III. Reeensi PHYWE, Univesiy Laboaoy Expeiens, Ediion 94/95, Volue 5,.. Newon s Laws

5 IV. Daa Hasil Pecobaan Tabel. Hubungan anaa jaak dengan waku s deik g /de a pak /de Dev e a % Dev e g % 0,6,547 9,8966 0,5049 0,935 0,935 0,7,675 9, , ,448 0,448 0,8,790 9,8505 0, ,5 0,5 0,9,906 9, , ,60 0,60,0,0 9, , ,548 0,548 Tabel. Hubungan anaa kecepaan dengan waku. Äs = 5 s deik deik Ä de v pak /deik v eoi /s Dev e v % 0,3,7,076 0,05 0,59 0,546 3,097 0,4,9,48 0,043 0,68 0,630 0,397 0,5,448,406 0,04 0,643 0,705 8,79 0,6,580,543 0,037 0,730 0,77 5,487 0,7,70,660 0,04 0,659 0,834,035 0,8,807,780 0,07 0,89,66 0,9,98,887 0,03 0,87 0,946 7,894 Tabel.3 Hubungan pecepaan dengan assa, s = Penabahan beban pada ga deik a pak /de a eoi /de Dev e a % 0 g,095 0,456 0,455 0,8 40 g,83 0,40 0,49 0, g,73 0,387 0,389 0, g,355 0,36 0,363 0,646 Tabel.4 Hubungan anaa pecepaan dengan gaya, dengan s = T pak N T eoi N a pak a eoi deik /de /de Beban yang dianse dai glide ke weigh holde Dev e a % Dev e T % g 0,099 0,08 3,873 0,33 0,30,947 7,0 4 g 0,0487 0,0465 3,08 0,0 0,6,74 4,80 6 g 0,0664 0,065,575 0,30 0,30 0,89,90 8 g 0,085 0,084,69 0,388 0,389 0,088,4 0 g 0,0 0,0,058 0,47 0,475 0,563 0,330 g 0,9 0,,895 0,557 0,56 0,764,45 4 g 0,36 0,40,767 0,64 0,648,084,688 6 g 0,5 0,50,66 0,75 0,734,6 3,744 8 g 0,69 0,77,567 0,85 0,80 0,703 4,55 0 g 0,85 0,95,49 0,898 0,907 0,900 5,66

6 V. Analisis Hasil Pecobaan. Tabel. Hubungan anaa jaak dan waku Pada pecobaan ini pebedaan anaa pehiungan eoi dan pakiku sangalah kecil, sehingga deviasi eo pun baik unuk a aupun g enjadi kecil < %. Kaena deviasi eo yang kecil aka pecobaan ini dapa dianggap behasil. Deviasi eo ini seaaaa ejadi kaena keidakeliian dai pakikan. Tabel. Hubungan anaa kecepaan dan waku Pada abel ini ejadi deviasi eo yang paling besa, yaiu sapai sekia % pada daa ke 5. Selain iu ada pula deviasi eo yang cukup besa, yaiu pada daa ke6,66%. Pecobaan ini idak dapa dikaakan behasil. Deviasi eo ini ibul kaena peasalahan ekhnis. Ala yang digunakan idaklah cukup baik ebuki selaa pakiku ejadi keusakkan ala sapai kali. Tabel.3 Hubungan pecepaan dengan assa Pecobaan ini behasil. Deviasi eo yang ejadi sangalah kecil <=0,65%. Deviasi eo dapa ejadi kaena ekkan idak dipehiungkan ekkan dianggap idak ada, padahal sehausnya ada walaupun kecil sekali. Tabel.4 Hubungan anaa pecepaan dengan gaya Deviasi eo pada a cukup kecil < 3%, naun pada T cukup besa sapai 7% daa ke. Walaupun deikian, pecobaan asih dapa dikaakan behasil. Gaik pecobaan ini asih epunyai pola dan benuk yang iip dengan lapian PHYWE. Deviasi eo ejadi kaena adanya pepindahan beban euseneus, sehingga a eoi juga beubah eus liha uusuus beiku unuk sapai pada kesipulan deikian. s a pak = ; a eoi = g eoi ; g pak = a pak Teoi = xaeoi ; Tpak = xgpakapak x = beban yang dianse dai glide ke weigh holde.. Ala yang digunakan : buah Ligh Baie LB0 dengan koniguasi :

7 * buah Ligh Baie * buah Tipod Base * buah Suppo Rod, 40 c * buah Righ Angle Clap Beungsi unuk enghalangi cahaya yang asuk sehingga senso bekeja dan waku yang diepuh glide dapa diuku. buah Pecission Pulley KATROL0 dengan koniguasi : * buah Pecission Pulley * buah Tipod Base Beungsi unuk enaik glide. 34 buah Sloed Weigh BEBAN0003 dengan deail : * 0 buah 0g Sloed Weigh * 4 buah 50g Sloed Weigh * 0 buah g Sloed Weigh Beungsi sebagai beban yang diganungkan, baik di glide aupun di weigh holde. buah Weigh Holde WH0 Beungsi sebagai epa unuk eleakkan Sloed Weigh. Benang Jahi penggani Silk Thead BENANG0 Unuk enghubungkan glide dengan kaol Sloed Weigh. buah Glide GLIDER0 dengan koniguasi : * buah Glide * buah Hook dengan Plug * buah Magne dengan Plug Beungsi sebagai. buah Sceen LAYAR00 Beungsi sebagai pebaas aga naninya senso dapa bekeja keika laye elinasinya. buah Sae Syse STARTER0 Beungsi unuk engalikan lisik aga kupaan enjadi agne. buah Blowe BLOWER0 dengan koniguasi : * buah Blowe * buah Pessue Tube,,5 * buah Kabel Powe Beungsi unuk engalikan udaa ke ai ack ail sehingga ekkan enjadi kecil. buah Coune Tie TIMER0 dengan koniguasi : * buah Coune/Tie

8 * buah Kabel Powe Beungsi unuk enghiung waku kejadian. buah Ai Tack Rail RAIL0 Sebagai linasan glide. 6 buah Connecing Cod KABEL Unuk enghubungkan coune dengan ligh baie da n coune dengan sae syse. 3. Gaik lainnya dapa diliha pada lapian iliee block Gaik.3 Hubungan pecepaan dengan assa a /deik 0,5 0,45 0,4 0,35 0,3 0,5 0, 0,5 0, 0, a pak 0,456 0,4 0,387 0,36 ga a pak dp 4. Huku Newon kedua F = idak belaku unuk kecepaan yang endekai cahaya. Jika d suau benda begeak dengan kecepaan yang endekai kecepaan cahaya 3 x 0 8 /s aka hasil pehiungan panjang dan assa benda esebu akan bebeda dengan yang sesungguhnya. Newon enganggap benda begeak secaa absolue diasusikan pengaa dala keadaan dia. Sedangkan kenyaaannya, anusia engaai dai bui yang noabene begeak.

9 5. Kekuangan sise ekanika Newon sehingga ibul sise ekanika kuanu Sise ekanika Newon hanya dapa belaku unuk bendabenda yang begeak dengan kecepaan jauh lebih kecil daipada laju cahaya. Keidaksaaan anaa hasil yang didapa dai ekspeienal enegi paikel dengan Teoi Mekanika Newon. Unuk syse paikel beuaan sepei poon dan elecon, Huku Gaviasi Newon idak dapa dieapkan. Akhinya pada ekanika kuanu sebagian besa behubungan dengan paikelpaikel beuaan. 6. Dua hasil pecobaan isika yang idak dapa dijelaskan dengan Huku Newon : Eek oolisik Relaivias 7. V awal glide = 0 ; glide = ; s = s Ligh baie die sejauh s ; glide = ; s = s Pecepaan gaviasi = g ; glide = ; beban = Koeisien ekkan kaol diabaikan. Hiung ì ai ack ail dala vaiabelvaiabel di aas! Jawab : Benda I Glide Benda II Beban T =.a W T =.a.g T =.a

10 T =.a T =.g.a Kaena sau syse, aka besanya egangan ali adalah saa. T = T.a =.g.a a =.g a =. g v =.. g s =.. g Sewaku enepuh jaak s : s =.g Sewaku enepuh jaak s : s =.g s s =. g.g s =. g.g s =.g.g s =..g....g. s =.g s =.g = s.g =.g s.n µ =.g.s

11 .s.g µ.g = µ koeisien ek ai ack ail =.s.g. g VI. Kesipulan Tabel.. s jaak bebanding luus dengan waku.. g pakiku sebanding dengan a pakiku. 3. g pakiku bebanding ebalik dengan. Tabel.. v pakiku bebanding luus dengan Äs dan bebanding ebalik dengan Ä. v eoi bebanding luus dengan s. Tabel.3. Penabahan beban pada akan engakibakan beabahnya bebanding luus.. Penabahan beban pada bebanding ebalik dengan a baik eoi aupun pakiku. 3. Pecepaan bebanding ebalik dengan waku. Tabel.4. T sebanding dengan a.. bebanding ebalik dengan beban yang dianse dai glide ke weigh holde.

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasa I (FI-321) Topik hai ini (minggu 3) Geak dalam Dua dan Tiga Dimensi Posisi dan Pepindahan Kecepaan Pecepaan Geak Paabola Geak Melingka Geak dalam Dua dan Tiga Dimensi Menggunakan anda + aau

Lebih terperinci

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Vektor

Program Perkuliahan Dasar Umum Sekolah Tinggi Teknologi Telkom Fungsi Vektor Pogam Pekuliahan Dasa Umum Sekolah Tinggi Teknologi Telkom Fungsi Veko [MA4] Deinisi Deinisi ungsi veko Fungsi veko meupakan auan yang mengkaikan ε R dengan epa sau veko F R Noasi : F : R R F î gĵ, g aau

Lebih terperinci

Bahan Ajar Fisika Teori Kinetik Gas Iqro Nuriman, S.Si, M.Pd TEORI KINETIK GAS

Bahan Ajar Fisika Teori Kinetik Gas Iqro Nuriman, S.Si, M.Pd TEORI KINETIK GAS Bahan ja Fisika eoi Kinetik Gas Iqo uian, S.Si,.Pd EORI KIEIK GS Pendahuluan Gas eupakan zat dengan sifat sifatnya yang khas diana olekul atau patikelnya begeak bebas. Banyak gajala ala yang bekaitan dengan

Lebih terperinci

kimia LAJU REAKSI II Tujuan Pembelajaran

kimia LAJU REAKSI II Tujuan Pembelajaran KTSP & K-13 kimia K e l a s XI LAJU REAKSI II Tujuan Pembelajaan Seelah mempelajai maei ini, kamu dihaapkan memiliki kemampuan beiku. 1. Mengeahui pesamaan laju eaksi.. Memahami ode eaksi dan konsana laju

Lebih terperinci

Fisika Dasar I (FI-321) Gravitasi

Fisika Dasar I (FI-321) Gravitasi Fisika Dasa I (FI-31) Topik hai ini Gavitasi Inteaksi (Gaya) Fundaental di ala 1. Inteaksi Kuat. Inteaksi lektoagnetik 3. Inteaksi Leah 4. Inteaksi Gavitasi Meupakan inteaksi yang paling Leah Tidak Bepengauh/Diabaikan

Lebih terperinci

MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA TERAPAN (2 sks)

MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA TERAPAN (2 sks) Polieknik Negeri Banjarmasin 4 MODUL PERTEMUAN KE 3 MATA KULIAH : ( sks) MATERI KULIAH: Jarak, Kecepaan dan Percepaan; Gerak Lurus Berauran, Percepaan; Gerak Lurus Berauran, Gerak Lurus Berubah Berauran

Lebih terperinci

APLIKASI TEORI KONTROL DALAM LINIERISASI MODEL PERSAMAAN GERAK SATELIT

APLIKASI TEORI KONTROL DALAM LINIERISASI MODEL PERSAMAAN GERAK SATELIT APLIKASI TEORI KONTROL DALAM LINIERISASI MODEL PERSAMAAN GERAK SATELIT Swesi Yunia Puwani, Asep K. Supiana, Nusani Anggiani Absak Maemaika sanga bepean dalam pengembangan ilmu konol. Aplikasi sisem konol

Lebih terperinci

II LANDASAN TEORI 2.1 Persamaan Dasar Fluida

II LANDASAN TEORI 2.1 Persamaan Dasar Fluida 4 II LANDASAN TEORI Dala bab ini akan diberikan eori-eori yang berkaian dengan peneliian ini. Teori-eori ersebu elipui persaaan dasar fluida yang akan disarikan dari Billingha dan King [7], dan Wiha [8].

Lebih terperinci

GERAK LURUS BESARAN-BESARAN FISIKA PADA GERAK KECEPATAN DAN KELAJUAN PERCEPATAN GLB DAN GLBB GERAK VERTIKAL

GERAK LURUS BESARAN-BESARAN FISIKA PADA GERAK KECEPATAN DAN KELAJUAN PERCEPATAN GLB DAN GLBB GERAK VERTIKAL Suau benda dikaakan bergerak manakalah kedudukan benda iu berubah erhadap benda lain yang dijadikan sebagai iik acuan. Benda dikaakan diam (idak bergerak) manakalah kedudukan benda iu idak berubah erhadap

Lebih terperinci

Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA DASAR (4 sks)

Jurusan Teknik Sipil Fakultas Teknik Sipil dan Perencanaan Universitas Mercu Buana MODUL PERTEMUAN KE 3. MATA KULIAH : FISIKA DASAR (4 sks) MODUL PERTEMUAN KE 3 MATA KULIAH : (4 sks) MATERI KULIAH: Jarak, Kecepaan dan Percepaan; Gerak Lurus Berauran, Percepaan; Gerak Lurus Berauran, Gerak Lurus Berubah Berauran POKOK BAHASAN: GERAK LURUS 3-1

Lebih terperinci

BAB III PENGEMBANGAN MODEL MATEMATIK

BAB III PENGEMBANGAN MODEL MATEMATIK A III PENGEMANGAN MODEL MATEMATIK Pada analisis manual ang akan dikembangkan, unuk menjamin bahwa eoi maupun umusan ang diuunkan belaku (valid) maka pelu dieapkan asumsi dasa. Sehingga hasil analisis manual

Lebih terperinci

PERSAMAAN GERAK VEKTOR SATUAN. / i / = / j / = / k / = 1

PERSAMAAN GERAK VEKTOR SATUAN. / i / = / j / = / k / = 1 PERSAMAAN GERAK Posisi iik maeri dapa dinyaakan dengan sebuah VEKTOR, baik pada suau bidang daar maupun dalam bidang ruang. Vekor yang dipergunakan unuk menenukan posisi disebu VEKTOR POSISI yang diulis

Lebih terperinci

BAB 2 KINEMATIKA. A. Posisi, Jarak, dan Perpindahan

BAB 2 KINEMATIKA. A. Posisi, Jarak, dan Perpindahan BAB 2 KINEMATIKA Tujuan Pembelajaran 1. Menjelaskan perbedaan jarak dengan perpindahan, dan kelajuan dengan kecepaan 2. Menyelidiki hubungan posisi, kecepaan, dan percepaan erhadap waku pada gerak lurus

Lebih terperinci

B B B. Pembebanan yang bekerja pada balok menyebabkan balok melentur, sehingga sumbunya terdeformasi membentuk lengkungan yang

B B B. Pembebanan yang bekerja pada balok menyebabkan balok melentur, sehingga sumbunya terdeformasi membentuk lengkungan yang A B Balok kanileve AB anpa dibebani A P B B B Balok kanileve AB memikul beban P di ujung bebas Sumbu yang semula luus akan melenu membenuk lengkungan yang besanya eganung pada besa beban yang bekeja Pembebanan

Lebih terperinci

=====O0O===== Gerak Vertikal Gerak vertikal dibagi menjadi 2 : 1. GJB 2. GVA. A. GERAK Gerak Lurus

=====O0O===== Gerak Vertikal Gerak vertikal dibagi menjadi 2 : 1. GJB 2. GVA. A. GERAK Gerak Lurus A. GERAK Gerak Lurus o a Secara umum gerak lurus dibagi menjadi 2 : 1. GLB 2. GLBB o 0 a < 0 a = konsan 1. GLB (Gerak Lurus Berauran) S a > 0 a < 0 Teori Singka : Perumusan gerak lurus berauran (GLB) Grafik

Lebih terperinci

1.4 Persamaan Schrodinger Bergantung Waktu

1.4 Persamaan Schrodinger Bergantung Waktu .4 Persamaan Schrodinger Berganung Waku Mekanika klasik aau mekanika Newon sanga sukses dalam mendeskripsi gerak makroskopis, eapi gagal dalam mendeskripsi gerak mikroskopis. Gerak mikroskopis membuuhkan

Lebih terperinci

Xpedia Fisika. Mekanika 03

Xpedia Fisika. Mekanika 03 Xpedia Fisika Mekanika 03 halaan 1 01. Manakah diaga dai dua planet di bawah ini yang ewakili gaya gavitasi yang paling besa diantaa dua benda beassa? 0. Sebuah satelit beada pada obit engelilingi bui.

Lebih terperinci

Gambar 4.3. Gambar 44

Gambar 4.3. Gambar 44 1 BAB HUKUM NEWTON TENTANG GERAK Pada bab kita telah membahas sifat-sifat geak yang behubungan dengan kecepatan dan peceaptan benda. Pembahasan pada Bab tesesbut menjawab petanyaan Bagaimana sebuah benda

Lebih terperinci

x 4 x 3 x 2 x 5 O x 1 1 Posisi, perpindahan, jarak x 1 t 5 t 4 t 3 t 2 t 1 FI1101 Fisika Dasar IA Pekan #1: Kinematika Satu Dimensi Dr.

x 4 x 3 x 2 x 5 O x 1 1 Posisi, perpindahan, jarak x 1 t 5 t 4 t 3 t 2 t 1 FI1101 Fisika Dasar IA Pekan #1: Kinematika Satu Dimensi Dr. Pekan #1: Kinemaika Sau Dimensi 1 Posisi, perpindahan, jarak Tinjau suau benda yang bergerak lurus pada suau arah erenu. Misalnya, ada sebuah mobil yang dapa bergerak maju aau mundur pada suau jalan lurus.

Lebih terperinci

=====O0O===== c) Tumbukan tidak lenting, e = 0 A. MOMENTUM DAN TUMBUKAN. Hukum kekekalan energi kinetik tidak berlaku.

=====O0O===== c) Tumbukan tidak lenting, e = 0 A. MOMENTUM DAN TUMBUKAN. Hukum kekekalan energi kinetik tidak berlaku. A. MOMENTUM DAN TUMUKAN Teori Singka :. Perkalian anara assa dan keceaan disebu oenu P P. Hasil kali anara gaya F dan selang waku enghasilkan erubahan oenu P disebu ula Iuls I I P F d c Tubukan idak lening,

Lebih terperinci

BAB VI SUHU DAN KALOR

BAB VI SUHU DAN KALOR BAB VI SUHU DAN KALOR STANDAR KOMPETENSI : 5. Meneapkan konsep dan prinsip kalor, konservasi energi dan suber energi dengan berbagai perubahannya dala esin kalor. Kopeensi Dasar : 5.1 Melakukan percobaan

Lebih terperinci

BAHAN AJAR GERAK LURUS KELAS X/ SEMESTER 1 OLEH : LIUS HERMANSYAH,

BAHAN AJAR GERAK LURUS KELAS X/ SEMESTER 1 OLEH : LIUS HERMANSYAH, BAHAN AJAR GERAK LURUS KELAS X/ SEMESTER 1 OLEH : LIUS HERMANSYAH, S.Si NIP. 198308202011011005 SMA NEGERI 9 BATANGHARI 2013 I. JUDUL MATERI : GERAK LURUS II. INDIKATOR : 1. Menganalisis besaran-besaran

Lebih terperinci

FIsika KTSP & K-13 KINEMATIKA. K e l a s A. VEKTOR POSISI

FIsika KTSP & K-13 KINEMATIKA. K e l a s A. VEKTOR POSISI KTSP & K-13 FIsika K e l a s XI KINEMATIKA Tujuan Pembelajaran Seelah mempelajari maeri ini, kamu diharapkan mampu menjelaskan hubungan anara vekor posisi, vekor kecepaan, dan vekor percepaan unuk gerak

Lebih terperinci

MODEL OSILASI HARMONIK LOGARITMIK PADA GERAK BEBAN DENGAN MASSA YANG BERUBAH SECARA LINIER TERHADAP WAKTU

MODEL OSILASI HARMONIK LOGARITMIK PADA GERAK BEBAN DENGAN MASSA YANG BERUBAH SECARA LINIER TERHADAP WAKTU 1 MODEL OSILASI HARMONIK LOGARITMIK PADA GERAK BEBAN DENGAN MASSA YANG BERUBAH SECARA LINIER TERHADAP WAKTU MODEL OF HARMONIC LOGARITHMIC MOTION OSCILLATION WITH THE MASSCHANGING LINEARLY WITH TIME Kunlesiowai

Lebih terperinci

Faradina GERAK LURUS BERATURAN

Faradina GERAK LURUS BERATURAN GERAK LURUS BERATURAN Dalam kehidupan sehari-hari, sering kia jumpai perisiwa yang berkaian dengan gerak lurus berauran, misalnya orang yang berjalan kaki dengan langkah yang relaif konsan, mobil yang

Lebih terperinci

BAB 4 (Minggu Ke 6) Gerak Umum Partikel Dalam Tiga Dimensi

BAB 4 (Minggu Ke 6) Gerak Umum Partikel Dalam Tiga Dimensi 5 4 (Minggu Ke 6) Geak Uu Paikel Dala Tiga Diensi PENDHULUN Leaning Oucoe: Seelah engikui kuliah ini, ahasiswa dihaapkan : Mapu eahai ungsi Tenaga Poensial dala Geak Tiga Diensi. Mapu enggabakan dan enelesaikan

Lebih terperinci

Transien 1. Solusi umum persamaan gelombang. Contoh contoh Switch on kondisi unmatched. Mudrik Alaydrus, Univ. Mercu Buana, 2008 Presentasi 9 1

Transien 1. Solusi umum persamaan gelombang. Contoh contoh Switch on kondisi unmatched. Mudrik Alaydrus, Univ. Mercu Buana, 2008 Presentasi 9 1 Tansien Slusi umum pesamaan gelmbang Cn cn Swic n kndisi unmaced pecabangan Mudik Alaydus, Uni. Mecu Buana, 008 Pesenasi 9 Pada pembaasan sebelumnya : pengandaikan sinyalyangyang amnis, aau kndisi sinyal

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun

BAB III METODE PEMULUSAN EKSPONENSIAL TRIPEL DARI WINTER. Metode pemulusan eksponensial telah digunakan selama beberapa tahun 43 BAB METODE PEMUUAN EKPONENA TRPE DAR WNTER Meode pemulusan eksponensial elah digunakan selama beberapa ahun sebagai suau meode yang sanga berguna pada begiu banyak siuasi peramalan Pada ahun 957 C C

Lebih terperinci

Seleksi Bersama Masuk Perguruan Tinggi Negeri. SAINTEK Fisika Kode:

Seleksi Bersama Masuk Perguruan Tinggi Negeri. SAINTEK Fisika Kode: Seleksi Bersama Masuk Perguruan Tinggi Negeri SAINTEK Fisika 2013 Kode: 131 TKD SAINTEK FISIKA www.bimbinganalumniui.com 1. Gerak sebuah benda dinyaakan dalam sebuah grafik kecepaan erhadap waku beriku

Lebih terperinci

Oleh : Danny Kurnianto; Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto

Oleh : Danny Kurnianto; Risa Farrid Christianti Sekolah Tinggi Teknologi Telematika Telkom Purwokerto Oleh : Danny Kurniano; Risa Farrid Chrisiani Sekolah Tinggi Teknologi Telemaika Telkom Purwokero Pendahuluan Seelah kia mempelajari anggapan alamiah dari suau rangkaian RL aau RC, yaiu anggapan saa sumber

Lebih terperinci

3. Kinematika satu dimensi. x 2. x 1. t 1 t 2. Gambar 3.1 : Kurva posisi terhadap waktu

3. Kinematika satu dimensi. x 2. x 1. t 1 t 2. Gambar 3.1 : Kurva posisi terhadap waktu daisipayung.com 3. Kinemaika sau dimensi Gerak benda sepanjang garis lurus disebu gerak sau dimensi. Kinemaika sau dimensi memiliki asumsi benda dipandang sebagai parikel aau benda iik arinya benuk dan

Lebih terperinci

GRAFITASI. F = G m m 1 2. F = Gaya grafitasi, satuan : NEWTON. G = Konstanta grafitasi, besarnya : G = 6,67 x 10-11

GRAFITASI. F = G m m 1 2. F = Gaya grafitasi, satuan : NEWTON. G = Konstanta grafitasi, besarnya : G = 6,67 x 10-11 GRAFITASI Si Isaac Newton yang tekenal dengan hukum-hukum Newton I, II dan III, juga tekenal dengan hukum Gafitasi Umum. Didasakan pada patikel-patikel bemassa senantiasa mengadakan gaya taik menaik sepanjang

Lebih terperinci

KINEMATIKA GERAK DALAM SATU DIMENSI

KINEMATIKA GERAK DALAM SATU DIMENSI KINEMATIKA GERAK DALAM SATU DIMENSI PENDAHULUAN Kinemaika adalah bagian dari mekanika ang membahas enang gerak anpa memperhaikan penebab benda iu bergerak. Arina pembahasanna idak meninjau aau idak menghubungkan

Lebih terperinci

Xpedia Fisika. Mekanika 01

Xpedia Fisika. Mekanika 01 Xpedia Fisika Mekanika 01 Doc. Name: XPFI0101 Doc. ersion : 2012-07 halaman 1 01. Manakah pernyaaan di bawah ini yang benar? (A) Perpindahan adalah besaran skalar dan jarak adalah besaran vekor. (B) Perpindahaan

Lebih terperinci

KINEMATIKA. gerak lurus berubah beraturan(glbb) gerak lurus berubah tidak beraturan

KINEMATIKA. gerak lurus berubah beraturan(glbb) gerak lurus berubah tidak beraturan KINEMATIKA Kinemaika adalah mempelajari mengenai gerak benda anpa memperhiungkan penyebab erjadi gerakan iu. Benda diasumsikan sebagai benda iik yaiu ukuran, benuk, roasi dan gearannya diabaikan eapi massanya

Lebih terperinci

SOAL-JAWAB UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT KABUPATEN / KOTA FISIKA. Waktu : 3 jam

SOAL-JAWAB UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT KABUPATEN / KOTA FISIKA. Waktu : 3 jam SOAL-JAWAB UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 05 TINGKAT KABUPATEN / KOTA FISIKA Waku : 3 ja KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN MENENGAH DIREKTORAT PEMBINAAN

Lebih terperinci

BANGUN RUANG. ABFE dan sisi DCGH, dan sisi ADHE dan sisi

BANGUN RUANG. ABFE dan sisi DCGH, dan sisi ADHE dan sisi NGUN RUNG. Pengeian 1. Kubu Kubu adalah bangun uang yang dibaai oleh enam buah bidang peegi yang konguen (benuk dan E beanya ama). (Pehaikan Gamba 1) Kubu mempunyai 6 ii, 8 iik udu, dan 12 uuk. Semua uuk

Lebih terperinci

PERTEMUAN 2 KINEMATIKA SATU DIMENSI

PERTEMUAN 2 KINEMATIKA SATU DIMENSI PERTEMUAN KINEMATIKA SATU DIMENSI RABU 30 SEPTEMBER 05 OLEH: FERDINAND FASSA PERTANYAAN Pernahkah Anda meliha aau mengamai pesawa erbang yang mendara di landasannya? Berapakah jarak empuh hingga pesawa

Lebih terperinci

FISIKA. Kelas X HUKUM NEWTON TENTANG GRAVITASI K-13. A. Hukum Gravitasi Newton

FISIKA. Kelas X HUKUM NEWTON TENTANG GRAVITASI K-13. A. Hukum Gravitasi Newton K- Kelas X ISIKA HUKUM NEWON ENANG GAVIASI UJUAN PEMELAJAAN Setelah mempelajai matei ini, kamu dihaapkan memiliki kemampuan beikut.. Menjelaskan hukum gavitasi Newton.. Memahami konsep gaya gavitasi dan

Lebih terperinci

BAB 2 RESPONS FUNGSI STEP PADA RANGKAIAN RL DAN RC. Adapun bentuk yang sederhana dari suatu persamaan diferensial orde satu adalah: di dt

BAB 2 RESPONS FUNGSI STEP PADA RANGKAIAN RL DAN RC. Adapun bentuk yang sederhana dari suatu persamaan diferensial orde satu adalah: di dt BAB ESPONS FUNGSI STEP PADA ANGKAIAN DAN C. Persamaan Diferensial Orde Sau Adapun benuk yang sederhana dari suau persamaan ferensial orde sau adalah: 0 a.i a 0 (.) mana a o dan a konsana. Persamaan (.)

Lebih terperinci

Interferensi cahaya menghasilkan suatu pola interferensi (terang-gelap)

Interferensi cahaya menghasilkan suatu pola interferensi (terang-gelap) NTRFRNS CAHAYA nefeensi cahaya meupakan ineaksi dua aau lebih gelombang cahaya yang menghasilkan suau adiasi yang menyimpang dai jumlah masing-masing komponen adiasi gelombangnya. nefeensi cahaya menghasilkan

Lebih terperinci

PENENTUAN PERCEPATAN GRAVITASI BUMI DENGAN KINCIR MOMENTUM GRAVITASI AIR

PENENTUAN PERCEPATAN GRAVITASI BUMI DENGAN KINCIR MOMENTUM GRAVITASI AIR Poseding Semina Nasional Fisika dan Aplikasinya Sabu, 1 Novembe 015 Bale Sawala Kampus Univesias Padjadjaan, Jainango PENENTUAN PERCEPATAN GRAVITASI BUMI DENGAN KINCIR MOMENTUM GRAVITASI AIR AYU LUSIYANA-1

Lebih terperinci

Berlaku Perbandingan. A. Konsep Suhu

Berlaku Perbandingan. A. Konsep Suhu Suhu erupakan ukuran relaif (deraja) panas aau dingin suau benda aau sise. Pada kasus dua buah benda yang berbeda suhu dan keduanya disenuhkan sau saa lain, aka kr akan engir dari benda yang lebih panas

Lebih terperinci

MODUL PERTEMUAN KE 6 MATA KULIAH : FISIKA TERAPAN

MODUL PERTEMUAN KE 6 MATA KULIAH : FISIKA TERAPAN 43 MODUL PERTEMUAN KE 6 MATA KULIAH : MATERI KULIAH: Mekanika klasik, Huku Newton I, Gaya, Siste Satuan Mekanika, Berat dan assa, Cara statik engukur gaya.. POKOK BAHASAN: DINAMIKA PARTIKEL 6.1 MEKANIKA

Lebih terperinci

BAB X GERAK LURUS. Gerak dan Gaya. Buku Pelajaran IPA SMP Kelas VII 131

BAB X GERAK LURUS. Gerak dan Gaya. Buku Pelajaran IPA SMP Kelas VII 131 BAB X GERAK LURUS. Apa perbedaan anara jarak dan perpindahan? 2. Apa perbedaan anara laju dan kecepaan? 3. Apa yang dimaksud dengan percepaan? 4. Apa perbedaan anara gerak lurus berauran dan gerak lurus

Lebih terperinci

Fisika Dasar. Gerak Jatuh Bebas 14:12:55. dipengaruhi gaya. berubah sesuai dengan ketinggian. gerak jatuh bebas? nilai percepatan gravitasiyang

Fisika Dasar. Gerak Jatuh Bebas 14:12:55. dipengaruhi gaya. berubah sesuai dengan ketinggian. gerak jatuh bebas? nilai percepatan gravitasiyang Gerak Jauh Bebas 14:1:55 Gerak Jauh Bebas Gerak jauh bebas merupakan gerakan objekyang dipengaruhi gaya graiasi. Persamaan maemaik gerak jauh bebas sama dengan persamaan gerak1d unuk percepaan konsan.

Lebih terperinci

Tryout SBMPTN. Fisika. 2 v

Tryout SBMPTN. Fisika. 2 v Tryou SBMPTN Fisika Doc. Name: TOSBMPTN1FIS Doc. ersion : 216-5 halaman 1 m v H 1/ 2m θ 1 2 v Dua meriam menembak bersamaan. Massa bola meriam yang diembakan dari anah seengah kali massa bola meriam yang

Lebih terperinci

KISI-KISI SOAL. : Gerak Pada Makhluk Hidup dan Benda. : 2 jam pelajaran

KISI-KISI SOAL. : Gerak Pada Makhluk Hidup dan Benda. : 2 jam pelajaran KISI-KISI SOAL Sauan Pendidikan Kelas Maa Pelajaran Maeri Waku : Sekolah Menengah Perama (SMP) : VIII C : IPA : Gerak Pada Makhluk Hidup dan Benda : 2 jam pelajaran No Kompeensi Dasar Indikaor Soal Nomor

Lebih terperinci

ARUS,HAMBATAN DAN TEGANGAN GERAK ELEKTRIK

ARUS,HAMBATAN DAN TEGANGAN GERAK ELEKTRIK AUS,HAMBATAN DAN TEGANGAN GEAK ELEKTK Oleh : Sar Nurohman,M.Pd Ke Menu Uama Liha Tampilan Beriku: AUS Arus lisrik didefinisikan sebagai banyaknya muaan yang mengalir melalui suau luas penampang iap sauan

Lebih terperinci

Soal Jawab Fisika Teori OSN 2015 Yogyakarta, 20 Mei Oleh : Davit Sipayung (DS)

Soal Jawab Fisika Teori OSN 2015 Yogyakarta, 20 Mei Oleh : Davit Sipayung (DS) Soal Jawab Fiika Teoi OS 5 Yogyakaa, Mei 5 Oleh : Davi Sipayung (DS). ( poin) Tinjau ebuah bola alju yang edang menggelinding. Sepei kia ahu, enomena menggelindingnya bola alju diikui oleh peambahan maa

Lebih terperinci

BAB 11 GRAVITASI. FISIKA 1/ Asnal Effendi, M.T. 11.1

BAB 11 GRAVITASI. FISIKA 1/ Asnal Effendi, M.T. 11.1 BAB 11 GRAVITASI Hukum gavitasi univesal yang diumuskan oleh Newton, diawali dengan bebeapa pemahaman dan pengamatan empiis yang telah dilakukan oleh ilmuwan-ilmuwan sebelumnya. Mula-mula Copenicus membeikan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3. Analisa Haronik Elevasi pasang suru adalah penulahan dari beberapa konsana pasang suru dan fakor eeorologis yang diasusikan konsan, seperi diunukkan pada persaaan beriku:

Lebih terperinci

JAWABAN SOAL FISIKA OSN Medan, 1 7 Agustus 2010

JAWABAN SOAL FISIKA OSN Medan, 1 7 Agustus 2010 JAWABAN SOAL FISIKA OSN 00 Medan, 7 Aguu 00 Gaya gaya yang ekeja pada ola diunjukkan pada gama diamping. Peamaan geak unuk pua maa ola adalah () () dan pada ola yang eoai elaku Syaa aga ola menggelinding

Lebih terperinci

Pekan #3. Osilasi. F = ma mẍ + kx = 0. (2)

Pekan #3. Osilasi. F = ma mẍ + kx = 0. (2) FI Mekanika B Sem. 7- Pekan #3 Osilasi Persamaan diferensial linear Misal kia memiliki sebuah fungsi berganung waku (. Persamaan diferensial linear dalam adalah persamaan yang mengandung variabel dan urunannya

Lebih terperinci

Arus Bolak-Balik. Tegangan dan arus bolak balik dapat dinyatakan dalam bentuk

Arus Bolak-Balik. Tegangan dan arus bolak balik dapat dinyatakan dalam bentuk Arus Bolak-Balik Arus bolak balik dihasilkan oleh generaor yang enghasilkan egangan bolak-balik dan biasanya dala benuk fungsi sinusoida sinus aau cosinus. Tegangan dan arus bolak balik dapa dinyaakan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Pengerian Peramalan Peramalan (forecasing) adalah suau kegiaan yang memperkirakan apa yang akan erjadi pada masa yang akan daang. Meode peramalan merupakan cara unuk memperkirakan

Lebih terperinci

Pengertian. Transformasi 2D. Contoh translasi. Translasi Geser

Pengertian. Transformasi 2D. Contoh translasi. Translasi Geser Pengeian Tansomasi D umbe : C34 GRAFIKA KOMPUTER Chape 6 Tansomasi D, Depaemen Teknik Inomaika - TT Telkom esi - Dosen Pembina: iani Violina Danang Junaedi Tansomasi geomeic ansomaion Tansomasi mengubah

Lebih terperinci

IR. STEVANUS ARIANTO 1

IR. STEVANUS ARIANTO 1 GERAK TRANSLASI GERAK PELURU GERAK ROTASI DEFINISI POSISI PERPINDAHAN MEMADU GERAK D E F I N I S I PANJANG LINTASAN KECEPATAN RATA-RATA KELAJUAN RATA-RATA KECEPATAN SESAAT KELAJUAN SESAAT PERCEPATAN RATA-RATA

Lebih terperinci

BAB II MEDAN LISTRIK DI SEKITAR KONDUKTOR SILINDER

BAB II MEDAN LISTRIK DI SEKITAR KONDUKTOR SILINDER BAB II MDAN ISTRIK DI SKITAR KONDUKTOR SIINDR II. 1 Hukum Coulomb Chales Augustin Coulomb (1736-1806), adalah oang yang petama kali yang melakukan pecobaan tentang muatan listik statis. Dai hasil pecobaannya,

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. Kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang

BAB 2 TINJAUAN TEORITIS. Kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang BAB 2 TINJAUAN TEORITIS 2.1 Pengerian dan Manfaa Peramalan Kegiaan unuk mempeirakan apa yang akan erjadi pada masa yang akan daang disebu peramalan (forecasing). Sedangkan ramalan adalah suau kondisi yang

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini adalah penelitian Quasi Eksperimental Design dengan

BAB III METODOLOGI PENELITIAN. Penelitian ini adalah penelitian Quasi Eksperimental Design dengan BAB III METODOLOGI PENELITIAN A. Jenis dan Desain Peneliian Peneliian ini adalah peneliian Quasi Eksperimenal Design dengan kelas eksperimen dan kelas conrol dengan desain Prees -Poses Conrol Group Design

Lebih terperinci

BAB KINEMATIKA DENGAN ANALISIS VEKTOR

BAB KINEMATIKA DENGAN ANALISIS VEKTOR BAB KINEMATIKA DENGAN ANALISIS VEKTOR Karakerisik gerak pada bidang melibakan analisis vekor dua dimensi, dimana vekor posisi, perpindahan, kecepaan, dan percepaan dinyaakan dalam suau vekor sauan i (sumbu

Lebih terperinci

BAB 4 PENGANALISAAN RANGKAIAN DENGAN PERSAMAAN DIFERENSIAL ORDE DUA ATAU LEBIH TINGGI

BAB 4 PENGANALISAAN RANGKAIAN DENGAN PERSAMAAN DIFERENSIAL ORDE DUA ATAU LEBIH TINGGI BAB 4 PENANAISAAN RANKAIAN DENAN PERSAMAAN DIFERENSIA ORDE DUA ATAU EBIH TINI 4. Pendahuluan Persamaan-persamaan ferensial yang pergunakan pada penganalisaan yang lalu hanya erbaas pada persamaan-persamaan

Lebih terperinci

KONKURENSI TITIK GERGONNE. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia.

KONKURENSI TITIK GERGONNE. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia. KONKURENSI TITIK GERGONNE Tisna Desi *, M. Nasi, Hasiai Mahasiswa Poga S Maeaika Dosen Juusan Maeaika Fakulas Maeaika dan Ilu Pengeahuan la Unieias Riau Kapus Bina Widya 89 Indonesia *desiisnanubi@yahoo.co

Lebih terperinci

1. Mistar A. BESARAN DAN SATUAN

1. Mistar A. BESARAN DAN SATUAN A. ESARAN DAN SATUAN Teori Singka : Di dala Fisika gejala ala diaai elalui pengukuran. Pengukuran adalah ebandingkan suau besaran dengan besaran sejenis yang disepakai sebagai paokan (sandar). esaran adalah

Lebih terperinci

BAB I PENDAHULUAN. tepat rencana pembangunan itu dibuat. Untuk dapat memahami keadaan

BAB I PENDAHULUAN. tepat rencana pembangunan itu dibuat. Untuk dapat memahami keadaan BAB I PENDAHULUAN 1.1 Laar Belakang Dalam perencanaan pembangunan, daa kependudukan memegang peran yang pening. Makin lengkap dan akura daa kependudukan yang esedia makin mudah dan epa rencana pembangunan

Lebih terperinci

Momentum sudut didefiniskan sebagai: dt dt. Momen gaya:

Momentum sudut didefiniskan sebagai: dt dt. Momen gaya: Benda Tega Moentu sudut ddefnskan sebaga: xp d F dp x dp xf d d xp d dp vxp x 0 Moen gaya: xf xp x x d dp dp Moen gaya: xf d Moen gaya : + belawanan aah jau ja - Jka seaah jau ja. d Jka F=0, tdak ada gaya

Lebih terperinci

PERBANDINGAN PERAMALAN METODE DOUBLE EXPONENTIAL SMOOTHING SATU PARAMETER BROWN DAN METODE DOUBLE EXPONENTIAL SMOOTHING DUA PARAMETER HOLT

PERBANDINGAN PERAMALAN METODE DOUBLE EXPONENTIAL SMOOTHING SATU PARAMETER BROWN DAN METODE DOUBLE EXPONENTIAL SMOOTHING DUA PARAMETER HOLT aisika, Vol. 4, No. 1, Tahun 2016 PERBANDINGAN PERAMALAN METODE DOUBLE EXPONENTIAL MOOTHING ATU PARAMETER BROWN DAN METODE DOUBLE EXPONENTIAL MOOTHING DUA PARAMETER HOLT Julnia Bidangan 1, Ika Purnaasari

Lebih terperinci

ARUS DAN TEGANGAN BOLAK BALIK

ARUS DAN TEGANGAN BOLAK BALIK AUS DAN TEGANGAN BOAK BAK GG nduksi yang dihasilkan jika kuparan berpuar di dala edan agne aau kuparan yang dipengaruhi oleh perubahan fluks agneik, berupa egangan yang arah nya berubah ubah seiap seengah

Lebih terperinci

K ata Kunci. K D ompetensi asar. P B engalaman elajar. Bab V. Bangun Ruang Sisi Lengkung. Di unduh dari : Bukupaket.

K ata Kunci. K D ompetensi asar. P B engalaman elajar. Bab V. Bangun Ruang Sisi Lengkung. Di unduh dari : Bukupaket. Bab V Bangun Ruang Sisi Lengkung K aa Kunci Tabung Jaing-jaing Keucu Luas Pemukaan Bola Volume K D ompeensi asa 1.1 Menghagai dan menghayai ajaan agama yang dianunya. 2.2 Memiliki asa ingin ahu, pecaya

Lebih terperinci

= 0 adalah r(dimana r konstan);

= 0 adalah r(dimana r konstan); MODEL PEMAEA LOGISTI UTU PEMAEA IA DEGA LAJU PEMAEA PROPOSIOAL Sigi ova Riyano, aono Juusan Maemaika FMIPA UDIP Semaang Jl. Pof. H. Soedao, SH, Tembalang, Semaang, 575 Absak: Tedapa banyak model pemanenan,

Lebih terperinci

v dan persamaan di C menjadi : L x L x

v dan persamaan di C menjadi : L x L x PERSMN GELOMBNG SSIONER. Pada proses panulan gelombang, erjadi gelombang panul ang mempunai ampliudo dan frekwensi ang sama dengan gelombang daangna, hana saja arah rambaanna ang berlawanan. hasil inerferensi

Lebih terperinci

BAB 2 (Minggu ke 4) MEKANIKA NEWTON. GERAK LURUS PARTIKEL. Setelah mengikuti kuliah ini, mahasiswa diharapkan :

BAB 2 (Minggu ke 4) MEKANIKA NEWTON. GERAK LURUS PARTIKEL. Setelah mengikuti kuliah ini, mahasiswa diharapkan : 8 BAB (Minggu k 4) MEKANIKA NEWTON. GERAK LURUS PARTIKEL PENDAHULUAN Laning Ouco: Slah ngikui kuliah ini, ahasiswa dihaapkan : Mapu njlaskan konsp Huku Nwon dan nylsaikan asalah dinaika gak dngan konsp

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Laar Belakang Air merupakan kebuuhan pokok bagi seiap makhluk hidup di dunia ini ermasuk manusia. Air juga merupakan komponen lingkungan hidup yang pening bagi kelangsungan hidup

Lebih terperinci

BAB IV PERHITUNGAN NUMERIK

BAB IV PERHITUNGAN NUMERIK BAB IV PERHITUNGAN NUMERIK Dengan memperhaikan fungsi sebaran peluang berahan dari masingmasing sebaran klaim, sebagai mana diulis pada persamaan (3.45), (3.70) dan (3.90), perhiungan numerik idak mudah

Lebih terperinci

ELEKTROMAGNETIK GELOMBANG 6.4

ELEKTROMAGNETIK GELOMBANG 6.4 6.4 GLOMANG LKTROMAGNTIK Gelban elekaneik easuk elban nn-ekanik, sehina dapa eaba dala uan hapa udaa. Gelban ini eupakan elban ansvesal. Salah sau cnh elban elek aneik yan palin udah diaai ejalanya adalah

Lebih terperinci

PERHITUNGAN PARAMETER DYNAMIC ABSORBER

PERHITUNGAN PARAMETER DYNAMIC ABSORBER PERHITUNGAN PARAMETER DYNAMIC ABSORBER BERBASIS RESPON AMPLITUDO SEBAGAI KONTROL VIBRASI ARAH HORIZONTAL PADA GEDUNG AKIBAT PENGARUH GERAKAN TANAH Oleh (Asrie Ivo, Ir. Yerri Susaio, M.T) Jurusan Teknik

Lebih terperinci

ANALISA SISTEM ANTRIAN MULTISERVER MULTIQUEUE MENGGUNAKAN METODE JOCKEYING

ANALISA SISTEM ANTRIAN MULTISERVER MULTIQUEUE MENGGUNAKAN METODE JOCKEYING ANALISA SISTEM ANTRIAN MULTISERVER MULTIQUEUE MENGGUNAKAN METODE JOCKEYING Ewin Panggabean Pogam Sudi Teknik Infomaika STMIK Pelia Nusanaa Medan, Jl. Iskanda Muda No 1 Medan, Sumaea Uaa 20154, Indonesia

Lebih terperinci

Hand Out Fisika 6 (lihat di Kuat Medan Listrik atau Intensitas Listrik (Electric Intensity).

Hand Out Fisika 6 (lihat di Kuat Medan Listrik atau Intensitas Listrik (Electric Intensity). Hand Out Fisika 6 (lihat di http:).1. Pengetian Medan Listik. Medan Listik meupakan daeah atau uang disekita benda yang bemuatan listik dimana jika sebuah benda bemuatan lainnya diletakkan pada daeah itu

Lebih terperinci

FISIKA. Sesi LISTRIK STATIK A. GAYA COULOMB

FISIKA. Sesi LISTRIK STATIK A. GAYA COULOMB ISIKA KELAS XII IPA - KURIKULUM GABUNGAN 04 Sesi NGAN LISTRIK STATIK A. GAYA COULOMB Jika tedapat dua atau lebih patikel bemuatan, maka antaa patikel tesebut akan tejadi gaya taik-menaik atau tolak-menolak

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 robabilias 2.1.1 Definisi robabilias adalah kemungkinan yang daa erjadi dalam suau erisiwa erenu. Definisi robabilias daa diliha dari iga macam endekaan, yaiu endekaan klasik,

Lebih terperinci

BAB 3 MODEL LEE-CARTER

BAB 3 MODEL LEE-CARTER BAB 3 MODEL LEE-CARTER 3. Pendahuluan Model Goperz yang elah dibahas di Bab 2 banyak diodifikasi oleh para Saisikawan. Pada waku iu (sekiar ahun 980-990), Saisikawan eliha odel ini cukup bagus unuk erepresenasikan

Lebih terperinci

BAB 2 LANDASAN TEORI. Produksi padi merupakan suatu hasil bercocok tanam yang dilakukan dengan

BAB 2 LANDASAN TEORI. Produksi padi merupakan suatu hasil bercocok tanam yang dilakukan dengan BAB 2 LANDASAN TEORI 2.1. Produksi Produksi padi merupakan suau hasil bercocok anam yang dilakukan dengan penanaman bibi padi dan perawaan sera pemupukan secara eraur sehingga menghasilkan suau produksi

Lebih terperinci

Fungsi Bernilai Vektor

Fungsi Bernilai Vektor Fungsi Bernilai Vekor 1 Deinisi Fungsi bernilai vekor adalah suau auran yang memadankan seiap F R R dengan epa sau vekor Noasi : : R R F i j, 1 1 F i j k 1 dengan 1,, ungsi bernilai real Conoh : 1. 1 F

Lebih terperinci

KUAT ARUS DAN BEDA POTENSIAL Kuat arus adalah banyaknya muatan listrik yang mengalir melalui suatu penghantar tiap detik.

KUAT ARUS DAN BEDA POTENSIAL Kuat arus adalah banyaknya muatan listrik yang mengalir melalui suatu penghantar tiap detik. MODUL 2 : LISTRIK RANGKAIAN TERTUTUP Rangkaian eruup ialah rangkaian yang ak berpangkal dan ak berujung yang erdiri dari komponen lisrik (seperi kawa penghanar), ala ukur lisrik, dan sumber daya lisrik

Lebih terperinci

BAB III POWER MESIN TEKUK YANG DIBUTUHKAN UNTUK PROSES PENEKUKAN ACRYLIC

BAB III POWER MESIN TEKUK YANG DIBUTUHKAN UNTUK PROSES PENEKUKAN ACRYLIC BAB III POWE MESIN TEKUK YANG DIBUTUHKAN UNTUK POSES PENEKUKAN ACYLIC 3.1. Gaya Usaha Dan Daya Lisrik Mesin Tekuk Acrylic Bila kia hendak memindahkan suau benda dari sau empa keempa yang lain, aau mengangkanya

Lebih terperinci

ESTIMASI POPULASI / STOK IKAN

ESTIMASI POPULASI / STOK IKAN ESTIMASI POPULASI / STOK IKA Populasi ikan didefinisikan sebagai kelompok individu sau spesies aau sau sub-spesies yang secara spasial, geneic, aau demografi erpisah dengan kelompok yang lain. Pengelola

Lebih terperinci

PEMERINTAH KOTA DUMAI DINAS PENDIDIKAN KOTA DUMAI SMA NEGERI 3 DUMAI TAHUN PELAJARAN 2007/ 2008 UJIAN SEMESTER GANJIL

PEMERINTAH KOTA DUMAI DINAS PENDIDIKAN KOTA DUMAI SMA NEGERI 3 DUMAI TAHUN PELAJARAN 2007/ 2008 UJIAN SEMESTER GANJIL PEMERINTAH KOTA DUMAI DINAS PENDIDIKAN KOTA DUMAI SMA NEGERI 3 DUMAI TAHUN PELAJARAN 27/ 28 UJIAN SEMESTER GANJIL Maa Pelajar Fiika Kela XII IPA Waku 12 meni 1. Hubungan anara jarak () dengan waku () dari

Lebih terperinci

BAB 4 ANALISIS DAN PEMBAHASAN

BAB 4 ANALISIS DAN PEMBAHASAN BAB 4 ANALISIS DAN EMBAHASAN 4.1 Karakerisik dan Obyek eneliian Secara garis besar profil daa merupakan daa sekunder di peroleh dari pusa daa saisik bursa efek Indonesia yang elah di publikasi, daa di

Lebih terperinci

BAB II TINJAUAN TEORITIS

BAB II TINJAUAN TEORITIS BAB II TIJAUA TEORITIS 2.1 Peramalan (Forecasing) 2.1.1 Pengerian Peramalan Peramalan dapa diarikan sebagai beriku: a. Perkiraan aau dugaan mengenai erjadinya suau kejadian aau perisiwa di waku yang akan

Lebih terperinci

7/1/2008. Δvx. Carilah perpindahan, kecepatan rata rata dan laju rata rata

7/1/2008. Δvx. Carilah perpindahan, kecepatan rata rata dan laju rata rata 7//8 Mengunakan deekor ulrasonic Mengukur jarak suau objek dengan gelombang ulrasonic Bagaimana cara kerjana? Sensor memancarkan pulsa ulrasonic Mengukur waku anara dipancarkan dan dierima Mengukur jarak

Lebih terperinci

(Indeks Rata-rata Harga Relatif, Variasi Indeks Harga, Angka Indeks Berantai, Pergeseran waktu dan Pendeflasian) Rabu, 31 Desember 2014

(Indeks Rata-rata Harga Relatif, Variasi Indeks Harga, Angka Indeks Berantai, Pergeseran waktu dan Pendeflasian) Rabu, 31 Desember 2014 ANGKA NDEKS (ndeks Raa-raa Harga Relaif, Variasi ndeks Harga, Angka ndeks Beranai, Pergeseran waku dan Pendeflasian) Rabu, 31 Desember 2014 NDEKS RATA-RATA HARGA RELATF Rumus, 1 P 100% n P,0 = indeks raa-raa

Lebih terperinci

Jawaban Soal Latihan

Jawaban Soal Latihan an Soal Laihan 1. Terangkanlah ari grafik-grafik di bawah ini. dan ulis persamaan geraknya. an: a. Merupakan grafik kecepaan erhadap waku, kecepaan eap. Persamaan v()=v b. Merupakan grafik jarak erhadap

Lebih terperinci

z`?ï%!$# (#qãztb#uä (#qãy?ïètgó?$# Î?ö9 Á9$$Î/ Ío4qn= Á9$#ur 4 bî)

z`?ï%!$# (#qãztb#uä (#qãy?ïètgó?$# Î?ö9 Á9$$Î/ Ío4qn= Á9$#ur 4 bî) Juma, 15 Januai 2016 10:58 RIHLAH IBADAH HAJI SABAR DAN SABAR LAGI [1] g'» ì B û ï É» Á Ç Ê Ì È z`ï% (qzbu (qyïgó ö Á/ Ío4qn= Áu 4 b Aina: Hai oang-oang ang beiman, Jadikanlah saba dan shala sebagai penolongmu[ada

Lebih terperinci

RANK DARI MATRIKS ATAS RING

RANK DARI MATRIKS ATAS RING Dela-Pi: Jurnal Maemaika dan Pendidikan Maemaika ISSN 089-855X ANK DAI MATIKS ATAS ING Ida Kurnia Waliyani Program Sudi Pendidikan Maemaika Jurusan Pendidikan Maemaika dan Ilmu Pengeahuan Alam FKIP Universias

Lebih terperinci

Jl. Prof. Dr.Hamka Air Tawar Padang, 25131, Telp. (0751)444648, Indonesia

Jl. Prof. Dr.Hamka Air Tawar Padang, 25131, Telp. (0751)444648, Indonesia Analisis Kovaiansi pada Rancangan Acak Lengkap dengan Peubah Pengiing Beganda Menggunakan Pendekaan Maiks Wimi Saika #1, Lufian Almash *, Yenni Kuniawai #3 # Mahemaics Depaemen Sae Univesiy of Padang Jl.

Lebih terperinci

Xpedia Fisika. Kapita Selekta - Set 01 no Pertanyaan berhubungan dengan elektroskop yang ditunjukan pada gambar di bawah.

Xpedia Fisika. Kapita Selekta - Set 01 no Pertanyaan berhubungan dengan elektroskop yang ditunjukan pada gambar di bawah. Xpedia isika Kapia Seleka - Se 01 no 41-60 Doc. Name: XPIS9903 Doc. Version : 2011-06 halaman 1 Peranyaan 40-41 berhubungan dengan elekroskop yang diunjukan pada gambar di bawah. 41. Keika baang bermuaan

Lebih terperinci

BAB PENERAPAN HUKUM-HUKUM NEWTON

BAB PENERAPAN HUKUM-HUKUM NEWTON 1 BAB PENERAPAN HUKUM-HUKUM NEWTON Sebelumnya telah dipelajai tentang hukum Newton: hukum I tentang kelembaban benda, yang dinyatakan oleh pesamaan F = 0; hukum II tentang hubungan gaya dan geak, yang

Lebih terperinci

Kinematika. Posisi ; kedudukan suatu benda disuatu saat relatif terhadap suatu titik acuan.

Kinematika. Posisi ; kedudukan suatu benda disuatu saat relatif terhadap suatu titik acuan. Kinemaika mempelajari erak benda anpa mempelajari penyebabnya. Posisi ; kedudukan suau benda disuau saa relaif erhadap suau iik acuan. Linasan ; S ab perpindahan suau benda dari suau posisi ke ab p p p

Lebih terperinci

Oleh : Debrina Puspita Andriani Teknik Industri Universitas Brawijaya /

Oleh : Debrina Puspita Andriani Teknik Industri Universitas Brawijaya   / 4 Oleh : Debrina Puspia Andriani Teknik Indusri Universias Brawijaya e-mail : debrina@ub.ac.id / debrina.ub@gmail.com www.debrina.lecure.ub.ac.id O. Dasar perhiungan depresiasi 2. Meode-meode depresiasi.

Lebih terperinci