BAB 3 LOGAM DAN PADUAN BERBASIS BESI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 3 LOGAM DAN PADUAN BERBASIS BESI"

Transkripsi

1 BAB 3 LOGAM DAN PADUAN BERBASIS BESI 3.1 Pendahuluan Logam dan paduan berbasis besi adalah salah satu jenis bahan yang paling banyak dan luas aplikasinya di bidang rekayasa. Besi atau Fe terdapat di alam sebagai oksida atau bijih besi. Logam besi sebagian besar diperoleh melalui serangkaian proses pemurnian dan reduksi bijih besi. Melalui proses ini diperoleh lelehan besi mentah atau pig iron yang masih mengandung pengotorpengotor, terutama, karbon, silkon, mangan, sulfur, dan fosfor. Namun, logam Fe hampir tidak pernah digunakan untuk aplikasi rekayasa dalam keadaan murni karena keterbatasan sifat-sifat mekaniknya. Paduan berbasis besi (ferrous alloy) yang paling banyak digunakan untuk aplikasi rekayasa adalah paduan besi-karbon dengan kandungan karbon tertentu beserta unsur-unsur paduan lainya. Keberadaan unsur karbon di dalam larutan padat Fe memiliki pengaruh yang signifikan terhadap peningkatan sifat-sifat mekanik logam besi. Sebagai ilustrasi, nilai kekuatan luluh untuk Fe murni dengan kadar karbon terlarut 0% hanyalah sekitar 3 Ksi dibandingkan dengan 30 Ksi pada kadar karbon terlarut 0.005% yang merupakan batas kelarutan maksimum karbon di dalam larutan padat Fe. Penambahan karbon dan unsurunsur paduan lain pada kadar yang lebih tinggi sangat penting di dalam mendesain dan merekayasa sifat-sifat mekaniknya. Baja karbon (carbon steel) adalah salah satu jenis logam paduan besi karbon terpenting dengan prosentase berat karbon hingga 2,11%. Baja karbon diklasifikasikan menjadi baja karbon (1) rendah (low), (2) sedangn (medium), dan (3) tinggi (high) berdasarkan kadar karbon-nya. Jika penambahan elemen-elemen lain selain karbon untuk tujuan-tujuan tertentu cukup signifikan, maka baja diklasifikasikan sebagai baja paduan (alloy steel) atau baja paduan rendah (low alloy steel). Jenis baja lainnya yang 34

2 cukup penting adalah baja perkakas (tool steel) dan baja nirkarat (stainless steel). Selain baja, paduan berbasis besi karbon lain yang juga penting adalah besi tuang atau besi cor (cast iron), yaitu besi dengan kadar karbon lebih dari 2,11% hingga 4-6%. Besi tuang diklasifikasikan lebih lanjut berdasarkan struktur mikro dan sifat-sifatnya ke dalam besi tuang kelabu (grey cast iron), besi tuang ulet atau nodular (ductile or nodular cast iron), besi tuang putih (white cast iron), besi tuang mampu tempa (malleable cast iron). 3.2 Proses Pembuatan Baja Gambar 3-1 Proses Pembuatan Baja Proses pembuatan baja dimulai dengan proses ekstraksi bijih besi. Proses reduksi umumnya terjadi di dalam tanur tiup (blast furnace) di mana di dalamnya bijih besi (iron ore) dan batu gamping (limestone) yang telah mengalami pemanggangan (sintering) diproses bersama-sama dengan kokas 35

3 (cokes) yang berasal dari batubara. Serangkaian reaksi terjadi di dalam tanur pada waktu dan lokasi yang berbeda-beda, tetapi reaksi penting yang mereduksi bijih besi menjadi logam besi adalah sebagai berikut: Fe 2 O 3 + 3CO 2Fe + 3CO 2 Luaran utama dari proses ini adalah lelehan besi mentah (molten pig iron) dengan kandungan karbon yang cukup tinggi (4%C) beserta pengotor-pengotor lain seperti silkon, mangan, sulfur, dan fosfor. Besi mentah ini belum dapat dimanfaatkan secara langsung untuk aplikasi rekayasa karena sifat-sifat (mekanis)-nya belum sesuai dengan yang dibutuhkan karena pengotorpengotor tersebut. Besi mentah berupa lelehan atau coran selanjutnya dikirim menuju converter yang akan mengkonversinya menjadi baja. Proses pembuatan baja umumnya berlangsung di tungku oksigen-basa (basic-oxygen furnace). Di dalam tungku ini besi mentah cair dicampur dengan hingga 30% besi tua (scrap) yang terlebih dahulu dimasukkan ke dalam tanur. Selanjutnya, oksigen murni ditiupkan dari bagian atas ke dalam leburan, bereaksi dengan Fe membentuk oksida besi FeO. Beberapa saat sebelum reaksi dengan oksigen mulai berlangsung, fluks pembentuk slag dimasukkan dalam jumlah tertentu. Oksida besi atau FeO selanjutnya akan bereaksi dengan karbon di dalam besi mentah sehingga diperoleh Fe dengan kadar karbon lebih rendah dan gas karbon monoksida. Reaksi penting yang terjadi di dalam tungku adalah sebagai berikut: FeO + C Fe + CO Selama proses berlangsung (sekitar 22 menit), terjadi penurunan kadar karbon dan unsur-unsur pengotor lain seperti P, S, Mn, dalam jumlah yang signifikan. 3.3 Diagram Fe-Fe 3 C Diagram kesetimbangan fasa Fe-Fe 3 C adalah alat penting untuk memahami struktur mikro dan sifat-sifat baja karbon, suatu jenis logam paduan besi (Fe) dan karbon (C). Karbon larut di dalam besi dalam bentuk larutan padat (solid 36

4 solution) hingga 0,05% berat pada temperatur ruang. Baja dengan atom karbon terlarut hingga jumlah tersebut memiliki alpha ferrite pada temperatur ruang. Pada kadar karbon lebih dari 0,05% akan terbentuk endapan karbon dalam bentuk hard intermetallic stoichiometric compound (Fe 3 C) yang dikenal sebagai cementite atau carbide. Selain larutan padat alpha-ferrite yang dalam kesetimbangan dapat ditemukan pada temperatur ruang terdapat fase-fase penting lainnya, yaitu delta-ferrite dan gamma-austenite. Logam Fe bersifat polymorphism yaitu memiliki struktur kristal berbeda pada temperatur berbeda. Pada Fe murni, misalnya, alpha-ferrite akan berubah menjadi gamma-austenite saat dipanaskan melewati temperature 910 o C. Pada temperatur yang lebih tinggi, mendekati 1400 o C gamma-austenite akan kembali berubah menjadi delta-ferrite. (Alpha dan Delta) Ferrite dalam hal ini memiliki struktur kristal BCC sedangkan (Gamma) Austenite memiliki struktur kristal FCC. Gambar 3-2 Diagram Kesetimbangan Fasa Fe-Fe 3 C 37

5 3.3.1 Ferrite Ferrite adalah fase larutan padat yang memiliki struktur BCC (body centered cubic). Ferrite dalam keadaan setimbang dapat ditemukan pada temperatur ruang, yaitu alpha-ferrite atau pada temperatur tinggi, yaitu delta-ferrite. Secara umum fase ini bersifat lunak (soft), ulet (ductile), dan magnetik (magnetic) hingga temperatur tertentu, yaitu T curie. Kelarutan karbon di dalam fase ini relatif lebih kecil dibandingkan dengan kelarutan karbon di dalam fase larutan padat lain di dalam baja, yaitu fase Austenite. Pada temperatur ruang, kelarutan karbon di dalam alpha-ferrite hanyalah sekitar 0,05%. Berbagai jenis baja dan besi tuang dibuat dengan mengeksploitasi sifat-sifat ferrite. Baja lembaran berkadar karbon rendah dengan fase tunggal ferrite misalnya, banyak diproduksi untuk proses pembentukan logam lembaran. Dewasa ini bahkan telah dikembangkan baja berkadar karbon ultra rendah untuk karakteristik mampu bentuk yang lebih baik. Kenaikan kadar karbon secara umum akan meningkatkan sifat-sifat mekanik ferrite sebagaimana telah dibahas sebelumnya. Untuk paduan baja dengan fase tunggal ferrite, faktor lain yang berpengaruh signifikan terhadap sifat-sifat mekanik adalah ukuran butir Austenite Fase Austenite memiliki struktur atom FCC (Face Centered Cubic). Dalam keadaan setimbang fase Austenite ditemukan pada temperatur tinggi. Fase ini bersifat non magnetik dan ulet (ductile) pada temperatur tinggi. Kelarutan atom karbon di dalam larutan padat Austenite lebih besar jika dibandingkan dengan kelarutan atom karbon pada fase Ferrite. Secara geometri, dapat dihitung perbandingan besarnya ruang intertisi di dalam fase Austenite (atau kristal FCC) dan fase Ferrite (atau kristal BCC). Perbedaan ini dapat digunakan untuk menjelaskan fenomena transformasi fase pada saat pendinginan Austenite yang berlangsung secara cepat. 38

6 Selain pada temperatur tinggi, Austenite pada sistem Ferrous dapat pula direkayasa agar stabil pada temperatur ruang. Elemen-elemen seperti Mangan dan Nickel misalnya dapat menurunkan laju transformasi dari gamma-austenite menjadi alpha-ferrite. Dalam jumlah tertentu elemen-elemen tersebut akan menyebabkan Austenite stabil pada temperatur ruang. Contoh baja paduan dengan fase Austenite pada temperatur ruang misalnya adalah Baja Hadfield (12%Mangan) dan Baja Stainless 18-8 (8%Ni) Cementite Cementite atau carbide dalam sistem paduan berbasis besi adalah stoichiometric inter-metallic compund Fe 3 C yang keras (hard) dan getas (brittle). Nama cementite berasal dari kata caementum yang berarti stone chip atau lempengan batu. Cementite sebenarnya dapat terurai menjadi bentuk yang lebih stabil yaitu Fe dan C sehingga sering disebut sebagai fase metastabil. Namun, untuk keperluan praktis, fase ini dapat dianggap sebagai fase stabil. Cementite sangat penting perannya di dalam membentuk sifat-sifat mekanik akhir baja. Cementite dapat berada di dalam sistem besi baja dalam berbagai bentuk seperti: bentuk bola (sphere), bentuk lembaran (berselang seling dengan alpha-ferrite), atau partikel-partikel carbide kecil. Bentuk, ukuran, dan distribusi karbon dapat direkayasa melalui siklus pemanasan dan pendinginan. Jarak rata-rata antar karbida, dikenal sebagai lintasan Ferrite rata-rata (Ferrite Mean Path), adalah parameter penting yang dapat menjelaskan variasi sifat-sifat besi baja. Variasi sifat luluh baja diketahui berbanding lurus dengan logaritmik lintasan ferrite rata-rata Reaksi-reaksi Invarian dan Konstituen Mikro Penting Secara keseluruhan ada tiga reaksi penting di dalam diagram Kesetimbangan Fase Fe-Fe 3 C, yaitu: Reaksi Peritectic, Reaksi Eutectic, dan Reaksi Eutectoid sebagaimana terlihat di dalam diagram kesetimbangan. Untuk sistem Besi Baja, reaksi Eutectoid adalah reaksi yang sangat penting karena dengan mengontrol Reaksi Eutectoid kita dapat memperoleh berbagai konstituen mikro 39

7 atau micro constituent yang diinginkan untuk mendapatkan sifat-sifat tertentu. Berdasarkan kadar karbonnya, baja dapat pula diklasifikasikan menjadi (1) baja eutectoid, (2) baja hypoeutectoid, dan (3) baja hypereutectoid. Gambar 3-3 Reaksi-reaksi Invarian di dalam Sistem Fe-Fe 3 C Sistem penamaan yang telah dikenal luas adalah sistem AISI-SAE yang menggunakan 4-5 Angka. Dua angka pertama menunjukkan elemen-elemen paduan utama (Major Alloying Elements) dan Dua atau Tiga angka sisanya menunjukkan prosentase karbonnya. Baja dengan nama AISI-SAE 1080 misalnya, adalah jenis baja karbon (plain carbon steel) dengan kadar karbon 0.8%. Contoh dari baja jenis ini adalah baja kawat piano. Kawat piano memiliki struktur pearlite seluruhnya dan kekuatannya yang tinggi terutama diperoleh dari proses pengerjaan dingin pada proses produksinya. 40

8 Gambar 3-4 Sistem Penamaan 4-5 Angka AISI-SAE 3.4 Baja Karbon Baja karbon adalah paduan besi baja dengan elemen utama Fe dan C. Baja karbon memiliki kadar C hingga 1.2% dengan Mn 0.30%-0.95%. Baja dengan kadar karbon sangat rendah memiliki kekuatan yang relatif rendah tetapi memiliki keuletan yang relatif tinggi. Baja jenis ini umumnya digunakan untuk proses pembentukan logam lembaran. Dengan meningkatnya kadar karbon maka baja karbon menjadi semakin kuat tetapi berkurang keuletannya. Beberapa jenis baja karbon, klasifikasi dan aplikasinya berdasarkan AISI-SAE dapat dilihat pada Tabel 1-1. Umumnya baja karbon (Plain Carbon Steel) diklasifikasikan menjadi (1) Baja karbon rendah (Low Carbon Steel), (2) Baja karbon menengah (Medium Carbon Steel), dan (3) Baja Karbon Tinggi (High Carbon Steel) berdasarkan prosentase karbonnya. Baja AISI-SAE , dengan kadar karbon 0,4%-0,4%, 41

9 diklasifikasikan sebagai baja karbon menengah. Baja jenis ini digunakan secara luas sebagai bahan poros (shaft) dan roda gigi (gear). Baja dengan kadar karbon di atas 0,60% umumnya dikategorikan sebagai baja karbon tinggi. Aplikasi dari baja karbon tinggi misalnya untuk pembuatan cetakan-cetakan logam (dies, punch, block), kawat-kawat baja (kawat pegas, kawat musik, kawat kekuatan tinggi), dan alat-alat potong (cutter, shear blade). Tabel 3-1 Beberapa jenis baja karbon berdasarkan klasifikasi AISI-SAE Baja karbon rendah atau sangat rendah, seperti telah dijelaskan sebelumnya, banyak digunakan untuk proses pembentukan logam lembaran, misalnya untuk badan dan rangka kendaraan serta komponen-komponen otomotif lainnya. Baja jenis ini dibuat dan diaplikasikan dengan mengeksploitasi sifat-sifat ferrite. Ferrite adalah salah satu fasa penting di dalam baja yang bersifat lunak dan ulet. Baja karbon rendah umumnya memiliki kadar karbon di bawah komposisi eutectoid dan memiliki struktur mikro hampir seluruhnya ferrite. Pada lembaran baja kadar karbon sangat rendah atau ultra rendah, jumlah atom karbon-nya bahkan masih berada dalam batas kelarutannya pada larutan padat sehingga struktur mikronya adalah ferrite seluruhnya (Gambar 3-5). Hingga 42

10 batas kelarutannya di dalam larutan padat ferrite, penambahan karbon berpengaruh terhadap sifat-sifat mekanik lembaran (lihat Gambar 3-6). Gambar 3-5 Struktur Mikro Baja Karbon Ultra Rendah. Seluruhnya Ferrite. Gambar 3-6 Pengaruh Karbon terhadap Sifat Mekanik Baja dengan Karbon Sangat Rendah. 43

11 Pada kadar karbon lebih tinggi akan mulai terbentuk endapan cementite atau fase pearlite pada batas butirnya sebagaimana terlihat pada Gambar 3-7. Gambar 3-7 Struktur Mikro Baja Karbon Rendah Telah dijelaskan sebelumnya bahwa sifat cementite atau carbide yang keras dan getas berperan penting di dalam meningkatkan sifat-sifat mekanik baja. Salah satu parameter penting yang menunjukkan hal tersebut, sebagaimana telah dijelaskan sebelumnya adalah a mean ferrite path. A mean ferrite path menunjukkan jarak antar cementite, baik pada pearlite maupun sphreodite. Jarak antar carbide di dalam pearlite secara khusus dikenal sebagai interlamellar spacing atau spasi antar lamel atau lembaran. 44

12 Gambar 3-8 Pengaruh Mean Ferrite Path terhadap Tegangan Luluh Selain kadar karbon, sifat-sifat mekanik baja karbon rendah dengan fase tunggal ferrite (ferritic low carbon steel) ditentukan pula oleh dimensi atau ukuran butir-butir ferrite. Secara umum diketahui bahwa baja dengan ukuran butir lebih kecil akan memiliki kekuatan yang lebih tinggi pada suhu kamar. Hubungan tersebut secara kuantitatif dikenal sebagai Persamaan Hall-Petch. Gambar 3-9 menunjukkan hubungan antara akar kuadrat diameter butir ferrite pada baja karbon rendah dengan fase ferrite. σ y = σ + d 0 k y 1 2 Persamaan Hall-Petch ini sangat penting dalam menjelaskan hubungan antara struktur mikro dan sifat-sifat baja. Hubungan ini dimanfaatkan di dalam pemrosesan baja, yaitu dengan mengatur atau mengendalikan ukuran butir untuk meningkatkan kekuatan baja. Penguatan baja dengan cara ini dilakukan 45

13 melalui proses thermomekanika (thermomechanical process), proses perlakuan panas (heat treatment), dan pemberian paduan mikro (micro alloying). Gambar 3-9 Pengaruh Ukuran Butir terhadap Tegangan Luluh Untuk aplikasi proses pembentukan logam lembaran, sifat-sifat ferrite yang ulet sangat penting. Diketahui bahwa keuletan adalah salah satu sifat intrinsik yang penting. Namun, di samping %elongasi maksimum yang menggambarkan keuletan baja karbon, terdapat parameter penting lain yang lebih menggambarkan karakteristik mampu bentuk logam lembaran adalah nilai n (koefisien pengerasan regangan) dan nilai r (rasio regangan plastis). Nilai n secara umum menggambarkan kemampuan lembaran baja untuk mendistribusikan regangan secara merata. Pada pengujian tarik dapat dilihat dari besarnya regangan uniform yang mampu dicapai oleh logam. Nilai r secara umum menggambarkan ketahanan logam lembaran terhadap penipisan. Dalam 46

14 hal ini, terhadap hubungan yang cukup kuat antara nilai r dan LDR atau batas rasio penarikan logam lembaran. Nilai r terutama berhubungan dengan tekstur kristalografi pada baja, yaitu adanya orientasi kristal yang lebih disukai (preferred orientation). Di samping itu, dilaporkan pula terdapat hubungan antara Lankford Value atau nilai r dengan ukuran besar butir. 3.5 Proses Perlakuan Panas Baja Karbon Telah dijelaskan sebelumnya bahwa reaksi eutectoid sangat penting di dalam mengendalikan struktur mikro baja. Dengan mengendalikan reaksi eutectoid, dapat diperoleh 3 konstituen mikro penting yaitu: (1) pearlite, (2) bainite, dan (3) (tempered) martensite. Gambar 3-10 Tiga Konstituen Mikro Penting dari Baja Karbon. Pearlite adalah suatu campuran lamellar dari ferrite dan cementite. Konstituen ini terbentuk dari dekomposisi Austenite melalui reaksi eutectoid pada keadaan setimbang, di mana lapisan ferrite dan cementite terbentuk 47

15 secara bergantian untuk menjaga keadaan kesetimbangan komposisi eutectoid. Pearlite memiliki struktur yang lebih keras daripada ferrite, yang terutama disebabkan oleh adanya fase cementite atau carbide dalam bentuk lamel-lamel. Gambar 3-11 Struktur Mikro dari Pearlite. Gambar di atas menunjukkan struktur mikro pearlite dalam perbesaran lebih tinggi. Daerah yang lebih terang pada gambar adalah ferrite sedangkan daerah yang lebih gelap pada gambar adalah carbide atau cementite. Salah satu contoh baja karbon yang memiliki struktur ini adalah kawat piano atau baja AISI 1080 menurut standar SAE-AISI. Baja kawat piano dengan kadar karbon 0,8% dengan struktur pearlite seluruhnya memiliki kekuatan tarik (Tensile Strength) sekitar 4,2 GPa. Bandingkan dengan kekuatan tarik Baja Karbon Rendah (0,05%C) dengan struktur mikro Ferrite seluruhnya yang kekuatan tariknya hanya 0,2 GPa. 48

16 Konstituen mikro lain yang dapat diperoleh dengan mengendalikan reaksi eutectoid adalah Bainite. Bainite adalah suatu campuran non-lamellar dari ferrite dan cementite yang terbentuk pada dekomposisi Austenite melalui reaksi eutectoid. Berbeda dengan pearlite yang terbentuk pada laju transformasi atau pendinginan sedang strukturnya adalah acicular, terdiri atas ferrite lewat jenuh dengan partikel-partikel carbide terdispersi secara diskontinu. Dispersi dari bainite tergantung pada temperatur pembentukannya. Martensite adalah mikro konstituen yang terbentuk tanpa melalui proses difusi. Konstituen ini terbentuk saat Austenite didinginkan secara sangat cepat, misalnya melalui proses quenching pada medium air. Transformasi berlangsung pada kecepatan sangat cepat, mendekati orde kecepatan suara, sehingga tidak memungkinkan terjadi proses difusi karbon. Transformasi martensite diklasifikasikan sebagai proses transformasi tanpa difusi yang tidak tergantung waktu (diffusionless time-independent transformation). Martensite yang terbentuk berbentuk seperti jarum yang bersifat sangat keras (hard) dan getas (brittle). Fase martensite adalah fase metastabil yang akan membentuk fase yang lebih stabil apabila diberikan perlakuan panas. Martensite yang keras dan getas diduga terjadi karena proses transformasi secara mekanik (geser) akibat adanya atom karbon yang terperangkap pada struktur kristal pada saat terjadi transformasi polimorf dari FCC ke BCC. Hal ini dapat dipahami dengan membandingkan batas kelarutan atom karbon di dalam FCC dan BCC serta ruang intertisi maksimum pada kedua struktur kristal tersebut. Akibatnya terjadi distorsi kisi kristal BCC menjadi BCT atau body centered tetragonal. Distorsi kisi akibat transformasi pada proses pendinginan secara cepat tersebut berbanding lurus dengan jumlah atom karbon terlarut sebagaimana diilustrasikan pada Gambar

17 Gambar 3-12 Atom Karbon di dalam Austenite, Ferrite, dan Martensite Gambar 3-13 Distorsi Kisi pada Transformasi Martensite 50

18 Meskipun memiliki kekerasan yang sangat tinggi, Martensite tidak memiliki arti penting di dalam aplikasi rekayasa. Untuk kebanyakan aplikasi rekayasa martensite perlu di-temper atau dipanaskan kembali pada temperature tertentu untuk mengurangi kegetasan (brittleness) dan meningkatkan ketangguhannya (toughness) ke tingkat yang dapat diterima tanpa terlalu banyak menurunkan kekerasannya. Masalah 1 Sebuah palu pecah di bagian muka pukul (striking face)-nya ketika digunakan untuk memecah slab beton dan menimbulkan korban karena serpihannya mengenai mata pemakai yang kebetulan tidak memakai kaca mata pengaman. Bentuk kepada palu secara diilustrasikan pada gambar dengan lokasi pecah ditunjukkan oleh tanda panah dan lingkaran. Gambar 3-14 Gambar Kepala Palu Diketahui bahwa palu terbuat dari logam baja karbon tempa medium dengan komposisi kimia sesuai standar, yaitu: 0,5%-0,6% C, 0,5%-0,9%Mn, dan 0,1%-0,4%Si. Kekerasan dari bahan baku palu adalah antara 1,8-2,2 GPa. 51

19 Kepala palu yang baik umumnya dibuat menjadi bentuk di atas dengan proses tempa panas (hot forging) dan kemudian didinginkan perlahan-lahan hingga temperatur ruangan. Selanjutkan kedua ujung kepala palu (ball pein dan striking face) diselesaikan dengan mesin gerinda. Pengerasan ujung pukul dilakukan dengan proses quenching dengan cara mencelup sebagian ujungnya ke dalam lelehan timah pada temperatur 900 o C dan mencelupnya ke dalam air dingin. Dengan perlakuan panas tersebut seharusnya baja medium dengan kadar karbon 0,6% memiliki kekerasan sekitar 8 GPa. Investigasi awal menunjukkan profil kekerasan kepala palu (dalam GPa) sebagaimana ditunjukkan pada Gambar. Di dalam standar disebutkan bahwa kedua ujung kepala palu (ball pein dan striking face) di-temper sehingga kekerasannya turun antara GPa sebelum dapat digunakan. 52

20 Mengapa kepala pukul yang telah dicelup perlu di-temper (sebagaimana dipersyaratkan oleh standar) sebelum kepala palu dapat digunakan. Menurut pendapat Saudara, apa yang menyebabkan ujung pukul pecah sehingga serpihannya memakan korban? 3.6 Baja (Besi) Stainless Logam stainless steel telah sering kita dengar atau pergunakan sehari-hari. Sifat stainless yang tahan karat pun telah banyak yang mengetahuinya. Tetapi mungkin tidak semua tahu bahwa stainless steel adalah hasil dari kesalahan yang membawa berkah. Penulis mendengar cerita ini dari salah seorang Professor di Sheffield. Sheffield adalah tempat pertama kali ditemukannya logam Stainless. Saat itu Harry (1913), salah seorang peneliti di Sheffield, sedang berkutat dengan penelitiannya untuk mengatasi masalah erosi pada senapan laras panjang. Kesalahannya mencampur dan mengolah paduan ternyata kemudian membawa berkah. Suatu hari ia merasa heran karena di bak sampahnya terdapat logam yang tetap bersih dan berkilap, sementara logam-logam lainnya telah mulai berkarat. Kemudian diketahuinya bahwa logam itu adalah salah satu paduan yang pernah dibuangnya saat melakukan penelitian. Kelak diketahui bahwa besi dengan kadar Chromium 13% akan membentuk lapisan film oksida yang bersifat protektif yang akan melindungi logam dari korosi. Paduan Fe-Cr adalah jenis logam Stainless paling sederhana yang berstruktur dasar ferrite. Hal ini dapat kita pahami dengan mempelajari diagram kesetimbangan fase Fe-Cr yang diperlihatkan pada Gambar Chromium adalah unsur penstabil ferrrite. Chromium dengan struktur BCC (sama dengan Ferrite) akan memperluas daerah fase alpha dan mempersempit daerah fase gamma. Akibatnya terbentuk loop Austenite yang membatasi daerah FCC dan BCC. Dari Gambar 3-15 dapat dilihat bahwa pada paduan Fe-Cr dengan kandungan Cr di atas 12% tidak terjadi transformasi fase Austenite ke Ferrite. Dari temperatur ruang hingga ke titik leburnya Fasenya adalah ferrite. Akibatnya, tidak dimungkinkan pula terjadi transformasi martensitik. 53

21 Sementara ini dapat ditarik kesimpulan bahwa besi (tanpa karbon) stainless dengan kadar di atas Cr 12% selalu berstruktur ferrite. Ferritic Stainless Steel dapat memiliki kadar Cr hingga 30%. Jika pada kadar karbon rendah (Gambar 3-17) Ferrrite stabil di semua rentang temperatur maka pada kadar karbon yang lebih tinggi dapat ditemukan daerah fase Austenite. Penambahan kadar karbon sebesar 0,6% misalnya, akan memodifikasi diagram fasa sehingga paduan akan memiliki fase Austenite pada temperatur tinggi. Pada kondisi ini, baja dapat di-quench untuk menghasilkan Martensite. Secara umum, semakin tinggi kadar Cr semakin tahan besi terhadap korosi. Hal ini disebabkan karena terbentuknya lapisan film oksida pada permukaan. Di sisi lain kekurangan kadar Chromium akan menyebabkan berkurangnya jumlah lapisan film oksida protektif. Dalam hal ini, kadar karbon di dalam stainless perlu dijaga dalam keadaan rendah. Jika tidak, maka akan terbentuk karbida Chrom sehingga Chrom tidak dapat ke permukaan membentuk oksida film protektif. Penambahan Ni sangat penting karena Ni memiliki struktur FCC yang memiliki batas kelarutan karbon yang lebih besar sehingga mengurangi peluang terjadi pembentukan karbida Chromium yang akan mengurangi kadar Chromium dan oleh karenanya jumlah lapisan film oksida protektif pada permukaan. 54

22 Gambar 3-15 Diagram Fasa Besi Chromium Gambar 3-16 Pengaruh Penambahan Karbon terhadap Luas Daerah Fase Austenite pada Paduan Stainless Fe-Cr Contoh paduan Stainless Steel dengan penambahan Ni adalah Stainless Stee Telah dijelaskan pula sebelumnya bahwa Ni yang memiliki struktur FCC 55

23 adalah elemen penstabil FCC atau Austenite pada paduan besi. Keberadaan Ni akan mengurangi kecenderungan besi FCC untuk bertransformasi menjadi BCC. Pada kadar karbon tertentu (< 0,03%C) fase Austenite bahkan akan stabil pada temperatur ruang. Gambar 3-17 Pengaruh Penambahan Kadar Karbon terhadap Daerah Fase Austenite pada Paduan Baja Stainless Fe-Cr-Ni Sejauh ini telah kita kenal dua jenis paduan Stainless Steel yang penting, yaitu paduan Stainless Steel dengan kandungan Ni rendah dan paduan Stainless Steel dengan kandungan Ni tinggi. Telah kita kenal pula tiga jenis paduan Stainless berdasarkan struktur kristalnya, yaitu: logam Stainless Feritik (Ferritic Stainless Steel), logam Stainless Martensitik (Martensitic Stainless Steel), dan logam Stainless Steel Austenitik (Austenitic Stainless Steel). Selain berdasarkan kedua hal di atas, paduan stainless dapat pula dikelompokkan berdasarkan mekanisme penguatannya. Termasuk ke dalam golongan ini adalah PH Stainless Steel, yaitu paduan Stainless Steel yang dikuatkan melalui mekanisme Precipitation Hardening yang meliputi Solutionizing, Quenching, dan Aging. 56

24 Masalah 2 Logam stainless yang digunakan untuk aplikasi rekayasa dapat diaktergorisasikan menjadi: (1) logam stainless dengan kandungan Ni tinggi dan (2) logam stainless dengan kandungan Ni rendah. Jika Saudara memiliki perusahaan daur ulang logam (recycling plant) maka pemisahan kedua jenis logam Stainless tersebut dapat memberikan nilai tambah kepada logam-logam dari limbah Stainless. Dari pengetahuan yang telah Saudara pelajari, mekanisme apakah yang secara praktis dapat diaplikasikan untuk memisahkan kedua jenis limbah logam Stainless tersebut? 3.7 Besi Tuang Besi tuang adalah paduan berbasis besi dengan kadar karbon tinggi, yaitu 2%- 4%C dengan kadar Si 0,5%-3%. Besi tuang memiliki aplikasi di bidang rekayasa yang cukup luas terutama karena kemampuannya untuk langsung dibentuk menjadi bentuk akhir (net shape) atau mendekati bentuk akhir (near net shape) melalui proses solidifikasi (solidification) atau pengecoran (casting). Besi tuang mudah untuk dicor karena beberapa hal. Pertama, besi tuang mudah dilebur dan memiliki fluiditas yang sangat baik pada keadaan cairnya. Kedua, ketika dituang besi tidak membentuk lapisan film pada permukaannya. Selain itu, besi tuang tidak mengalami penyusutan volume (shrinkage) yang terlalu tinggi pada saat solidifikasi. 57

25 Gambar 3-18 Diagram Fase Fe-Fe 3 C menunjukkan Daerah Besi Tuang Kemampuan besi tuang untuk dapat dicetak menjadi bentuk yang diinginkan terutama berhubungan dengan adanya reaksi Eutectic pada diagram kesetimbangan Fe-Fe 3 C pada rentang kandungan karbon tersebut. Pada reaksi tersebut titik lebur paduan besi turun hingga sekitar 1130 o C dengan rentang temperatur liquidus dan solidus yang sangat kecil, atau membeku seperti logam murni dengan satu titik beku. Di samping itu, reaksi eutectic penting pula di dalam merekayasa dan mengendalikan sifat-sifat besi tuang yang sangat tergantung pada karakteristik konstituen-konstituennya. Dekomposisi Autenite, seperti halnya pada baja, dapat dikendalikan sehingga dihasilkan matriks Ferrite, Pearlite, Bainite, atau Martensite. Solidifikasi dan dekomposisi Austenite dapat diatur agar menghasilkan grafit (C) atau karbida (Cementite). Dengan menambahkan modifier dan innoculant bentuk grafit dapat pula direkayasa menjadi berbentuk bola (sphereoidal graphite), kompak (compacted graphite), dan serpihan 58

26 (flake). Selanjutnya, karbida dapat diberi perlakuan panas lebih lanjut untuk mendekomposisi cementite, menghasilkan struktur yang mampu ditempa. Besi tuang dapat diklasifikasikan menjadi beberapa jenis berdasarkan karakteristik struktur mikro menjadi besi tuang kelabu (gray iron), besi tuang nodular (nodular cast iron), besi tuang grafit kompak (compacted graphite cast iron), besi tuang putih (white cast iron), dan besi tuang mampu tempa (malleable cast iron). Gambar skematis jenis-jenis besi tuang tersebut diperlihatkan tabel berikut ini. Nama Tabel 3-2 Jenis-jenis Besi Tuang, Struktur Mikro, Proses Pembuatan, dan Karakteristik Umumnya. Besi Tuang Kelabu (Grey Cast Iron) *diberi nama kelabu (grey) karena patahannya berwarna kelabu. Besi Tuang Putih (White Cast Iron) *diberi nama putih karena patahannya berwarna putih. Skema Struktur Mikro Proses Pembuatan Biasanya memiliki kadar karbon 2,5-4%. Jumlah silikon yang relatif tinggi (1-3%) diperlukan untuk mempromosikan pembentukan grafit. Kecepatan pembekuan sangat penting untuk mengatur jumlah grafit yang terbentuk (biasanya lambat hingga sedang). Laju solidfikasi berperan pula di dalam menentukan matriks yang terbentuk. Struktur karbida diperoleh dengan menjaga kandungan karbon (2,5-3,0%) dan silikon (0,5-1,5%) pada kadar rendah dan kecepatan pembekuan yang tinggi pada proses solidifikasi. Karakteristik Umum Grafit berbentuk serpihan-serpihan panjang (flakes) Memiliki kekuatan dan keuletan rendah. Memiliki mampu mesin yang baik pada kekerasannya. Memiliki ketahanan aus (wear resistance) yang baik, tahan terhadap galling pada pelumasan terbatas serta memiliki kemampuan untuk menahan getaran (damping capacity) sangat baik. Memiiki struktur karbida (cementite) di dalam matriks pearlite. Keras, getas, dan tidak dapat dimesin. Memiliki ketahanan terhadap keausan (wear resistance) dan abrasi sangat baik. 59

27 Table 1-2 Jenis-jenis Besi Tuang, Struktur Mikro, Proses Pembuatan, dan Karakteristik Umumnya (Lanjutan). Besi Tuang Mampu Tempa (Malleable Cast Iron). Besi Tuang Ulet atau Nodular (Ductile Iron, Nodular Cast Iron). * nama mengacu pada sifat dan bentuk grafit-nya. Bahan baku yang digunakan adalah besi tuang putih. Perlakuan panas untuk menghasilkan besi tuang mampu tempa terdiri atas: grafitisasi dan pendinginan. Pembentukan grafit dilakukan pada temperature di atas temperature eutectoid. Karbida akan berubah menjadi gafit (tempered carbon) dan austenite. Selanjutnya asutenite dapat didekomposisi menjadi ferrite, pearlite, atau martensite. Kandungan karbon (3,0-4,0%) dan silikonnya (1,8-2,8%) sama dengan besi tuang. Kandungan sulfur (S) dan fosfor (P) sangat rendah kira-kira 10 kali lebih rendah dari besi tuang kelabu. Nodule berbentuk bola terbentuk pada proses solidikasi karena kandungan beleran (Sulfur) dan oksigen ditekan ke tingkat yang sangat rendah dengan menambahkan Magnesium (Mg) beberapa saat sebelum penuangan. Koloni grafit berbentuk bulat tidak teratur. Memiliki kekuatan, keuletan, dan ketangguhan lebih baik. Memiliki struktur uniform. Partikel-partikel grafit berbentuk bola (speroid). Memiliki sifat-sifat yang hampir sama dengan malleable cast iron. Memiliki mampu mesin sangat baik dan ketahanan aus baik. Memiliki sifat-sifat yang mirip dengan baja (kekuatan, ketangguhan, keuletan, mampu bentuk panas, dan kemampukerasan). 60

28 Besi Tuang Grafit Kompak (Compacted Graphite Iron) Grafit berbentuk vernicular memiliki struktur antara gray iron dan ductile iron. 61

Audio/Video. Metode Evaluasi dan Penilaian. Web. Soal-Tugas. a. Writing exam skor:0-100 (PAN). b. Tugas: Studi kasus penggunaan besi tuang di industri

Audio/Video. Metode Evaluasi dan Penilaian. Web. Soal-Tugas. a. Writing exam skor:0-100 (PAN). b. Tugas: Studi kasus penggunaan besi tuang di industri Media Ajar Pertemuan ke Tujuan Ajar/Keluaran/Indikat or Topik (pokok, sub pokok bahasan, alokasi waktu) Teks Presentasi Gambar Audio/Video Soal-Tugas Web Metode Evaluasi dan Penilaian Metode Ajar (STAR)

Lebih terperinci

Audio/Video. Metode Evaluasi dan Penilaian. Web. Soal-Tugas. a. Writing exam.skor: 0-100(PAN)

Audio/Video. Metode Evaluasi dan Penilaian. Web. Soal-Tugas. a. Writing exam.skor: 0-100(PAN) Media Ajar Pertemuan ke Tujuan Ajar/Keluaran/Indikator Topik (pokok, sub pokok bahasan, alokasi waktu) Teks Presentasi Gambar Audio/Video Soal-Tugas Web Metode Evaluasi dan Penilaian Metode Ajar (STAR)

Lebih terperinci

11. Logam-logam Ferous Diagram fasa besi dan carbon :

11. Logam-logam Ferous Diagram fasa besi dan carbon : 11. Logam-logam Ferous Diagram fasa besi dan carbon : Material Teknik Suatu diagram yang menunjukkan fasa dari besi, besi dan paduan carbon berdasarkan hubungannya antara komposisi dan temperatur. Titik

Lebih terperinci

Metode Evaluasi dan Penilaian. Audio/Video. Web. Soal-Tugas. a. Writing exam skor: 0-100(PAN)

Metode Evaluasi dan Penilaian. Audio/Video. Web. Soal-Tugas. a. Writing exam skor: 0-100(PAN) Media Ajar Pertemuan ke Tujuan Ajar/Keluaran/Indikator Topik (pokok, sub pokok bahasan, alokasi waktu) Teks Presentasi Gambar Audio/Video Soal-Tugas Web Metode Evaluasi dan Penilaian Metode Ajar (STAR)

Lebih terperinci

TIN107 - Material Teknik #10 - Metal Alloys (2) METAL ALLOYS (2) TIN107 Material Teknik

TIN107 - Material Teknik #10 - Metal Alloys (2) METAL ALLOYS (2) TIN107 Material Teknik 1 METAL ALLOYS (2) TIN107 Material Teknik Tool Steel (Baja Perkakas) 2 W Pengerasan dengan air (Water hardening) Pengerjaan Dingin (Cold Work) O Pengerasan dengan oli (Oil hardening) A Pengerasan dengan

Lebih terperinci

HEAT TREATMENT. Pembentukan struktur martensit terjadi melalui proses pendinginan cepat (quench) dari fasa austenit (struktur FCC Face Centered Cubic)

HEAT TREATMENT. Pembentukan struktur martensit terjadi melalui proses pendinginan cepat (quench) dari fasa austenit (struktur FCC Face Centered Cubic) HEAT TREATMENT Perlakuan panas (heat treatment) ialah suatu perlakuan pada material yang melibatkan pemanasan dan pendinginan dalam suatu siklus tertentu. Tujuan umum perlakuan panas ini ialah untuk meningkatkan

Lebih terperinci

Pembahasan Materi #11

Pembahasan Materi #11 1 TIN107 Material Teknik Pembahasan 2 Tool Steel Sidat dan Jenis Stainless Steel Cast Iron Jenis, Sifat, dan Keterbatasan Non-Ferrous Alloys Logam Tahan Panas 1 Tool Steel (Baja Perkakas) 3 W Pengerasan

Lebih terperinci

MATERIAL TEKNIK DIAGRAM FASE

MATERIAL TEKNIK DIAGRAM FASE MATERIAL TEKNIK DIAGRAM FASE Pengertian Diagram fasa Pengertian Diagram fasa Adalah diagram yang menampilkan hubungan antara temperatur dimana terjadi perubahan fasa selama proses pendinginan dan pemanasan

Lebih terperinci

TIN107 - Material Teknik #9 - Metal Alloys 1 METAL ALLOYS (1) TIN107 Material Teknik

TIN107 - Material Teknik #9 - Metal Alloys 1 METAL ALLOYS (1) TIN107 Material Teknik 1 METAL ALLOYS (1) TIN107 Material Teknik Definisi 2 Metal Alloys (logam paduan) adalah bahan campuran yang mempunyai sifat-sifat logam, terdiri dari dua atau lebih unsur-unsur, dan sebagai unsur utama

Lebih terperinci

TUGAS METALURGI II PENGUJIAN METALOGRAFI BAJA 1020

TUGAS METALURGI II PENGUJIAN METALOGRAFI BAJA 1020 TUGAS METALURGI II PENGUJIAN METALOGRAFI BAJA 1020 Disusun oleh : Endah Lutfiana 2710 100 099 Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya

Lebih terperinci

Sistem Besi-Karbon. Sistem Besi-Karbon 19/03/2015. Sistem Besi-Karbon. Nurun Nayiroh, M.Si. DIAGRAM FASA BESI BESI CARBIDA (Fe Fe 3 C)

Sistem Besi-Karbon. Sistem Besi-Karbon 19/03/2015. Sistem Besi-Karbon. Nurun Nayiroh, M.Si. DIAGRAM FASA BESI BESI CARBIDA (Fe Fe 3 C) MK: TRANSFORMASI FASA Pertemuan Ke-6 Sistem Besi-Karbon Nurun Nayiroh, M.Si Sistem Besi-Karbon Besi dengan campuran karbon adalah bahan yang paling banyak digunakan diantaranya adalah baja. Kegunaan baja

Lebih terperinci

Kategori unsur paduan baja. Tabel periodik unsur PENGARUH UNSUR PADUAN PADA BAJA PADUAN DAN SUPER ALLOY

Kategori unsur paduan baja. Tabel periodik unsur PENGARUH UNSUR PADUAN PADA BAJA PADUAN DAN SUPER ALLOY PENGARUH UNSUR PADUAN PADA BAJA PADUAN DAN SUPER ALLOY Dr.-Ing. Bambang Suharno Dr. Ir. Sri Harjanto PENGARUH UNSUR PADUAN PADA BAJA PADUAN DAN SUPER ALLOY 1. DASAR BAJA 2. UNSUR PADUAN 3. STRENGTHENING

Lebih terperinci

Baja adalah sebuah paduan dari besi karbon dan unsur lainnya dimana kadar karbonnya jarang melebihi 2%(menurut euronom)

Baja adalah sebuah paduan dari besi karbon dan unsur lainnya dimana kadar karbonnya jarang melebihi 2%(menurut euronom) BAJA Baja adalah sebuah paduan dari besi karbon dan unsur lainnya dimana kadar karbonnya jarang melebihi 2%(menurut euronom) Baja merupakan paduan yang terdiri dari besi,karbon dan unsur lainnya. Baja

Lebih terperinci

BAB V DIAGRAM FASE ISTILAH-ISTILAH

BAB V DIAGRAM FASE ISTILAH-ISTILAH BAB V DIAGRAM FASE ISTILAH-ISTILAH Komponen : adalah logam murni atau senyawa yang menyusun suatu logam paduan. Contoh : Cu - Zn (perunggu), komponennya adalah Cu dan Zn Solid solution (larutan padat)

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 1.1. Baja Baja merupakan bahan dasar vital untuk industri. Semua segmen kehidupan, mulai dari peralatan dapur, transportasi, generator, sampai kerangka gedung dan jembatan menggunakan

Lebih terperinci

Heat Treatment Pada Logam. Posted on 13 Januari 2013 by Andar Kusuma. Proses Perlakuan Panas Pada Baja

Heat Treatment Pada Logam. Posted on 13 Januari 2013 by Andar Kusuma. Proses Perlakuan Panas Pada Baja Heat Treatment Pada Logam Posted on 13 Januari 2013 by Andar Kusuma Proses Perlakuan Panas Pada Baja Proses perlakuan panas adalah suatu proses mengubah sifat logam dengan cara mengubah struktur mikro

Lebih terperinci

BAB IV PEMBAHASAN. BAB IV Pembahasan 69

BAB IV PEMBAHASAN. BAB IV Pembahasan 69 BAB IV PEMBAHASAN 4.1 ANALISA STRUKTUR MIKRO BAJA SETELAH HARDENING DAN TEMPERING Struktur mikro yang dihasilkan setelah proses hardening akan menentukan sifat-sifat mekanis baja perkakas, terutama kekerasan

Lebih terperinci

Proses perlakuan panas diklasifikasikan menjadi 3: 1. Thermal Yaitu proses perlakuan panas yang hanya memanfaatkan kombinasi panas dalam mencapai

Proses perlakuan panas diklasifikasikan menjadi 3: 1. Thermal Yaitu proses perlakuan panas yang hanya memanfaatkan kombinasi panas dalam mencapai Heat Treatment atau proses perlakuan panas adalah proses pemanasan yang diikuti proses pendinginan selama waktu tertentu dan bila perlu dilanjutkan dengan pemanasan serta pendinginan ulang. Perlakuan panas

Lebih terperinci

07: DIAGRAM BESI BESI KARBIDA

07: DIAGRAM BESI BESI KARBIDA 07: DIAGRAM BESI BESI KARBIDA 7.1. Diagram Besi Karbon Kegunaan baja sangat bergantung dari pada sifat sifat baja yang sangat bervariasi yang diperoleh dari pemaduan dan penerapan proses perlakuan panas.

Lebih terperinci

4. BAJA PERKAKAS. Baja perkakas (tool steel), yang dikenal juga sebagai baja premium, adalah

4. BAJA PERKAKAS. Baja perkakas (tool steel), yang dikenal juga sebagai baja premium, adalah 4. BAJA PERKAKAS Baja perkakas (tool steel), yang dikenal juga sebagai baja premium, adalah satu jenis baja yang dirancang untuk aplikasi seperti alat memotong baja lain pada mesin perkakas, alat penumbuk

Lebih terperinci

KERANGKA KONSEP PENELITIAN PENGARUH NITROCARBURIZING TERHADAP LAJU KOROSI, KEKERASAN DAN STRUKTUR MIKRO PADA MATERIAL DUPLEX STAINLESS STEEL

KERANGKA KONSEP PENELITIAN PENGARUH NITROCARBURIZING TERHADAP LAJU KOROSI, KEKERASAN DAN STRUKTUR MIKRO PADA MATERIAL DUPLEX STAINLESS STEEL KERANGKA KONSEP PENELITIAN PENGARUH NITROCARBURIZING TERHADAP LAJU KOROSI, KEKERASAN DAN STRUKTUR MIKRO PADA MATERIAL DUPLEX STAINLESS STEEL A. Kerangka Konsep Baja stainless merupakan baja paduan yang

Lebih terperinci

PENELITIAN PENGARUH VARIASI TEMPERATUR PEMANASAN LOW TEMPERING

PENELITIAN PENGARUH VARIASI TEMPERATUR PEMANASAN LOW TEMPERING TUGAS AKHIR PENELITIAN PENGARUH VARIASI TEMPERATUR PEMANASAN LOW TEMPERING, MEDIUM TEMPERING DAN HIGH TEMPERING PADA MEDIUM CARBON STEEL PRODUKSI PENGECORAN BATUR-KLATEN TERHADAP STRUKTUR MIKRO, KEKERASAN

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN BAB IV HASIL PENELITIAN IV.1 PENGUJIAN AWAL PADA GARDAN IV.1.1 PENGUJIAN KOMPOSISI Pengujian komposisi diperlukan untuk mengetahui komposisi unsur, termasuk unsur-unsur paduan yang terkandung dalam material

Lebih terperinci

Kekuatan tarik komposisi paduan Fe-C eutectoid dapat bervariasi antara MPa tergantung pada proses perlakuan panas yang diterapkan.

Kekuatan tarik komposisi paduan Fe-C eutectoid dapat bervariasi antara MPa tergantung pada proses perlakuan panas yang diterapkan. Fasa Transformasi Pendahuluan Kekuatan tarik komposisi paduan Fe-C eutectoid dapat bervariasi antara 700-2000 MPa tergantung pada proses perlakuan panas yang diterapkan. Sifat mekanis yang diinginkan dari

Lebih terperinci

Proses Annealing terdiri dari beberapa tipe yang diterapkan untuk mencapai sifat-sifat tertentu sebagai berikut :

Proses Annealing terdiri dari beberapa tipe yang diterapkan untuk mencapai sifat-sifat tertentu sebagai berikut : PERLAKUAN PANAS Perlakuan panasadalah suatu metode yang digunakan untuk mengubah sifat logam dengan cara mengubah struktur mikro melalui proses pemanasan dan pengaturan kecepatan pendinginan dengan atau

Lebih terperinci

I. PENDAHULUAN. Definisi baja menurut Kamus Besar Bahasa Indonesia (KBBI) adalah suatu benda

I. PENDAHULUAN. Definisi baja menurut Kamus Besar Bahasa Indonesia (KBBI) adalah suatu benda 1 I. PENDAHULUAN 1.1 Latar Belakang Definisi baja menurut Kamus Besar Bahasa Indonesia (KBBI) adalah suatu benda logam yang keras dan kuat (Departemen Pendidikan Nasional, 2005). Sedangkan menurut Setiadji

Lebih terperinci

BAB I PENDAHULUAN. Dalam bidang material baja karbon sedang AISI 4140 merupakan low alloy steel

BAB I PENDAHULUAN. Dalam bidang material baja karbon sedang AISI 4140 merupakan low alloy steel BAB I PENDAHULUAN 1.1 Latar Belakang Dalam bidang material baja karbon sedang AISI 4140 merupakan low alloy steel atau baja yang memiliki kandungan 0,38-0,43% C, 0,75-1,00% Mn, 0,15-0,30% Si, 0,80-1,10%

Lebih terperinci

BESI COR. 4.1 Struktur besi cor

BESI COR. 4.1 Struktur besi cor BESI COR Pendahuluan Besi cor adalah bahan yang sangat penting dan dipergunakan sebagai bahan coran lebih dari 80%. Besi cor merupakan paduan besi dan karbon dengan kadar 2 %s/d 4,1% dan sejumlah kecil

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Baja karbon Baja karbon adalah paduan antara Fe dan C dengan kadar C sampai 2,14%. Sifatsifat mekanik baja karbon tergantung dari kadar C yang dikandungnya. Setiap baja termasuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Panen adalah pemotongan tandan buah dari pohon sampai dengan. faktor penting dalam pencapain produktivitas.

BAB II TINJAUAN PUSTAKA. Panen adalah pemotongan tandan buah dari pohon sampai dengan. faktor penting dalam pencapain produktivitas. BAB II TINJAUAN PUSTAKA 2.1 Proses Panen Kelapa Sawit Panen adalah pemotongan tandan buah dari pohon sampai dengan pengangkutan ke pabrik yang meliputi kegiatan pemotongan tandan buah matang, pengutipan

Lebih terperinci

Perlakuan panas (Heat Treatment)

Perlakuan panas (Heat Treatment) Perlakuan panas (Heat Treatment) Pertemuan Ke-6 PERLAKUAN PANAS PADA BAJA (Sistem Besi-Karbon) Nurun Nayiroh, M.Si Sifat mekanik tidak hanya tergantung pada komposisi kimia suatu paduan, tetapi juga tergantung

Lebih terperinci

Laporan Praktikum Struktur dan Sifat Material 2013

Laporan Praktikum Struktur dan Sifat Material 2013 BAB IV UJI JOMINY (JOMINY TEST) 4.1 PENDAHULUAN 4.1.1 Latar Belakang Pada dunia engineering, penggunaan bahan yang spesifik pada aplikasi tertentu sangatlah krusial. Salah satu metode yang sering diaplikasi

Lebih terperinci

ANALISA PENGARUH AGING 400 ºC PADA ALUMINIUM PADUAN DENGAN WAKTU TAHAN 30 DAN 90 MENIT TERHADAP SIFAT FISIS DAN MEKANIS

ANALISA PENGARUH AGING 400 ºC PADA ALUMINIUM PADUAN DENGAN WAKTU TAHAN 30 DAN 90 MENIT TERHADAP SIFAT FISIS DAN MEKANIS TUGAS AKHIR ANALISA PENGARUH AGING 400 ºC PADA ALUMINIUM PADUAN DENGAN WAKTU TAHAN 30 DAN 90 MENIT TERHADAP SIFAT FISIS DAN MEKANIS Disusun : SUDARMAN NIM : D.200.02.0196 JURUSAN TEKNIK MESIN FAKULTAS

Lebih terperinci

PENGARUH MEDIA PENDINGIN PADA PROSES HARDENING TERHADAP STRUKTURMIKRO BAJA MANGAN HADFIELD AISI 3401 PT SEMEN GRESIK

PENGARUH MEDIA PENDINGIN PADA PROSES HARDENING TERHADAP STRUKTURMIKRO BAJA MANGAN HADFIELD AISI 3401 PT SEMEN GRESIK TUGAS AKHIR MM09 1381- PENGARUH MEDIA PENDINGIN PADA PROSES HARDENING TERHADAP STRUKTURMIKRO BAJA MANGAN HADFIELD AISI 3401 PT SEMEN GRESIK MOHAMMAD ISMANHADI S. 2708100051 Yuli Setyorini, ST, M.Phil LATAR

Lebih terperinci

MATERIAL TEKNIK 5 IWAN PONGO,ST,MT

MATERIAL TEKNIK 5 IWAN PONGO,ST,MT MATERIAL TEKNIK 5 IWAN PONGO,ST,MT STRUKTUR LOGAM DAPAT BERUBAH KARENA : KOMPOSISI KIMIA (PADUAN) REKRISTALISASI DAN PEMBESARAN BUTIRAN (GRAIN GROWTH) TRANSFORMASI FASA PERUBAHAN STRUKTUR MENIMBULKAN PERUBAHAN

Lebih terperinci

Materi #7 TIN107 Material Teknik 2013 FASA TRANSFORMASI

Materi #7 TIN107 Material Teknik 2013 FASA TRANSFORMASI #7 FASA TRANSFORMASI Pendahuluan Kekuatan tarik komposisi paduan Fe-C eutectoid dapat bervariasi antara 700-2000 MPa tergantung pada proses perlakuan panas yang diterapkan. Sifat mekanis yang diinginkan

Lebih terperinci

BAB 1. PERLAKUAN PANAS

BAB 1. PERLAKUAN PANAS BAB PERLAKUAN PANAS Kompetensi Sub Kompetensi : Menguasai prosedur dan trampil dalam proses perlakuan panas pada material logam. : Menguasai cara proses pengerasan, dan pelunakan material baja karbon.

Lebih terperinci

BAB VI L O G A M 6.1. PRODUKSI LOGAM

BAB VI L O G A M 6.1. PRODUKSI LOGAM BAB VI L O G A M Baja banyak di gunakan dalam pembuatan struktur atau rangka bangunan dalam bentuk baja profil, baja tulangan beton biasa, anyaman kawat, atau pada akhir-akhir ini di pakai juga dalam bentuk

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Penguatan yang berdampak terhadap peningkatan sifat mekanik dapat

BAB I PENDAHULUAN. 1.1 Latar Belakang. Penguatan yang berdampak terhadap peningkatan sifat mekanik dapat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Penguatan yang berdampak terhadap peningkatan sifat mekanik dapat terjadi dengan berbagai cara, antara lain dengan mekanisme pengerasan regangan (strain hardening),

Lebih terperinci

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007)

Gambar 2.1. Proses pengelasan Plug weld (Martin, 2007) BAB II DASAR TEORI 2.1 TINJAUAN PUSTAKA Proses pengelasan semakin berkembang seiring pertumbuhan industri, khususnya di bidang konstruksi. Banyak metode pengelasan yang dikembangkan untuk mengatasi permasalahan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Dengan semakin majunya teknologi sekarang ini, tuntutan

BAB I PENDAHULUAN Latar Belakang. Dengan semakin majunya teknologi sekarang ini, tuntutan BAB I PENDAHULUAN 1.1. Latar Belakang Dengan semakin majunya teknologi sekarang ini, tuntutan manusia dalam bidang industri semakin besar. kebutuhan akan material besi dalam bentuk baja dan besi cor juga

Lebih terperinci

ANALISA PENGARUH TEMPERATUR PADA PROSES TEMPERING TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO BAJA AISI 4340

ANALISA PENGARUH TEMPERATUR PADA PROSES TEMPERING TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO BAJA AISI 4340 ANALISA PENGARUH TEMPERATUR PADA PROSES TEMPERING TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO BAJA AISI 30 Sasi Kirono, Eri Diniardi, Seno Ardian Jurusan Mesin, Universitas Muhammadiyah Jakarta Abstrak.

Lebih terperinci

6. Besi Cor. Besi Cor Kelabu : : : : : : : Singkatan Berat jenis Titik cair Temperatur cor Kekuatan tarik Kemuluran Penyusutan

6. Besi Cor. Besi Cor Kelabu : : : : : : : Singkatan Berat jenis Titik cair Temperatur cor Kekuatan tarik Kemuluran Penyusutan Seperti halnya pada baja, bahwa besi cor adalah paduan antara besi dengan kandungan karbon (C), Silisium (Si), Mangan (Mn), phosfor (P), dan Belerang (S), termasuk kandungan lain yang terdapat didalamnya.

Lebih terperinci

BAB 3 INDUSTRI BESI DAN BAJA

BAB 3 INDUSTRI BESI DAN BAJA BAB 3 INDUSTRI BESI DAN BAJA Pengantar Besi (Fe) merupakan salah satu logam yang mempunyai peranan yang sangat besar dalam kehidupan manusia, terlebih-lebih di zaman modern seperti sekarang. Kelimpahannya

Lebih terperinci

PROSES THERMAL LOGAM

PROSES THERMAL LOGAM 1 PROSES THERMAL LOGAM TIN107 Material Teknik Fungsi Proses Thermal 2 Annealing Mempersiapkan material logam sebagai produk setengah jadi agar layak diproses berikutnya. Hardening Mempersiapkan material

Lebih terperinci

PROSES QUENCHING DAN TEMPERING PADA SCMnCr2 UNTUK MEMENUHI STANDAR JIS G 5111

PROSES QUENCHING DAN TEMPERING PADA SCMnCr2 UNTUK MEMENUHI STANDAR JIS G 5111 PROSES QUENCHING DAN TEMPERING PADA SCMnCr2 UNTUK MEMENUHI STANDAR JIS G 5111 Agung Setyo Darmawan Teknik Mesin Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol Pos I Pabelan Kartasura agungsetyod@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Metalurgi merupakan ilmu yang mempelajari pengenai pemanfaatan dan pembuatan logam dari mulai bijih sampai dengan pemasaran. Begitu banyaknya proses dan alur yang harus

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Klasifikasi Logam Logam cor diklasifikasikan menurut kandungan karbon yang terkandung di dalamnya yaitu kelompok baja dan besi cor. Logam cor yang memiliki persentase karbon

Lebih terperinci

BAB I PENDAHULUAN. Luasnya pemakaian logam ferrous baik baja maupun besi cor dengan. karakteristik dan sifat yang berbeda membutuhkan adanya suatu

BAB I PENDAHULUAN. Luasnya pemakaian logam ferrous baik baja maupun besi cor dengan. karakteristik dan sifat yang berbeda membutuhkan adanya suatu BAB I PENDAHULUAN 1.1. Latar Belakang Penelitian Luasnya pemakaian logam ferrous baik baja maupun besi cor dengan karakteristik dan sifat yang berbeda membutuhkan adanya suatu penanganan yang tepat sehingga

Lebih terperinci

Pengaruh Waktu Penahanan Artificial Aging Terhadap Sifat Mekanis dan Struktur Mikro Coran Paduan Al-7%Si

Pengaruh Waktu Penahanan Artificial Aging Terhadap Sifat Mekanis dan Struktur Mikro Coran Paduan Al-7%Si Pengaruh Waktu Penahanan Artificial Aging Terhadap Sifat Mekanis dan Struktur Mikro Coran Paduan Al-7%Si Fuad Abdillah*) Dosen PTM Otomotif IKIP Veteran Semarang Abstrak Waktu penahanan pada temperatur

Lebih terperinci

Pengaruh Perlakuan Panas Austempering pada Besi Tuang Nodular FCD 600 Non Standar

Pengaruh Perlakuan Panas Austempering pada Besi Tuang Nodular FCD 600 Non Standar Pengaruh Perlakuan Panas Austempering pada Besi Tuang Nodular FCD 600 Non Standar Indra Sidharta 1, a, *, Putu Suwarta 1,b, Moh Sofyan 1,c, Wahyu Wijanarko 1,d, Sutikno 1,e 1 Laboratorium Metalurgi, Jurusan

Lebih terperinci

PENGARUH JENIS BAHAN DAN PROSES PENGERASAN TERHADAP KEKERASAN DAN KEAUSAN PISAU TEMPA MANUAL

PENGARUH JENIS BAHAN DAN PROSES PENGERASAN TERHADAP KEKERASAN DAN KEAUSAN PISAU TEMPA MANUAL PENGARUH JENIS BAHAN DAN PROSES PENGERASAN TERHADAP KEKERASAN DAN KEAUSAN PISAU TEMPA MANUAL Balkhaya 2114201007 Dosen Pembimbing Suwarno, ST., M.Sc., Ph.D. LATAR BELAKANG Alat potong bidang pertanian

Lebih terperinci

PENGARUH PROSES HARDENING PADA BAJA HQ 7 AISI 4140 DENGAN MEDIA OLI DAN AIR TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO

PENGARUH PROSES HARDENING PADA BAJA HQ 7 AISI 4140 DENGAN MEDIA OLI DAN AIR TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO PENGARUH PROSES HARDENING PADA BAJA HQ 7 AISI 4140 DENGAN MEDIA OLI DAN AIR TERHADAP SIFAT MEKANIS DAN STRUKTUR MIKRO Cahya Sutowo 1.,ST.MT., Bayu Agung Susilo 2 Lecture 1,College student 2,Departement

Lebih terperinci

CYBER-TECHN. VOL 11 NO 02 (2017) ISSN

CYBER-TECHN. VOL 11 NO 02 (2017) ISSN CYBER-TECHN. VOL NO 0 (07) ISSN 907-9044 PENGARUH PENAMBAHAN UNSUR SILIKON (-%) PADA PRODUK KOPEL TERHADAP KEKUATAN TARIK, KEKERASAN DAN STRUKTUR MIKRO Febi Rahmadianto ), Wisma Soedarmadji ) ) Institut

Lebih terperinci

BAJA PADUAN DAN SUPER ALLOY. Dr.-Ing. Bambang Suharno Dr. Ir. Sri Harjanto 1. ALASAN PENGGUNAAN 2. KLASIFIKASI 3. PENGGUNAAN

BAJA PADUAN DAN SUPER ALLOY. Dr.-Ing. Bambang Suharno Dr. Ir. Sri Harjanto 1. ALASAN PENGGUNAAN 2. KLASIFIKASI 3. PENGGUNAAN BAJA PADUAN DAN SUPER ALLOY Dr.-Ing. Bambang Suharno Dr. Ir. Sri Harjanto 1. ALASAN PENGGUNAAN 2. KLASIFIKASI 3. PENGGUNAAN Department of Metallurgy and Materials 2008 Silabus Tujuan : Memahami berbagai

Lebih terperinci

BAB I PENDAHULUAN. perlu dapat perhatian khusus baik dari segi kualitas maupun kuantitasnya karena

BAB I PENDAHULUAN. perlu dapat perhatian khusus baik dari segi kualitas maupun kuantitasnya karena BAB I PENDAHULUAN 1.1. Latar Belakang Pada bidang metalurgi, terutama mengenai pengolahan baja karbon rendah ini perlu dapat perhatian khusus baik dari segi kualitas maupun kuantitasnya karena erat dengan

Lebih terperinci

PERLAKUAN PANAS (HEAT TREATMENT)

PERLAKUAN PANAS (HEAT TREATMENT) HEAT TREATMENT PERLAKUAN PANAS (HEAT TREATMENT) Proses laku-panas atau Heat Treatment kombinasi dari operasi pemanasan dan pendinginan dengan kecepatan tertentu yang dilakukan terhadap logam atau paduan

Lebih terperinci

03/01/1438 KLASIFIKASI DAN KEGUNAAN BAJA KLASIFIKASI BAJA 1) BAJA PEGAS. Baja yang mempunyai kekerasan tinggi sebagai sifat utamanya

03/01/1438 KLASIFIKASI DAN KEGUNAAN BAJA KLASIFIKASI BAJA 1) BAJA PEGAS. Baja yang mempunyai kekerasan tinggi sebagai sifat utamanya KLASIFIKASI BAJA KLASIFIKASI DAN KEGUNAAN BAJA L U K H I M U L I A S 1 Baja yang mempunyai kekerasan tinggi sebagai sifat utamanya 1) BAJA PEGAS Baja pegas adalah baja karbon yang mengandung 0,5-1,0% karbon

Lebih terperinci

BAB VII PROSES THERMAL LOGAM PADUAN

BAB VII PROSES THERMAL LOGAM PADUAN BAB VII PROSES THERMAL LOGAM PADUAN Annealing adalah : sebuah perlakukan panas dimana material dipanaskan pada temperatur tertentu dan waktu tertentu dan kemudian dengan perlahan didinginkan. Annealing

Lebih terperinci

BAB II TINJAUAN PUSTAKA. ketika itu banyak terjadi fenomena patah getas pada daerah lasan kapal kapal

BAB II TINJAUAN PUSTAKA. ketika itu banyak terjadi fenomena patah getas pada daerah lasan kapal kapal BAB II TINJAUAN PUSTAKA 2.1 Pengertian Alat Pengujian Impak Sejarah pengujian impak terjadi pada masa Perang Dunia ke 2, karena ketika itu banyak terjadi fenomena patah getas pada daerah lasan kapal kapal

Lebih terperinci

Bab 4 UNSUR METALOGRAFI DALAM PROSES ENGINEERING MATERIALS Part 1

Bab 4 UNSUR METALOGRAFI DALAM PROSES ENGINEERING MATERIALS Part 1 Bab 4 UNSUR METALOGRAFI DALAM PROSES ENGINEERING MATERIALS Part 1 Industri-industri dalam sektor logam dasar dan pemesinan tumbuh dimana-mana dengan segala tingkat teknologi dari yang canggih dan masih

Lebih terperinci

II TINJAUAN PUSTAKA. menghasilkan sifat-sifat logam yang diinginkan. Perubahan sifat logam akibat

II TINJAUAN PUSTAKA. menghasilkan sifat-sifat logam yang diinginkan. Perubahan sifat logam akibat II TINJAUAN PUSTAKA A. Heat Treatment Proses perlakuan panas (Heat Treatment) adalah suatu proses mengubah sifat logam dengan cara mengubah struktur mikro melalui proses pemanasan dan pengaturan kecepatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan-bahan logam Baja adalah paduan antara besi dengan karbon (Fe-C) yang mengandung karbon maksimal 2,0 % dengan sedikit unsur silikon (Si), Mangan (Mn), Phospor (P), dan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1. Proses Celup panas (Hot Dipping) Pelapisan hot dipping adalah pelapisan logam dengan cara mencelupkan pada sebuah material yang terlebih dahulu dilebur dari bentuk padat menjadi

Lebih terperinci

1. Baja dan Paduannya 1.1 Proses Pembuatan Baja

1. Baja dan Paduannya 1.1 Proses Pembuatan Baja 1. Baja dan Paduannya 1.1 Proses Pembuatan Baja Pembuatan Baja diawali dengan membuat besi kasar (pig iron) di dapur tinggi (blast furnace) di Gbr.1.1 Besi oksida (umumnya, Hematite Fe 2 O 3 atau Magnetite,

Lebih terperinci

I. TINJAUAN PUSTAKA. unsur paduan terhadap baja, proses pemanasan baja, tempering, martensit, pembentukan

I. TINJAUAN PUSTAKA. unsur paduan terhadap baja, proses pemanasan baja, tempering, martensit, pembentukan I. TINJAUAN PUSTAKA Teori yang akan dibahas pada tinjauan pustaka ini adalah tentang klasifikasi baja, pengaruh unsur paduan terhadap baja, proses pemanasan baja, tempering, martensit, pembentukan martensit,

Lebih terperinci

BAB I PENDAHULUAN. Dalam dunia teknik dikenal empat jenis material, yaitu : logam,

BAB I PENDAHULUAN. Dalam dunia teknik dikenal empat jenis material, yaitu : logam, BAB I PENDAHULUAN 1.1 Latar Belakang Dalam dunia teknik dikenal empat jenis material, yaitu : logam, plastik, komposit dan keramik. Logam itu sendiri masih dibagi menjadi dua bagian, yaitu : logam ferro

Lebih terperinci

BAB I PENDAHULUAN. ragam, oleh sebab itu manusia dituntut untuk semakin kreatif dan produktif dalam

BAB I PENDAHULUAN. ragam, oleh sebab itu manusia dituntut untuk semakin kreatif dan produktif dalam BAB I PENDAHULUAN 1.1 Latar Belakang Penerapan teknologi rekayasa material saat ini semakin bervariasi hal ini disebabkan oleh tuntutan untuk memenuhi kebutuhan manusia yang beraneka ragam, oleh sebab

Lebih terperinci

TUGAS AKHIR. Diajukan Untuk Melengkapi Salah Satu Syarat Untuk Memperoleh. Gelar Sarjana Strata Satu (S-1) Teknik Mesin.

TUGAS AKHIR. Diajukan Untuk Melengkapi Salah Satu Syarat Untuk Memperoleh. Gelar Sarjana Strata Satu (S-1) Teknik Mesin. STUDI TENTANG PENGARUH KOROSI TERHADAP SIFAT KEKERASAN, KEKUATAN TARIK DAN STRUKTUR MIKRO PADA BESI TUANG KELABU 40 UNTUK MEMBANDINGKAN KUALITAS PRODUK LOKAL DENGAN PRODUK IMPORT TUGAS AKHIR Diajukan Untuk

Lebih terperinci

PENGARUH PENAMBAHAN NIKEL TERHADAP KEKUATAN TARIK DAN KEKERASAN PADA BESI TUANG NODULAR 50

PENGARUH PENAMBAHAN NIKEL TERHADAP KEKUATAN TARIK DAN KEKERASAN PADA BESI TUANG NODULAR 50 PENGARUH PENAMBAHAN NIKEL TERHADAP KEKUATAN TARIK DAN KEKERASAN PADA BESI TUANG NODULAR 50 Sudarmanto Prodi Teknik Mesin Sekolah Tinggi Teknologi Adisutjipto Jalan Janti Blok R Lanud Adisutjipto, Yogyakarta

Lebih terperinci

PENGARUH MULTIPLE QUECHING TERHADAP PERUBAHAN KEKERASAN DAN STRUKTUR MIKRO PADA BAJA ASSAB 760

PENGARUH MULTIPLE QUECHING TERHADAP PERUBAHAN KEKERASAN DAN STRUKTUR MIKRO PADA BAJA ASSAB 760 PENGARUH MULTIPLE QUECHING TERHADAP PERUBAHAN KEKERASAN DAN STRUKTUR MIKRO PADA BAJA ASSAB 760 Syaiful Rizal 1) Ir.Priyagung Hartono 2) Ir Hj. Unung Lesmanah.MT 3) Program Strata Satu Teknik Universitas

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah 1 BAB I PENDAHULUAN A. Latar Belakang Masalah Perkembangan ilmu pengetahuan dan teknologi saat ini telah merambah pada berbagai aspek kehidupan manusia, tidak terkecuali di dunia industri manufacture (rancang

Lebih terperinci

STUDI PEMBUATAN BESI COR MAMPU TEMPA UNTUK PRODUK SAMBUNGAN PIPA

STUDI PEMBUATAN BESI COR MAMPU TEMPA UNTUK PRODUK SAMBUNGAN PIPA STUDI PEMBUATAN BESI COR MAMPU TEMPA UNTUK PRODUK SAMBUNGAN PIPA Agus Yulianto Jurusan Teknik Mesin Fakultas Teknik UMS Jl. A. Yani Pabelan Kartosuro, Tromol Pos 1 Telp. (0271) 715448 Surakarta ABSTRAK

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Penelitian ini menggunakan bahan dasar velg racing sepeda motor bekas kemudian velg tersebut diremelting dan diberikan penambahan Si sebesar 2%,4%,6%, dan 8%. Pengujian yang

Lebih terperinci

LOGAM DAN PADUAN LOGAM

LOGAM DAN PADUAN LOGAM LOGAM DAN PADUAN LOGAM SATU KOMPONEN digunakan luas, kawat, kabel, alat RT LEBIH SATU KOMPONEN, utk memperbaiki sifat PADUAN FASA TUNGGAL, MRPKAN LARUTAN PADAT, KUNINGAN (Tembaga + Seng) perunggu (paduan

Lebih terperinci

RPKPS (RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER)

RPKPS (RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER) RPKPS (RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER) 1. Nama Mata Kuliah : Bahan Teknik I 2. Kode/SKS : DTM 1105, 2 SKS, 32 jam 3. Prasyarat : - 4. Status Matakuliah : Pilihan / Wajib (coret yang

Lebih terperinci

PENGARUH PROSES PERLAKUAN PANAS TERHADAP KEKERASAN DAN STRUKTUR MIKRO BAJA AISI 310S

PENGARUH PROSES PERLAKUAN PANAS TERHADAP KEKERASAN DAN STRUKTUR MIKRO BAJA AISI 310S PENGARUH PROSES PERLAKUAN PANAS TERHADAP KEKERASAN DAN STRUKTUR MIKRO BAJA AISI 310S Mahasiswa Edwin Setiawan Susanto Dosen Pembimbing Ir. Rochman Rochiem, M. Sc. Hariyati Purwaningsih, S.Si, M.Si. 1 Latar

Lebih terperinci

Jurnal Flywheel, Volume 1, Nomor 2, Desember 2008 ISSN :

Jurnal Flywheel, Volume 1, Nomor 2, Desember 2008 ISSN : PENGARUH TEMPERATUR PENUANGAN PADUAN AL-SI (SERI 4032) TERHADAP HASIL PENGECORAN Ir. Drs Budiyanto Dosen Teknik Mesin, Fakultas Teknologi Industri Institut Teknologi Nasional Malang ABSTRAK Proses produksi

Lebih terperinci

BAB VI TRANSFORMASI FASE PADA LOGAM

BAB VI TRANSFORMASI FASE PADA LOGAM BAB VI TRANSFORMASI FASE PADA LOGAM Sebagian besar transformasi bahan padat tidak terjadi terus menerus sebab ada hambatan yang menghalangi jalannya reaksi dan bergantung terhadap waktu. Contoh : umumnya

Lebih terperinci

PENGARUH WAKTU PENAHANAN TERHADAP SIFAT FISIS DAN MEKANIS PADA PROSES PENGKARBONAN PADAT BAJA MILD STEEL

PENGARUH WAKTU PENAHANAN TERHADAP SIFAT FISIS DAN MEKANIS PADA PROSES PENGKARBONAN PADAT BAJA MILD STEEL PENGARUH WAKTU PENAHANAN TERHADAP SIFAT FISIS DAN MEKANIS PADA PROSES PENGKARBONAN PADAT BAJA MILD STEEL Pramuko I. Purboputro Teknik Mesin Universitas Muhammadiyah Surakarta Jl.A. Yani Tromol Pos 1 Pabelan

Lebih terperinci

II. KEGIATAN BELAJAR 2 DASAR DASAR PENGECORAN LOGAM. Dasar-dasar pengecoran logam dapat dijelaskan dengan benar

II. KEGIATAN BELAJAR 2 DASAR DASAR PENGECORAN LOGAM. Dasar-dasar pengecoran logam dapat dijelaskan dengan benar II. KEGIATAN BELAJAR 2 DASAR DASAR PENGECORAN LOGAM A. Sub Kompetensi Dasar-dasar pengecoran logam dapat dijelaskan dengan benar B. Tujuan Kegiatan Pembelajaran Setelah pembelajaran ini mahasiswa mampu

Lebih terperinci

METALURGI FISIK. Heat Treatment. 10/24/2010 Anrinal - ITP 1

METALURGI FISIK. Heat Treatment. 10/24/2010 Anrinal - ITP 1 METALURGI FISIK Heat Treatment 10/24/2010 Anrinal - ITP 1 Definisi Perlakuan Panas Perlakuan panas adalah : Proses pemanasan dan pendinginan material yang terkontrol dengan maksud merubah sifat mekanik

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1 Latar Belakang Penerapan teknologi rekayasa material saat ini semakin bervariasi. Hal ini disebabkan oleh tuntutan untuk memenuhi kebutuhan manusia yang beraneka ragam, sehingga manusia

Lebih terperinci

Pengaruh Unsur-unsur Paduan Pada Proses Temper:

Pengaruh Unsur-unsur Paduan Pada Proses Temper: PROSES TEMPER Proses temper adalah proses memanaskan kembali baja yang sudah dikeraskan dengan tujuan untuk memperoleh kombinasi antara kekuatan, duktilitas dan ketangguhan yang tinggi. Proses temper terdiri

Lebih terperinci

TUGAS AKHIR PENGARUH ELEKTROPLATING TERHADAP SIFAT FISIS DAN MEKANIS ALUMINIUM PADUAN

TUGAS AKHIR PENGARUH ELEKTROPLATING TERHADAP SIFAT FISIS DAN MEKANIS ALUMINIUM PADUAN TUGAS AKHIR PENGARUH ELEKTROPLATING TERHADAP SIFAT FISIS DAN MEKANIS ALUMINIUM PADUAN Al-Si-Cu YANG TELAH MENGALAMI SOLUTION TREATMENT 450 0 C, QUENCHING DENGAN AIR 27 0 C DAN AGING 150 0 C Disusun : LILIK

Lebih terperinci

PEMBUATAN BRACKET PADA DUDUKAN CALIPER. NAMA : BUDI RIYONO NPM : KELAS : 4ic03

PEMBUATAN BRACKET PADA DUDUKAN CALIPER. NAMA : BUDI RIYONO NPM : KELAS : 4ic03 PEMBUATAN BRACKET PADA DUDUKAN CALIPER NAMA : BUDI RIYONO NPM : 21410473 KELAS : 4ic03 LATAR BELAKANG MASALAH Dewasa ini perkembangan dunia otomotif sangat berkembang dengan pesat, begitu juga halnya dengan

Lebih terperinci

PENGARUH SILIKON (Si) TERHADAP KEKERASAN PERMUKAAN DARI BAJA TUANG PERKAKAS YANG MENGALAMI FLAME HARDENING SKRIPSI

PENGARUH SILIKON (Si) TERHADAP KEKERASAN PERMUKAAN DARI BAJA TUANG PERKAKAS YANG MENGALAMI FLAME HARDENING SKRIPSI PENGARUH SILIKON (Si) TERHADAP KEKERASAN PERMUKAAN DARI BAJA TUANG PERKAKAS YANG MENGALAMI FLAME HARDENING SKRIPSI Oleh HERRY SETIAWAN 04 04 04 033 X DEPARTEMEN METALURGI DAN MATERIAL FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

PERBAIKAN PERAMUAN BAHAN BAKU PELEBURAN BESI COR KELABU PADA TANUR TUNGKIK. Oleh: Soedihono. Staf Pengajar Politeknik Manufaktur Bandung,

PERBAIKAN PERAMUAN BAHAN BAKU PELEBURAN BESI COR KELABU PADA TANUR TUNGKIK. Oleh: Soedihono. Staf Pengajar Politeknik Manufaktur Bandung, PERBAIKAN PERAMUAN BAHAN BAKU PELEBURAN BESI COR KELABU PADA TANUR TUNGKIK Oleh: Soedihono Staf Pengajar Politeknik Manufaktur Bandung, Direktur Politeknik Manufaktur Ceper ABSTRAK Besi cor kelabu penggunaannya

Lebih terperinci

VARIASI TEMPERATUR PEMANASAN PADA PROSES PERLAKUAN PANAS TERHADAP KEKERASAN DENGAN MATERIAL SS 304L

VARIASI TEMPERATUR PEMANASAN PADA PROSES PERLAKUAN PANAS TERHADAP KEKERASAN DENGAN MATERIAL SS 304L VARIASI TEMPERATUR PEMANASAN PADA PROSES PERLAKUAN PANAS TERHADAP KEKERASAN DENGAN MATERIAL SS 304L Disusun oleh : Suparjo dan Purnomo Dosen Tetap Jurusan Teknik Mesin Institut Teknologi Adhi Tama Surabaya.

Lebih terperinci

ARANG KAYU JATI DAN ARANG CANGKANG KELAPA DENGAN AUSTEMPERING

ARANG KAYU JATI DAN ARANG CANGKANG KELAPA DENGAN AUSTEMPERING TUGAS AKHIR PENGARUH CARBURIZING ARANG KAYU JATI DAN ARANG CANGKANG KELAPA DENGAN AUSTEMPERING PADA MILD STEEL (BAJA LUNAK) PRODUK PENGECORAN TERHADAP SIFAT FISIS DAN MEKANIS Diajukan untuk Memenuhi Tugas

Lebih terperinci

4.1 ANALISA STRUKTUR MIKRO

4.1 ANALISA STRUKTUR MIKRO BAB IV PEMBAHASAN Percobaan perlakuan panas dan uji kekerasan paduan Fe-Ni-10%Al, Fe-Ni- 20%Al, Fe-Ni-30%Al dilakukan pada temperatur 900 o C dan 1000 o C dengan lama waktu pemanasan 24 jam dan 48 jam.

Lebih terperinci

BAB II DASAR TEORI Tinjauan Pustaka

BAB II DASAR TEORI Tinjauan Pustaka BAB II DASAR TEORI 2.1. Tinjauan Pustaka Pengelasan logam tak sejenis antara baja tahan karat dan baja karbon banyak diterapkan di bidang teknik, diantaranya kereta api, otomotif, kapal dan industri lain.

Lebih terperinci

II. TINJAUAN PUSTAKA. unsur dasar dan karbon sebagai unsur paduan utamanya. Kandungan karbon

II. TINJAUAN PUSTAKA. unsur dasar dan karbon sebagai unsur paduan utamanya. Kandungan karbon 5 II. TINJAUAN PUSTAKA 2.1 Klasifikasi Baja Baja adalah logam paduan antara besi (Fe) dan karbon (C), dimana besi sebagai unsur dasar dan karbon sebagai unsur paduan utamanya. Kandungan karbon dalam baja

Lebih terperinci

BAB II ALUMINIUM DAN PADUANNYA

BAB II ALUMINIUM DAN PADUANNYA BAB II ALUMINIUM DAN PADUANNYA Aluminium adalah salah satu logam ringan (light metal) dan mempunyai sifat-sifat fisis dan mekanis yang baik, misal kekuatan tarik cukup tinggi, ringan, tahan korosi, formability

Lebih terperinci

DIAGRAM FASA BESI-KARBON (Fe-C)

DIAGRAM FASA BESI-KARBON (Fe-C) DIAGRAM FASA BESI-KARBON (Fe-C) PADUAN Fe-C BAJA FERIT (BESI ALPHA) MRPKAN MODIFIKASI BESI MURNI PD SUHU RUANG, LUNAK, ULET DAN KARENA BESI FERIT MEMP. STRUKTUR KPR DIMANA RUANG ANTAR ATOMNYA KECIL, SHG

Lebih terperinci

PROSES PENGERASAN (HARDENNING)

PROSES PENGERASAN (HARDENNING) PROSES PENGERASAN (HARDENNING) Proses pengerasan atau hardening adalah suatu proses perlakuan panas yang dilakukan untuk menghasilkan suatu benda kerja yang keras, proses ini dilakukan pada temperatur

Lebih terperinci

BAB I PENDAHULUAN. BAB I Pendahuluan 1

BAB I PENDAHULUAN. BAB I Pendahuluan 1 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Baja perkakas (tool steel) merupakan baja yang biasa digunakan untuk aplikasi pemotongan (cutting tools) dan pembentukan (forming). Selain itu baja perkakas juga banyak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Baja Baja adalah besi karbon campuran logam yang dapat berisi konsentrasi dari element campuran lainnya, ada ribuan campuran logam lainnya yang mempunyai perlakuan bahan dan

Lebih terperinci

PANDANGAN UMUM LOGAM CORAN DAN PADUANNYA

PANDANGAN UMUM LOGAM CORAN DAN PADUANNYA PANDANGAN UMUM LOGAM CORAN DAN PADUANNYA Pada industri permesinan dipergunakan benda-benda coran dari baja tuang, besi tuang, logam paduan maupun logam berwarna. Coran baja pada umumnya dari baja dengan

Lebih terperinci

UNIVERSITAS MERCU BUANA

UNIVERSITAS MERCU BUANA BAB II DASAR TEORI 2.1. Perlakuan Panas Perlakuan panas didefinisikan sebagai kombinasi operasi pemanasan dan pendinginan terhadap logam atau paduan dalam keadaan padat dengan waktu tertentu, yang dimaksud

Lebih terperinci