PENGEMBANGAN MODEL PREDIKSI MADDEN JULIAN OSCILLATION (MJO) BERBASIS PADA HASIL ANALISIS DATA REAL TIME MULTIVARIATE MJO (RMM1 DAN RMM2) LISA EVANA

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGEMBANGAN MODEL PREDIKSI MADDEN JULIAN OSCILLATION (MJO) BERBASIS PADA HASIL ANALISIS DATA REAL TIME MULTIVARIATE MJO (RMM1 DAN RMM2) LISA EVANA"

Transkripsi

1 PENGEMBANGAN MODEL PREDIKSI MADDEN JULIAN OSCILLATION (MJO) BERBASIS PADA HASIL ANALISIS DATA REAL TIME MULTIVARIATE MJO (RMM1 DAN RMM2) LISA EVANA DEPARTEMEN GEOFISIKA DAN METEOROLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2009

2 ii ABSTRACT LISA EVANA. Prediction Model Development Madden Julian Oscillation (MJO) based on the results of data analysis Real Time Multivariate MJO (RMM1 and RMM2). Under direction of SOBRI EFFENDY and EDDY HERMAWAN. Background of this research is the importance of study on the Madden Julian Oscillation, the dominant oscillation in the equator area. MJO cycle showed by cloud cluster growing in the Indian Ocean then moved to the east and form a cycle with a range of days and the coverage area from 10N-10S. Method that used to predict RMM is Box-Jenkins based on ARIMA (Autoregressive Integrated Moving Average) statistical analysis. The data used RMM daily data period 1 March March (30 years). RMM1 and RMM2 is an index for monitoring MJO. This is based on two empirical orthogonal functions (EOFs) from the combined average zonal 850hPa wind, 200hPa zonal wind, and satellite-observed Outgoing Longwave Radiation (OLR) data. The results in form of the Power Spectral Density (PSD) graph Real Time Multivariate MJO (RMM) and long wave radiation (OLR = Outgoing Longwave Radiation) at the position 100 BT, 120 BT, and 140 BT that show the wave pattern (spectrum pattern) and clearly shows the oscillation periods. There is a close relation between RMM1 with OLR at the position 100 o BT that characterized the PSD value about 45 day. Through Box-Jenkins method, the prediction model that close to time series data of RMM1 and RMM2 is ARIMA (2,1,2), that mean the forecasts of RMM data for the future depending on one time previously and the error one time before. Prediction model for RMM1 is Z t = Z t Z t Z t a t a t-2.. Prediction model for RMM2 is Z t = Z t Z t Z t a t a t-2.. The flood case in Jakarta January-February 1996 and 2002 are one of real evidence that made the MJO prediction important. MJO with active phase dominant cover almost the entire Indonesia west area at that moment. Keywords: MJO, RMM1 and RMM2, OLR, Power Spectral Density, ARIMA, Rainfall

3 iii RINGKASAN LISA EVANA. Pengembangan Model Prediksi Madden Julian Oscillation (MJO) Berbasis pada Hasil Analisis Data Real Time Multivariate MJO (RMM1 dan RMM2). Dibimbing oleh SOBRI EFFENDY dan EDDY HERMAWAN. Latar belakang penelitian ini adalah pentingnya kajian mengenai Madden Julian Oscillation yang merupakan osilasi dominan di kawasan ekuator. Siklus MJO ditunjukan berupa gugus-gugus awan tumbuh di Samudera Hindia lalu bergerak ke arah timur dan membentuk suatu siklus dengan rentang hari dan dengan cakupan daerah 10 LU -10 LS. Metode yang digunakan untuk prediksi Real Time Multivariate MJO adalah metode analisis statistik Box-Jenkins berbasis ARIMA (Autoregressive Integrated Moving Average). Data yang digunakan berupa data RMM harian periode 1 Maret Maret 2009 (30 tahun). RMM1 dan RMM2 adalah suatu indeks untuk memonitoring MJO. Hal itu didasarkan pada dua fungsi ortogonal empiris (EOFs) dari gabungan rata-rata angin zonal 850hPa, angin zonal 200hPa, dan data keluaran satelit berupa radiasi gelombang panjang (OLR=Outgoing Longwave Radiation). Hasil yang diperoleh berupa grafik Power Spektral Density (PSD) Real Time Multivariate MJO (RMM) dan radiasi gelombang panjang (OLR=Outgoing Longwave Radiation) pada posisi 100 BT, 120 BT, dan 140 BT yang memperlihatkan periode osilasi fenomena Madden Julian Oscilltaion (MJO). Terdapat keterkaitan yang erat antara RMM1 dan RMM2 dengan OLR pada posisi 100 o BT yang dicirikan dengan adanya nilai PSD sekitar 45 harian. Melalui Metode Box-Jenkins, model prediksi yang mendekati untuk data deret waktu RMM1 dan RMM2 adalah ARIMA (2,1, 2), artinya prakiraan data RMM pada waktu mendatang tergantung dari data dua waktu sebelumnya dan galat dua waktu sebelumnya. Untuk RMM1 model prediksi yang diperoleh adalah Z t =1,681 Z t-1 0,722 Z t-2 + 0,041 Z t-3-0,02 a t-1-0,05 a t-2. Model prediksi untuk RMM2 adalah Z t =1,714 Z t-1 0,764 Z t-2 + 0,05 Z t-3-0,109 a t-1-0,05 a t-2. Kejadian banjir di Jakarta pada bulan Januari-Februari tahun 1996 dan 2002 merupakan salah satu bukti nyata bahwa prediksi MJO penting dilakukan. MJO dengan fase aktif saat itu dominan meliputi hampir seluruh kawasan barat Indonesia. Kata k unci : MJO, RMM1 dan RMM2, OLR, Power Spectral Density, ARIMA, Curah Hujan

4 iv PENGEMBANGAN MODEL PREDIKSI MADDEN JULIAN OSCILLATION (MJO) BERBASIS PADA HASIL ANALISIS DATA REAL TIME MULTIVARIATE MJO (RMM1 DAN RMM2) LISA EVANA Skripsi Sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains pada Departemen Geofisika dan Meteorologi DEPARTEMEN GEOFISIKA DAN METEOROLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2009

5 v Judul skripsi : Pengembangan Model Prediksi Madden Julian Oscillation (MJO) Berbasis pada Hasil Analisis Data Real Time Multivariate MJO (RMM1 dan RMM2). Nama : Lisa Evana NRP : G Disetujui: Pembimbing I Pembimbing II Dr. Ir. Sobri Effendy, M.Si Dr. Ir. Eddy Hermawan, M.Sc NIP NIP Diketahui: Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor Dr. Drh. Hasim, DEA NIP Tanggal Lulus:

6 vi PRAKATA Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Esa atas segala karunia-nya sehingga penulis dapat menyelesaikan tugas akhir yang berjudul Pengembangan Model Prediksi Madden Julian Oscillation (MJO) Berbasis pada Hasil Analisis Data Real Time Multivariate MJO (RMM1 dan RMM2). Skripsi ini merupakan salah satu syarat kelulusan di program studi mayor Meteorologi Terapan Departemen Geofisika dan Meteorologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, I nstitut Pertanian Bogor. Penulis juga mengucapkan terima kasih kepada Bapak Dr. Ir. Sobri Effendy, M.Si selaku pembimbing I yang telah memberikan masukan dan pengarahan kepada penulis. Terima kasih juga penulis ucapkan kepada Bapak Dr. Ir. Eddy Hermawan, M.Sc selaku pembimbing II yang telah berbagi ilmu pengetahuannya, sangat sabar, pengertian, dan sungguh besar andilnya atas terselesainya tugas akhir ini. Selanjutnya penulis juga ingin mengucapkan terima kasih kepada: 1. Bapak Prof. Ahmad Bey, Ibu Ana Turyanti, Bapak Sonni Setiawan, dan Pak Perdinan yang telah memberikan masukan, saran, serta ilmu pengetahuan kepada Penulis dalam menyelesaikan tugas akhir ini. 2. Bapak Idung Risdiyanto selaku pembimbing akademik yang telah banyak memberikan masukan dan saran kepada Penulis. 3. Alm. Bapak Imam Santosa atas segala kebaikan, kesabaran, keceriaan yang seringkali diperlihatkan sewaktu mengajar. Penulis sungguh merasa sangat kehilangan. 4. Ibu Ida, Pak Trimo, serta segenap pegawai di Badan Meteorologi Klimatologi Geofisika wilayah II Ciputat atas pemberian data curah hujan. 5. Pak Terson, Ibu Juniarti Visa (Bu Ina) dan Ibu Sinta atas segala masukan, saran, dan perhatiannya selama Penulis penelitian di LAPAN Bandung. 6. Papa, Mama, Ce Vivie, Tira, Sandi, Susan, dan Nicko atas dukungan, semangat,dan perhatian yang begitu besar hingga saat ini. 7. Teman-teman KMB IPB 42 yang telah menjadi sahabat yang baik. 8. Dewy Suryani Ullva dan Franz Sahidi sebagai sahabat Penulis yang menjadi teman belajar dan berangkat kuliah bareng, Yohanes Ariyanto yang telah memberikan banyak masukan dan membantu Penulis dalam tugas akhir ini. 9. Mbak Ium dan Veza yang telah menjadi teman terdekat selama penelitian di Bandung. 10. Indah dan Devita yang telah membantu sewaktu seminar hasil dan memberikan banyak masukan kepada Penulis. 11. Epi, Rifa, Nancy, Tanjung, Anis, Wita dan Cici yang telah menjadi teman yang baik selama penulis di GFM. 12. Budi, Gito, Ivan, Indra, Dori, Heri, Henky, Wahyu, Irvan, Anton, Zahir, Galih, Aan, Singgih, Dani, Tigin, Yudi, Hardie, Nizar, Apit, Victor, Bang Obet, Tumpal, Ghulam atas segala perhatian dan dukungannya selama ini. 13. Kak Ining, Kak Mian, Kak Aris, Kak Midi yang telah membantu selama penelitian di LAPAN Bandung. 14. Kakak-kakak senior GFM yang telah membantu penulis selama masa perkuliahan. 15. Segenap civitas GEOMET FMIPA, Bu Indah, Mas Azis, Pak Jun, Pak Pono, Mbak Wanti, Mbak Icha, Pak Kaerun, Pak Udin, serta seluruh staf dosen dan pengajar atas bimbingan dan kuliahnya selama ini. 16. Segenap civitas LAPAN Bandung atas segala bantuannya selama Penulis melakukan penelitian. Kepada semua pihak lainnya yang telah memberikan kontribusi yang besar selama pengerjaan penelitian ini yang tidak dapat disebutkan satu-persatu, Penulis ucapkan terima kasih. Semoga penelitian ini dapat memberikan manfaat. Bandung, Juni 2009 Lisa Evana

7 vii RIWAYAT HIDUP Penulis dilahirkan di Lubuklinggau pada tanggal 5 April 1987, dari ayah Aang Gunawan dan ibu Linda. Penulis merupakan putri ke-2 dari enam bersaudara. Tahun 2005 penulis lulus dari SMA Xaverius dan pada tahun yang sama lulus seleksi masuk IPB melalui jalur Undangan Seleksi Masuk IPB (USMI). Penulis diterima di Departemen Geofisika dan Meteorologi, Program Studi Meteorologi Terapan, Fakultas Matematika dan Ilmu Pengetahuan Alam. Selama mengikuti perkuliahan, penulis menjadi asisten mat a kuliah Fisika Dasar pada tahun ajaran 2006/2007. Penulis cukup aktif di himpunan keprofesian atau organisasi kemahasiswaan (HIMAGRETO) sebagai anggota pada Departemen Kegiatan Ketatalaksanaan Khusus ( ) dan Departemen Keilmuan dan Profesi ( ). Penulis juga aktif di organisasi Keluarga Mahasiswa Buddhis Institut Pertanian Bogor (KMB IPB) sebagai kepala biro media massa bagian divisi pengembangan dan pengelolaan informasi.

8 viii DAFTAR ISI Halaman DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR LAMPIRAN... ix x xi I. PENDAHULUAN 1.1 Latar Belakang Tujuan... 2 II. TINJAUAN PUSTAKA 2.1 Madden Julian Oscillation (MJO) Outgoing Longwave Radiation (OLR) Curah Hujan di Indonesia Real Time Multivariate MJO seri 1 dan 2 (RMM1 dan RMM2) Analisis Spektral Fungsi Autokorelasi (ACF) dan Fungsi Autokorelasi Parsial (PACF) Stasioneritas Prakiraan dengan Time Series Model Autoregressive (AR) Model Moving Average (MA) Model Autoregressive-Moving Average (ARMA) Model Autoregressive-Integrated-Moving Average (ARIMA) Keterandalan Peramalan III. METODOLOGI 3.1 Waktu dan Tempat Penelitian Alat dan Data yang digunakan Metode Penelitian) Analisis Spektral Metode Korelasi Silang Metode Box- Jenkins IV. HASIL DAN PEMBAHASAN 4.1 Analisis Spektral dan Korelasi Silang Real Time Multivariate MJO (RMM1 dan RMM2) dengan Anomali Pentad Outgoing Longwave Radiation (OLR) Model Prediksi Berbasis ARIMA Uji Stasioneritas Data Identifikasi dan Penaksiran Model Uji Diagnostik Peramalan Model Program Penentuan Fase Pergerakan MJO Analisis Jangka Panjang Analisis Jangka Pendek V. KESIMPULAN DAN SARAN 5.1 Kesimpulan Saran DAFTAR PUSTAKA LAMPIRAN... 33

9 ix DAFTAR TABEL Halaman 1 Identifikasi m odel deret waktu AR(p), MA(q), dan ARMA (p,q) Hubungan korelasi silang antara RMM1 dan OLR 100 BT Hubungan korelasi silang antara RMM2 dan OLR 100 BT Deskripsi statistik data Real Time Multivariate MJO (RMM1 dan RMM2) 30 tahun (1 Maret Maret 2009) dan data pembedaan Mean Absolute Deviation (MAD) dan Sum Square Error (MSE) untuk model ARIMA data RMM1 dan RMM2 periode 1 Maret Maret Parameter model ARIMA (2,1,2) Perbandingan data asli, nilai prakiraan, dan nilai galat RMM1 periode 1 Maret Maret Perbandingan data asli, nilai prakiraan, dan nilai galat RMM2 periode 1 Maret Maret Validasi data RMM1 dengan hasil prakiraan model ARIMA (2,1,2) Periode 2 Maret Juni Peluang kejadian curah hujan > 50 mm/hari saat MJO aktif dan tidak aktif di wilayah Jakarta, Lampung, Palembang, dan Kerinci... 30

10 x DAFTAR GAMBAR Halaman 1 Siklus MJO Skema MJO di ekuatorial Anomali OLR periode 14 Desember Mei Pola curah hujan di Indonesia Diagram fase MJO global hasil penurunan RMM1 dan RMM Skema pendekatan Box-Jenkins Diagram alir penelitian Power Spectral Density (PSD) RMM1, RMM2, OLR 80 BT, OLR 100 BT, OLR 120 BT, dan OLR 140 BT periode 3 Maret Maret Power Spectral Density (PSD) RMM1 dan RMM2 Periode 1 Maret Maret Korelasi silang antara RMM1 dengan OLR 100 BT periode 3 Maret Maret Korelasi silang antara RMM2 dengan OLR 100 BT periode 3 Maret Maret Plot data RMM1 (a) dan RMM2 (b) periode 1 Maret Maret Fungsi Autokorelasi (ACF) RMM1 (a) dan RMM2 (b) periode 1 Maret Maret Fungsi Autokorelasi Parsial (PACF) RMM1 (a) dan RMM2 (b) periode 1 Maret Maret Plot data pembedaan 1 RMM1 (a) dan RMM2 (b) periode 1 Maret Maret Fungsi Autokorelasi (ACF) pembedaan 1 RMM1 (a) dan RMM2 (b) periode 1 Maret Maret Fungsi Autokorelasi Parsial (PACF) pembedaan 1 RMM1 (a) dan RMM2 (b) periode 1 Maret Maret Histogram nilai galat RMM1 (a) dan RM M2 (b) Plot data asli RMM1 dan RMM2 dengan hasil prediksi ARIMA (2,1,2) periode 2 Maret Juni Interface program penentuan fase pergerakan MJO Grafik curah hujan bulanan Jakarta p eriode Januari 1995 Desember Plot data RMM1/2 dengan nilai prediksi periode 1 Januari - 31 Desember 1996 (a), 2002 (b), dan 2007 (c) Plot data RMM1/2 (a) dan diagram fase MJO (sumber: Bureau of Meteorology Research Centre, 1996) (b) periode 1 Desember Maret Plot data RMM1/2 (a) dan diagram fase MJO (sumber: Bureau of Meteorology Research Centre, 2002) (b) periode 1 Desember Maret Plot data RMM1/2 (a) dan diagram fase MJO (sumber: Bureau of Meteorology Research Centre, 2007) (b) periode 1 Desember Maret Time-longitude section anomali OLR pada 3 LU 8 LS dan 105 BT -108 BT Januari Maret

11 xi DAFTAR LAMPIRAN Halaman 1 Penaksir p arameter untuk model ARIMA (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (2,1,1), (2,1,3), (2,1,4), (2,1,5) dari data Real Time Multivariate MJO (RMM1 dan RMM2) Hasil validasi data asli RMM dan RMM2 dengan hasil prakiraan menggunakan model ARIMA (2,1,2) Periode 2 Maret Juni Coding progr am penentuan fase pergerakan MJO Coding Power Spectral Density Plot RMM1 dan RMM2 tahun 1995, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2006, Grafik curah hujan wilayah Jakarta periode 1 Desember 31 Maret 1996 (a), 2002 (b), dan 2007 (c)... 48

12 1 I. PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan salah satu dari tiga kawasan penting dunia sebagai lokasi terjadinya perubahan iklim global. Dua diantaranya adalah di atas daratan sekitar kawasan hutan hujan di Congo di ekuator Afrika dan kawasan Amazon di Amerika Selatan. Hal ini dimungkinkan karena kurang lebih tujuh puluh persen wilayah Indonesia didominasi oleh lautan yang menyebabkan kawasan ini diduga sebagai penyimpan bahang (panas) terbesar baik yang sensibel ataupun latent (tersembunyi) bagi pembentukkan awan-awan kumulus, seperti Cumulonimbus (Hermawan, 2002). Curah hujan di Indonesia umumnya dipengaruhi oleh fenomena sirkulasi atmosfer baik skala global, regional, maupun lokal. Salah satu fenomena global yang mempengaruhi cuaca dan iklim Indonesia adalah Madden Julian Oscillation (MJO). Madden Julian Oscillation (MJO) merupakan model osilasi dominan dari variabilitas daerah tropik (Madden dan Julian, 1971). Ia dimanifestasikan dalam skala waktu antara hari melalui anomali skala besar dari propagasi (penjalaran) proses konveksi ke arah timur. Fenomena MJO dapat menjelaskan variasi iklim di wilayah tropis. Fenomena MJO terkait langsung dengan pembentukan kolam panas di Samudra Hindia bagian timur dan Samudra Pasifik bagian barat sehingga pergerakan MJO ke arah timur bersama angin baratan (westerly wind) sepanjang ekuator selalu diikuti dengan konveksi awan kumulus tebal. Awan konvektif ini menyebabkan hujan dengan intensitas tinggi sepanjang penjalarannya yang menempuh jarak 100 kilometer dalam sehari di Samudra Hindia dan 500 kilometer per hari ketika berada di Indonesia. MJO melibatkan variasi angin, sea surface temperature (SST), perawanan, dan hujan. Kebanyakan curah hujan tropis adalah konvektif, dan puncak awan konvektif sangat dingin (memancarkan sedikit radiasi gelombang panjang), maka fenomena MJO akan terlihat jelas pada variasi Outgoing Longwave Radiation (OLR) yang terukur dari sensor inframerah pada satelit. Bureau of Meteorology Australia menggunakan indeks Real Time Multivariate MJO (RMM1 dan RMM2) untuk memonitoring MJO. Indeks ini melibatkan variabel angin pada ketinggian 200 mb dan 850 mb, serta data OLR. Indeks ini dimaksudkan untuk menjelaskan secara efisien dan ekstrak variabilitas atmosfer yang langsung berhubungan dengan MJO. Studi fenomena MJO hingga saat ini belum banyak dilakukan orang, terutama mengenai prediksi terjadinya MJO. Hasil yang diharapkan dari penelitian ini yaitu dikembangkannya model prediksi MJO berbasis kepada hasil analisis data time series Real Time Multivariate MJO (RMM). Metode yang akan digunakan adalah metode Box-Jenkins atau ARIMA (Autoregresive Integrated Moving Average). Penelitian ini juga akan menganalisis keterkaitan fenomena MJO dengan curah hujan yang terjadi di beberapa kawasan barat Indonesia. Dipilihnya kawasan barat karena fenomena MJO paling dominan terjadi di Indonesia bagian barat (Hermawan, 2009). Kejadian banjir pada tahun 1996, 2002, dan 2007 merupakan salah satu bukti nyata bahwa prediksi MJO penting dilakukan. Diduga, MJO dengan fase aktif saat itu dominan meliputi hampir seluruh kawasan barat Indonesia. 1.2 Tujuan Tujuan dibuatnya tugas akhir ini adalah 1. Memodelkan data time series Real Time Multivariate MJO (RMM1 dan RMM2) 2. Menduga besarnya RMM1 dan RMM2 yang terjadi di atas wilayah Indonesia untuk beberapa dekade mendatang (2-3 hari dari data). 3. Menganalisis keterkaitan nilai RMM1 dan RMM2 dengan curah hujan yang terjadi di beberapa kawasan barat Indonesia (studi kasus: Jakarta, Lampung, Palembang, dan Kerinci). II. TINJAUAN PUSTAKA 2.1 Madden Julian Oscillation (MJO) Madden Julian Oscillation (MJO) adalah osilasi/gelombang tekanan (pola tekanan tinggi-rendah) dengan periode hari menjalar dari barat ke timur. Fenomena ini pertama kali diketemukan oleh Roland Madden dan Paul Julian (1971) ketika menganalisis anomali angin zonal di Pasifik Tropis sehingga kemudian dikenal dengan Madden Julian Oscillation (MJO). Mereka menggunakan data tekanan selama 10 tahun di Pulau Canton (2,80 LS di Pasifik) dan data angin di lapisan atas Singapura. Osilasi ini dihasilkan dari sirkulasi sel skala besar di ekuatorial yang bergerak ke timur dari laut Hindia ke Pasifik Tengah.

13 2 Anomali angin zonal dan kecepatan potensial di troposfer atas yang sering menyebar untuk melakukan siklus mengit ari bumi. Proses tersebut ditandai dengan perubahan tekanan permukaan dan momentum relatif angular atmosfer. MJO merupakan variasi intraseasonal (kurang dari setahun) yang terkenal di daerah tropis. Osilasi ini merupakan faktor penting saat fase aktif dan fase lemah Monsun India dan Australia, sehingga menyebabkan gelombang laut, arus, dan interaksi laut -udara. Pergerakan awan ke arah timur diasosiasikan dengan osilasi MJO. Awal dan aktivitas Monsun Asia-Australia dipengaruhi sangat kuat oleh pergerakan MJO ke timur (Yasunari 1979; Lau dan Chan 1986). Fenomena MJO terkait langsung dengan pembentukan kolam panas di Samudra Hindia bagian timur dan Samudra Pasifik bagian barat sehingga pergerakan MJO ke arah timur bersama angin baratan (westerly wind) sepanjang ekuator selalu diikuti dengan konveksi awan kumulus tebal. Awan konvektif ini menyebabkan hujan dengan intensitas tinggi sepanjang penjalarannya yang menempuh jarak 100 kilometer dalam sehari di Samudra Hindia dan 500 kilometer per hari ketika berada di Indonesia. Pergerakan super cloud cluster tentu saja berkaitan dengan pergerakan pusat tekanan rendah yang akan diikuti oleh perubahan pola angin (Seto, 2002). Pada akhir Desember 2007, ketika MJO dalam fase matang, intensitas curah hujan tinggi dan dalam waktu cukup lama (torrential rains) terjadi di laut dan pantai utara Jawa menyebabkan wilayah Jawa Tengah mengalami longsor akibat hujan deras yang terus-terusan mengguyur yang menimbulkan korban jiwa dan menyebabkan instabilitas atmosfer di perairan selatan Bali (Kompas, 18 Januari 2008). Dengan menggunakan analisis EAR (Equatorial Atmosphere Radar ) secara vertikal (zonal-vertikal, data angin) dapat menunjukan adanya pergerakan ke timur di permukaan dan ke barat di lapisan atas (Nurhayati, 2007) dan inilah yang disebut dengan siklus MJO serta hal tersebut sesuai dengan teori skema perpotongan MJO sepanjang ekuator. MJO juga memiliki siklus hari. MJO mempengaruhi seluruh lapisan tropis, terlihat jelas di Pasifik Barat dan Hindia. Unsur yang dilibatkan dalam menganalisis MJO dapat berupa angin, SST (Sea Surface Temperature), perawanan, hujan, dan OLR (Outgoing Longwave Radiation). Fenomena MJO terlihat jelas pada variasi OLR (sensor inframerah satelit), sebab curah hujan tropis adalah konvektif dengan puncak awan konvektif sangat dingin sehingga memancarkan sedikit radiasi gelombang panjang. Pergerakan awan konvektif dari barat ke timur sepanjang Pasifik Tropis ditandai konvergensi di lapisan bawah (troposfer) dan divergensi di lapisan atas (stratosfer). MJO merupakan sirkulasi skala besar di ekuator dan berpusat di Samudera Hindia dan bergerak ke timur antara 10 LU dan 10 LS. Fenomena ini juga dipengaruhi oleh inter aksi antara atmosfer dan lautan, diantaranya sea surface temperature (SST), sea level presure (SLP), angin zonal, keawanan, dan evaporasi dari permukaan lautan. Pengaruh yang nyata dari osilasi MJO adalah tidak normalnya curah hujan yang diterima di kawasan Barat Samudera Hindia dan penjalaran sisanya. Siklus MJO ditunjukan berupa gugusgugus awan tumbuh di Samudera Hindia lalu bergerak ke arah timur dan membentuk suatu siklus dengan rentang hari dan dengan cakupan daerah 10N -10S (Matthews AJ, 2000), seperti yang ditunjukan pada Gambar 1. Gambar 1 Siklus MJO ( Matthews A.J., 2000)

14 3 Gambar 1 menunjukan siklus MJO dengan interval selama 3 harian atau 22.5 derajat. Gambar tersebut menggunakan OLR sebagai salah satu cara untuk menggambarkan perjalanan siklus MJO. Siklus MJO pada fase 0 atau t=0, konveksi tumbuh dan berkembang di Samudera Hindia dan terjadi supresi (mengalami kekeringan) di Samudera Pasifik. Kedua peristiwa ini bergerak ke timur sampai fase 180 dengan lokasi yang berkebalikan (konveksi di Samudera Pasifik dan supresi di Samudera Hindia). Kondisi ini terus bergerak ke timur dan kembali ke fase 0 (konveksi di Samudera Hindia dan supresi di Samudera Pasifik). Penjalaran ini memerlukan waktu hari dengan efek basah dan kering pada daerah-daerah yang di lewatinya. Gambar 2 Skema MJO di ekuatorial (Madden dan Julian, 1972) Gambar 2 menunjukan skema MJO di ekuatorial. Garis panah menunjukan sirkulasi meridional yang diasosiasikan dengan MJO. Garis atas menunjukkan tinggi tropopause dan garis bawah menunjukan tekanan permukaan laut (sea-level pressure, SLP). Terlihat dalam gambar tersebut munculnya awan dan posisinya bergeser ke arah timur. Periode sirkulasi MJO disimbolkan dengan huruf, dimana skema konveksi kuat ditandai oleh terbentuknya awan Cumulus dan Cumulonimbus (Madden dan Julian, 1972). Siklus MJO bergerak ke timur berawal dari Samudra Hindia menuju Samudra Pasifik dan belahan bumi bagian barat dibagi dalam 8 f ase (Matthews AJ, 2000). Fase-8,1 daerah konveksi di belahan bumi bagian barat dan Afrika, fase-2,3 di samudra India bagian barat dan 8 tim ar, fase-4,5 di benua maritim Indonesia, fase-6,7 di kawasan Pasifik barat. 2.2 Outgoing Longwave Radiation (OLR) OLR atau radiasi gelombang panjang adalah jumlah energi yang dipancarkan bumi ke angkasa (Juniarti et al., 2002). Atmosfer dapat dikatakan hampir transparan terhadap radiasi gelombang pendek, namun tidak semua radiasi yang berasal dari matahari sampai ke bumi. Hanya sekitar 50% yang mencapai bumi, yang lainnya diserap oleh awan dan gas gas yang ada di atmosfer. Radiasi yang diserap oleh permuka an bumi kemudian dipancarkan dalam bentuk panas (radiasi gelombang panjang). Selanjutnya radiasi gelombang panjang ini diemisikan ke atmosfer, sebagian ada yang lolos ke angkasa dan sebagian lagi tertahan atau terperangkap dan diserap oleh GRK (gas rumah kaca) yang ada di atmosfer, misalnya uap air, CO 2, O 3, CFC, serta awan sehingga tidak dapat lolos ke angkasa. Nilai OLR diperoleh dari sensor inframerah satelit. Satelit memancarkan sensor ke awan yang paling tinggi, awan memantulkannya kembali dalam bentuk nilai Temperature Black Body (TBB). Nilai TBB ini kemudian dikonversikan ke dalam nilai OLR, melalui suatu persamaan konversi tertentu. Nilai OLR yang rendah biasanya mengindikasikan suhu yang rendah atau adanya hujan, sedangkan nilai yang tinggi menunjukkan daerah hangat di bumi. Outgoing Longwave Radiation (OLR) adalah ukuran atau nilai radiasi bumi yang memiliki panjang gelombang panjang yang terdeteksi dari luar angkasa. Deteksi ini biasa dilakukan dengan peralatan satelit. Nilai yang diukur ini menggambarkan seberapa besar perawanan menghambat keluarnya radiasi bumi tersebut. Nilai OLR merupakan nilai negatif yang menunjukkan besarnya hambatan tersebut. Semakin kecil nilai dalam skala negatif menunjukkan semakin besarnya hambatan sehingga dapat divisu alisasi sebagai semakin tingginya awan yang menghambat tersebut yang biasanya adalah awan konvektif. Secara umum pola OLR menggambarkan pola daerah daerah konvektif potensial (Aldrian, 2000).

15 4 Gambar 3 Anomali OLR periode 14 Desember Mei 2009 (Climate Prediction Center /NCEP, 2009) Gambar 3 menunjukkan bagaimana fenomena MJO dapat dilihat berdasarkan anomali OLR. Warna orange merupakan positif anomali OLR, sedangkan warna biru menunjukkan negatif anomali OLR. Pada pertengahan Januari hingga pertengahan Februari terlihat adanya propagasi MJO yang ditunjukkan oleh anomali OLR (-) ke timur dari Samudera Hindia melewati Indonesia dan menuju ke Samudera Pasifik. 2.3 Curah Hujan di Indonesia Sebagian besar hujan dihasilkan oleh udara yang naik dan mengalami penurunan suhu. Berdasarkan gerakan udara naik untuk membentuk awan, tipe hujan dapat digolongkan menjadi tiga kriteria, salah satunya yaitu hujan konvektif. Hujan konvektif merupakan tipe hujan yang dihasilkan dari naiknya udara hangat dan lembab dengan proses penurunan suhu secara adiabatik (Hidayati dalam Handoko, 1993). Gaya naik ini murni diakibatkan oleh pemanasan permukaan. Naiknya sel -sel arus lokal yang hangat dan lembab ini biasanya membentuk awan-awan tipe cumuli atau berkembang menjadi awan Cumulonimbus (Cb). Letak Indonesia yang berada di antara lautan Hindia dan Pasifik dan di antara benua Asia dan Australia sangat dipengaruhi kondisi wilayah tersebut. Hal inilah yang menyebabkan Indonesia mengalami dua musim, yaitu musim hujan dan musim kemarau. Hujan merupakan gejala atau fenomena cuaca yang dipandang sebagai variabel tak bebas karena terbentuk dari proses berbagai unsur. Curah hujan (mm) merupakan ketinggian air hujan yang terkumpul dalam tempat yang datar, tidak menguap, tidak meresap, dan tidak mengalir. Curah hujan 1 (satu) milimeter, artinya dalam luasan satu meter persegi pada tempat yang datar tertampung air setinggi satu milimeter. Berdasarkan distribusi data rata-rata curah hujan bulanan, umumnya wilayah Indonesia dibagi menjadi 3 pola hujan, yaitu: 1. Pola hujan Monsun, yang wilayahnya memiliki perbedaan yang jelas antara periode musim hujan dan periode musim kemarau kemudian dikelompokan dalam Zona Musim (ZOM), tipe curah hujan yang bersifat unimodial (satu puncak musim hujan,djf musim hujan,jja musim kemarau). 2. Pola hujan equatorial, yang wilayahnya memiliki distribusi hujan bulanan bimodial dengan dua puncak musim hujan maksimum dan hampir sepanjang tahun masuk dalam kreteria musim hujan. Pola ekuatorial dicirikan oleh tipe curah hujan dengan bentuk bimodial (dua puncak hujan) yang biasanya terjadi sekitar bulan Maret dan Oktober atau pada saat terjadi ekinoks. 3. Pola hujan lokal, yang wilayahnya memiliki distribusi hujan bulanan kebalikan dengan pola Monsun. Pola lokal dicirikan oleh bentuk pola hujan unimodial (satu puncak hujan), tetapi bentuknya berlawanan dengan tipe hujan Monsun. Ditinjau dari dinamika awan hujan, fluktuasi curah hujan di daerah tropis khususnya Jakarta banyak diakibatkan oleh jenis awan Cb. Hal ini karena secara umum Benua Maritim Indonesia menerima panas sensibel (insolasi) dan panas laten kondensasi akibat perubahan fase uap air dalam jumlah besar, maka jenis awan yang muncul adalah awan konfektif atau awan cumuliform.

16 5 Gambar 4 Pola curah hujan di Indonesia (Bayong dalam Kadarsah, 1999) Pada kondisi normal, daerah yang bertipe hujan Monsun akan mendapatkan jumlah curah hujan yang berlebih pada saat Monsun barat (DJF) dibanding saat Monsun timur (JJA). Pengaruh Monsun di daerah yang memiliki pola curah hujan ekuator kurang tegas akibat pengaruh insolasi pada saat terjadi ekinoks, demikian juga pada daerah yang memiliki pola curah hujan lokal yang lebih dipengaruhi oleh efek orografi. Secara umum awal musim hujan wilayah Propinsi Banten dan DKI Jakarta terjadi pada dasarian I Oktober sampai dengan dasarian III Desember (BMKG, 2009). Def inisi BMKG, musim hujan ditandai dengan curah hujan yang ter jadi dalam satu dasarian sebesar 50 mm atau lebih yang diikut i oleh dasarian berikutnya, atau dalam satu bulan terjadi lebih dari 150 mm. Meninjau definisi tersebut berarti jika curah hujan yang terjadi kurang dari kriteria di atas, maka fase tersebut dianggap sebagai musim kemarau. Musim kemarau di suatu tempat sering diident ikan dengan kejadian kekeringan. Kekeringan sendiri merupakan suatu keadaan dimana curah hujan yang terjadi lebih rendah dari normalnya. Jenis-jenis hujan berdasarkan curah hujan (definisi BMG): hujan sedang, mm per hari hujan lebat, mm per hari hujan sangat lebat, di atas 100 mm per hari Rata-rata curah hujan di Indonesia untuk setiap tahunnya tidak sama. Namun masih tergolong cukup banyak, yaitu rata-rata mm/tahun. Begitu pula antara tempat yang satu dengan tempat yang lain rata-rata curah hujannya tidak sama. Ada beberapa daerah yang mendapat curah hujan sangat rendah dan ada pula daerah yang mendapat curah hujan tinggi: 1. Daerah yang mendapat curah hujan ratarata per tahun kurang dari 1000 mm, meliputi 0,6% dari luas wilayah Indonesia, di antaranya Nusa Tenggara, dan 2 daerah di Sulawesi (lembah Palu dan Luwuk). 2. Daerah yang mendapat curah hujan antara mm per tahun di antaranya sebagian Nusa Tenggara, daerah sempit di Merauke, Kepulauan Aru, dan Tanibar. 3. Daerah yang mendapat curah hujan antara mm per tahun, meliputi Sumatera Timur, Kalimantan Selatan, dan Timur sebagian besar Jawa Barat dan Jawa Tengah, sebagian Irian Jaya, Kepulauan Maluku dan sebagaian besar Sulawesi. 4. Daerah yang mendap at curah hujan tertinggi lebih dari 3000 mm per tahun meliputi dataran tinggi di Sumatera Barat, Kalimantan Tengah, dataran tinggi Irian bagian tengah, dan beberapa daerah di Jawa, Bali, Lombok, dan Sumba. 2.4 Real Time Multivariate MJO seri 1 dan 2 (RMM1 dan RMM2) Real Time Multivariate MJO seri 1dan 2 (RMM1 dan RMM2) adalah suatu indeks musiman untuk memonitoring MJO. Ini didasarkan pada sepasang fungsi ortogonal empiris (EOFs) dari gabungan bidang dekat akuatorial, rata-rata 850 hpa angin zonal, 200 hpa angin zonal, dan data hasil observasi satelit Outgoing Longwave Radiation (OLR). Proyeksi dari data observasi harian ke beberapa variabel EOFs, dengan siklus tahunan dan komponen interannual variabilitas dihapus menghasilkan komponen pokok (PC) seri waktu yang berbeda pada umumnya di skala waktu intraseasonal dari MJO. Sehingga proyeksi ini berfungsi sebagai filter yang efektif untuk MJO tanpa perlu waktu untuk konvensional penyaringan yang membuat PC deret waktu sebagai indeks yang efektif ( Kyong Hwan Seo, 2008). Pasangan PC deret waktu yang membentuk indeks disebut Real-time Multivariate MJO seri 1 (RMM1) dan Realtime Multivariate MJO seri 2 (RMM2). Walaupun kenyataannya RMM1 dan RMM2

17 6 menjelaskan evolusi dari MJO sepanjang khatulistiwa yang independen dari musim, perilaku koheren-off khatulistiwa memperlihatkan pengaruh musiman yang kuat (Wheeler dan Hendon, 2004). Wheeler dan Hendon menggambarkan perkembangan indeks untuk banyak pengamatan di Badan Meteorologi Australia. Indeks ini dimaksudkan untuk menjelaskan secara efisien dan ekstrak variabilitas atmosfer yang langsung berhubungan dengan MJO. Prediksi MJO berbasis kepada teknik atau metode Real Time Multivariate MJO (RMM1 dan RMM2) hingga kini digunakan oleh pihak Badan Meteorologi Australia (BoM, Australia). Secara umum RMM diaplikasikan untuk mengetahui perkembangan aktivitas MJO. Indeks ini telah digunakan oleh Wheeler and Hendon (2004) dalam analisis statistik korelasi antara MJO dengan curah hujan. RMM indeks menghasilkan sinyal secara real tim e yang menunjukkan MJO itu sendiri. Sangat penting bahwa indeks ini menunjukkan hubungan yang pasti dengan efek-efek cuaca yang terkait dengan MJO. Setelah dilakukan banyak pengujian, kombinasi dari bidang dipilih EOF untuk perwakilan MJO, yaitu OLR, 850 hpa angin zonal (u850), dan 200 hpa angin zonal (u200). MJO ditetapkan sebagai pasangan pasti dari EOFs (Xianan et al, 2008). Untuk nilai OLR, datanya diperoleh langsung dari National Centers for Environmental Prediction (NCEP), dari Juni 1974 hingga sekarang dan berkelanjutan. Data angin zonal diperoleh dari NCEP National Center for Atmospheric Research (NCEP NCAR) reanalysis dataset (Kalnay et al., 1996) dan tersedia untuk periode yang sama dengan OLR. OLR dan angin zonal dianalisis di atas grid 2.5 lintangbujur. Data NCEP -NCAR reanalysis dihasilkan beberapa hari (biasanya 3 hari) di belakang real time yang disebabkan waktu yang menunggu untuk mendapatkan pengamatan global yang lebih lengkap. Saat ini data tersebut diperoleh dari NOAA Climate Diagnostics Center. Data OLR biasanya lebih up-to-date yang diperoleh dari NCEP (National Centers for Environmental Prediction). Untuk mengoptimalkan sifat real time dari indeks RMM digunakanlah analisis dari model operasional Australian Bureau of Meteorology yang dinamakan Global Asimilasi dan Prediksi Sistem (GASP), untuk menghitung perkiraan terbaru dari RMM1 dan RMM2. Ekspansi dan kontraksi zonal dari aktivitas MJO yang terjadi dari musim ke musim dan tahun ke tahun juga ditangkap oleh dua indeks RMM, dan penggunaan indeks RMM untuk ukuran variasi global dan perubahan interannual modulasi dari MJO adalah pemikiran yang lebih baik dari beberapa studi sebelumnya. Indeks RMM tepat untuk mendiagnosis lokasi/keberadaan MJO, yaitu ditunjukkan dari diagram dua dimensi fase pergerakan MJO menggunakan RMM1 dan RMM2 (Gambar 5). Peramalan MJO dapat menggunakan indeks RMM1 dan RMM2. MJO dikatakan dalam fase aktif jika: Gambar 5 Diagram fase MJO global hasil penurunan RMM1 dan RMM2 (Wheller dan Hendon, 2004) Data harian RMM1 dan RMM2 yang tersedia adalah dari tanggal 1 Juni 1974 berkelanjutan hingga saat ini. Terdapat 8 fase pergerakan MJO, dimana Indonesia terletak pada fase 4 dan 5. Dari Gambar 5 terlihat bahwa time-series fase 4 dan 5 merupakan fase yang yang perlu mendapat perhatian mengingat posisinya yang terletak di kawasan maritime Indonesia. MJO aktif dikatakan berada dalam fase 4 ketika nilai RMM1 lebih besar dari negatif RMM2, dengan RMM1>0 dan RMM2<0. Untuk MJO aktif yang berada pada fase 5 maka nilai RMM1>RMM2, dengan RMM1 dan RMM2 > 0. Hasil analisis lebih lanjut menunjukkan bahwa ada kalanya saat memasuki phase 4 atau phase 5, index MJO berada di dalam lingkaran yang artinya bahwa aktivitas MJO melemah, begitupun sebaliknya ketika MJO berada di luar lingkaran artinya MJO dalam fase aktif.

18 7 2.5 Analisis Spektral Dalam pemrosesan sinyal statistik dan fisika, power spectral density (PSD) atau energy spectral density (ESD) adalah fungsi real positif frekuensi variabel yang terkait dengan proses stationary stochastic, atau deterministic fungsi waktu, yang memiliki dimensi kekuatan per Hz, atau energi per Hz. Hal ini sering disebut hanya dengan spektrum sinyal. Spektral density menangkap frekuensi dari proses stokastik dan membantu mengidentifikasi periodisitas (Mulyana, 2004). Dalam fisika, sinyal tersebut biasanya adalah suatu gelombang, seperti gelombang elektromagnetik, getaran acak, atau gelombang akuistik. Spektral densitas dari gelombang, bila dikalikan dengan faktor yang tepat, akan memberikan daya yang dibawa oleh gelombang, frekuensi per unit, yang dikenal sebagai Power Spectral Density (PSD) dari sinyal. PSD umumnya dinyatakan dalam watt per Hertz (W/Hz) atau dbm/hz. Analisis spektral adalah penaksiran dalam kawasan frekuensi untuk menelaah periodesitas tersembunyi, yaitu periodesitas yang sulit ditemukan dalam kawasan waktu. Analisis spektral atau sewaktu-waktu dinamakan juga analisis spektrum, dikenalkan oleh A. Schuster, seorang pekerja sosial, pada akhir abad ke-20 dengan tujuan mencari periode tersembunyi dari data. Pada saat ini analisis spektral digunakan pada persoalan penaksiran spektrum untuk seluruh selang frekuensi. M. S. Bartlett dan J. W. Tukey, mengembangkan analisis spektral modern sekitar tahun ketiga abad ke-20, dan teorinya banyak digunakan para pengguna di bidang klimatologi, teknik kelistrikan, meteorologi, dan ilmu kelautan. Analisis spektral modern didasarkan pada fenomena bahwa data deret waktu merupakan hasil proses stokastik (Chatfield, 1989), sehingga setiap data deret waktu dapat disajikan dalam deret Fourier. Jika Xt, t = 1, 2,..., n, data deret waktu, maka Xt dapat ditulis dalam formulasi, (2.1) t = 1, 2,..., n dengan Sudah dikemukakan, dalam analisis data deret waktu dan analisis Statistika lainnya, data yang akan dianalisis harus merupakan data stasioner, dan jika tidak stasioner harus distasioner dulu melalui proses diferensi. Jika dimiliki sampel data deret waktu stasioner, x1, x2,..., xn, maka dapat dibangun model spektralnya dengan persamaan dengan u(ωt) dan v(ωt) merupakan fungsi kontinu yang tidak berkorelasi, yang didefinisikan pada selang 0 ωt π. Berdasarkan deskripsi tersebut, dapat diturunkan fungsi F(ωt) yang berkorelasi dengan u(ωt) dan v( ωt), sehingga jika r(k) fungsi autokorelasi, maka (2.2) yang merupakan sajian spektral dalam fungsi autokorelasi. Pada persamaan ini F(ω k) = 0, jika (ωk) < 0, dan F(π) = σx 2, yang merupakan varians data deret waktu. Sehingga jika didefinisikan fungsi maka diperoleh fungsi distribusi kumulatif spekt ral, dan fungsi spektral kuasa Jika G(ωt) dan g(ωt) ada, maka Persamaan rk dapat dinyatakan oleh sehingga (2.3) Karena rk fungsi genap, maka Persamaan (2.3) setara dengan yang merupakan sajian fungsi Fourier dalam fungsi autokorelasi. Karena g(wk) = 0, jika wk < 0 dan g(p) = sx2, maka fungsi spektrum

19 8 kuasa yang setara dengan fungsi distribusi kumulatifnya, disajikan pada persamaan (2.4) yang juga merupakan fungsi Fourier dalam fungsi autokorelasi. Dari pernyataan spektral tersebut, dapat disimpulkan bahwa data deret waktu dapat dinyatakan sebagai deret Fourier yang merupakan fungsi harmonis seperti pada Persamaan (2.1), sehingga dengan membangun fungsi spektrum kuasanya, periodesitas data dapat ditentukan. Tetapi menentukannya tidak dapat dalam kawasan waktu, melainkan harus dalam kawasan frekuensi sebab fungsi spektrum kuasa merupakan fungsi dalam autokorelasi dan frekuensi. Jika dilakukan penaksiran pada fungsi spektrum kuasa, dan nilai-nilai penaksirnya dipetakan terhadap frekuensinya, maka akan diperoleh sebuah garis spektrum. Telaahan periodesitas data dilakukan terhadap frekuensi yang berpasangan dengan titi-titik puncak dari garis spektumnya. 2.6 Fungsi Autokorelasi (ACF) dan Fungsi Autokorelasi Parsial (PACF) Koefisien autokorelasi menunjukkan keeratan hubungan nilai peubah yang sama dalam periode waktu yang berbeda (Makridakis, 1988). Fungsi autokorelasi contoh (r) untuk lag atau beda waktu k yaitu: Seperti halnya autokorelasi yang merupakan fungsi atas lagnya, yang hubungannya dinamakan fungsi autokorelasi (ACF), autokorelasi parsial juga merupakan fungsi atas lagnya, dan hubungannya dinamakan Fungsi Autokorelasi Parsial (partial autocorrelation function, PACF). Koefisien autokorelasi parsial mengukur keeratan hubungan antara Zt dan Zt-k dengan menghilangkan pengaruh dari Z t-1, Z t-2,..., Z t- k+1. Gambar dari ACF dan PACF dinamakan korelogram (correlogram) dan dapat digunakan untuk menelaah signifikansi autokorelasi dan kestasioneran data. Fungsi autokorelasi parsial pada lag ke-k dinotasikan oleh: Ø kk = Corr (Z 1, Z t-k Z t-1, Z t-2,..., Z t-k+1 ) φ kk adalah koefisien korelasi dalam distribusi bivariat Z, Z yang tergantung pada t t k Zt 1, Zt 2,..., Zt k+ 1. Dengan kata lain, menentukan korelasi antara dua peubah Z dan Z dengan mengontrol peubah t t k lainnya ( Zt 1, Zt 2,..., Zt k+ 1). Secara umum bentuk fungsi autokorelasi adalah ρ φ ρ φ ρ φρ j = k1 j= 1 + k2 j= kk j k, j= 1,2,..., k atau dapat ditulis 1 ρ1... ρ k 1 φ k1 ρ1 ρ ρk 2 φ k 2 ρ 2 = M M M M M ρ k 1 ρ k φ kk ρ k Fungsi autokorelasi digunakan untuk menentukan apakah secara statistik nilainya berbeda signifikan dari nol apa tidak. Untuk itu perlu dihitung simpangan bakunya dengan rumus sebagai berikut: Nilai ordo dari proses autoregressive dan moving average dapat diduga secara visual dari plot ACF dan PACF dari data. Plot tersebut menampilkan distribusi koefisien autokorelasi dan koefisien autokorelasi parsial (Cryer, 1986). Perlu digarisbawahi bahwa kebanyakan deret waktu bersifat tidak stasioner dan bahwa aspek-aspek AR dan MA dari model ARIMA hanya berkenaan dengan deret waktu yang stasioner. Jika dari time plot tersebut deret terlihat tidak stasioner maka perlu dilakukan pembedaan (differencing) pada data untuk menghilangkan ketidakstasionerannya. 2.7 Stasioneritas Data stasioner adalah data yang mempunyai rata-rata dan varians yang konstan sepanjang waktu. Data yang bersifat trend adalah contoh data yang tidak stasioner karena rata-ratanya berubah sepanjang waktu. Kestasioneran data merupakan merupakan kondisi yang diperlukan dalam analisis deret waktu karena dapat memperkecil kekeliruan model, sehingga jika data tidak stasioner maka harus dilakukan transformasi stasioneritas melalui proses diferensi. Berdasarkan diskripsinya, bentuk kestasioneran ada dua, yaitu stasioner kuat

20 9 dan stasioner lemah. Deskripsi umum kestasioneran adalah sebagai berikut, data deret Z1, Z2,... disebut stasioner kuat jika distribusi gabungan Z t1, Z t2, Z+ sama dengan distribusi gabungan Z t1+k, Z t2+k,...,z tn+k untuk setiap nilai t1, t2,.., tn, dan k. Sedangkan data disebut stasioner lemah, jika rata-rata hitung data konstan, E (Zt) = µ, dan autokovariansnya merupakan fungsi dari lag,? k = f(k). Sedangkan ketidakstasioneran data diklasifikasikan atas tiga bentuk, yaitu: 1. Tidak stasioner dalam rata-rata hitung, jika trend tidak datar (tidak sejajar sumbu waktu), dan data tersebar 2. Tidak stasioner dalam varians, jika trend datar atau hampir datar tapi data tersebar membangun pola menyebar atau menyempit yang meliput secara seimbang trendnya (pola terompet). 3. Tidak stasioner dalam rata-rata hitung dan varians, jika trend tidak datar dan data membangun pola terompet. Untuk menelaah ketidakstasioneran data secara visual, tahap pertama dapat dilihat pada plot data atas waktu. Jika belum mendapatkan kejelasan, maka tahap berikutnya dapat dilakukan dengan melihat gambar plot ACF. Pada gambar ACF, jika datanya tidak stasioner maka gambarnya akan membangun pola: a. Menurun, jika data tidak stasioner dalam rata-rata hitung (tren naik atau turun) b. Alternating, jika data tidak stasioner dalam varians c. Gelombang, jika data tidak stasioner dalam rata-rata hitung dan varians (Mulyana, 2004). Apabila data yang menjadi input dari model ARIMA tidak stasioner, perlu dimodifikasi untuk menghasilkan data yang stasioner. Salah satu metode yang umum dipakai adalah metode pembedaan (defferencing). Metode ini dilakukan dengan cara mengurangi nilai data pada suatu periode dengan nilai periode sebelumnya. 2.8 Prakiraan dengan Time Series Dalam klimatologi dibedakan dua kelompok metode peramalan, yaitu metode kausal dan time series. Metode kausal mengasumsikan adanya hubungan sebab akibat antara masukan dan keluaran sistem, sedangkan metode Time Series (Box-Jenkins) memperlakukan sistem seperti suatu kotak hitam (black box) tanpa berusaha mengetahui fakor-faktor yang mempengaruhi sistem tersebut. Sistem semata-mata dianggap sebagai suatu pembangkit proses, karena tujuan utama dari metode ini adalah ingin menduga APA yang akan datang, bukan mengetahui MENGAPA hal itu terjadi. (Bey A, 1988). ARIMA (Autoregressive Integrated Moving Average) merupakan salah satu model peramalaan yang berbasis time series yang dikembangkan oleh Box dan Jenkins (1976), dan nama mereka sering disinonimkan dengan proses ARIMA yang diterapkan untuk analisis deret berkala, peramalan, dan pengendalian. ARIMA telah diakui mempunyai kemampuan ramalan yang cukup memuaskan untuk jangka peramalan yang panjang (Tapliyal dalam Bey, A. 1988). ARIMA adalah suatu model gabungan yang meliputi model Autoregressive (AR) (Yule, 1926) dan Moving Average (MA) (Slutzky, 1937) dalam Makridakis et al., Kata integrated disini menyatakan tingkat pembedaan (degree of defferencing). ARIMA dikatakan sebagai model yang komplek, karena selain model ini merupakan gabungan antara AR dan MA, model ini dapat dipergunakan untuk pola time series seasonal (musiman) dan nonseasonal (tidak musiman) secara bersamaan. Metode ARIMA memiliki keunggulan dibanding metode lainnya, yaitu metode Box- Jenkins disusun secara logis dan secara statistik akurat, metode ini memasukkan banyak informasi dari data historis, dan metode ini menghasilkan kenaikan akurasi peramalan dan pada waktu yang sama menjaga jumlah parameter seminimal mungkin (Jarret, 1991) Metode ini menggunakan pendekatan iteratif yang mengindikasikan kemungkinan model yang bermanfaat. Model terpilih, kemudian dicek kembali dengan data historis apakah telah mendiskripsikan data tersebut dengan tepat. Model terbaik akan diperoleh apabila residual antara model peramalan dan data historis memiliki nilai yang kecil, distribusinya random, dan independen. Analisis deret waktu seperti pedekatan Box- Jenkins, mendasarkan analisis pada data deret waktu yang stasioner Model Autoregressive (AR) Proses Autoregresif seperti namanya, adalah regresi pada dirinya sendiri. Proses autoregresif {Zt} orde p disingkat AR (p) memenuhi persamaan, Z = φ Z + φ Z φ Z + a (2.5) t 1 t 1 2 t 2 p t p t

21 10 Dimana, Z t = deret waktu stasioner Ø 1,..., Ø p = koefisien atau parameter dari model autoregressive Z t-1,..., Z t-p = Nilai masa lalu yang berhubungan a t = residual pada waktu t Model Autoregressive Orde Pertama AR (1) Model AR (1) memenuhi, (Cryer, 1986). Z = φz + a (2.6) t t 1 t Model Moving Average (MA) Pada model moving average, nilai Z t bergantung error orde q sebelumnya. Moving average orde q atau disingkat MA (q) memenuhi persamaan, Z = a a a a (2.7) t t θ1 t 1 θ2 t 2... θq t q Dimana, Z t = deret waktu stasioner? 1,...,? p = koefisien atau parameter dari model moving average a t-q = residual lampau yang digunakan oleh model Model Moving Average Orde Pertama MA Model MA (1) memenuhi, Z = a θ a (2.8) t t 1 t 1 (Cryer, 1986) Model Autoregressive-Moving Average (ARMA) Jika diasumsikan deret waktu merupakan campuran dari autoregressive dan moving average maka modelnya menjadi, Z= φz + φz φz + a θa θa... θa t 1 t 1 2 t 2 p t p t 1 t 1 2 t 2 qtq (2.9) (Cryer, 1986). Dimana Z t dan a t sama seperti sebelumnya, Z t adalah konstanta, Ø dan? adalah koefisien model. {Zt} dikatakan proses campuran autoregressive moving average orde p dan q, disingkat ARMA (p,q) Model Autoregressive-Integrated- Moving Average (ARIMA) Tidak selamanya data yang akan dianalisis akan menunjukkan kestasioneran. Data yang tidak stasioner seringkali didapatkan di kehidupan nyata. Deret waktu tanpa mean yang konstan misalnya, termasuk tidak stasioner. Salah satu cara menstasionerkan data adalah melalui differencing (pembedaan). Tinjau model AR(1): Z = φz + a (2.1 0) t t 1 t Terlihat dari persamaan (2.10) bahwa at tidak berkolerasi dengan Zt-1, Zt-2,... Agar solusinya stasioner memenuhi persamaan (2.10) haruslah -1< Ø < 1. Jika Ø=1, maka persamaan (2.10) menjadi Zt = Z t 1 + at (2.1 1) atau Z = a (2.12) t dimana t t t 1 pertama dari Z. t Z = Z Z adalah pembedaan Proses stasioner dapat diperoleh dari hasil pembedaan data yang tidak stasioner. Variabel acak {Z t } dikatak an model integrasi autoregresif-moving average jika dibedakan sebanyak d kali dan merupakan proses ARMA yang stasioner. Disingkat ARIMA (p,d,q). Biasanya tingkat pembedaannya d=1 atau 2. Secara umum persamaan untuk model ARIMA (p,1,q), W= φw + φw φw + a θa θa... θa t 1 t 1 2 t 2 ptp t 1 t 1 2 t 2 qtq (2.13) dimana Wt = Zt Zt 1, sehingga φ ( ) φ ( ) ( 1) Z Z Z Z Z Z t t 1 = 1 t 1 t t 2 t φ Z Z + a θa θa θa p t p t p t t t qtq Sehingga model ARIMA (1,1,1) memenuhi persamaan: (2.14) (Cryer, 1986). Nilai ordo dari proses autoregressive dan moving average diduga secara visual dari plot PACF dan ACF dari data. Plot tersebut menampilkan distribusi koefisien autokorelasi dan koefisien autokorelasi parsial. Pola yang tampak dalam plot ACF dan PACF dapat digunakan dalam pendugaan ordo MA dan AR karena masing-masing model memiliki pola yang khusus. Secara teoritis? k =0 bagi k > q dalam model MA(q) dan Ø kk =0 bagi k > p dalam model AR (p) (Cryer, 1986).

I. PENDAHULUAN II. TINJAUAN PUSTAKA

I. PENDAHULUAN II. TINJAUAN PUSTAKA 1 I. PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan salah satu dari tiga kawasan penting dunia sebagai lokasi terjadinya perubahan iklim global. Dua diantaranya adalah di atas daratan sekitar kawasan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 9 menguji kelayakan model sehingga model sementara tersebut cukup memadai. Salah satu caranya adalah dengan menganalisis galat (residual). Galat merupakan selisih antara data observasi dengan data hasil

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 14 IV. HASIL DAN PEMBAHASAN 4.1 Analisis Spektral dan Korelasi Silang Real Time Multivariate MJO (RMM1 dan RMM2) dengan Anomali Pentad Outgoing Longwave Radiation(OLR) Metode yang paling sering digunakan

Lebih terperinci

Musim Hujan. Musim Kemarau

Musim Hujan. Musim Kemarau mm IV. HASIL DAN PEMBAHASAN. Analisis Data Curah hujan Data curah hujan yang digunakan pada penelitian ini adalah wilayah Lampung, Pontianak, Banjarbaru dan Indramayu. Selanjutnya pada masing-masing wilayah

Lebih terperinci

ESTIMASI NILAI TPW (TOTAL PRECIPITABLE WATER) DI ATAS DAERAH PADANG DAN BIAK BERDASARKAN HASIL ANALISIS DATA RADIOSONDE IRE PRATIWI

ESTIMASI NILAI TPW (TOTAL PRECIPITABLE WATER) DI ATAS DAERAH PADANG DAN BIAK BERDASARKAN HASIL ANALISIS DATA RADIOSONDE IRE PRATIWI ESTIMASI NILAI TPW (TOTAL PRECIPITABLE WATER) DI ATAS DAERAH PADANG DAN BIAK BERDASARKAN HASIL ANALISIS DATA RADIOSONDE IRE PRATIWI DEPARTEMEN GEOFISIKA DAN METEOROLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 7 d) phase spectrum, dengan persamaan matematis: e) coherency, dengan persamaan matematis: f) gain spektrum, dengan persamaan matematis: IV. HASIL DAN PEMBAHASAN 4.1 Keadaan Geografis dan Cuaca Kototabang

Lebih terperinci

PENGEMBANGAN MODEL PREDIKSI MADDEN JULIAN OSCILLATION (MJO) BERBASIS PADA HASIL ANALISIS DATA REAL TIME MULTIVARIATE MJO (RMM1 DAN RMM2)

PENGEMBANGAN MODEL PREDIKSI MADDEN JULIAN OSCILLATION (MJO) BERBASIS PADA HASIL ANALISIS DATA REAL TIME MULTIVARIATE MJO (RMM1 DAN RMM2) J.Agromet 22 (2) : 144-159,2008 PENGEMBANGAN MODEL PREDIKSI MADDEN JULIAN OSCILLATION (MJO) BERBASIS PADA HASIL ANALISIS DATA REAL TIME MULTIVARIATE MJO (RMM1 DAN RMM2) (Prediction Model Development Madden

Lebih terperinci

Naziah Madani, Eddy Hermawan, dan Akhmad Faqih 1. Departemen Geofisika dan Meteorologi, FMIPA IPB 2

Naziah Madani, Eddy Hermawan, dan Akhmad Faqih 1. Departemen Geofisika dan Meteorologi, FMIPA IPB 2 PENGEMBANGAN MODEL PREDIKSI MADDEN-JULIAN OSCILLATION (MJO) BERBASIS HASIL ANALISIS DATA WIND PROFILER RADAR (WPR) THE DEVELOPMENT OF MADDEN-JULIAN OSCILLATION (MJO) PREDICTION MODELS BASED ON THE ANALYSIS

Lebih terperinci

KATA PENGANTAR TANGERANG SELATAN, MARET 2016 KEPALA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG. Ir. BUDI ROESPANDI NIP

KATA PENGANTAR TANGERANG SELATAN, MARET 2016 KEPALA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG. Ir. BUDI ROESPANDI NIP PROPINSI BANTEN DAN DKI JAKARTA KATA PENGANTAR Puji syukur kehadirat Tuhan YME atas berkat dan rahmat Nya kami dapat menyusun laporan dan laporan Prakiraan Musim Kemarau 2016 di wilayah Propinsi Banten

Lebih terperinci

VARIASI SPASIAL DAN TEMPORAL HUJAN KONVEKTIF DI PULAU JAWA BERDASARKAN CITRA SATELIT GMS-6 (MTSAT-1R) YETTI KUSUMAYANTI

VARIASI SPASIAL DAN TEMPORAL HUJAN KONVEKTIF DI PULAU JAWA BERDASARKAN CITRA SATELIT GMS-6 (MTSAT-1R) YETTI KUSUMAYANTI VARIASI SPASIAL DAN TEMPORAL HUJAN KONVEKTIF DI PULAU JAWA BERDASARKAN CITRA SATELIT GMS-6 (MTSAT-1R) YETTI KUSUMAYANTI DEPARTEMEN GEOFISIKA DAN METEOROLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

PENGEMBANGAN MODEL PREDIKSI MADDEN-JULIAN OSCILLATION (MJO) BERBASIS HASIL ANALISIS DATA WIND PROFILER RADAR (WPR) NAZIAH MADANI

PENGEMBANGAN MODEL PREDIKSI MADDEN-JULIAN OSCILLATION (MJO) BERBASIS HASIL ANALISIS DATA WIND PROFILER RADAR (WPR) NAZIAH MADANI PENGEMBANGAN MODEL PREDIKSI MADDEN-JULIAN OSCILLATION (MJO) BERBASIS HASIL ANALISIS DATA WIND PROFILER RADAR (WPR) NAZIAH MADANI DEPARTEMEN GEOFISIKA DAN METEOROLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

STUDI IDENTIFIKASI POLA UTAMA DATA RADIOSONDE MELALUI ANALISIS KOMPONEN UTAMA DAN ANALISIS SPEKTRUM (STUDI KASUS BANDUNG) SATRIYANI

STUDI IDENTIFIKASI POLA UTAMA DATA RADIOSONDE MELALUI ANALISIS KOMPONEN UTAMA DAN ANALISIS SPEKTRUM (STUDI KASUS BANDUNG) SATRIYANI STUDI IDENTIFIKASI POLA UTAMA DATA RADIOSONDE MELALUI ANALISIS KOMPONEN UTAMA DAN ANALISIS SPEKTRUM (STUDI KASUS BANDUNG) SATRIYANI DEPARTEMEN GEOFISIKA DAN METEOROLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Di Indonesia sejak tahun enam puluhan telah diterapkan Badan Meteorologi, Klimatologi, dan Geofisika di Jakarta menjadi suatu direktorat perhubungan udara. Direktorat

Lebih terperinci

ANALISIS KLIMATOLOGI HUJAN EKSTRIM BULAN JUNI DI NEGARA-BALI (Studi Khasus 26 Juni 2017) https://www.balipost.com

ANALISIS KLIMATOLOGI HUJAN EKSTRIM BULAN JUNI DI NEGARA-BALI (Studi Khasus 26 Juni 2017) https://www.balipost.com ANALISIS KLIMATOLOGI HUJAN EKSTRIM BULAN JUNI DI NEGARA-BALI (Studi Khasus 26 Juni 2017) https://www.balipost.com www.news.detik.com STASIUN KLIMATOLOGI KELAS II JEMBRANA - BALI JUNI 2017 ANALISIS KLIMATOLOGI

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 8 eigenvalue masing-masing mode terhadap nilai total eigenvalue (dalam persen). PC 1 biasanya menjelaskan 60% dari keragaman data, dan semakin menurun untuk PC selanjutnya (Johnson 2002, Wilks 2006, Dool

Lebih terperinci

ANALISIS HUJAN BULAN MEI 2011 DAN PRAKIRAAN HUJAN BULAN JULI, AGUSTUS DAN SEPTEMBER 2011 PROVINSI DKI JAKARTA

ANALISIS HUJAN BULAN MEI 2011 DAN PRAKIRAAN HUJAN BULAN JULI, AGUSTUS DAN SEPTEMBER 2011 PROVINSI DKI JAKARTA ANALISIS HUJAN BULAN MEI 2011 DAN PRAKIRAAN HUJAN BULAN JULI, AGUSTUS DAN SEPTEMBER 2011 PROVINSI DKI JAKARTA Sumber : BADAN METEOROLOGI, KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG

Lebih terperinci

EVALUASI CUACA BULAN JUNI 2016 DI STASIUN METEOROLOGI PERAK 1 SURABAYA

EVALUASI CUACA BULAN JUNI 2016 DI STASIUN METEOROLOGI PERAK 1 SURABAYA EVALUASI CUACA BULAN JUNI 2016 DI STASIUN METEOROLOGI PERAK 1 SURABAYA OLEH : ANDRIE WIJAYA, A.Md FENOMENA GLOBAL 1. ENSO (El Nino Southern Oscillation) Secara Ilmiah ENSO atau El Nino dapat di jelaskan

Lebih terperinci

ANALISIS HUJAN BULAN JANUARI 2011 DAN PRAKIRAAN HUJAN BULAN MARET, APRIL, DAN MEI 2011 PROVINSI DKI JAKARTA

ANALISIS HUJAN BULAN JANUARI 2011 DAN PRAKIRAAN HUJAN BULAN MARET, APRIL, DAN MEI 2011 PROVINSI DKI JAKARTA ANALISIS HUJAN BULAN JANUARI 2011 DAN PRAKIRAAN HUJAN BULAN MARET, APRIL, DAN MEI 2011 PROVINSI DKI JAKARTA Sumber : BADAN METEOROLOGI, KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG

Lebih terperinci

Propinsi Banten dan DKI Jakarta

Propinsi Banten dan DKI Jakarta BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG Jln. Raya Kodam Bintaro No. 82 Jakarta Selatan (12070) Telp. (021) 7353018 / Fax: 7355262 E-mail: staklim.pondok.betung@gmail.com,

Lebih terperinci

BADAN METEOROLOGI, KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG

BADAN METEOROLOGI, KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG BADAN METEOROLOGI, KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG Jln. Raya Kodam Bintaro No. 82 Jakarta Selatan ( 12070 ) Telp. (021) 7353018, Fax: (021) 7355262 E-mail: staklim.pondok.betung@gmail.com,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

Prakiraan Musim Kemarau 2018 Zona Musim di NTT KATA PENGANTAR

Prakiraan Musim Kemarau 2018 Zona Musim di NTT KATA PENGANTAR KATA PENGANTAR Badan Meteorologi Klimatologi dan Geofisika (BMKG) setiap tahun menerbitkan dua jenis prakiraan musim yaitu Prakiraan Musim Kemarau diterbitkan setiap bulan Maret dan Prakiraan Musim Hujan

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG ANALISIS MUSIM KEMARAU 2013 DAN PRAKIRAAN MUSIM HUJAN 2013/2014

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG ANALISIS MUSIM KEMARAU 2013 DAN PRAKIRAAN MUSIM HUJAN 2013/2014 BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG Jln. Raya Kodam Bintaro No. 82 Jakarta Selatan (12070) Telp. (021) 7353018 / Fax: 7355262 E-mail: staklim.pondok.betung@gmail.com,

Lebih terperinci

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE (Studi Kasus : Kecepatan Rata-rata Angin di Badan Meteorologi Klimatologi dan Geofisika Stasiun Meteorologi Maritim Semarang) SKRIPSI

Lebih terperinci

PERILAKU CURAH HUJAN DI KOTOTABANG, PONTIANAK, DAN BIAK BERBASIS HASIL ANALISIS DATA EAR DAN WPR INING SUNARSIH

PERILAKU CURAH HUJAN DI KOTOTABANG, PONTIANAK, DAN BIAK BERBASIS HASIL ANALISIS DATA EAR DAN WPR INING SUNARSIH PERILAKU CURAH HUJAN DI KOTOTABANG, PONTIANAK, DAN BIAK BERBASIS HASIL ANALISIS DATA EAR DAN WPR INING SUNARSIH DEPARTEMEN GEOFISIKA DAN METEOROLOGI FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

KATA PENGANTAR KUPANG, MARET 2016 PH. KEPALA STASIUN KLIMATOLOGI LASIANA KUPANG CAROLINA D. ROMMER, S.IP NIP

KATA PENGANTAR KUPANG, MARET 2016 PH. KEPALA STASIUN KLIMATOLOGI LASIANA KUPANG CAROLINA D. ROMMER, S.IP NIP KATA PENGANTAR Badan Meteorologi Klimatologi dan Geofisika (BMKG) setiap tahun menerbitkan dua jenis prakiraan musim yaitu Prakiraan Musim Kemarau diterbitkan setiap bulan Maret dan Prakiraan Musim Hujan

Lebih terperinci

Gambar 4 Diagram alir penelitian

Gambar 4 Diagram alir penelitian 10 Gambar 4 Diagram alir penelitian IV. HASIL DAN PEMBAHASAN Dalam penelitian ini periode yang digunakan dibagi dua, yaitu jangka panjang; Januari 2007 sampai dengan Juli 2009 dan jangka pendek. Analisis

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG B M K G BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG Jln. Raya Kodam Bintaro No. 82 Jakarta Selatan (12070) Telp. (021) 7353018 / Fax: 7355262 E-mail: staklim.pondok.betung@gmail.com,

Lebih terperinci

ANALISIS PENGARUH MADDEN JULIAN OSCILLATION (MJO) TERHADAP CURAH HUJAN DI KOTA MAKASSAR

ANALISIS PENGARUH MADDEN JULIAN OSCILLATION (MJO) TERHADAP CURAH HUJAN DI KOTA MAKASSAR ANALISIS PENGARUH MADDEN JULIAN OSCILLATION (MJO) TERHADAP CURAH HUJAN DI KOTA MAKASSAR Nensi Tallamma, Nasrul Ihsan, A. J. Patandean Jurusan Fisika FMIPA Universitas Negeri Makassar Jl. Mallengkeri, Makassar

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

ANALISIS MUSIM KEMARAU 2015 DAN PRAKIRAAN MUSIM HUJAN 2015/2016

ANALISIS MUSIM KEMARAU 2015 DAN PRAKIRAAN MUSIM HUJAN 2015/2016 B M K G BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG Jln. Raya Kodam Bintaro No. 82 Tangerang Selatan Telp. (021) 7353018 / Fax: 7355262 E-mail: staklim.pondok.betung@gmail.com,

Lebih terperinci

I. INFORMASI METEOROLOGI

I. INFORMASI METEOROLOGI I. INFORMASI METEOROLOGI I.1 ANALISIS DINAMIKA ATMOSFER I.1.1 MONITORING DAN PRAKIRAAN FENOMENA GLOBAL a. ENSO ( La Nina dan El Nino ) Berdasarkan pantauan suhu muka laut di Samudra Pasifik selama bulan

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

1. I Wayan Sumarjaya, S.Si, M.Stats. 2. I Gusti Ayu Made Srinadi, S.Si, M.Si. ABSTRAK

1. I Wayan Sumarjaya, S.Si, M.Stats. 2. I Gusti Ayu Made Srinadi, S.Si, M.Si. ABSTRAK Judul : Peramalan Curah Hujan Menggunakan Metode Analisis Spektral Nama : Ni Putu Mirah Sri Wahyuni NIM : 1208405018 Pembimbing : 1. I Wayan Sumarjaya, S.Si, M.Stats. 2. I Gusti Ayu Made Srinadi, S.Si,

Lebih terperinci

KATA PENGANTAR. Negara, September 2015 KEPALA STASIUN KLIMATOLOGI NEGARA BALI. NUGA PUTRANTIJO, SP, M.Si. NIP

KATA PENGANTAR. Negara, September 2015 KEPALA STASIUN KLIMATOLOGI NEGARA BALI. NUGA PUTRANTIJO, SP, M.Si. NIP 1 KATA PENGANTAR Publikasi Prakiraan Awal Musim Hujan 2015/2016 di Propinsi Bali merupakan salah satu bentuk pelayanan jasa klimatologi yang dihasilkan oleh Stasiun Klimatologi Negara Bali. Prakiraan Awal

Lebih terperinci

I. INFORMASI METEOROLOGI

I. INFORMASI METEOROLOGI I. INFORMASI METEOROLOGI I.1 ANALISIS DINAMIKA ATMOSFER I.1.1 MONITORING DAN PRAKIRAAN FENOMENA GLOBAL a. ENSO ( La Nina dan El Nino ) Berdasarkan pantauan suhu muka laut di Samudra Pasifik selama bulan

Lebih terperinci

KATA PENGANTAR. merupakan hasil pemutakhiran rata-rata sebelumnya (periode ).

KATA PENGANTAR. merupakan hasil pemutakhiran rata-rata sebelumnya (periode ). KATA PENGANTAR Badan Meteorologi Klimatologi dan Geofisika (BMKG) setiap tahun menerbitkan dua jenis prakiraan musim yaitu Prakiraan Musim Kemarau diterbitkan setiap bulan Maret dan Prakiraan Musim Hujan

Lebih terperinci

ANALISIS HUJAN BULAN JUNI 2011 DAN PRAKIRAAN HUJAN BULAN AGUSTUS, SEPTEMBER DAN OKTOBER 2011 PROVINSI DKI JAKARTA

ANALISIS HUJAN BULAN JUNI 2011 DAN PRAKIRAAN HUJAN BULAN AGUSTUS, SEPTEMBER DAN OKTOBER 2011 PROVINSI DKI JAKARTA ANALISIS HUJAN BULAN JUNI 2011 DAN PRAKIRAAN HUJAN BULAN AGUSTUS, SEPTEMBER DAN OKTOBER 2011 PROVINSI DKI JAKARTA 1. TINJAUAN UMUM 1.1. Curah Hujan Curah hujan merupakan ketinggian air hujan yang jatuh

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG B M K G BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI KLAS II PONDOK BETUNG Jln. Raya Kodam Bintaro No. 82 Jakarta Selatan (12070) Telp. (021) 7353018 / Fax: 7355262 E-mail: staklim.pondok.betung@gmail.com,

Lebih terperinci

BAB I PENDAHULUAN. perencanaan dan pengelolaan sumber daya air (Haile et al., 2009).

BAB I PENDAHULUAN. perencanaan dan pengelolaan sumber daya air (Haile et al., 2009). BAB I PENDAHULUAN 1.1 Latar Belakang Hujan merupakan salah satu sumber ketersedian air untuk kehidupan di permukaan Bumi (Shoji dan Kitaura, 2006) dan dapat dijadikan sebagai dasar dalam penilaian, perencanaan

Lebih terperinci

PRAKIRAAN MUSIM KEMARAU 2017 REDAKSI

PRAKIRAAN MUSIM KEMARAU 2017 REDAKSI Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa atas perkenannya, kami dapat menyelesaikan Buku Prakiraan Musim Kemarau Tahun 2017 Provinsi Kalimantan Barat. Buku ini berisi kondisi dinamika atmosfer

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BMKG Jl. Sisingamangaraja BADAN METEOROLOGI No. 1 Nabire Telp. (0984) DAN GEOFISIKA 22559,26169 Fax (0984) 22559 ANALISA CUACA STASIUN TERKAIT METEOROLOGI HUJAN

Lebih terperinci

I. INFORMASI METEOROLOGI

I. INFORMASI METEOROLOGI I. INFORMASI METEOROLOGI I.1 ANALISIS DINAMIKA ATMOSFER I.1.1 MONITORING DAN PRAKIRAAN FENOMENA GLOBAL a. ENSO ( La Nina dan El Nino ) Berdasarkan pantauan suhu muka laut di Samudra Pasifik selama bulan

Lebih terperinci

PRAKIRAAN MUSIM 2017/2018

PRAKIRAAN MUSIM 2017/2018 1 Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa atas perkenannya, kami dapat menyelesaikan Buku Prakiraan Musim Hujan Tahun Provinsi Kalimantan Barat. Buku ini berisi kondisi dinamika atmosfer

Lebih terperinci

ANALISIS HUJAN BULAN PEBRUARI 2011 DAN PRAKIRAAN HUJAN BULAN APRIL, MEI DAN JUNI 2011 PROVINSI DKI JAKARTA

ANALISIS HUJAN BULAN PEBRUARI 2011 DAN PRAKIRAAN HUJAN BULAN APRIL, MEI DAN JUNI 2011 PROVINSI DKI JAKARTA ANALISIS HUJAN BULAN PEBRUARI 2011 DAN PRAKIRAAN HUJAN BULAN APRIL, MEI DAN JUNI 2011 PROVINSI DKI JAKARTA Sumber : BADAN METEOROLOGI, KLIMATOLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI PONDOK BETUNG TANGERANG

Lebih terperinci

I. INFORMASI METEOROLOGI

I. INFORMASI METEOROLOGI I. INFORMASI METEOROLOGI I.1 ANALISIS DINAMIKA ATMOSFER I.1.1 MONITORING DAN PRAKIRAAN FENOMENA GLOBAL a. ENSO ( La Nina dan El Nino ) Berdasarkan pantauan suhu muka laut di Samudra Pasifik selama bulan

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BMKG Jl. Sisingamangaraja BADAN METEOROLOGI No. 1 Nabire Telp. (0984) DAN GEOFISIKA 22559,26169 Fax (0984) 22559 ANALISIS STASIUN CUACA METEOROLOGI TERKAIT HUJAN

Lebih terperinci

ANALISIS UNSUR CUACA BULAN FEBRUARI 2018 DI STASIUN METEOROLOGI MALIKUSSALEH-ACEH UTARA. Oleh Febryanto Simanjuntak S.Tr

ANALISIS UNSUR CUACA BULAN FEBRUARI 2018 DI STASIUN METEOROLOGI MALIKUSSALEH-ACEH UTARA. Oleh Febryanto Simanjuntak S.Tr ANALISIS UNSUR CUACA BULAN FEBRUARI 2018 DI STASIUN METEOROLOGI MALIKUSSALEH-ACEH UTARA Oleh Febryanto Simanjuntak S.Tr Stasiun Meteorologi Klas III Malikussaleh Aceh Utara adalah salah satu Unit Pelaksana

Lebih terperinci

KATA PENGANTAR. Banjarbaru, Oktober 2012 Kepala Stasiun Klimatologi Banjarbaru. Ir. PURWANTO NIP Buletin Edisi Oktober 2012

KATA PENGANTAR. Banjarbaru, Oktober 2012 Kepala Stasiun Klimatologi Banjarbaru. Ir. PURWANTO NIP Buletin Edisi Oktober 2012 KATA PENGANTAR i Analisis Hujan Bulan Agustus 2012, Prakiraan Hujan Bulan November, Desember 2012, dan Januari 2013 Kalimantan Timur disusun berdasarkan hasil pantauan kondisi fisis atmosfer dan data yang

Lebih terperinci

FENOMENA MADDEN-JULIAN OSCILLATION (MJO) Oleh Rainey Windayati 1) dan Dewi Surinati 2) ABSTRACT

FENOMENA MADDEN-JULIAN OSCILLATION (MJO) Oleh Rainey Windayati 1) dan Dewi Surinati 2) ABSTRACT Oseana, Volume XLI, Nomor 3 Tahun 2016 : 35-43 ISSN 0216-1877 FENOMENA MADDEN-JULIAN OSCILLATION (MJO) Oleh Rainey Windayati 1) dan Dewi Surinati 2) ABSTRACT MADDEN-JULIAN OSCILLATION (MJO) PHENOMENON.

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Analisis Perubahan Rasio Hutan Sebelum membahas hasil simulasi model REMO, dilakukan analisis perubahan rasio hutan pada masing-masing simulasi yang dibuat. Dalam model

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BMKG Jl. Sisingamangaraja BADAN METEOROLOGI No. 1 Nabire Telp. (0984) DAN GEOFISIKA 22559,26169 Fax (0984) 22559 ANALISA CUACA STASIUN TERKAIT METEOROLOGI ANGIN

Lebih terperinci

ANALISIS UNSUR CUACA BULAN JANUARI 2018 DI STASIUN METEOROLOGI KLAS I SULTAN AJI MUHAMMAD SULAIMAN SEPINGGAN BALIKPAPAN

ANALISIS UNSUR CUACA BULAN JANUARI 2018 DI STASIUN METEOROLOGI KLAS I SULTAN AJI MUHAMMAD SULAIMAN SEPINGGAN BALIKPAPAN ANALISIS UNSUR CUACA BULAN JANUARI 2018 DI STASIUN METEOROLOGI KLAS I SULTAN AJI MUHAMMAD SULAIMAN SEPINGGAN BALIKPAPAN Oleh Nur Fitriyani, S.Tr Iwan Munandar S.Tr Stasiun Meteorologi Klas I Sultan Aji

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BMKG Jl. Sisingamangaraja BADAN METEOROLOGI No. 1 Nabire Telp. (0984) DAN GEOFISIKA 22559,26169 Fax (0984) 22559 IDENTIFIKASI CUACA STASIUN TERKAIT METEOROLOGI

Lebih terperinci

EVALUASI MUSIM HUJAN 2007/2008 DAN PRAKIRAAN MUSIM KEMARAU 2008 PROVINSI BANTEN DAN DKI JAKARTA

EVALUASI MUSIM HUJAN 2007/2008 DAN PRAKIRAAN MUSIM KEMARAU 2008 PROVINSI BANTEN DAN DKI JAKARTA BADAN METEOROLOGI DAN GEOFISIKA STASIUN KLIMATOLOGI PONDOK BETUNG-TANGERANG Jln. Raya Kodam Bintaro No. 82 Jakarta Selatan ( 12070 ) Telp: (021) 7353018 / Fax: 7355262, Tromol Pos. 7019 / Jks KL, E-mail

Lebih terperinci

Abstrak

Abstrak PENENTUAN KEJADIAN EL-NINO DAN LA-NINA BERDASARKAN NILAI SOUTHERN OSCILATION INDEKS Heni Maulidiya ), Andi Ihwan, M.Si ), Muh. Ishak Jumarang, M.Si ) ) Prodi Fisika FMIPA UNTAN Email : lidiya788@yahoo.co.id

Lebih terperinci

ANALISIS DINAMIKA ATMOSFER LAUT, ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN II FEBRUARI 2017

ANALISIS DINAMIKA ATMOSFER LAUT, ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN II FEBRUARI 2017 1 BMKG ANALISIS DINAMIKA ATMOSFER LAUT, ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN II FEBRUARI 2017 BIDANG ANALISIS VARIABILITAS IKLIM BMKG OUTLINE Ø Analisis Angin dan OLR Ø Analisis dan Prediksi

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BMKG Jl. Sisingamangaraja BADAN METEOROLOGI No. 1 Nabire Telp. (0984) DAN GEOFISIKA 22559,26169 Fax (0984) 22559 ANALISA DINAMIKA STASIUN ATMOSFER METEOROLOGI

Lebih terperinci

Prakiraan Musim Hujan 2015/2016 Zona Musim di Nusa Tenggara Timur

Prakiraan Musim Hujan 2015/2016 Zona Musim di Nusa Tenggara Timur http://lasiana.ntt.bmkg.go.id/publikasi/prakiraanmusim-ntt/ Prakiraan Musim Hujan 2015/2016 Zona Musim di Nusa Tenggara Timur KATA PENGANTAR Badan Meteorologi Klimatologi dan Geofisika (BMKG) setiap tahun

Lebih terperinci

BIDANG ANALISIS VARIABILITAS IKLIM

BIDANG ANALISIS VARIABILITAS IKLIM 1 ANALISIS DINAMIKA ATMOSFER LAUT; ANALISIS & PREDIKSI CURAH HUJAN DASARIAN II FEBRUARI 2018 BIDANG ANALISIS VARIABILITAS IKLIM OUTLINE Analisis dan Prediksi Angin, dan Monsun; Analisis OLR; Analisis dan

Lebih terperinci

Metode Deret Berkala Box Jenkins

Metode Deret Berkala Box Jenkins METODE BOX JENKINS Metode Deret Berkala Box Jenkins Suatu metode peramalan yang sistematis, yang tidak mengasumsikan suatu model tertentu, tetapi menganalisa deret berkala sehingga diperoleh suatu model

Lebih terperinci

PRAKIRAAN MUSIM HUJAN 2011/2012 PADA ZONA MUSIM (ZOM) (DKI JAKARTA)

PRAKIRAAN MUSIM HUJAN 2011/2012 PADA ZONA MUSIM (ZOM) (DKI JAKARTA) PRAKIRAAN MUSIM HUJAN 2011/2012 PADA ZONA MUSIM (ZOM) (DKI JAKARTA) Sumber : BADAN METEOROLOGI, KLIMATOLOGI DAN GEOFISIKA I. PENDAHULUAN Wilayah Indonesia berada pada posisi strategis, terletak di daerah

Lebih terperinci

Analisis Hujan Ekstrim Berdasarkan Parameter Angin dan Uap Air di Kototabang Sumatera Barat Tia Nuraya a, Andi Ihwan a*,apriansyah b

Analisis Hujan Ekstrim Berdasarkan Parameter Angin dan Uap Air di Kototabang Sumatera Barat Tia Nuraya a, Andi Ihwan a*,apriansyah b Analisis Hujan Ekstrim Berdasarkan Parameter Angin dan Uap Air di Kototabang Sumatera Barat Tia Nuraya a, Andi Ihwan a*,apriansyah b a Jurusan Fisika FMIPA Universitas Tanjungpura Pontianak b Program Studi

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BMKG Jl. Sisingamangaraja BADAN METEOROLOGI No. 1 Nabire Telp. (0984) DAN GEOFISIKA 22559,26169 Fax (0984) 22559 ANALISIS CUACA STASIUN EKSTRIM METEOROLOGI TERKAIT

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI KLAS III MALI

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI KLAS III MALI BMKG BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI KLAS III MALI Alamat : Bandar Udara Mali Kalabahi Alor (85819) Email : stamet.mali@gmail.com Telp. : (0386) 2222820 Fax. : (0386) 2222820

Lebih terperinci

Hubungan Suhu Muka Laut Perairan Sebelah Barat Sumatera Terhadap Variabilitas Musim Di Wilayah Zona Musim Sumatera Barat

Hubungan Suhu Muka Laut Perairan Sebelah Barat Sumatera Terhadap Variabilitas Musim Di Wilayah Zona Musim Sumatera Barat 1 Hubungan Suhu Muka Laut Perairan Sebelah Barat Sumatera Terhadap Variabilitas Musim Di Wilayah Zona Musim Sumatera Barat Diyas Dwi Erdinno NPT. 13.10.2291 Sekolah Tinggi Meteorologi Klimatologi Dan Geofisika,

Lebih terperinci

Peramalan Kecepatan Angin Di Kota Pekanbaru Menggunakan Metode Box-Jenkins

Peramalan Kecepatan Angin Di Kota Pekanbaru Menggunakan Metode Box-Jenkins Peramalan Kecepatan Angin Di Kota Pekanbaru Menggunakan Metode Box-Jenkins Ari Pani Desvina 1, Melina Anggriani 2,2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau Jl. HR.

Lebih terperinci

LAPORAN POTENSI HUJAN AKHIR JANUARI HINGGA AWAL FEBRUARI 2016 DI PROVINSI NUSA TENGGARA BARAT

LAPORAN POTENSI HUJAN AKHIR JANUARI HINGGA AWAL FEBRUARI 2016 DI PROVINSI NUSA TENGGARA BARAT LAPORAN POTENSI HUJAN AKHIR JANUARI HINGGA AWAL FEBRUARI 2016 DI PROVINSI NUSA TENGGARA BARAT BADAN METEOROLOGI, KLIMATOLOGI DAN GEOSFISIKA STASIUN KLIMATOLOGI KLAS I KEDIRI-MATARAM 2016 1 Stasiun Klimatologi

Lebih terperinci

ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN I APRIL 2017

ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN I APRIL 2017 BMKG ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN I APRIL 2017 BIDANG ANALISIS VARIABILITAS IKLIM 1 BMKG OUTLINE Analisis dan Prediksi Angin, Monsun, Analisis OLR Analisis

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Defenisi Peramalan Peramalan adalah suatu kegiatan dalam memperkirakan atau kegiatan yang meliputi pembuatan perencanaan di masa yang akan datang dengan menggunakan data masa lalu

Lebih terperinci

ANALISIS DINAMIKA ATMOSFER LAUT; ANALISIS & PREDIKSI CURAH HUJAN DASARIAN I FEBRUARI 2018

ANALISIS DINAMIKA ATMOSFER LAUT; ANALISIS & PREDIKSI CURAH HUJAN DASARIAN I FEBRUARI 2018 1 ANALISIS DINAMIKA ATMOSFER LAUT; ANALISIS & PREDIKSI CURAH HUJAN DASARIAN I FEBRUARI 2018 BIDANG ANALISIS VARIABILITAS IKLIM OUTLINE Ø Analisis dan Prediksi Angin, dan Monsun; Ø Analisis OLR; Ø Analisis

Lebih terperinci

Fase Panas El berlangsung antara bulan dengan periode antara 2-7 tahun yang diselingi fase dingin yang disebut dengan La Nina

Fase Panas El berlangsung antara bulan dengan periode antara 2-7 tahun yang diselingi fase dingin yang disebut dengan La Nina ENSO (EL-NINO SOUTERN OSCILLATION) ENSO (El Nino Southern Oscillation) ENSO adalah peristiwa naiknya suhu di Samudra Pasifik yang menyebabkan perubahan pola angin dan curah hujan serta mempengaruhi perubahan

Lebih terperinci

MEKANISME INTERAKSI MONSUN ASIA DAN ENSO

MEKANISME INTERAKSI MONSUN ASIA DAN ENSO MEKANISME INTERAKSI MONSUN ASIA DAN ENSO Erma Yulihastin Peneliti Sains Atmosfer, LAPAN e-mail: erma@bdg.lapan.go.id; erma.yulihastin@gmail.com RINGKASAN Pada makalah ini diulas mengenai mekanisme hubungan

Lebih terperinci

ANALISIS KLIMATOLOGI BANJIR BANDANG BULAN NOVEMBER DI KAB. LANGKAT, SUMATERA UTARA (Studi Kasus 26 November 2017) (Sumber : Waspada.co.

ANALISIS KLIMATOLOGI BANJIR BANDANG BULAN NOVEMBER DI KAB. LANGKAT, SUMATERA UTARA (Studi Kasus 26 November 2017) (Sumber : Waspada.co. ANALISIS KLIMATOLOGI BANJIR BANDANG BULAN NOVEMBER DI KAB. LANGKAT, SUMATERA UTARA (Studi Kasus 26 November 2017) (Sumber : Waspada.co.id) STASIUN KLIMATOLOGI KELAS I DELI SERDANG NOVEMBER 2017 ANALISIS

Lebih terperinci

ANALISIS HUJAN BULAN OKTOBER 2011 DAN PRAKIRAAN HUJAN BULAN DESEMBER 2011, JANUARI DAN FEBRUARI 2012 PROVINSI DKI JAKARTA 1.

ANALISIS HUJAN BULAN OKTOBER 2011 DAN PRAKIRAAN HUJAN BULAN DESEMBER 2011, JANUARI DAN FEBRUARI 2012 PROVINSI DKI JAKARTA 1. ANALISIS HUJAN BULAN OKTOBER 2011 DAN PRAKIRAAN HUJAN BULAN DESEMBER 2011, JANUARI DAN FEBRUARI 2012 PROVINSI DKI JAKARTA 1. TINJAUAN UMUM 1.1. Curah Hujan Curah hujan merupakan ketinggian air hujan yang

Lebih terperinci

STASIUN METEOROLOGI KLAS III NABIRE

STASIUN METEOROLOGI KLAS III NABIRE STASIUN METEOROLOGI KLAS III NABIRE ANALISA CUACA TERKAIT KEJADIAN BANJIR WILAYAH PASAR YOUTEFA JAYAPURA DAN SEKITARNYA TANGGAL 07 JANUARI 2017 OLEH : EUSEBIO ANDRONIKOS SAMPE, S.Tr NABIRE 2017 ANALISA

Lebih terperinci

ANALISIS CUACA PADA SAAT PELAKSANAAN TMC PENANGGULANGAN BANJIR JAKARTA JANUARI FEBRUARI Abstract

ANALISIS CUACA PADA SAAT PELAKSANAAN TMC PENANGGULANGAN BANJIR JAKARTA JANUARI FEBRUARI Abstract ANALISIS CUACA PADA SAAT PELAKSANAAN TMC PENANGGULANGAN BANJIR JAKARTA JANUARI FEBRUARI 2014 Erwin Mulyana 1 erwin6715@yahoo.com Badan Pengkajian dan Penerapan Teknologi Abstract Application of weather

Lebih terperinci

KARAKTER CURAH HUJAN DI INDONESIA. Tukidi Jurusan Geografi FIS UNNES. Abstrak PENDAHULUAN

KARAKTER CURAH HUJAN DI INDONESIA. Tukidi Jurusan Geografi FIS UNNES. Abstrak PENDAHULUAN KARAKTER CURAH HUJAN DI INDONESIA Tukidi Jurusan Geografi FIS UNNES Abstrak Kondisi fisiografis wilayah Indonesia dan sekitarnya, seperti posisi lintang, ketinggian, pola angin (angin pasat dan monsun),

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Sebagai negara yang terletak diantara Samudra Pasifik-Hindia dan Benua Asia-Australia, serta termasuk wilayah tropis yang dilewati oleh garis khatulistiwa, menyebabkan

Lebih terperinci

POLA ARUS PERMUKAAN PADA SAAT KEJADIAN INDIAN OCEAN DIPOLE DI PERAIRAN SAMUDERA HINDIA TROPIS

POLA ARUS PERMUKAAN PADA SAAT KEJADIAN INDIAN OCEAN DIPOLE DI PERAIRAN SAMUDERA HINDIA TROPIS POLA ARUS PERMUKAAN PADA SAAT KEJADIAN INDIAN OCEAN DIPOLE DI PERAIRAN SAMUDERA HINDIA TROPIS Martono Pusat Sains dan Teknologi Atmosfer LAPANInstitusi Penulis Email: mar_lapan@yahoo.com Abstract Indian

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI KLAS III MALI

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI KLAS III MALI BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI KLAS III MALI BMKG Alamat : Bandar Udara Mali Kalabahi Alor (85819) Telp. Fax. : (0386) 2222820 : (0386) 2222820 Email : stamet.mali@gmail.com

Lebih terperinci

KATA PENGANTAR REDAKSI. Pengarah : Wandayantolis, S. SI, M. Si. Penanggung Jawab : Subandriyo, SP. Pemimpin Redaksi : Ismaharto Adi, S.

KATA PENGANTAR REDAKSI. Pengarah : Wandayantolis, S. SI, M. Si. Penanggung Jawab : Subandriyo, SP. Pemimpin Redaksi : Ismaharto Adi, S. i REDAKSI KATA PENGANTAR Pengarah : Wandayantolis, S. SI, M. Si Penanggung Jawab : Subandriyo, SP Pemimpin Redaksi : Ismaharto Adi, S. Kom Editor : Idrus, SE Staf Redaksi : 1. Fanni Aditya, S. Si 2. M.

Lebih terperinci

BIDANG ANALISIS VARIABILITAS IKLIM

BIDANG ANALISIS VARIABILITAS IKLIM 1 BMKG ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN III OKTOBER 2017 BIDANG ANALISIS VARIABILITAS IKLIM OUTLINE Analisis dan Prediksi Angin, Monsun, Analisis OLR Analisis

Lebih terperinci

BAB I Pendahuluan I.1 Latar Belakang I.1.1 Historis Banjir Jakarta

BAB I Pendahuluan I.1 Latar Belakang I.1.1 Historis Banjir Jakarta BAB I Pendahuluan I.1 Latar Belakang I.1.1 Historis Banjir Jakarta Menurut Caljouw et al. (2004) secara morfologi Jakarta didirikan di atas dataran aluvial pantai dan sungai. Bentang alamnya didominasi

Lebih terperinci

ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATE DASARIAN I MARET 2017

ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATE DASARIAN I MARET 2017 BMKG ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATE DASARIAN I MARET 2017 BIDANG ANALISIS VARIABILITAS IKLIM * 1 BMKG OUTLINE ΠAnalisis Angin dan OLR ΠAnalisis dan Prediksi SST

Lebih terperinci

KATA PENGANTAR. Pontianak, 1 April 2016 KEPALA STASIUN KLIMATOLOGI SIANTAN PONTIANAK. WANDAYANTOLIS, S.Si, M.Si NIP

KATA PENGANTAR. Pontianak, 1 April 2016 KEPALA STASIUN KLIMATOLOGI SIANTAN PONTIANAK. WANDAYANTOLIS, S.Si, M.Si NIP KATA PENGANTAR Stasiun Klimatologi Siantan Pontianak pada tahun 2016 menerbitkan dua buku Prakiraan Musim yaitu Prakiraan Musim Kemarau dan Prakiraan Musim Hujan. Pada buku Prakiraan Musim Kemarau 2016

Lebih terperinci

KATA PENGANTAR. Semarang, 22 maret 2018 KEPALA STASIUN. Ir. TUBAN WIYOSO, MSi NIP STASIUN KLIMATOLOGI SEMARANG

KATA PENGANTAR. Semarang, 22 maret 2018 KEPALA STASIUN. Ir. TUBAN WIYOSO, MSi NIP STASIUN KLIMATOLOGI SEMARANG KATA PENGANTAR Stasiun Klimatologi Semarang setiap tahun menerbitkan buku Prakiraan Musim Hujan dan Prakiraan Musim Kemarau daerah Propinsi Jawa Tengah. Buku Prakiraan Musim Hujan diterbitkan setiap bulan

Lebih terperinci

KATA PENGANTAR PANGKALPINANG, APRIL 2016 KEPALA STASIUN METEOROLOGI KLAS I PANGKALPINANG MOHAMMAD NURHUDA, S.T. NIP

KATA PENGANTAR PANGKALPINANG, APRIL 2016 KEPALA STASIUN METEOROLOGI KLAS I PANGKALPINANG MOHAMMAD NURHUDA, S.T. NIP Buletin Prakiraan Musim Kemarau 2016 i KATA PENGANTAR Penyajian prakiraan musim kemarau 2016 di Provinsi Kepulauan Bangka Belitung diterbitkan untuk memberikan informasi kepada masyarakat disamping publikasi

Lebih terperinci

ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN III FEBRUARI 2017

ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN III FEBRUARI 2017 1 BMKG ANALISIS DINAMIKA ATMOSFER LAUT. ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN III FEBRUARI 2017 BIDANG ANALISIS VARIABILITAS IKLIM BMKG OUTLINE Ø Analisis Angin dan OLR Ø Analisis dan Prediksi

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI MALI - ALOR

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI MALI - ALOR BMKG BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA STASIUN METEOROLOGI MALI - ALOR Alamat : Bandar Udara Mali Kalabahi Alor (85819) Email : stamet.mali@gmail.com Telp. : (0386) 2222820 Fax. : (0386) 2222820

Lebih terperinci

ANALISIS DINAMIKA ATMOSFER LAUT, ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN I FEBRUARI 2017

ANALISIS DINAMIKA ATMOSFER LAUT, ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN I FEBRUARI 2017 1 BMKG ANALISIS DINAMIKA ATMOSFER LAUT, ANALISIS & PREDIKSI CURAH HUJAN UPDATED DASARIAN I FEBRUARI 2017 BIDANG ANALISIS VARIABILITAS IKLIM BMKG OUTLINE Ø Analisis Angin dan OLR Ø Analisis dan Prediksi

Lebih terperinci

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA BMKG Jl. Sisingamangaraja BADAN METEOROLOGI No. 1 Nabire Telp. (0984) DAN GEOFISIKA 22559,26169 Fax (0984) 22559 ANALISA CUACA STASIUN TERKAIT METEOROLOGI ANGIN

Lebih terperinci

STASIUN METEOROLOGI KLAS III NABIRE

STASIUN METEOROLOGI KLAS III NABIRE STASIUN METEOROLOGI KLAS III NABIRE ANALISIS KEJADIAN CUACA EKSTRIM HUJAN LEBAT DAN ANGIN KENCANG DI SERUI TANGGAL 10 JANUARI 2017 OLEH : EUSEBIO ANDRONIKOS SAMPE, S.Tr NABIRE 2017 ANALISIS KEJADIAN CUACA

Lebih terperinci

Anomali Curah Hujan 2010 di Benua Maritim Indonesia Berdasarkan Satelit TRMM Terkait ITCZ

Anomali Curah Hujan 2010 di Benua Maritim Indonesia Berdasarkan Satelit TRMM Terkait ITCZ Anomali Curah Hujan 2010 di Benua Maritim Indonesia Berdasarkan Satelit TRMM Terkait ITCZ Erma Yulihastin* dan Ibnu Fathrio Abstrak Penelitian ini dilakukan untuk menganalisis terjadinya anomali curah

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

SKRIPSI. Disusun oleh: Firda Megawati

SKRIPSI. Disusun oleh: Firda Megawati PERAMALAN TINGGI GELOMBANG BERDASARKAN KECEPATAN ANGIN DI PERAIRAN PESISIR SEMARANG MENGGUNAKAN MODEL FUNGSI TRANSFER (Studi Kasus Bulan Januari 2014 sampai dengan Desember 2014) SKRIPSI Disusun oleh:

Lebih terperinci

ANALISIS CUACA TERKAIT BANJIR DI KECAMATAN ALOK WILAYAH KABUPATEN SIKKA, NTT (16 DESEMBER 2016)

ANALISIS CUACA TERKAIT BANJIR DI KECAMATAN ALOK WILAYAH KABUPATEN SIKKA, NTT (16 DESEMBER 2016) BADAN METEOROLOGI, KLIMATOLOGI, DAN GEOFISIKA STASIUN METEOROLOGI FRANSISCUS XAVERIUS SIKKA Jln. Angkasa Maumere Flores Telp : ( 0382 ) 21349 B M K G Fax: ( 0382 ) 22967 PO. BOX 100 Kode Pos 86111 e-mail

Lebih terperinci

PROSPEK IKLIM DASARIAN PROVINSI NUSA TENGGARA BARAT Update: 01 Februari 2016

PROSPEK IKLIM DASARIAN PROVINSI NUSA TENGGARA BARAT Update: 01 Februari 2016 PROSPEK IKLIM DASARIAN PROVINSI NUSA TENGGARA BARAT Update: 01 Februari 2016 BADAN METEOROLOGI, KLIMATOLOGI DAN GEOSFISIKA STASIUN KLIMATOLOGI KLAS I KEDIRI-MATARAM 2016 PROSPEK IKLIM DASARIAN FEBRUARI

Lebih terperinci