4. HASIL DAN PEMBAHASAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "4. HASIL DAN PEMBAHASAN"

Transkripsi

1 39 4. HASIL DAN PEMBAHASAN 4.1. Hasil Profil Kecepatan Suara Profil kecepatan suara (SVP) di lokasi penelitian diukur secara detail untuk mengurangi pengaruh kesalahan terhadap data multibeam pada saat melakukan pemeruman. Selama pengukuran nilai SVP di lokasi penelitian menunjukan peningkatan seiring dengan meningkatnya kedalaman (Gambar 27). Sumbu x pada gambar tersebut merupakan cepat rambat gelombang akustik sementara itu sumbu y merupakan kedalaman pengukuran. Gambar 27. Sound velocity profile di lokasi penelitian Hasil pengukuran SVP menunjukan kecepatan suara terendah terjadi pada kedalaman 1 meter, yaitu sebesar 1.506,39 m/s dan kecepatan suara tertinggi sebesar 1.507,09 m/s terjadi pada kedalaman 47 meter serta terjadi fluktuasi

2 40 besarnya nilai kecepatan suara di kedalaman 3 meter hingga 15 meter. Secara umum nilai cepat rambat gelombang akustik di lokasi penelitian memiliki nilai yang lebih kecil di permukaan apabila dibandingkan dengan dasar perairan Pengukuran arus sungai Mahakam Tabel 1 merupakan hasil pengukuran in situ arus pada waktu dan kedalaman yang berbeda di lokasi survei. Tabel 1. Nilai kecepatan arus sungai Mahakam di lokasi penelitian Time Kedalaman (m) Kec. Arus (m/s) Direction ( 0 ) 7:50 2 0, , ,8 10 0, , :55 2 0, , , ,7 15 0, :14 2 0, , ,4 10 0,359 22,9 15 0, Hasil pengukuran terlihat bahwa nilai kecepatan arus tinggi berada di kedalaman 10 hingga 15 meter dan nilai kecepatan arus lebih rendah berada di permukaan atau pada kedalaman 2 hingga 5 meter pada tiap waktu pengambilan data. Kisaran nilai kecepatan arus 0,301 meter/detik hingga 0,766 meter/detik.

3 Topografi dasar perairan survei Pengolahan data multibeam dengan menggunakan 2 software yang berbeda, yaitu Caris HIPS&SIPS 6.1 dan PDS2000 diperoleh hasil berupa tampilan 2 dimensi dan 3 dimensi topografi dasar perairan dari lokasi penelitian. Software PDS2000 merupakan software bawaan langsung dari instrumen multibeam Reson Hydrobat yang digunakan dalam proses pemeruman batimetri. Sehingga, hasil dari pengolahan di Caris HIPS&SIPS 6.1 digunakan sebagai pembanding dalam interpretasi data topografi dasar perairan survei. Reson Hydrobat adalah multibeam sonar yang beroperasi pada frekuensi 160 khz yang mencakup luas petak 4 kali dari kedalamannya, dengan jumlah beam 112 dan lebar sapuan 120 0, serta memiliki kisaran 1 meter hingga 200 meter dengan memiliki stabilitas roll. Nilai keakuratan data yang diperoleh selama akuisisi dijaga agar selalu tinggi. Hal tersebut dilakukan untuk mendapatkan peta batimetri yang akurat. Berdasarkan ketentuan IHO Tahun 2008, lokasi penelitian termasuk dalam orde 1. Hal ini dikarenakan lokasi penelitian berada pada kedalaman kurang dari 100 meter. Gambar 28 merupakan hasil pengolahan dengan menggunakan software PDS2000.

4 42 (a) (b) Gambar 28. Topografi dasar 2D (a) dan 3D (b) dari sungai Mahakam di lokasi penelitian dengan menggunakan software PDS2000

5 43 Pada Gambar 28 dapat kita ketahui bahwa bentuk topografi dasar dari perairan survei adalah membentuk cekungan di bagian tengah, dengan kedalaman tertinggi berada di daerah cekungan yaitu 58,15 meter dan memiliki kedalaman terendah sebesar 4,18 meter. Gambar di atas dapat diketahui pula bahwa semakin biru tampilan dari gradasi warnanya maka semakin tinggi pula nilai kedalamannya. Hasil dari pengolahan dengan menggunakan software Caris HIPS&SIPS 6.1 hanya diperoleh tampilan 2 dimensi topografi dasar perairan dari lokasi survei dengan bentuk yang tidak jauh berbeda dengan hasil pengolahan di PDS2000 (Gambar 29). Gambar 29. Topografi 2 dimensi dari dasar sungai Mahakam di lokasi penelitian dengan menggunakan software Caris HIPS&SIPS 6.1.

6 44 Pada Gambar 29 dapat diketahui bahwa semakin biru tampilan warnanya berarti semakin dalam pula kedalamannya. Dari hasil tersebut diperoleh nilai kedalaman terendah yaitu 4,0719 dan tertinggi 56,1952 dengan pola membentuk cekungan di bagian tengah dari topografinya Hasil pendeteksian target dasar perairan Target di dasar perairan dapat diketahui dengan jelas dengan menggunakan instrumen Side Scan Sonar Edgetech Pengolahan data SSS dilakukan pada dua software yaitu software Caris HIPS&SIPS 6.1 dan SonarWeb. Gambar 30 dan Tabel 2 merupakan hasil pengolahan data side scan sonar dengan menggunkan Caris HIPS&SIPS 6.1 beserta informasinya. Gambar 30. Mosaik dari SSS di lokasi penelitian menggunakan Caris 6.1.

7 45 Tabel 2. Hasil deteksi target dari data SSS di Caris HIPS&SIPS 6.1 No. Gambar Target Keterangan 1. Posisi : S dan E, S dan E Size : P= 86,05 m dan L =7,15 m, Kedalaman : 31,07 43,11 m Bentuk : Rangka jembatan Target di line H 2. Posisi : S dan E Size : P=3,25 m dan L= 2,7 Kedalaman: 41,23 m Bentuk : Persegi Target di line H 3. Posisi: S dan E dan S dan E Size : P = 84,91 m dan L= 12,15 m Kedalaman : 35,24 45,98 m Bentuk : Rangka jembatan Target di line H 4. Posisi : S dan E Tali Kedalaman : 34,24 36,1 m Bentuk : Tali Target di line H

8 46 Tabel 2. Hasil deteksi target dari data SSS di Caris HIPS&SIPS 6.1(Lanjutan) 5. Posisi : S dan E Size: P=2,41 m dan L=1,20 m Kedalaman : 33,08 m Bentuk: Gundukan kecil Target di line H 6. Posisi : S dan E, S dan E Size : P=43,34 m dan L= 10,16 m Bentuk : Rangka jembatan Kedalaman: 32,10 37,91 m Target di line H 7. Posisi: S dan E Size: P=4,13 m dan L=2,51 m Bentuk : Persegi Kedalaman: 33,86 m Target di line H 8. Posisi : S dan E Size : P=3,47 m dan L=2,37 m Kedalaman : 31,93 m Bayangan Bentuk : Kotak Target di line H 9. Posisi : S dan E Kedalaman: 35,01 m Bentuk : Benda bertali Target di line H

9 47 Tabel 2. Hasil deteksi target dari data SSS di Caris HIPS&SIPS 6.1(Lanjutan) 10. Posisi : S dan E, S dan E Size : P=40,89 m dan L=11,30 m Kedalaman: 30,58 45,78 m Bentuk: Rangka jembatan Target di line H 11. Posisi: S dan E, S dan E Rangka jembatan yg terbenam di lumpur Size : P=58,60 m dan L= 13,69 m Kedalaman: 28,31 40,58 m Bentuk: Rangka jembatan Target di line H Hasil pengolahan data Side Scan Sonar di SonarWeb diperoleh juga berupa mosaik dan gambar target beserta informasinya. Karena digunakan sebagai pembanding dan pelengkap informasi dari hasil di Caris 6.1, maka gambar target di SonarWeb diambil dengan bentuk yang hampir sama dengan hasil dari Caris HIPS&SIPS 6.1. Gambar 31 dan Tabel 3 merupakan hasil pengolahannya data SSS di SonarWeb.

10 48 N N N N N E E E Gambar 31. Mosaik hasil pengolahan data SSS dengan SonarWeb Gambar mosaik tersebut merupakan hasil gabungan (merge) dari beberapa line survei. Terlihat bagian tengah tanda dari runtuhan rangka jembatan yang memotong mosaik. Tabel 3. Hasil deteksi target dari data SSS menggunakan SonarWeb No. Gambar Target Keterangan 1. Posisi : ' S ' E Kedalaman: 46,1 m First Target Ping Num: 1191 at 11/29/ :53:07 Bentuk: Rangka jembatan Target di line H 2. Posisi: ' S ' E Kedalaman: 46,1 m Bentuk: Rangka jembatan First Target Ping Num: 1191 at 11/29/ :53:07 Target di line H

11 49 Tabel 3. Hasil deteksi target dari data SSS menggunakan SonarWeb (Lanjutan) No. Gambar Target Keterangan 3. Posisi: ' S ' E Kedalaman: 40,4 m First Target Ping Num: 1657 at 11/29/ :59:59 Bentuk: Rangka jembatan Target di line H 4. Posisi: ' S ' E Kedalaman: 35,2 m First Target Ping Num: 1792 at 11/29/ :00:09 Bentuk: Kotak atau persegi Target di line H 5. Posisi: ' S ' E Kedalaman: 35,4 m First Target Ping Num: 1958 at 11/29/ :00:21 Bentuk: gundukan kecil Target di line H 6. Posisi: ' S ' E Kedalaman: 34,2 m First Target Ping Num: 1747 at 11/29/ :00:05 Bentuk: Rangka jembatan Target di line H 7. Posisi: ' S ' E Kedalaman : 25,4 m First Target Ping Num: 1007 at 11/29/ :59:11 Bentuk: Tali Target di line H

12 50 Tabel 3. Hasil deteksi target dari data SSS menggunakan SonarWeb (Lanjutan) No. Gambar Target Keterangan 8. Posisi: ' S ' E Kedalaman: 45,1 m First Target Ping Num: 1671 at 11/29/ :06:34 Bentuk: Rangka jembatan Target di line H 9. Posisi: ' S ' E Kedalaman: 37,3 m First Target Ping Num: 1662 at 11/29/ :06:33 Bentuk: Kotak atau persegi Target di line H 10. Posisi: ' S ' E Kedalaman: 40 m First Target Ping Num: 1463 at 11/29/ :06:20 Bentuk: Kotak atau persegi Target di line H 11. Posisi: ' S ' E Kedalaman: 41,8 m First Target Ping Num: 2124 at 11/29/ :07:09 Bentuk: Benda bertali Target di line H 12. Posisi: ' S ' E Kedalaman: 45,9 m First Target Ping Num: 1259 at 11/29/ :11:37 Target di line H 13. Posisi: ' S ' E Kedalaman: 44,8 m First Target Ping Num: 547 at 12/02/ :59:42 Target di line H

13 Pendugaan nilai amplitudo target di SSS Hasil pengolahan data Side scan sonar diperoleh nilai kisaran amplitudo yang dapat dilihat pada Tabel 4. Nilai amplitudo tertinggi adalah dari target berbentuk rangka jembatan diikuti benda bentuk kotak/persegi, benda berbentuk gundukan kecil, benda bertali, bentuk tali, dan terkecil dari substrat dasar di sekitar benda berbentuk tali. Tabel 4. Nilai kisaran amplitudo target dari data Side Scan Sonar No. Target Kisaran Nilai Amplitudo 1. Rangka Jembatan Bentuk kotak atau persegi Bentuk gundukan kecil Benda bertali Bentuk tali Substrat di sekitar target bentuk tali Penelitian yang dilakukan Gumbira (2011) diperoleh nilai kisaran amplitudo dari jenis sedimen Silt (lumpur halus) yaitu , Silty clay (lumpur berlempung) adalah , dan Clayey silt (lempung berlumpur) adalah

14 Pembahasan Sound velocity profile Kecepatan gelombang suara dalam air laut dipengaruhi oleh tiga faktor, yaitu suhu, salinitas, dan tekanan. SVP di lokasi penelitian (Gambar 27) termasuk ke dalam wilayah surface layer. Permukaan merupakan bagian yang sangat bervariasi dengan kedalaman berkisar 0 sampai 100 meter (Mike, 2008), sehingga dengan peningkatan suhu maka akan meningkatkan cepat rambat gelombang akustik. SVP pada wilayah surface layer sangat dipengaruhi oleh perubahan diurnal harian air dan perubahan lokal seperti pemanasan, pendinginan, dan pergerakan angin (Urick, 1967). Panas dari sinar matahari menyebabkan air lapisan atas lebih hangat dibandingkan bagian bawah. Kondisi tersebut menyebabkan terbentuknya mixed layer yang terus berlangsung sampai sore hari hingga gradient SVP tersebut menjadi negatif (afternoon effect). Nilai positif dari gradient SVP di lokasi penelitian disebabkan kuatnya pengaruh arus sehingga terbentuk mixed layer yang dapat menyebabkan kondisi isothermal atau kondisi suhu perairan hampir sama, sehingga tekanan air merupakan faktor yang berpengaruh (disamping salinitas) terhadap cepat rambat gelombang akustik. Menurut Mike (2008) peningkatan suhu 1 0 C akan meningkatkan cepat rambat gelombang akustik sebesar 4 m/s, peningkatan tekanan air laut setiap 1 km meningkatkan cepat rambat gelombang akustik sebesar 17 m/s dan peningkatan salinitas 1 psu meningkatkan cepat rambat gelombang akustik sebesar 1,4 m/s.

15 53 Kecepatan suara sangat penting dalam survei batimetri karena dapat digunakan untuk meramalkan arah penjalaran gelombang akustik. Prinsip dasar pengukuran kedalaman dengan metode hidroakustik adalah melakukan penghitungan terhadap cepat rambat gelombang akustik dibagi dua, kemudian dikali dengan waktu tempuhnya. Special publication No. 44 (S.44)-IHO menyebutkan bahwa salah satu koreksi yang penting dalam survei batimetri adalah koreksi kecepatan gelombang suara dari lokasi penelitian Pengukuran arus sungai Mahakam Salah satu ketentuan dalam survei hidrografi adalah dengan melakukan pengamatan arus di lokasi penelitian, pengamatan dilakukan dengan menggunakan Current meter pada kedalaman 3 hingga 10 meter atau sesuai dengan kebutuhan. Kecepatan dan arah arus diukur dengan satuan ketelitian bacaan 0,1 knot dan 10 derajat. Pengukuran ini dimaksudkan untuk mengetahui pengaruh arus terhadap navigasi permukaan (PPDKK BAKOSURTANAL, 2010). Pengukuran arus di lokasi survei pada pukul 7:50, 10:55, dan 16:14 waktu setempat diperoleh hasil kecepatan arus lebih tinggi berada di bagian dalam (kedalaman 15 m) dengan kecepatan arus berkisar 0,648 m/s dan 0,706 m/s. Sedangkan nilai terendahnya adalah sebesar 0,301 m/s hingga 0,590 m/s yang berada di permukaan, serta memiliki arah yang tidak jauh berbeda di tiap kedalaman pengukuran. Sehingga dengan informasi tersebut navigasi dan kecepatan survei kapal dapat ditentukan dengan tepat dan memperkecil tingkat kesalahan atau error saat pengambilan data batimetri.

16 Topografi dasar perairan survei Data kedalaman hasil akuisisi diolah dengan menggunakan 2 software yaitu PDS 2000 dan Caris HIPS&SIPS 6.1 dengan hasil yang diperoleh berupa topografi dasar daerah penelitian yang memiliki rentang nilai kedalaman yang hampir sama, yaitu hasil pengolahan data multibeam di Caris diperoleh nilai rentang kedalaman 4, meter hingga 56,19515 meter dan hasil pengolahan data di PDS 2000 diperoleh rentang kedalaman 4,18 meter hingga 58,15 meter. Perbedaan hasil dari kedua software tersebut dapat disebabkan oleh perbedaan dalam filtrasi manual atau manual reject saat proses pengolahan data atau dapat juga disebabkan oleh tingkat akurasi dari kedua software tersebut dalam mengolah data multibeam hasil pemeruman. Proses akuisisi data dilakukan dengan menggunakan software PDS 2000 yang merupakan software bawaan langsung dari alatnya yaitu multibeam sonar Reson Hydrobat, sehingga kualitas data yang dihasilkan dari pengolahan data multibeam pada software PDS 2000 lebih baik dibanding dengan software Caris HIPS&SIPS 6.1 yang digunakan sebagai pembanding. Dalam pemrosesan data multibeam di PDS 2000 hanya digunakan interpolasi circular saja, karena untuk membandingkan hasil pengolahan di Caris HIPS&SIPS 6.1 yang hanya menggunakan interpolasi bentuk matriks (3x3 atau 5x5). Kedua interpolasi ini memiliki kesamaan dalam penggunaan yaitu untuk membangkitkan data akibat adanya lubang-lubang kecil (small holes) yang nampak di area data, lubang-lubang kecil (gaps) ini dapat disebabkan oleh sebagai contoh beam terluar dari multibeam survei sepanjang ujung terluar dari area survei, di mana hanya ada sedikit atau tidak ada cakupan yang menutupinya (no

17 55 overlapping coverage). Perbedaannya terdapat pada maksimum gap atau jarak terjauh di mana interpolasi masih valid atau dapat dilakukan interpolasi (Gambar 32). Pada interpolasi matrik di Caris HIPS&SIPS 6.1 maksimum gap yang dapat dilakukan interpolasi hanya dalam ukuran matrik 3x3 dan 5x5, sebagai contoh jika kita memilih ukuran matrik 3x3 maka akan ditentukan nilai dari piksel yang kosong tersebut dengan menggunakan nilai pixel dari tetangganya (neighbours) dengan jumlah minimum neighbours 3 dan maksimum 9. Sedangkan, interpolasi circular pada PDS 2000 nilai maksimun range-nya dapat ditentukan sendiri dan dapat dipilih jenis interpolasi circular yang akan digunakan, yaitu kedalaman rata-rata (Z average), kedalaman minimum (Z min), kedalaman maksimum (Z max ), atau kedalaman standar deviasi (Z stand dev) yang ada disekelilingnya. (a) (b) Gambar 32. Perbedaan maksimum interpolasi pada interpolasi circular (a) dan interpolasi matrix (b). Pada Gambar 28 dan 29 terlihat, bahwa topografi dasar perairan lokasi penelitian di sungai Mahakam memiliki nilai kedalaman yang berkisar di antara kedalaman 4,07 meter hingga 58,15 meter. Bentuk variasi dari topografinya secara umum ialah membentuk cekungan di bagian tengah, dengan gambaran kedalaman dari sebelah utara 5,506 meter hingga 10 meter, 11 meter hingga 20 meter, 21

18 56 meter hingga 36 meter, 37 meter hingga 43 meter, 44 meter hingga 52 meter, 53 meter hingga 58,15 meter, dan kedalaman semakin berkurang hingga menuju ke bagian selatan dari bagian cekungan dasar perairan dengan kedalaman hingga 4,07 meter. Bagian cekungan merupakan bagian kedalaman yang berada di sekitar posisi bawah jembatan dengan kedalaman berkisar dari 20 meter hingga 58 meter. Gambar 33 merupakan tampilan cekungan bagian tengah dari topografi dasar perairan di lokasi penelitian. Gambar 33. Topografi dasar perairan lokasi penelitian di sekitar bawah jembatan

19 Hasil pendeteksian target dasar perairan Hasil pengolahan data side scan sonar dengan menggunakan software Caris HIPS&SIPS 6.1 (Tabel 2) dan SonarWeb (Tabel 3) diperoleh gambar target dasar berupa rangka jembatan, target berbentuk kotak/persegi, berbentuk tali, benda bertali, dan berbentuk gundukan kecil, dengan menggunakan bantuan software ArcGIS 9.3, maka dapat dilakukan overlay data batimetri dari Multibeam sonar dan data posisi (koordinat) target dari Side scan sonar untuk menghasilkan peta lokasi target hasil survei di lokasi penelitian (Gambar 34). Gambar 34. Peta lokasi target di daerah survei

20 58 Pada Gambar 30 terlihat, bahwa intensitas dari pantulan dasar perairan hasil pendeteksian dengan menggunakan Side Scan Sonar (SSS) diinterpretasikan dalam bentuk warna, semakin merah berarti nilai pantulan gelombang suaranya semakin besar. Hal ini terkait dengan sifat benda atau kekasaran objek dasar perairan dalam memantukan energi akustik (backscattering). Material seperti besi, bongkahan, kerikil, atau batuan vulkanik sangat efisien dalam merefleksikan pulsa akustik (backscatter kuat). Sedangkan sedimen halus seperti tanah liat, lumpur, tidak merefleksikan pulsa suara dengan baik (lemah). Reflektor kuat akan menghasilkan pantulan backscatter yang kuat sedangkan reflektor lemah menghasilkan backscatter yang lemah (Tritech International Limited, 2008), sehingga dapat dikatakan bahwa tingkat dominansi dari pemantulan gelombang suara di dasar perairan lokasi penelitian adalah cenderung lemah. Gambar 31 merupakan mosaik hasil pendeteksian SSS dari beberapa line yang telah digabung atau merge. Terlihat tanda reruntuhan dari rangka jembatan yang memotong mosaik di bagian tengah. Tingkat kekeruhan yang tinggi pada Sungai Mahakam sangat mempengaruhi energi gelombang suara yang ditransmisikan oleh transduser. Gelombang suara dapat mengalami pengurangan energi (teratenuasi) akibat adanya proses penyerapan (absorption) dan penghamburan (scattering) oleh partikel terlarut dalam kolom air atau karena kebocoran dari alat (sound channels) (Urick, 1967). Kegiatan tambang emas dan batu bara dapat dijumpai di bagian hulu Sungai Mahakam. Kegiatan ini membuat kerusakan pada DAS Mahakam. Sejumlah perusahaan tambang batu bara diketahui membuang limbahnya langsung ke Sungai Mahakam sehingga terjadi pencemaran dengan bahan partikel terlarut

21 59 (suspended particulate matter/spm) yang tinggi dengan konsentrasi 80 miligram/liter. Tingkat sedimentasi lumpur di sepanjang Sungai Mahakam sudah sangat tinggi, mencapai 60 sentimeter per bulan. Ini disebabkan tingginya erosi akibat rusaknya hutan pada daerah aliran sungai sepanjang 900 kilometer itu (Watiningsih, 2009). Gambar 35 merupakan citra hasil pendeteksian SSS 6 hari setelah kejadian runtuh, terlihat rangka jembatan yang terbenam dalam lumpur. N Port 190 meter N Blindzone Rangka jembatan N Starboard E E E Gambar 35. Hasil pendeteksian SSS pada tanggal 2 Desember 2011 (6 hari setelah runtuh) Pendugaan nilai amplitudo target di SSS Nilai amplitudo dari target yang ditemukan, ditentukan dengan bantuan Microsoft Excel, dengan memplotkan nilai amplitudo dan waktu yang berasal dari trace di mana target diduga berada, sehingga dengan melihat bentuk grafik dan frekuensi nilai dari amplitudo yang pantulkan oleh permukaan dasar serta

22 60 mengasumsikan pada selang waktu 0 hingga 30 millisecond atau 40 ms sebagai noise, maka dapat ditentukan dugaan nilai amplitudo dari target yang diamati. Gambar 36 merupakan grafik hubungan antara waktu dan amplitudo dari masingmasing target. Gambar 36. Grafik hubungan waktu dan amplitudo dari target rangka jembatan, gundukan kecil, bentuk kotak/persegi, benda bertali, dan target bentuk tali. Pada Tabel 4 dapat dilihat besarnya nilai amplitudo dari target yang ditemukan adalah nilai amplitudo tertinggi dari target rangka jembatan yaitu dan terendah dari substrat di sekitar target bentuk tali yaitu Hal ini dikarenakan besarnya intensitas pantulan suara dari dasar laut umumnya tergantung pada sudut datang gelombang suara, tingkat kekerasan (hardness), tingkat kekasaran (roughness) dasar laut, komposisi sedimen dasar laut, dan

23 61 frekuensi suara yang digunakan (Jaya, 2011). Ukuran butiran sedimen yang lebih besar memiliki pantulan (backscattering) yang lebih kuat pula, tingkat kepadatan sedimen (bulk density) yang lebih tinggi akan memiliki nilai backscattering yang lebih besar pula (Manik, 2011). Oleh karena itu, semakin keras benda yang ada di dasar perairan maka semakin kuat pula pantulan gelombang suara yang mengenai benda tersebut.

3. BAHAN DAN METODE. Penelitian ini dilakukan selama 5 bulan, yaitu pada bulan Maret sampai

3. BAHAN DAN METODE. Penelitian ini dilakukan selama 5 bulan, yaitu pada bulan Maret sampai 27 3. BAHAN DAN METODE 3.1. Waktu dan Lokasi Penelitian Penelitian ini dilakukan selama 5 bulan, yaitu pada bulan Maret sampai dengan Juli 2012. Data yang digunakan merupakan data mentah (raw data) dari

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Batimetri Selat Sunda Peta batimetri adalah peta yang menggambarkan bentuk konfigurasi dasar laut dinyatakan dengan angka-angka suatu kedalaman dan garis-garis yang mewakili

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Sedimen Dasar Perairan Berdasarkan pengamatan langsung terhadap sampling sedimen dasar perairan di tiap-tiap stasiun pengamatan tipe substrat dikelompokkan menjadi 2, yaitu:

Lebih terperinci

2. TINJAUAN PUSTAKA. Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses

2. TINJAUAN PUSTAKA. Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses 2. TINJAUAN PUSTAKA 2.1. Sedimen Dasar Laut Sedimen adalah kerak bumi (regolith) yang ditransportasikan melalui proses hidrologi dari suatu tempat ke tempat yang lain, baik secara vertikal maupun secara

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Kebutuhan akan data batimetri semakin meningkat seiring dengan kegunaan data tersebut untuk berbagai aplikasi, seperti perencanaan konstruksi lepas pantai, aplikasi

Lebih terperinci

1. PENDAHULUAN 1.1. Latar belakang

1. PENDAHULUAN 1.1. Latar belakang 1. PENDAHULUAN 1.1. Latar belakang Dasar perairan memiliki peranan yang sangat penting yaitu sebagai habitat bagi bermacam-macam makhluk hidup yang kehidupannya berasosiasi dengan lingkungan perairan.

Lebih terperinci

2. TINJAUAN PUSTAKA. sumber suara akan memicu gerak partikel di dekatnya. Gerak partikel sejajar

2. TINJAUAN PUSTAKA. sumber suara akan memicu gerak partikel di dekatnya. Gerak partikel sejajar 3 2. TINJAUAN PUSTAKA 2.1. Persamaan SONAR Jaya (2011) menjelaskan bahwa suara terbentuk dari gerakan molekul suatu bahan elastik. Oleh karena bahan tersebut elastik, maka gerak partikel dari bahan sumber

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Hasil Pengambilan Contoh Dasar Gambar 16 merupakan hasil dari plot bottom sampling dari beberapa titik yang dilakukan secara acak untuk mengetahui dimana posisi target yang

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Pasang Surut Pasang surut merupakan suatu fenomena pergerakan naik turunnya permukaan air laut secara berkala yang diakibatkan oleh kombinasi gaya gravitasi dan gaya tarik

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1 Hasil 4.1.1 Sound Velocity Profile (SVP) Pengukuran nilai Sound Velocity Profile (SVP) dilakukan dengan menggunkan sebuah instrumen CTD SBE 19. Instrumen ini memiliki tingkat

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN 4.1 Pengaruh Gangguan Pada Audio Generator Terhadap Amplitudo Gelombang Audio Yang Dipancarkan Pengukuran amplitudo gelombang audio yang dipancarkan pada berbagai tingkat audio generator

Lebih terperinci

4. HASIL DAN PEMBAHASAN. Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori

4. HASIL DAN PEMBAHASAN. Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori 4. HASIL DAN PEMBAHASAN 4.1 Profil Peta Batimetri Laut Arafura Perairan Laut Arafura di lokasi penelitian termasuk ke dalam kategori perairan dangkal dimana kedalaman mencapai 100 meter. Berdasarkan data

Lebih terperinci

2. TINJAUAN PUSTAKA. 2.1 Ketentuan International Hydrographic Organisation (IHO) Standards

2. TINJAUAN PUSTAKA. 2.1 Ketentuan International Hydrographic Organisation (IHO) Standards 3 2. TINJAUAN PUSTAKA 2.1 Ketentuan International Hydrographic Organisation (IHO) Standards For Hydrographic Survei (S.44-IHO) Informasi mengenai kondisi dasar laut dapat diperoleh melalui sebuah kegiatan

Lebih terperinci

4 HASIL DAN PEMBAHASAN

4 HASIL DAN PEMBAHASAN 4 HASIL DAN PEMBAHASAN 4.1 Identifikasi Lifeform Karang Secara Visual Karang memiliki variasi bentuk pertumbuhan koloni yang berkaitan dengan kondisi lingkungan perairan. Berdasarkan hasil identifikasi

Lebih terperinci

BAB I PENDAHULUAN I. 1 Latar Belakang

BAB I PENDAHULUAN I. 1 Latar Belakang BAB I PENDAHULUAN I. 1 Latar Belakang Survei batimetri merupakan proses untuk mendapatkan data kedalaman dan kondisi topografi dasar laut, termasuk lokasi obyek-obyek yang mungkin membahayakan. Pembuatan

Lebih terperinci

APLIKASI MULTIBEAM DAN SIDE SCAN SONAR UNTUK MENDETEKSI TARGET RUNTUHNYA JEMBATAN KARTANEGARA DI KUTAI KALIMANTAN TIMUR

APLIKASI MULTIBEAM DAN SIDE SCAN SONAR UNTUK MENDETEKSI TARGET RUNTUHNYA JEMBATAN KARTANEGARA DI KUTAI KALIMANTAN TIMUR APLIKASI MULTIBEAM DAN SIDE SCAN SONAR UNTUK MENDETEKSI TARGET RUNTUHNYA JEMBATAN KARTANEGARA DI KUTAI KALIMANTAN TIMUR SAIFUR ROHMAN SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 22 3. METODOLOGI PENELITIAN 3.1 Lokasi dan Waktu Penelitian Pengambilan data atau akuisisi data kedalaman dasar perairan dilakukan pada tanggal 18-19 Desember 2010 di perairan barat daya Provinsi Bengkulu

Lebih terperinci

PERTEMUAN IV SURVEI HIDROGRAFI. Survei dan Pemetaan Universitas IGM Palembang

PERTEMUAN IV SURVEI HIDROGRAFI. Survei dan Pemetaan Universitas IGM Palembang PERTEMUAN IV SURVEI HIDROGRAFI Survei dan Pemetaan Universitas IGM Palembang Konfigurasi Survei Hidrografi 1. Penentuan posisi (1) dan penggunaan sistem referensi (7) 2. Pengukuran kedalaman (pemeruman)

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1. Waktu dan Tempat Penelitian Pengukuran kedalaman laut atau pemeruman pada penelitian ini dilakukan di perairan Selat Sunda yang dimaksudkan untuk mendapatkan data kedalaman

Lebih terperinci

UJI KETELITIAN DATA KEDALAMAN PERAIRAN MENGGUNAKAN STANDAR IHO SP-44 DAN UJI STATISTIK (Studi Kasus : Daerah Pantai Barat Aceh)

UJI KETELITIAN DATA KEDALAMAN PERAIRAN MENGGUNAKAN STANDAR IHO SP-44 DAN UJI STATISTIK (Studi Kasus : Daerah Pantai Barat Aceh) UJI KETELITIAN DATA KEDALAMAN PERAIRAN MENGGUNAKAN STANDAR IHO SP-44 DAN UJI STATISTIK (Studi Kasus : Daerah Pantai Barat Aceh) N. Oktaviani 1, J. Ananto 2, B. J. Zakaria 3, L. R. Saputra 4, M. Fatimah

Lebih terperinci

METODE PENELITIAN. Tabel 2 Alat dan bahan yang digunakan dalam penelitian. No. Alat dan Bahan Type/Sumber Kegunaan.

METODE PENELITIAN. Tabel 2 Alat dan bahan yang digunakan dalam penelitian. No. Alat dan Bahan Type/Sumber Kegunaan. METODE PENELITIAN Waktu dan Lokasi Penelitian Pengambilan data lapang dilakukan pada tanggal 16-18 Mei 2008 di perairan gugusan pulau Pari, Kepulauan Seribu, Jakarta (Gambar 11). Lokasi ditentukan berdasarkan

Lebih terperinci

2. TINJAUAN PUSTAKA. (http://id.wikipedia.org/wiki/sonar, 2 April 2009). Berdasarkan sistemnya, ada

2. TINJAUAN PUSTAKA. (http://id.wikipedia.org/wiki/sonar, 2 April 2009). Berdasarkan sistemnya, ada 2. TINJAUAN PUSTAKA 2.1 Sonar Sonar merupakan alat pendeteksian bawah air yang menggunakan gelombang suara untuk mendeteksi kedalaman serta benda-benda di dasar laut (http://id.wikipedia.org/wiki/sonar,

Lebih terperinci

2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut

2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut 2. TINJAUAN PUSTAKA 2.1. Sedimen dasar laut Sedimen yang merupakan partikel lepas (unconsolidated) yang terhampar di daratan, di pesisir dan di laut itu berasal dari batuan atau material yang mengalami

Lebih terperinci

Gambar 8. Lokasi penelitian

Gambar 8. Lokasi penelitian 3. METODOLOGI PENELITIAN 3.1 Waktu dan lokasi penelitian Penelitian ini dilaksanakan pada tanggal 30 Januari-3 Februari 2011 yang di perairan Pulau Gosong, Pulau Semak Daun dan Pulau Panggang, Kabupaten

Lebih terperinci

BAB 3 VERIFIKASI POSISI PIPA BAWAH LAUT PASCA PEMASANGAN

BAB 3 VERIFIKASI POSISI PIPA BAWAH LAUT PASCA PEMASANGAN BAB 3 VERIFIKASI POSISI PIPA BAWAH LAUT PASCA PEMASANGAN 3.1 Pendahuluan Pada kegiatan verifikasi posisi pipa bawah laut pasca pemasangan ini akan digunakan sebagai data untuk melihat posisi aktual dari

Lebih terperinci

Gambar 3.1. Rencana jalur survei tahap I [Tim Navigasi Survei LKI, 2009]

Gambar 3.1. Rencana jalur survei tahap I [Tim Navigasi Survei LKI, 2009] BAB III REALISASI DAN HASIL SURVEI 3.1 Rencana dan Pelaksanaan Survei Survei dilakukan selama dua tahap, yaitu tahap I adalah survei batimetri untuk menentukan Foot Of Slope (FOS) dengan menggunakan kapal

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Data Lapangan Berdasarkan pengamatan langsung di lapangan dengan melakukan penyelaman di lokasi transek lamun, diperoleh data yang diuraikan pada Tabel 4. Lokasi penelitian berada

Lebih terperinci

Scientific Echosounders

Scientific Echosounders Scientific Echosounders Namun secara secara elektronik didesain dengan amplitudo pancaran gelombang yang stabil, perhitungan waktu yang lebih akuran dan berbagai menu dan software tambahan. Contoh scientific

Lebih terperinci

2. TINJAUAN PUSTAKA. Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji

2. TINJAUAN PUSTAKA. Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji 2. TINJAUAN PUSTAKA 2.1 Keadaan Umum Lokasi Penelitian Dasar Laut Arafura merupakan paparan yang sangat luas. Menurut Nontji (1987), paparan Arafura (diberi nama oleh Krummel, 1897) ini terdiri dari tiga

Lebih terperinci

3. METODE PENELITIAN

3. METODE PENELITIAN 3. METODE PENELITIAN 3.1. Waktu dan Lokasi Penelitian Penelitian ini menggunakan data side scan sonar yang berasal dari survei lapang untuk kegiatan pemasangan kabel PLN yang telah dilakukan oleh Pusat

Lebih terperinci

Setelah mengikuti praktikum mata kuliah ini mahasiswa akan mampu memahami komponenkomponen

Setelah mengikuti praktikum mata kuliah ini mahasiswa akan mampu memahami komponenkomponen 2. Konsep-Konsep Dasar Tujuan: Setelah mengikuti praktikum mata kuliah ini mahasiswa akan mampu memahami komponenkomponen gelombang suara. Deskripsi: Praktikum ini akan meliputi beberapa kegiatan seperti:

Lebih terperinci

3. METODE PENELITIAN. Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º º BT

3. METODE PENELITIAN. Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º º BT 3. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada koordinat 5º - 8 º LS dan 133 º - 138 º BT (Gambar 2), pada bulan November 2006 di Perairan Laut Arafura, dengan kedalaman

Lebih terperinci

3. METODOLOGI. Pengambilan data dengan menggunakan side scan sonar dilakukan selama

3. METODOLOGI. Pengambilan data dengan menggunakan side scan sonar dilakukan selama 3. METODOLOGI 3.1 Waktu dan Lokasi Penelitian Pengambilan data dengan menggunakan side scan sonar dilakukan selama dua hari, yaitu pada 19-20 November 2008 di perairan Aceh, Lhokseumawe (Gambar 3). Sesuai

Lebih terperinci

2. TINJAUAN PUSTAKA. kondisinya dipengaruhi oleh karakteristik oseanik Samudra Hindia dan sifat

2. TINJAUAN PUSTAKA. kondisinya dipengaruhi oleh karakteristik oseanik Samudra Hindia dan sifat 2. TINJAUAN PUSTAKA 2.1. Keadaan Umum Lokasi Penelitian Perairan Selat Sunda terletak di antara Pulau Sumatera dan Pulau Jawa serta berhubungan dengan Laut Jawa dan Samudera Hindia. Pada perairan ini terdapat

Lebih terperinci

APLIKASI METODE SEISMIK REFRAKSI UNTUK ANALISA LITOLOGI BAWAH PERMUKAAN PADA DAERAH BABARSARI, KABUPATEN SLEMAN, YOGYAKARTA

APLIKASI METODE SEISMIK REFRAKSI UNTUK ANALISA LITOLOGI BAWAH PERMUKAAN PADA DAERAH BABARSARI, KABUPATEN SLEMAN, YOGYAKARTA APLIKASI METODE SEISMIK REFRAKSI UNTUK ANALISA LITOLOGI BAWAH PERMUKAAN PADA DAERAH BABARSARI, KABUPATEN SLEMAN, YOGYAKARTA Kevin Gardo Bangkit Ekaristi 115.130.094 Program Studi Teknik Geofisika, Universitas

Lebih terperinci

2. TINJAUAN PUSTAKA. Side Scan Sonar merupakan peralatan observasi dasar laut yang dapat

2. TINJAUAN PUSTAKA. Side Scan Sonar merupakan peralatan observasi dasar laut yang dapat 2. TINJAUAN PUSTAKA 2.1. Side Scan Sonar Side Scan Sonar merupakan peralatan observasi dasar laut yang dapat memancarkan beam pada kedua sisi bagiannya secara horizontal. Side scan sonar memancarkan pulsa

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Hasil Analisis Nilai Target Strength (TS) Pada Ikan Mas (Cyprinus carpio) Nilai target strength (TS) merupakan parameter utama pada aplikasi metode akustik dalam menduga kelimpahan

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN 5.1 Identifikasi Tutupan Lahan di Lapangan Berdasarkan hasil observasi lapangan yang telah dilakukan di Kabupaten Humbang Hasundutan, Kabupaten Tapanuli Utara, dan Kabupaten

Lebih terperinci

PEMETAAN BATIMETRI MENGGUNAKAN METODE AKUSTIK DI MUARA SUNGAI LUMPUR KABUPATEN OGAN KOMERING ILIR PROVINSI SUMATERA SELATAN

PEMETAAN BATIMETRI MENGGUNAKAN METODE AKUSTIK DI MUARA SUNGAI LUMPUR KABUPATEN OGAN KOMERING ILIR PROVINSI SUMATERA SELATAN MASPARI JOURNAL Juli 2017, 9(2):77-84 PEMETAAN BATIMETRI MENGGUNAKAN METODE AKUSTIK DI MUARA SUNGAI LUMPUR KABUPATEN OGAN KOMERING ILIR PROVINSI SUMATERA SELATAN BATIMETRY MAPPING USING ACOUSTIC METHOD

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Survei dan pemetaan dasar laut telah mengalami perkembangan yang pesat dalam beberapa tahun terakhir seiring dengan meningkatnya kebutuhan informasi akan sumber daya

Lebih terperinci

BAB II SURVEI LOKASI UNTUK PELETAKAN ANJUNGAN EKSPLORASI MINYAK LEPAS PANTAI

BAB II SURVEI LOKASI UNTUK PELETAKAN ANJUNGAN EKSPLORASI MINYAK LEPAS PANTAI BAB II SURVEI LOKASI UNTUK PELETAKAN ANJUNGAN EKSPLORASI MINYAK LEPAS PANTAI Lokasi pada lepas pantai yang teridentifikasi memiliki potensi kandungan minyak bumi perlu dieksplorasi lebih lanjut supaya

Lebih terperinci

TERBATAS 1 BAB II KETENTUAN SURVEI HIDROGRAFI. Tabel 1. Daftar Standard Minimum untuk Survei Hidrografi

TERBATAS 1 BAB II KETENTUAN SURVEI HIDROGRAFI. Tabel 1. Daftar Standard Minimum untuk Survei Hidrografi 1 BAB II KETENTUAN SURVEI HIDROGRAFI 1. Perhitungan Ketelitian Ketelitian dari semua pekerjaan penentuan posisi maupun pekerjaan pemeruman selama survei dihitung dengan menggunakan metoda statistik tertentu

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 22 4. HASIL DAN PEMBAHASAN 4.1 Suhu Permukaan Laut (SPL) di Perairan Indramayu Citra pada tanggal 26 Juni 2005 yang ditampilkan pada Gambar 8 memperlihatkan bahwa distribusi SPL berkisar antara 23,10-29

Lebih terperinci

STUDI APLIKASI MULTIBEAM ECHOSOUNDER DAN SIDE SCAN SONAR UNTUK MENDETEKSI FREE SPAN PADA SALURAN PIPA BAWAH LAUT

STUDI APLIKASI MULTIBEAM ECHOSOUNDER DAN SIDE SCAN SONAR UNTUK MENDETEKSI FREE SPAN PADA SALURAN PIPA BAWAH LAUT Studi Aplikasi Multibeam Echosounder dan Side Scan Sonar Untuk Mendeteksi Free Span Pada Saluran Pipa Bawah Laut STUDI APLIKASI MULTIBEAM ECHOSOUNDER DAN SIDE SCAN SONAR UNTUK MENDETEKSI FREE SPAN PADA

Lebih terperinci

IDENTIFIKASI NILAI AMPLITUDO SEDIMEN DASAR LAUT PADA PERAIRAN DANGKAL MENGGUNAKAN MULTIBEAM ECHOSOUNDER ABSTRAK

IDENTIFIKASI NILAI AMPLITUDO SEDIMEN DASAR LAUT PADA PERAIRAN DANGKAL MENGGUNAKAN MULTIBEAM ECHOSOUNDER ABSTRAK IDENTIFIKASI NILAI AMPLITUDO SEDIMEN DASAR LAUT PADA PERAIRAN DANGKAL MENGGUNAKAN MULTIBEAM ECHOSOUNDER Lufti Rangga Saputra 1), Moehammad Awaluddin 2), L.M Sabri 3) 1) Program Studi Teknik Geodesi Fakultas

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 PENDAHULUAN 1.1 Latar Belakang Kajian dasar perairan dapat digunakan secara luas, dimana para ahli sumberdaya kelautan membutuhkannya sebagai kajian terhadap habitat bagi hewan bentik (Friedlander et

Lebih terperinci

Gosong Semak Daun. P. Karya. P. Panggang. Gambar 2.1 Daerah penelitian.

Gosong Semak Daun. P. Karya. P. Panggang. Gambar 2.1 Daerah penelitian. BAB 2 BAHAN DAN METODE 2.1 Daerah Penelitian Daerah penelitian adalah Pulau Semak Daun (Gambar 2.1) yang terletak di utara Jakarta dalam gugusan Kepulauan Seribu. Pulau Semak Daun adalah pulau yang memiliki

Lebih terperinci

LAMPIRAN A - Prosedur Patch Test

LAMPIRAN A - Prosedur Patch Test DAFTAR PUSTAKA Abidin, Hasanuddin Z. Metode Penentuan dengan GPS dan Aplikasinya. Pradnya Paramita. 2001. Budhiargo, Guntur. Analisis data batimetri multibeam echosounder menggunakan Caris HIPS. Skripsi.

Lebih terperinci

4. HASIL DAN PEMBAHASAN. (suhu manual) dianalisis menggunakan analisis regresi linear. Dari analisis

4. HASIL DAN PEMBAHASAN. (suhu manual) dianalisis menggunakan analisis regresi linear. Dari analisis 4. HASIL DAN PEMBAHASAN 4.1. Koreksi Suhu Koreksi suhu udara antara data MOTIWALI dengan suhu udara sebenarnya (suhu manual) dianalisis menggunakan analisis regresi linear. Dari analisis tersebut dihasilkan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Pemetaan Batimetri 4.1.1. Pemilihan Model Dugaan Dengan Nilai Digital Asli Citra hasil transformasi pada Gambar 7 menunjukkan nilai reflektansi hasil transformasi ln (V-V S

Lebih terperinci

BAB IV PENGOLAHAN DATA MULTIBEAM ECHOSOUNDER MENGGUNAKAN PERANGKAT LUNAK HIPS DAN ANALISISNYA

BAB IV PENGOLAHAN DATA MULTIBEAM ECHOSOUNDER MENGGUNAKAN PERANGKAT LUNAK HIPS DAN ANALISISNYA BAB IV PENGOLAHAN DATA MULTIBEAM ECHOSOUNDER MENGGUNAKAN PERANGKAT LUNAK HIPS DAN ANALISISNYA Pada Bab ini akan dibahas mengenai persiapan data, pengolahan data, ekspor data hasil survei multibeam echosounder

Lebih terperinci

II BAHAN DAN METODE. II.1 Faktor yang Mengontrol Pergerakan Sedimen

II BAHAN DAN METODE. II.1 Faktor yang Mengontrol Pergerakan Sedimen II BAHAN DAN METODE Sedimen merupakan fragmentasi material yang berasal dari pemecahan batuan akibat proses fisis dan kimiawi (van Rijn, 1993). Di kawasan pesisir, pasokan sedimen terutama berasal dari

Lebih terperinci

DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR

DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR DETEKSI DAN INTERPRETASI TARGET DI DASAR LAUT MENGGUNAKAN INSTRUMEN SIDE SCAN SONAR 1) Soetjie Poernama Sari 2) Henry M. Manik 1) Alumni Departemen Ilmu dan Teknologi Kelautan FPIK IPB 2) Dosen Bagian

Lebih terperinci

1. PENDAHULUAN 1.1 Latar Belakang

1. PENDAHULUAN 1.1 Latar Belakang 1. PENDAHULUAN 1.1 Latar Belakang Substrat dasar perairan memiliki peranan yang sangat penting yaitu sebagai habitat bagi bermacam-macam biota baik itu mikrofauna maupun makrofauna. Mikrofauna berperan

Lebih terperinci

BAB 5 PEMBAHASAN. 39 Universitas Indonesia

BAB 5 PEMBAHASAN. 39 Universitas Indonesia BAB 5 PEMBAHASAN Dua metode penelitian yaitu simulasi dan eksperimen telah dilakukan sebagaimana telah diuraikan pada dua bab sebelumnya. Pada bab ini akan diuraikan mengenai analisa dan hasil yang diperoleh

Lebih terperinci

3. BAHAN DAN METODE. dan Pemetaan Nasional (BAKOSURTANAL) pada tanggal 15 Januari sampai 15

3. BAHAN DAN METODE. dan Pemetaan Nasional (BAKOSURTANAL) pada tanggal 15 Januari sampai 15 13 3. BAHAN DAN METODE 3.1 Waktu dan Lokasi Penelitian Data diperoleh dari survei yang dilakukan oleh Badan Koordinasi Survei dan Pemetaan Nasional (BAKOSURTANAL) pada tanggal 15 Januari sampai 15 Februari

Lebih terperinci

SOUND PROPAGATION (Perambatan Suara)

SOUND PROPAGATION (Perambatan Suara) SOUND PROPAGATION (Perambatan Suara) SOUND PROPAGATION (Perambatan Suara) Reflection and Refraction Ketika gelombang suara merambat dalam medium, terjadi sebuah pertemuan antara kedua medium dengan kepadatan

Lebih terperinci

4. HASIL PEMBAHASAN. Sta Latitude Longitude Spesies Keterangan

4. HASIL PEMBAHASAN. Sta Latitude Longitude Spesies Keterangan 4. HASIL PEMBAHASAN 4.1 Data Lapangan Berdasarkan pengamatan langsung di lapangan dengan melakukan penyelaman di lokasi transek lamun, ditemukan 3 jenis spesies lamun yakni Enhalus acoroides, Cymodocea

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Pemetaan batimetri merupakan keperluan mendasar dalam rangka penyediaan informasi spasial untuk kegiatan, perencanaan dan pengambilan keputusan yang berkaitan dengan

Lebih terperinci

3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian 3.2 Kapal Survei dan Instrumen Penelitian

3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian 3.2 Kapal Survei dan Instrumen Penelitian 3 METODE PENELITIAN 3.1 Waktu dan Lokasi Penelitian Penelitian ini merupakan bagian dari Ekspedisi Selat Makassar 2003 yang diperuntukkan bagi Program Census of Marine Life (CoML) yang dilaksanakan oleh

Lebih terperinci

Analisis Geohazard untuk Dasar Laut dan Bawah Permukaan Bumi

Analisis Geohazard untuk Dasar Laut dan Bawah Permukaan Bumi B6 Analisis Geohazard untuk Dasar Laut dan Bawah Permukaan Bumi Dani Urippan dan Eko Minarto Departemen Fisika, Fakultas Ilmu Alam, Institut Teknologi Sepuluh Nopember (ITS) e-mail: e.minarto@gmail.com

Lebih terperinci

BAB 2 KONSEP PENGOLAHAN DATA SIDE SCAN SONAR

BAB 2 KONSEP PENGOLAHAN DATA SIDE SCAN SONAR BAB 2 KONSEP PENGOLAHAN DATA SIDE SCAN SONAR Pengolahan data side scan sonar terdiri dari dua tahap, yaitu tahap real-time processing dan kemudian dilanjutkan dengan tahap post-processing. Tujuan realtime

Lebih terperinci

Jurnal Geodesi Undip Januari 2016

Jurnal Geodesi Undip Januari 2016 ANALISIS FREE SPAN PADA JALUR PIPA BAWAH LAUT MENGGUNAKAN MULTIBEAM ECHOSOUNDER DAN SIDE SCAN SONAR Studi Kasus: Pipa Gas Transmisi SSWJ (South Sumatera West Java) Jalur Pipa Gas Labuhan Maringgai-Muara

Lebih terperinci

3 METODOLOGI PENELITIAN

3 METODOLOGI PENELITIAN 3 METODOLOGI PENELITIAN 3.1 Waktu dan Lokasi Penelitian Waktu penelitian dimulai pada tanggal 20 Januari 2011 dan menggunakan data hasil survei Balai Riset Perikanan Laut (BRPL). Survei ini dilakukan mulai

Lebih terperinci

RINGKASAN SKEMA SERTIFIKASI SUB BIDANG HIDROGRAFI

RINGKASAN SKEMA SERTIFIKASI SUB BIDANG HIDROGRAFI RINGKASAN SKEMA SERTIFIKASI SUB BIDANG HIDROGRAFI No Klaster Unit Kompetensi Kode Unit Judul Unit Elemen Persyaratan Dasar Metode Uji Durasi Biaya Uji 1 Operator Utama M.711000.015.01 Mengamati Pasut Laut

Lebih terperinci

KELOMPOK 2 JUWITA AMELIA MILYAN U. LATUE DICKY STELLA L. TOBING

KELOMPOK 2 JUWITA AMELIA MILYAN U. LATUE DICKY STELLA L. TOBING SISTEM SONAR KELOMPOK 2 JUWITA AMELIA 2012-64-0 MILYAN U. LATUE 2013-64-0 DICKY 2013-64-0 STELLA L. TOBING 2013-64-047 KARAKTERISASI PANTULAN AKUSTIK KARANG MENGGUNAKAN ECHOSOUNDER SINGLE BEAM Baigo Hamuna,

Lebih terperinci

Gambar 3.1 Peta lintasan akuisisi data seismik Perairan Alor

Gambar 3.1 Peta lintasan akuisisi data seismik Perairan Alor BAB III METODE PENELITIAN Pada penelitian ini dibahas mengenai proses pengolahan data seismik dengan menggunakan perangkat lunak ProMAX 2D sehingga diperoleh penampang seismik yang merepresentasikan penampang

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Bahan organik merupakan komponen tanah yang terbentuk dari jasad hidup (flora dan fauna) di tanah, perakaran tanaman hidup maupun mati yang sebagian terdekomposisi

Lebih terperinci

BAB 3 KALIBRASI DAN PENGOLAHAN DATA

BAB 3 KALIBRASI DAN PENGOLAHAN DATA BAB 3 KALIBRASI DAN PENGOLAHAN DATA 3.1 Survei Lokasi 3.1.1 Lokasi Geografis dan Garis Survei Lokasi dari area survei berada di sekitar Pulau Bawean, Jawa Timur. gambar 3.1 memperlihatkan lokasi dari area

Lebih terperinci

PEMETAAN DAN KLASIFIKASI SEDIMEN DENGAN INSTRUMEN SIDE SCAN SONAR DI PERAIRAN BALONGAN, INDRAMAYU-JAWA BARAT

PEMETAAN DAN KLASIFIKASI SEDIMEN DENGAN INSTRUMEN SIDE SCAN SONAR DI PERAIRAN BALONGAN, INDRAMAYU-JAWA BARAT PEMETAAN DAN KLASIFIKASI SEDIMEN DENGAN INSTRUMEN SIDE SCAN SONAR DI PERAIRAN BALONGAN, INDRAMAYU-JAWA BARAT (Mapping and Sediment Classification using Side Scan Sonar Instrument at Balongan, Indramayu

Lebih terperinci

APLIKASI INSTRUMEN MULTIBEAM SONAR DALAM KEGIATAN PELETAKAN PIPA BAWAH LAUT (CONTOH STUDI PERAIRAN BALONGAN)

APLIKASI INSTRUMEN MULTIBEAM SONAR DALAM KEGIATAN PELETAKAN PIPA BAWAH LAUT (CONTOH STUDI PERAIRAN BALONGAN) i APLIKASI INSTRUMEN MULTIBEAM SONAR DALAM KEGIATAN PELETAKAN PIPA BAWAH LAUT (CONTOH STUDI PERAIRAN BALONGAN) GUGUM GUMBIRA SKRIPSI DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN FAKULTAS PERIKANAN DAN ILMU KELAUTAN

Lebih terperinci

PENGARUH SOUND VELOCITY TERHADAP PENGUKURAN KEDALAMAN MENGGUNAKAN MULTIBEAMECHOSOUNDER DI PERAIRAN SURABAYA

PENGARUH SOUND VELOCITY TERHADAP PENGUKURAN KEDALAMAN MENGGUNAKAN MULTIBEAMECHOSOUNDER DI PERAIRAN SURABAYA Pengaruh Sound Velocity Terhadap Pengukuran Kedalaman Menggunakan Multibeamechosounder Di Perairan Surabaya (Eko Prakoso A..et.al) PENGARUH SOUND VELOCITY TERHADAP PENGUKURAN KEDALAMAN MENGGUNAKAN MULTIBEAMECHOSOUNDER

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 12 4. HASIL DAN PEMBAHASAN 4.1. Kondisi Umum Berdasarkan buku Perum Perhutani Unit III Jawa Barat & Banten (9), wilayah mangrove desa Jayamukti Kecamatan Blanakan secara administrasi kehutanan termasuk

Lebih terperinci

Bab 3. Pengumpulan dan Pengolahan Data. Bab 3 Pengumpulan dan Pengolahan Data. 3.1 Pengumpulan Data

Bab 3. Pengumpulan dan Pengolahan Data. Bab 3 Pengumpulan dan Pengolahan Data. 3.1 Pengumpulan Data Bab 3 Pengumpulan dan Pengolahan Data 3.1 Pengumpulan Data Pemodelan propagasi akustik bawah air di Samudera Hindia memerlukan data-data sebagai berikut: 1. Kecepatan suara. 2. Temperatur. 3. Salinitas.

Lebih terperinci

BAB I PENDAHULUAN. laut Indonesia, maka ini akan mendorong teknologi untuk dapat membantu dalam

BAB I PENDAHULUAN. laut Indonesia, maka ini akan mendorong teknologi untuk dapat membantu dalam 1 BAB I PENDAHULUAN 1.1. Latar Belakang Semakin banyak penerapan teknologi dalam kehidupan sehari-hari yang berdasarkan perkembangan pemanfaatan energi dan sumber daya alam di laut Indonesia, maka ini

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 17 3. METODOLOGI PENELITIAN 3.1. Waktu dan Lokasi Penelitian Penelitian ini dilakukan pada bulan Februari sampai Juni 211, sedangkan survei data dilakukan oleh pihak Balai Riset Perikanan Laut (BRPL) Departemen

Lebih terperinci

Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa

Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa G174 Simulasi Arus dan Distribusi Sedimen secara 3 Dimensi di Pantai Selatan Jawa Muhammad Ghilman Minarrohman, dan Danar Guruh Pratomo Departemen Teknik Geomatika, Fakultas Teknik Sipil dan Perencanaan,

Lebih terperinci

PEMODELAN GENESIS. KL 4099 Tugas Akhir. Bab 5. Desain Pengamananan Pantai Pulau Karakelang, Kabupaten Kepulauan Talaud, Provinsi Sulawesi Utara

PEMODELAN GENESIS. KL 4099 Tugas Akhir. Bab 5. Desain Pengamananan Pantai Pulau Karakelang, Kabupaten Kepulauan Talaud, Provinsi Sulawesi Utara Desain Pengamananan Pantai Pulau Karakelang, Kabupaten Kepulauan Talaud, Provinsi Sulawesi Utara Bab 5 PEMODELAN GENESIS Bab 5 PEMODELAN GENESIS Desain Pengamanan Pantai Pulau Karakelang Kabupaten Kepulauan

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN 5.1 Pengolahan Awal Citra (Pre-Image Processing) Pengolahan awal citra (Pre Image Proccesing) merupakan suatu kegiatan memperbaiki dan mengoreksi citra yang memiliki kesalahan

Lebih terperinci

4. HASIL DAN PEMBAHASAN. Pada Gambar 7 tertera citra MODIS level 1b hasil composite RGB: 13, 12

4. HASIL DAN PEMBAHASAN. Pada Gambar 7 tertera citra MODIS level 1b hasil composite RGB: 13, 12 4. HASIL DAN PEMBAHASAN 4.1 Sebaran Tumpahan Minyak Dari Citra Modis Pada Gambar 7 tertera citra MODIS level 1b hasil composite RGB: 13, 12 dan 9 dengan resolusi citra resolusi 1km. Composite RGB ini digunakan

Lebih terperinci

BAB 3 PENENTUAN POSISI DAN APLIKASI ROV

BAB 3 PENENTUAN POSISI DAN APLIKASI ROV BAB 3 PENENTUAN POSISI DAN APLIKASI ROV 3.1. Persiapan Sebelum kegiatan survei berlangsung, dilakukan persiapan terlebih dahulu untuk mempersiapkan segala peralatan yang dibutuhkan selama kegiatan survei

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode dan Desain Penelitian 3.1.1 Metode Penelitian Metode penelitian yang digunakan dalam penelitian ini adalah metode deskriptif analitis. Penelitian ini menggunakan data

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan ilmu pengetahuan dan teknologi yang begitu cepat dan arus informasi yang semakin transparan, serta perubahan-perubahan dinamis yang tidak dapat dielakkan

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Echosounder merupakan alat pengukur kedalaman berbasis gelombang akustik. Dengan bantuan GPS sebagai penentu posisi echosounder memberikan data kedalaman suatu daerah

Lebih terperinci

Hidrometri Hidrometri merupakan ilmu pengetahuan tentang cara-cara pengukuran dan pengolahan data unsur-unsur aliran. Pada bab ini akan diberikan urai

Hidrometri Hidrometri merupakan ilmu pengetahuan tentang cara-cara pengukuran dan pengolahan data unsur-unsur aliran. Pada bab ini akan diberikan urai Hidrometri Hidrometri merupakan ilmu pengetahuan tentang cara-cara pengukuran dan pengolahan data unsur-unsur aliran. Pada bab ini akan diberikan uraian tentang beberapa cara pengukuran data unsur aliran

Lebih terperinci

2 TINJAUAN PUSTAKA 2.1 Sedimen Dasar Laut

2 TINJAUAN PUSTAKA 2.1 Sedimen Dasar Laut 6 2 TINJAUAN PUSTAKA 2.1 Sedimen Dasar Laut Seluruh permukaan dasar laut ditutupi oleh partikel-partikel sedimen yang telah diendapkan secara perlahan-lahan dalam jangka waktu berjuta-juta tahun. Sedimen

Lebih terperinci

Oleh Satria Yudha Asmara Perdana Pembimbing Eko Minarto, M.Si Drs. Helfinalis M.Sc

Oleh Satria Yudha Asmara Perdana Pembimbing Eko Minarto, M.Si Drs. Helfinalis M.Sc Oleh Satria Yudha Asmara Perdana 1105 100 047 Pembimbing Eko Minarto, M.Si Drs. Helfinalis M.Sc PENDAHULUAN Latar Belakang Pulau Bawean memiliki atraksi pariwisata pantai yang cukup menawan, dan sumber

Lebih terperinci

BAB 4 ANALISIS. 4.1 Analisis Kemampuan Deteksi Objek

BAB 4 ANALISIS. 4.1 Analisis Kemampuan Deteksi Objek BAB 4 ANALISIS 4.1 Analisis Kemampuan Deteksi Objek 4.1.1 Ketelitian koordinat objek Pada kajian ketelitian koordinat ini, akan dibandingkan ketelitian dari koordinatkoordinat objek berbahaya pada area

Lebih terperinci

SURVEI HIDROGRAFI UNTUK KAJIAN ALKI DI PERAIRAN LAUT JAWA

SURVEI HIDROGRAFI UNTUK KAJIAN ALKI DI PERAIRAN LAUT JAWA SURVEI HIDROGRAFI UNTUK KAJIAN ALKI DI PERAIRAN LAUT JAWA Teguh Fayakun Alif, ST Pusat Pemetaan Dasar Kelautan dan Kedirgantaraan (PDKK) BAKOSURTANAL Jl.Raya Jakarta Bogor Km 46 Cibinong, Bogor 16911 Telp.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Tipe Estuari dan Debit Sungai. Tipe estuari biasanya dipengaruhi oleh kondisi pasang surut. Pada saat pasang, salinitas perairan akan didominasi oleh salinitas air laut karena

Lebih terperinci

Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut :

Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut : Indeks Vegetasi Bentuk komputasi nilai-nilai indeks vegetasi matematis dapat dinyatakan sebagai berikut : NDVI=(band4 band3)/(band4+band3).18 Nilai-nilai indeks vegetasi di deteksi oleh instrument pada

Lebih terperinci

DEBIT AIR DI SUNGAI TERINDIKASI CEMAR DESA BERINGIN MALUKU UTARA

DEBIT AIR DI SUNGAI TERINDIKASI CEMAR DESA BERINGIN MALUKU UTARA DEBIT AIR DI SUNGAI TERINDIKASI CEMAR DESA BERINGIN MALUKU UTARA Zulkifli Ahmad Universitas Khairun Ternate e-mail : ahmadzulkifli477@gmail.com ABSTRAK Salah satu masalah yang paling meresahkan bagi masyarakat

Lebih terperinci

III HASIL DAN DISKUSI

III HASIL DAN DISKUSI III HASIL DAN DISKUSI Sistem hidrolika estuari didominasi oleh aliran sungai, pasut dan gelombang (McDowell et al., 1977). Pernyataan tersebut mendeskripsikan kondisi perairan estuari daerah studi dengan

Lebih terperinci

KL 4099 Tugas Akhir. Desain Pengamananan Pantai Manokwari dan Pantai Pulau Mansinam Kabupaten Manokwari. Bab 1 PENDAHULUAN

KL 4099 Tugas Akhir. Desain Pengamananan Pantai Manokwari dan Pantai Pulau Mansinam Kabupaten Manokwari. Bab 1 PENDAHULUAN Desain Pengamananan Pantai Manokwari dan Pantai Pulau Mansinam Kabupaten Manokwari Bab 1 PENDAHULUAN Bab PENDAHULUAN Desain Pengamananan Pantai Manokwari dan Pantai Pulau Mansinam Kabupaten Manokwari 1

Lebih terperinci

Bab 2. Dasar Teori Akustik Bawah Air. Bab 2 Dasar Teori Akustik Bawah Air. 2.1 Persamaan Dasar Akustik

Bab 2. Dasar Teori Akustik Bawah Air. Bab 2 Dasar Teori Akustik Bawah Air. 2.1 Persamaan Dasar Akustik Bab 2 Dasar Teori Akustik Bawah Air 2.1 Persamaan Dasar Akustik Teori dasar akustik menggunakan beberapa asumsi untuk memudahkan penurunan persamaan dasar akustik. Asumsi yang digunakan berupa: 1. Fluida

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 18 4. HASIL DAN PEMBAHASAN Informasi keberadaan kaki lereng kontinen bersifat penting karena akan menentukan wilayah yang dapat diklaim sebagai batas landas kontinen diluar 200 mil laut. oleh karena itu,

Lebih terperinci

HASIL DAN ANALISA. 3.1 Penentuan Batas Penetrasi Maksimum

HASIL DAN ANALISA. 3.1 Penentuan Batas Penetrasi Maksimum BAB 3 HASIL DAN ANALISA 3.1 Penentuan Batas Penetrasi Maksimum Zonasi kedalaman diperlukan untuk mendapatkan batas penetrasi cahaya ke dalam kolom air. Nilai batas penetrasi akan digunakan dalam konversi

Lebih terperinci

BAB 2 DASAR TEORI AKUSTIK BAWAH AIR

BAB 2 DASAR TEORI AKUSTIK BAWAH AIR BAB 2 DASAR TEORI AKUSTIK BAWAH AIR 2.1 Persamaan Akustik Bawah Air Persamaan akustik bawah air diturunkan dari persamaan state, persamaan kekekalan massa (persamaan kontinuitas) dan persamaan kekekalan

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang

BAB I PENDAHULUAN. A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Kalimantan Selatan sebagai salah satu wilayah Indonesia yang memiliki letak geografis di daerah ekuator memiliki pola cuaca yang sangat dipengaruhi oleh aktifitas monsoon,

Lebih terperinci

Jurnal Geodesi Undip Oktober 2017

Jurnal Geodesi Undip Oktober 2017 ANALISIS PENGOLAHAN DATA MULTIBEAM ECHOSOUNDER MENGGUNAKAN PERANGKAT LUNAK MB-SYSTEM DAN CARIS HIPS AND SIPS BERDASARKAN STANDAR S-44 IHO 2008 Sendy Brammadi, Arief Laila Nugraha, Bambang Sudarsono, Imam

Lebih terperinci