PROGRAM STUDI : PENDIDIKAN MATEMATIKA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PROGRAM STUDI : PENDIDIKAN MATEMATIKA"

Transkripsi

1 MAKALAH OLEH KELOMPOK DUA NAMA : GIYATNI ( ) SEPTI PRATIWI ( ) 3HARI YADI ( ) PROGRAM STUDI : PENDIDIKAN MATEMATIKA MATA KULIAH : GEOMETRI TRANSFORMASI DOSEN PENGAMPU : PADLI MPd SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA (STKIP-PGRI) LUBUKLINGGAU TAHUN 009/00

2 ISOMETRI DEFINISI : Isometri adala suatu transformasi atas refleksi (pencerminan),translasi (pergeseran) dan rotasi (perputaran) pada sebua garis yang mempertaankan jarak ( panjang suatu ruas garis ) Suatu isometri memiliki sifat-sifat sebagai berikut: a) Memetakan garis menjadi garis b) Mempertaankan ukuran dua garis c ) Mempertaankan kesejajaran Bukti ; a) Andaikan g sebua garis dan T suatu isometri kita akan membuktikan bawa T (g) = adala suatu garis juga B B A G A H Ambil A g dan B g Maka A' = T(A), B' = T (B) ; melalui A' dan B' ada satu garis Misalnya ' Untuk ini akan dibuktikan ' dan ' (i) Bukti ' Ambil X' ' Ole karena bidang kita adala bidang Euclides Kita andaikan (A' X B' ), artinya A' X + XB' =A'B' Ole karena T suatu isometri Jadi suatu transformasi maka ada X seingga T (X) = X dan ole karena T suatu isometri maka AX =A'X; begitu pula XB =XB' Jadi AX +XB =AB

3 Ini berarti bawa A X B segaris pada g Ini berarti bawa X = T (X) seingga ' sebab bukti serupa berlaku untuk posisi X dengan ( X A' B') atau ( A'B' X) (ii) Bukti ' Ambil lagi y Maka ada y g seingga T(y) = y dengan y misalnya (A Y B) Artinya Y g dan AY + YB = AB Ole karena T sebua isometri maka A'Y = AY, Y B' = YB,A'B' = AB Seingga A'Y + Y B' = A'B' Ini berarti bawa A' YB' segaris, yaitu garis yang melalui A'dan B' Ole karena ' satusatunya garis melalui A'dan B' maka Y ' Jadi arusla ' Bukti serupa berlaku untuk keadaan ( Y A B) atau ( A B Y) Seingga = ' Jadi kalau g sebua garis maka = T( g) adala sebua garis B B A A Bukti : AB = A'B' b) Ambil sebua ABC G H A A B C B C Andaikan A'= T(A), B'= T(B), C'= T(C) Menurut (a) maka A' B' dan B' C' adala garis lurus

4 Ole karena ABC = BA BC maka A' B'C'= B'A' B'C' sedangkan A'B' = AB, B'C' = BC, C'A' = CA Seingga ABC = A'B'C' Jadi A' B'C' = ABC seingga suatu isometri Mempertaankan besarnya sebua sudut c) A B A B Kita arus memperatikan bawa a'// b' Andaikan a' memotong b' disebua titik P jadi P a dan P b Ole karena T sebua transformasi maka ada P seingga T (B)= P dengan P a dan P bini berarti bawa a memotong b di p Jadi bertentangan dengan yang diketaui bawa a// b, maka pengandaian bawa a' memotong b' sala Jadi arusla a'//b' Conto soal: Diketaui garis g = {( x, y) y = x } dan garis = {( x, y) y = x 3 } adala refleksi pada garis g Tentukanla persamaan garis ' = Mg () Apabila Mg Penyelesaian : Ole karena Mg sebua refleksi pada g jadi suatu isometri, maka menurut sifat isometri ' adala sebua garis Garis ' akan melalui titik potong antara dan g

5 Persamaan y = x 3 Misalkan, y = 0 x = 0 y = x 3 y = x 3 0 = x 3 y = (0) 3 -x = -3 y = -3 (0, -3 ) 3 3 x = (, 0 ) kemudian di refleksikan menjadi (0, - 3 ) dan ( 3, 0) rumus persamaan garis : y y y y = x x x x 3 y x 0 = y x = y + = x 3y = x kedua ruas di kali 6y + 9 = 3x -3x + 6y + 9 = 0 kedua ruas di bagi -3 x y -3 = 0 dengan demikian persamaan ' adala : ' = ( y) {, x y 3= 0} x

6 Peratikan gambar berikut : G Y H H O,5 3 X - R(, -) -,5-3 Isometri Langsung dan Isometri Lawan Definisi : Misalkan (P,Q,R) adala ganda tiga titik yang tidak kolinier (tak segaris) Apabila urutan perputaran P,Q,R sesuai dengan perputaran jarum jam, maka P,Q,R disebut memiliki orientasi negatif Sedangkan apabila urutan perputaran P,Q,R berlawanan dengan perputaran jarum jam maka, P,Q,R disebut memiliki orientasi positif Definisi : Suatu transformasi T disebut langsung jika dan anya jika transformasi itu mempertaankan orientasisedangkan transformasi T disebut transformasi lawan jika dan anya jika transformasi itu menguba orientasi

7 Definisi : Misalkan T suatu transformasit disebut mempertaankan orientasi apabila untuk setiap ganda tiga titik P,Q,R yang tidak kolinear (tak segaris) orientasinya sama dengan orientasi dari petanyasedangkan lainnya disebut menguba orientasi CONTOH : ISOMETRI LAWAN misalnya sebua refleksi (pencerminan) P R P Q Q R PQR berlawanan dengan jarum jam (+) sedangkan P'Q'R' seara dengan jarum jam (-) ISOMETRI LANGSUNG misalnya suatu rotasi (perputaran) P R Q R P Q PQR berlawanan dengan jarum jam (+) sedangkan P'Q'R' tetap berlawanan dengan jarum jam (+)

8 Sifat yang penting dalam geometri transformasi iala : Setiap refleksi (pencerminan) pada garis adala suatu isometri lawan Akan tetapi tidak setiap isometri adala isometri lawan, ini dapat di liat pada gambar di atas yaitu rotasi (perputaran) adala sebua isometri langsung Setiap isometri adala sebua isometri langsung atau sebua isometri lawan HASIL KALI TRANSFORMASI ( KOMPOSISI TRANSFORMASI ) DEFINISI : Misalkan ada dua transformasi dan maka komposisi dari dan merupakan suatu transformasi, ditulis dengan notasi o sebagai : ( ) o ( Ρ ) = ( Ρ) [ ] Ρ ν,, ditetapkan Untuk membuktikan transformasi ini yang arus ditunjukkan adala : o fungsi dari ν ke ν Karena suatu transformasi maka merupakan fungsi dari ν ke ν, seingga prapeta dari o = prapeta dari Ambil x ν sebarang, karena transformasi berarti ada y ν seingga ( x ) = y dan juga merupakan transformasi berarti ada z ( y) = z = ( y) y = ( x) z = [ ( x) ] = ( o )( x) z, ν seingga Jadi x ν nilai dari ( o )( x) adala z ν Akibatnya transformasi ini dikatakan sebagai fungsi dari ν ke ν o fungsi bijektif : a) o fungsi kepada ambil z ν karena transformasi maka fungsi kepada,

9 akibatnya ada y ν seingga ( y ) = z dan karena juga transformasi maka juga fungsi kepada, akibatnya y ν seingga ( x ) = y Jadi, untuk z ν z = ( y) = [ ( x) ] = ( o )( ) x sebarang ada x ν seingga ν mempunyai prapeta ole o akibatnya o suatu fungsi kepada b) o fungsi satu satu ambil x,y ν seingga ( )( x) = ( o )( y) [ ( )] = [ ( y) ] dari ubungan ini didapat x ( x ) = ( y) x = y karena Maka o suatu fungsi bijektif o maka o fungsi satu satu dan kepada Kesimpulan : dari uraian di atas maka o suatu transformasi CONTOH : P KG Q H Di ketaui garis garis g dan dan titik titik p dan q Carila : a) A = M [ M ( p) ] b) B = M M ( p) g [ ] c) C = M [ M ( p) ] g

10 Penyelesaian : a) A = M [ M ( p) ] M ( p) = p' ( p ' ) M g = A b) B = M M ( p) M g ( p) = p' ( p ' ) M = B g [ ] c) C = M [ M ( p) ] M ( p) = p' ( p ' ) M = p g

11 Latian : Misalkan V bidang Euclid, A sebua titik tertentu pada V Transformasi T yang ditetapkan sebagai berikut: i) T(A) =A ii) Apabila P V dan P A,T(p) = Q dengan Q merupakan titik tenga ruas garis AP Apaka transformasi T ini suatu isometri? Penyelesaian : Peratikan gambar dibawa iniambil P,R V,misalkan P P A R R P' = T(P) dan R' = T (R),maka AP' = P'P dan AR'=R'RAkibatnya R'P' = ½ RP Jadi T bukan suatu isometri Diberikan relasi T : V V yang ditetapkan sebagai berikut: Apabila P = (x,y) Apaka T suatu transformasi? V,maka ; (i) T (P) = (x+,y) untuk x 0 (ii) T (P) = (x-,y) untuk x<0 Penyelesaian : Bukti dari relasi T adala fungsi dari V ke V Ambil sebarang titik P = (x,y) V, ada dua kasus : Untuk x 0,x+ R dan tunggal, akibatnya (x+,y) V dan tunggal Untuk x<0, x- R dan tunggal, akibatnya (x-,y) V dan tunggal Seingga P V selalu mempunyai peta di V dan tunggal

12 Jadi relasi T merupakan fungsi dari V ke V Ambil (0,0) V seingga (0,0)=T (P)=(x+,y), jika x 0 didapat x=- dan y = 0 Dalam al ini terjadi kontradiksi dengan persyaratan x 0 Akibatnya (-,0) bukan prapeta dari (0,0) Berdasarkan : i) Apabila (0,0) =T(P) =(x-,y), jika x<0 didapat x = dan y = 0, dan ini pun terjadi lagi kontradiksi dengan persyaratan x< 0 Akibatnya (,0) bukan prapeta dari (0,0) ii) Akibatnya dari kedua al ini (0,0) tidak mempunyai prapeta ole T Akibatnya fungsi T bukan fungsi kepada Jadi relasi T bukan suatu transformasi 3 Untuk transformasi,misalkan ν bidang Euclid, g suatu garis tertentu dan ditetapkan Ρ ν : a jika Ρ Α, ( Ρ) = Α Ρ Α, Ρ = Ρ dengan b jika ( ) apaka suatu transformasi? Ρ titik tenga ruas garis tenga dari x ke g Penyelesaian : a) akan ditunjukkan bawa : fungsi dari ν ke ν x ν dan x g, maka x tunggal dari x ole dan ada tunggal Garis kepada g melalui x yang mengakibatkan tunggalnya titik tenga ruas garis dari x ke g jadi x tunggal peta ν yang memenui suatu fungsi dari ν ke ν fungsi bijektif a) fungsi kepada ambil y ν dan x g ada ν sebarangapabila y g, maka ada prapeta y sendiri ole dan apabila y g, maka ada tunggal garis l yang g melalui y

13 n Misalnya ( n) g l =,akibatnya ada garisyang mengakibatkan ada ruas garis NX,seingga y NX dan yn = Nx Dari uraian ini berakibat ada x, seingga kepada b) fungsi satu satu ambil x, y Υ Χ g dan y = ( x) Jadi fungsi ν sebarang seingga x y untuk x, y pada sisi yang berbeda ole garis g,maka ( ) ( y) sebab ( x) dan ( y) x terletak pada sisi yang berbeda ole garis g G T (x) X T (y) Y Untuk x, y pada sisi yang sama ole garis g, dengan x, y g maka jarak dari x ke g dengan jarak dari y ke g berbeda Akibatnya ( ) ( y) sebab jarak dari ( x) dari ( y) x ke g setenga jarak dari x ke g, sedangkan jarak ke g setenga jarak dari y ke g G T (y) T (x) X Y

14 Untuk x, y pada sisi yang sama ole garis g dengan x, y tidak g maka garis l melalui x g dan garis m melalui y g akan sejajar Karena ( x) l, ( y) m dan l // m, maka ( x) ( y) Jadi fungsi satu satu G T (y) T (x) X Y M L disebut sebagai suatu transformasi

15

TUGAS MATA KULIAH GEOMETRI TRANSFORMASI

TUGAS MATA KULIAH GEOMETRI TRANSFORMASI TUGAS MATA KULIAH GEOMETRI TRANSFORMASI Dosen Pengampu HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 3 Nama : NPM : 1. Ahmad Muslim 08030007 2. Ivo ayu Septiana 08030159 3. Elsa Fitriana 08030200 SEKOLAH

Lebih terperinci

ISOMETRI & HASIL KALI TRANSFORMASI

ISOMETRI & HASIL KALI TRANSFORMASI ISOMETRI & HASIL KALI TRANSFORMASI MATA KULIAH : GEOMETRI TRANNSFORMMASI DISUSUN OLEH : 1. ASMERI : 4007118 2. NITA FITRIA.N : 4007501 SEMESTER / KELAS : VI (ENAM). C PRODI : PEND. MATEMATIKA DOSEN PEMBIMBING

Lebih terperinci

TUGAS GEOMETRI TRANSFORMASI. Tentang. Isometri dan Sifat-sifat Isometri. Oleh : EVI MEGA PUTRI : I. Dosen Pembimbing :

TUGAS GEOMETRI TRANSFORMASI. Tentang. Isometri dan Sifat-sifat Isometri. Oleh : EVI MEGA PUTRI : I. Dosen Pembimbing : TUGAS GEOMETRI TRANSFORMASI Tentang Isometri dan Sifat-sifat Isometri Oleh : EVI MEGA PUTRI : 412. 35I Dosen Pembimbing : ANDI SUSANTO, S. Si, M.Sc TADRIS MATEMATIKA A FAKULTAS TARBIYAH INSTITUT AGAMA

Lebih terperinci

TRANSFORMASI DAN PENCERMINAN

TRANSFORMASI DAN PENCERMINAN TRANSFORMASI DAN PENCERMINAN DISUSUN OLEH: KELOMPOK 1 (SATU) 1.AISYAH (4007005) 2.WIWIN AGUSTINA (4007018) 3.MARTINI (4007024) 4.TUKIJO (4007009) Dosen Pengampu : Fadli, S.Si, M.Pd. SEKOLAH TINGGI KEGURUAN

Lebih terperinci

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N Pemetaan (fungsi) f dari himpunan A ke himpunan B adalah suatu hubuungan yang memasangkan setiap unsur di A dengan tepat satu unsur di B. Jika a A dan pasangannya b B, maka ditulis

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

GEOMETRI TRANSFORMASI SETENGAH PUTARAN

GEOMETRI TRANSFORMASI SETENGAH PUTARAN GEOMETRI TRANSFORMASI SETENGAH PUTARAN Disusun Oleh : Kelompok Empat (V1 A) 1. Purna Irawan (4007178 ) 2. Sudarsono (4007028 p) 3. Mellyza Vemi R. (4007217 ) 4. Kristina Nainggolan (4007013 ) 5. Desi Kartini

Lebih terperinci

ISOMETRI DAN HASIL KALI TRANSFORMASI

ISOMETRI DAN HASIL KALI TRANSFORMASI ISOETRI DN HSIL KLI TRNSFORSI DI SUSUN OLEH : KELOPOK II. ri neraini 4007 ). Elftria 40070 ). aryana 400744 ) 4. Sudar si 400705 ) 5. Ibnu Harlis Firmansa 40070 ) 4. Samini 40076 ) PROGR STUDY PENDIDIKN

Lebih terperinci

MAKALAH OLEH KELOMPOK II

MAKALAH OLEH KELOMPOK II MKLH OLEH KELOMOK II NM : 1. MRIS (4007059) 2. NOV LUKIT (4007215). SYMSURI (4007194) 4. SUDRYNTI (4007055) 5. CMELLI (4007062) ROGRM STUDI : ENDIDIKN MTEMTIK MT KULIH : GEOMETRI TRNSFORMSI DOSEN ENGMU

Lebih terperinci

MAKALAH OLEH KELOMPOK I NAMA : 1. SHINTA JULIANTY 2. SITI HERLIZA 3. FATMALIZA 4. SUPRA ANTONI 5. JUNIANTY

MAKALAH OLEH KELOMPOK I NAMA : 1. SHINTA JULIANTY 2. SITI HERLIZA 3. FATMALIZA 4. SUPRA ANTONI 5. JUNIANTY MAKALAH OLEH KELOMPOK I NAMA : 1. SHINTA JULIANTY 2. SITI HERLIZA 3. FATMALIZA 4. SUPRA ANTONI 5. JUNIANTY PROGRAM STUDI MATA KULIAH DOSEN PENGAMPU : PENDIDIKAN MATEMATIKA : GEOMETRI TRANSFORMASI : FADLI,

Lebih terperinci

TRANSFORMASI. Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga.

TRANSFORMASI. Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. 1 TRANSFORMASI Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Sebuah fungsi yang bijektif adalah sebuah fungsi yang bersifat: 1.

Lebih terperinci

HASIL KALI TRANSFORMASI

HASIL KALI TRANSFORMASI Definisi : Andaikan F dan G dua transformasi, denan F : V V G : V V HASIL KALI TRANSFORMASI Maka komposisi dari F dan G yan ditulis sebaai Go F didefinisikan sebaai: (Go F) (P) = G[F(P)], P V Teorema :

Lebih terperinci

TRANSFORMASI. Dosen Pengampu Mata Kuliah. HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1. Hayatun Nupus Rina Ariyani

TRANSFORMASI. Dosen Pengampu Mata Kuliah. HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1. Hayatun Nupus Rina Ariyani TRANSFORMASI Makalah ini disusun sebagai tugas mata kuliah Geometri Transformasi Dosen Pengampu Mata Kuliah HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1 Hayatun Nupus 08030121 Rina Ariyani 08030057

Lebih terperinci

MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E)

MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E) MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E) Disusun Oleh: 1. ARI SUKA LESMANA 2. YULAIMA SUPRIHATIN 3. HERVI MARDIANA SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP

Lebih terperinci

TRANSFORMASI BALIKAN

TRANSFORMASI BALIKAN TRANSFORMASI BALIKAN Disusun Oleh : Nama : Dodi Sunhaji (4007017) Esty Gustina (4007199) Indah Sri (4007015) Warnitik (4007009) Oryza Sativa Kelas : VIA Prodi : Matematika Mata Kuliah : Geometri Transformasi

Lebih terperinci

TRANSFORMASI. 1) T(A) = A 2) Apabila P A, maka T(P) = Q dengan Q titik tengah garis. Selidiki apakah

TRANSFORMASI. 1) T(A) = A 2) Apabila P A, maka T(P) = Q dengan Q titik tengah garis. Selidiki apakah TRNSFORMSI Suatu transformasi pada suatu bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Fungsi yang bijektif adalah sebuah fungsi yang bersifat : juga V.

Lebih terperinci

Tentang. Isometri dan Refleksi

Tentang. Isometri dan Refleksi TUGS II GEOMETRI TRNSFORMSI Tentang Isometri dan Refleksi Oleh : EVI MEG PUTRI : 42. 35I Dosen Pembimbing : NDI SUSNTO S. Si M.Sc TDRIS MTEMTIK FKULTS TRBIYH INSTITUT GM ISLM NEGERI (IIN) IMM BONJOLPDNG

Lebih terperinci

LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah

LEMBAR KERJA SISWA 1. : Menggunakan Konsep Limit Fungsi Dan Turunan Dalam Pemecahan Masalah BAB V T U R U N A N 1. Menentukan Laju Perubaan Nilai Fungsi. Menggunakan Aturan Turunan Fungsi Aljabar 3. Menggunakan Rumus Turunan Fungsi Aljabar 4. Menentukan Persamaan Garis Singgung Kurva 5. Fungsi

Lebih terperinci

R E S U M E TRANSFORMASI

R E S U M E TRANSFORMASI R E S U M E TRNSFORMSI Transformasi pada suatu bidang V adalah suatu fungsi yang bijektif dengan arah asalnya V dan daerah nilainya V juga Fungsi yang bijektif adalah sebuah fungsi yang : 1 Surjektif 2

Lebih terperinci

GESERAN (TRANSLASI) S = M M. Dalam Bab ini akan dibahas. hasil kali dua pencerminan pada dua garis yang sejajar.

GESERAN (TRANSLASI) S = M M. Dalam Bab ini akan dibahas. hasil kali dua pencerminan pada dua garis yang sejajar. GESERN TRNSLSI Ketentuan dan Sifat-sifat Dalam Bab setena putaran, bawa setena putaran dapat ditulis sebaai asil kali dua pencerminan, aitu kalau sebua titik an diketaui dan dan dua aris an teak lurus

Lebih terperinci

OLEH : PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN ILMU SEKOLAH TINNGI KEGURUAN DAN ILMU PENDIDIKAN

OLEH : PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MATEMATIKA DAN ILMU SEKOLAH TINNGI KEGURUAN DAN ILMU PENDIDIKAN OLEH : 1. ASRIA HIRDA YANTI ( 4007014 ) 2. ANNIE RACHMAWATI ( 4006116 ) 3. RUPITA FITRIANI ( 4007036 ) 4. PERA HIJA TERISTIANA ( 4007001 ) 5. HARTATI SUSANTI ( 4007166 ) PROGRAM STUDI PENDIDIKAN MATEMATIKA

Lebih terperinci

MAKALAH GEOMETRI TRANSFORMASI TRANSFORMASI

MAKALAH GEOMETRI TRANSFORMASI TRANSFORMASI MAKALAH GEOMETRI TRANSFORMASI TRANSFORMASI DOSEN PENGAMPU MATA KULIAH HERDIAN, S.Pd., M.Pd. DISUSUN OLEH : NAMA NPM 1. UMI SULISTIYOWATI 08 030 089 2. NURSITI LAILA 08 030 092 3. RATNA LISTIAWATI 08 030

Lebih terperinci

Matematika ITB Tahun 1975

Matematika ITB Tahun 1975 Matematika ITB Taun 975 ITB-75-0 + 5 6 tidak tau ITB-75-0 Nilai-nilai yang memenui ketidaksamaan kuadrat 5 7 0 atau atau 0 < ITB-75-0 Persamaan garis yang melalui A(,) dan tegak lurus garis + y = 0 + y

Lebih terperinci

STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR

STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR STANDAR KOMPETENSI 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR 5.1 Menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks

Lebih terperinci

BAB IV ISOMETRI. i. Jika p g maka T =p. ii.

BAB IV ISOMETRI. i. Jika p g maka T =p. ii. IV ISOMETRI Defenisi 1 Misalkan T suatu transformasi,transformasi T ini disebut isometric jika dan hanya jika jika untuk setiap pasangan titik P dan Q anggota dari bidang Euclid V berlaku = di mana =T

Lebih terperinci

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis.

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis. 5 II. TINJAUAN PUSTAKA 2.1 Geometri Insidensi Suatu geometri dibentuk berdasarkan aksioma yang berlaku dalam geometrigeometri tersebut. Geometri insidensi didasari oleh aksioma insidensi. Di dalam sebuah

Lebih terperinci

SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP PGRI LUBUKLINGGAU

SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP PGRI LUBUKLINGGAU MATERI : TRANSFORMASI BALIKAN (VI.C) Disusun Oleh: 1. KARMILA 2. NURMALINA 3. DWINDA JANUARTI 4. YUYUN MARNITA 5. ROVELI 6. MIKA MARDASARI 7. IKA NURSINTA 8. LISA MAYANI SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN

Lebih terperinci

4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema )

4.1 Konsep Turunan. lim. m PQ Turunan di satu titik. Pendahuluan ( dua masalah dalam satu tema ) 4. TURUNAN 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba menjadi garis ggung

Lebih terperinci

TURUNAN (DIFERENSIAL) Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains & Teknologi AKPRIND Yogyakarta

TURUNAN (DIFERENSIAL) Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains & Teknologi AKPRIND Yogyakarta TURUNAN DIFERENSIAL Ole: Mega Inayati Ri a, S.T., M.Sc. Institut Sains & Teknologi AKPRIND Yogyakarta TURUNAN Turunan suatu ungsi berkaitan dengan perubaan ungsi yang disebabkan adanya perubaan kecil dari

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

4. TURUNAN. MA1114 Kalkulus I 1

4. TURUNAN. MA1114 Kalkulus I 1 4. TURUNAN MA4 Kalkulus I 4. Konsep Turunan 4.. Turunan di satu titik Pendauluan dua masala dalam satu tema a. Garis Singgung Kemiringan tali busur PQ adala : m PQ Jika, maka tali busur PQ akan beruba

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah,

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, 3 II. LANDASAN TEORI Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, definisi-definisi dan teorema-teorema yang berhubungan dengan penelitian ini. 2.1 Geometri Insidensi

Lebih terperinci

France title. Handy of transformation of Geometry. Tangkas Geometri Transformasi

France title. Handy of transformation of Geometry. Tangkas Geometri Transformasi France title Handy of transformation of Geometry Tangkas Geometri Transformasi i TANGKAS GEOMETRI TRANSFORMASI Meyta Dwi Kurniasih Isnaini Handayani Pendidikan Matematika Fakultas Pendidikan dan Ilmu Pendidikan

Lebih terperinci

BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1.

BAB 21 TRANSFORMASI GEOMETRI 1. TRANSLASI ( PERGESERAN) Contoh : Latihan 1. TRANSFORMASI GEOMETRI BAB Suatu transformasi bidang adalah suatu pemetaan dari bidang Kartesius ke bidang yang lain atau T : R R (x,y) ( x', y') Jenis-jenis transformasi antara lain : Transformasi Isometri

Lebih terperinci

GEOMETRI TRANSFORMASI MATERI

GEOMETRI TRANSFORMASI MATERI GEOMETRI TRANSFORMASI MATERI TRANSFORMASI BALIKAN DISUSUN OLEH : KELOMPOK IV 1. Retno Fitria Pratiwi ( 2010 121 179 ) 2. Nanda Wahyuni Pritama ( 2010 121 140 ) 3. Verawati (2010 121 173 ) KELAS : 5 D Dosen

Lebih terperinci

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti: Geometri Netral? Geometri yang dilengkapi dengan sistem aksioma-aksioma insidensi, sistem aksioma-aksioma urutan, sistem aksioma kekongruenan (ruas garis, sudut, segitiga) dan sistem aksioma-aksioma archiemedes

Lebih terperinci

SIMETRI BAHAN BELAJAR MANDIRI 3

SIMETRI BAHAN BELAJAR MANDIRI 3 BAHAN BELAJAR MANDIRI 3 SIMETRI PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep simetri lipat dan simetri putar serta penerapannya ke dalam papan geoboard. Setelah mempelajari

Lebih terperinci

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

Hand-Out Geometri Transformasi. Bab I. Pendahuluan Hand-Out Geometri Transformasi Bab I. Pendahuluan 1.1 Vektor dalam R 2 Misalkan u = (x 1,y 1 ), v = (x 2,y 2 ) dan w = (x 3,y 3 ) serta k skalar (bilangan real) Definisi 1. : Penjumlahan vektor u + v =

Lebih terperinci

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar.

SOAL 1. Diketahui bangun persegi panjang berukuran 4 6 dengan beberapa ruas garis, seperti pada gambar. SOAL 1. Diketahui bangun persegi panjang berukuran 4 dengan beberapa ruas garis, seperti pada gambar. Dengan menggunakan ruas garis yang sudah ada, tentukan banyak jajar genjang tanpa sudut siku-siku pada

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair Bab II TINJAUAN PUSTAKA 2.1 Konsep Dasar Geometri Affin ( Rawuh, 2009) Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair yaitu aksioma yang menyatakan bahwa melalui suatu titik

Lebih terperinci

SUATU CONTOH INVERSE PROBLEMS YANG BERKAITAN DENGAN HUKUM TORRICELLI

SUATU CONTOH INVERSE PROBLEMS YANG BERKAITAN DENGAN HUKUM TORRICELLI Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 009 SUATU CONTOH INVERSE PROBLEMS YANG BERKAITAN DENGAN HUKUM TORRICELLI Suciati

Lebih terperinci

PENGUAT DAYA (POWER AMPLIFIER) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

PENGUAT DAYA (POWER AMPLIFIER) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY PEGUAT DAYA (POWE AMPIFIE) Ole : Sumarna, Jurdik Fisika, FMIPA, UY E-mail : sumarna@uny.ac.ic Dalam praktek, sistem penguat selalu terdiri dari sejumla tingkat yang menguatkan sinyal lema ingga cukup kuat

Lebih terperinci

MAKALAH GEOMETRI TRANSFORMASI TENTANG GESERAN (TRANSLASI)

MAKALAH GEOMETRI TRANSFORMASI TENTANG GESERAN (TRANSLASI) MAKALAH EOMETRI TRANSFORMASI TENTAN ESERAN (TRANSLASI) I SUSUN OLEH : KELOMPOK VI (ENAM) 1. IIN MARLINA Npm. 4006082 2. SITI RUSNAWATI Npm. 4006082 3. ARYENTI Npm. 4006087 4. IWA SUSILA Npm. 40066119 5.

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim 0 f ( x ) f( x) KELAS : XI IPA SEMESTER : (DUA) SMA Santa Angela Bandung Taun Pelajaran 04-05 XI IPA Semester Taun Pelajaran 04 05 PENGANTAR : TURUNAN FUNGSI Modul ini kami

Lebih terperinci

MAKALAH GEOMETRI TRANSFORMASI

MAKALAH GEOMETRI TRANSFORMASI MAKALAH GEOMETRI TRANSFORMASI MATERI SETENGAH PUTARAN DISUSUN OLEH : Nama : Bing Ahmad (4006071) Budi Sutrisno (4006077) Chandra (4007159) Dessi Alsury (4007131) Melia Sartika (4007146) Rahmawati (4006151)

Lebih terperinci

King s Learning Be Smart Without Limits

King s Learning Be Smart Without Limits Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA TRANSFORMASI GEOMETRI Gambarkan setiap titik yang ditanyakan pada gambar dibawah untuk translasi yang di berikan!. A. PENGERTIAN TRANSFORMASI GEOMETRI Arti geometri

Lebih terperinci

KONGRUENSI PADA SEGITIGA

KONGRUENSI PADA SEGITIGA KONGRUENSI PADA SEGITIGA (Jurnal 6) Memen Permata Azmi Mahasiswa S2 Pendidikan Matematika Universitas Pendidikan Indonesia Perkuliah geometri kembali pada materi dasar yang kita anggap remeh selama ini.

Lebih terperinci

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi

Turunan Fungsi. Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi 8 Penggunaan Konsep dan Aturan Turunan ; Penggunaan Turunan untuk Menentukan Karakteristik Suatu Fungsi ; Model Matematika dari Masala yang Berkaitan dengan ; Ekstrim Fungsi Model Matematika dari Masala

Lebih terperinci

Komposisi Transformasi

Komposisi Transformasi Komposisi Transformasi Setelah menyaksikan tayangan ini anda dapat Menentukan peta atau bayangan suatu kurva hasil dari suatu komposisi transformasi Transformasi Untuk memindahkan suatu titik atau bangun

Lebih terperinci

VEKTOR. maka a c a c b d b d. , maka panjang (besar/nilai) vector u ditentukan dengan rumus. maka panjang vector

VEKTOR. maka a c a c b d b d. , maka panjang (besar/nilai) vector u ditentukan dengan rumus. maka panjang vector VEKTOR Bab a. Penjumlahan dan Pengurangan Vektor. OA a ; OB b maka OA AB OB AB OB OA AB b a a u b dan c v d maka a c a c u v b d b d Contoh : Tentukan nilai x dan y dari x y + y = 8 Jawab : x + 8 + y =

Lebih terperinci

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini PENDAHULUAN Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini membahas tentang transformasi. Modul ini terdiri dari 2 kegiatan belajar. Pada kegiatan belajar 1 akan dibahas mengenai

Lebih terperinci

TRANSFORMASI GEOMETRI

TRANSFORMASI GEOMETRI TRNSFORMSI GEOMETRI. TRNSLSI Minggu lalu, Candra duduk di pojok kanan baris pertama di kelasnya. Minggu ini, ia berpindah ke baris ketiga lajur keempat yang minggu lalu ditempati Dimas. Dimas sendiri berpindah

Lebih terperinci

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b

19, 2. didefinisikan sebagai bilangan yang dapat ditulis dengan b PENDAHULUAN. Sistem Bilangan Real Untuk mempelajari kalkulus perlu memaami baasan tentang system bilangan real karena kalkulus didasarkan pada system bilangan real dan sifatsifatnya. Sistem bilangan yang

Lebih terperinci

Geometri Insidensi. Modul 1 PENDAHULUAN

Geometri Insidensi. Modul 1 PENDAHULUAN Modul 1 Geometri Insidensi M PENDAHULUAN Drs. Rawuh odul Geometri Insidensi ini berisi pembahasan tentang pembentukkan sistem aksioma dan sifat-sifat yang mendasari geometri tersebut. Sebelumnya Anda akan

Lebih terperinci

A. Penggunaan Konsep dan Aturan Turunan

A. Penggunaan Konsep dan Aturan Turunan A. Penggunaan Konsep dan Aturan Turunan. Turunan Fungsi Aljabar a. Mengitung Limit Fungsi yang Mengara ke Konsep Turunan Dari grafik di bawa ini, diketaui fungsi y f() pada interval k < < k +, seingga

Lebih terperinci

M A K A L A H GEOMETRI TRANFORMASI ( TRANFORMASI BALIKAN )

M A K A L A H GEOMETRI TRANFORMASI ( TRANFORMASI BALIKAN ) M A K A L A H GEOMETRI TRANFORMASI ( TRANFORMASI BALIKAN ) D I S U S U N O L E H : 1. NOPITA SARI ( 4007213 ) 2. MULYATI ( 4007152 ) 3. ROHIM ( 4007142 ) 4. RUSMINI ( 4007222 ) 5. MARYANA ( ) 6. ARY WIJAYA

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

TURUNAN FUNGSI. 1. Turunan Fungsi

TURUNAN FUNGSI. 1. Turunan Fungsi TURUNAN FUNGSI. Turunan Fungsi Turunan fungsi f disembarang titik dilambangkan dengan f () dengan definisi f ( ) f ( ) f (). Proses mencari f dari f disebut penurunan; dikatakan bawa f diturunkan untuk

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Angin Angin adalah gerakan udara dari daerah yang bertekanan tinggi ke daerah yang bertekanan rendah. Kekuatan angin berlebihan dapat dikontrol menggunakan sistem manual atau otomatik.

Lebih terperinci

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI

MATEMATIKA. Sesi TRANSFORMASI 2 CONTOH SOAL A. ROTASI MATEMATIKA KELAS XII IPA - KURIKULUM GABUNGAN 14 Sesi NGAN TRANSFORMASI A. ROTASI Rotasi adalah memindahkan posisi suatu titik (, y) dengan cara dirotasikan pada titik tertentu sebesar sudut tertentu.

Lebih terperinci

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R

2. Tentukan persamaan garis yang melalui titik P (x 1,y 1,z 1 ) dan R (x 2,y 2,z 2 ) seperti yang ditunjukkan pada gambar. Z P Q R . Jika dan vektor-vektor tak kolinear dan A = ( x + 4y ) + ( 2x + y + ) dan B = ( y 2x + 2 ) + ( 2x 3y -), maka carilah nilai x dan y sehingga 3A = 2B. Penyelesian: 3A = 2 B 3(x + 4y ) +3 ( 2x + y + )b

Lebih terperinci

TRANSLASI BANGUN RUANG BERSISI DATAR PADA RUANG BERDIMENSI TIGA

TRANSLASI BANGUN RUANG BERSISI DATAR PADA RUANG BERDIMENSI TIGA TRANSLASI BANGUN RUANG BERSISI DATAR PADA RUANG BERDIMENSI TIGA Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Mohammad Yusuf Guntari 4111410044

Lebih terperinci

SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi.

SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi. SILABUS Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMA NEGERI 2 LAHAT : MATEMATIKA : XII / IPA : GANJIL STANDAR KOMPETENSI: 3. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6 4 ). ( -1 4 ) E. ( 5 4 ) B. ( 6 4) D. ( 1 4 ) BAB

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 202 TIM OLIMPIADE MATEMATIKA INDONESIA 203 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : BAGIAN PERTAMA. Tanpa mengurangi keumuman misalkan

Lebih terperinci

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI

Lebih terperinci

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012

Soal-Soal dan Pembahasan Matematika IPA SNMPTN 2012 Tanggal Ujian: 13 Juni 2012 Soal-Soal dan Pembahasan Matematika IPA SNMPTN 01 Tanggal Ujian: 13 Juni 01 1. Lingkaran (x + 6) + (y + 1) 5 menyinggung garis y 4 di titik... A. ( -6, 4 ). ( -1, 4 ) E. ( 5, 4 ) B. ( 6, 4) D. ( 1, 4 )

Lebih terperinci

REFLEKSI TERHADAP LINGKARAN SKRIPSI

REFLEKSI TERHADAP LINGKARAN SKRIPSI REFLEKSI TERHADAP LINGKARAN SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Untuk Memenuhi Sebagian Persyaratan Guna Memperoleh Gelar Sarjana Sains Disusun

Lebih terperinci

KALKULUS. Laporan Ini Disusun Untuk Memenuhi Mata Kuliah KALKULUS Dosen Pengampu : Ibu Kristina Eva Nuryani, M.Sc. Disusun Oleh :

KALKULUS. Laporan Ini Disusun Untuk Memenuhi Mata Kuliah KALKULUS Dosen Pengampu : Ibu Kristina Eva Nuryani, M.Sc. Disusun Oleh : KALKULUS Laporan Ini Disusun Untuk Memenui Mata Kulia KALKULUS Dosen Pengampu : Ibu Kristina Eva Nuryani, M.Sc Disusun Ole : 1. Anggit Sutama 14144100107 2. Andi Novantoro 14144100111 3. Diya Elvi Riana

Lebih terperinci

REFLEKSI DAN AKSIOMA CERMIN PADA BIDANG POINCARÉ

REFLEKSI DAN AKSIOMA CERMIN PADA BIDANG POINCARÉ REFLEKSI DAN AKSIOMA CERMIN PADA BIDANG POINCARÉ Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Pendidikan Program Studi Pendidikan Matematika Oleh : Chintia Rudiyanto NIM :

Lebih terperinci

dapat dihampiri oleh:

dapat dihampiri oleh: BAB V PENGGUNAAN TURUNAN Setela pada bab sebelumnya kita membaas pengertian, sifat-sifat, dan rumus-rumus dasar turunan, pada bab ini kita akan membaas tentang aplikasi turunan, diantaranya untuk mengitung

Lebih terperinci

TELAAH MATEMATIKA SEKOLAH MENENGAH I TRANSFORMASI GEOMETRI

TELAAH MATEMATIKA SEKOLAH MENENGAH I TRANSFORMASI GEOMETRI TELAAH MATEMATIKA SEKOLAH MENENGAH I TRANSFORMASI GEOMETRI OLEH: 1. RATMI QORI (06081181320002) 2. FAUZIAH (06081181320015) 3. NYAYU ASTUTI (06081281320018) 4. ISKA WULANDARI (06081281320038) PENDIDIKAN

Lebih terperinci

BAB 5 DIFFERENSIASI NUMERIK

BAB 5 DIFFERENSIASI NUMERIK BAB 5 DIFFERENSIASI NUMERIK 5.1. Permasalaan Differensiasi Numerik Sala satu peritungan kalkulus yang banyak digunakan adala differensial, dimana differensial ini banyak digunakan untuk keperluan peritungan

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

Pengantar Analisis Real

Pengantar Analisis Real Modul Pengantar Analisis Real Dr Endang Cahya, MA, MSi P PENDAHULUAN ada Modul ini disajikan beberapa topik pengantar mata kuliah Analisis Real, yang terbagi dalam beberapa kegiatan belajar yang harus

Lebih terperinci

TURUNAN FUNGSI. turun pada interval 1. x, maka nilai ab... 5

TURUNAN FUNGSI. turun pada interval 1. x, maka nilai ab... 5 TURUNAN FUNGSI. SIMAK UI Matematika Dasar 9, 009 Jika kurva y a b turun pada interval, maka nilai ab... 5 A. B. C. D. E. Solusi: [D] 5 5 5 0 5 5 0 5 0... () y a b y b b a b b 6 6a 0 b 0 b 6a 0 b 5 b a

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015 PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS PGRI YOGYAKARTA TAHUN 2015 Mata Kuliah Dosen Pengampu : : Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas

Lebih terperinci

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI. Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK

MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI. Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK MENUNJUKKAN SIFAT SIFAT AFFINITAS PERSPEKTIF DENGAN MENGGUNAKAN PROGRAM CABRI Oleh Sugiyono Jurusan Pendidikan Matematika FMIPA UNY ABSTRAK Misalkan s suatu garis dalam bidang (Euclides), α menyatakan

Lebih terperinci

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL SELEKSI OLIMPIADE TINGKAT PROVINSI 013 TIM OLIMPIADE MATEMATIKA INDONESIA 014 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL BAGIAN PERTAMA Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi 013

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

BAB V GEOMETRI DAN TRANSFORMASI

BAB V GEOMETRI DAN TRANSFORMASI BAB V GEOMETRI DAN TRANSFORMASI Pernahkah anda mengamati proses pekerjaan pembangunan sebuah rumah? Semua tahap pekerjaan tersebut, mulai dari perancangan hingga finishing, tidak terlepas dari penerapan

Lebih terperinci

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Prosiding Semirata FMIPA Universitas Lampung, 2013 ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Damay Lisdiana, Muslim Ansori, Amanto Jurusan Matematika FMIPA Universitas Lampung Email: peace_ay@yahoo.com

Lebih terperinci

LATIHAN ULANGAN BAB. INTEGRAL

LATIHAN ULANGAN BAB. INTEGRAL LATIHAN ULANGAN BAB. INTEGRAL A. PILIHAN GANDA 4( ). d... A. 4( ) 5 B. 4( ) 4 C. + 8 9 4 + C D. + 8 + C E. 4 5 + C 5. Nilai ( 4 ) d... A. 6 D. B. 4 6 E. C. 8. Hasil dari. cos d... (UAN 4) A. (.sin.cos

Lebih terperinci

GESERAN atau TRANSLASI

GESERAN atau TRANSLASI GESERAN atau TRANSLASI Makalah ini disusun untuk memenuhi Tugas Geometri Transformasi Dosen Pembimbing : Havid Risyanto, S.Si., M.Sc. D I S U S U N O L E H 1. AMILIA 1111050031 2. HAIRUDIN 1111050153 3.

Lebih terperinci

TRANSFORMASI. Kegiatan Belajar Mengajar 6

TRANSFORMASI. Kegiatan Belajar Mengajar 6 Kegiatan elajar Mengajar 6 TRNSFORMSI Drs. Zainuddin, M.Pd Tranformasi (perpindahan) ang dipelajari dalam matematika, antara lain translasi (pergeseran), refleksi (pencerminan), rotasi (perputaran), dan

Lebih terperinci

KB. 2 INTERAKSI PARTIKEL DENGAN MEDAN LISTRIK

KB. 2 INTERAKSI PARTIKEL DENGAN MEDAN LISTRIK KB. INTERAKSI PARTIKEL DENGAN MEDAN LISTRIK.1 Efek Stark. Jika sebua atom yang berelektorn satu ditempatkan di dalam sebua medan listrik (+ sebesar 1. volt/cm) maka kita akan mengamati terjadinya pemisaan

Lebih terperinci

Bank Soal dan Pembahasan Persamaan Garis Lurus

Bank Soal dan Pembahasan Persamaan Garis Lurus Bank Soal dan Pembahasan Persamaan Garis Lurus 1. Garis m mempunyai persamaan y = -3x + 2. Garis tersebut memotong sumbu Y dititik... a. (0, -3) b. (0, 2) c. (0, 3) d. (0, -2) e. (0, 4) Pembahasan : Persamaan

Lebih terperinci

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah PERSAMAAN GARIS. SIMAK UI Matematika Dasar 9, 9 Diketahui adalah garis l yang dinyatakan oleh det( A) dimana A x y, persamaan garis yang sejajar l dan melalui titik (,4) adalah... A. x y 7 C. x y E. x

Lebih terperinci

TUGAS GEOMETRI TRANSFORMASI GRUP

TUGAS GEOMETRI TRANSFORMASI GRUP TUGAS GEOMETRI TRANSFORMASI GRUP KELOMPOK 8 1. I WAYAN AGUS PUTRAWAN (2008.V.1.0093) 2. I KADEK DWIJAYAPUTRA (2008.V.1.0094) 3. I KETUT DIARTA (2008.V.1.0123) 4. AGUS EKA SURYA KENCANA (2008.V.1.0043)

Lebih terperinci

MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPA SEMESTER : 2 (DUA)

MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPA SEMESTER : 2 (DUA) MATEMATIKA MODUL 4 TURUNAN FUNGSI KELAS : XI IPA SEMESTER : (DUA) Muammad Zainal Abidin Personal Blog SMAN Bone-Bone Luwu Utara Sulsel ttp://meetabied.wordpress.com PENGANTAR : TURUNAN FUNGSI Modul ini

Lebih terperinci

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya

Penyelesaian Model Matematika Masalah yang Berkaitan dengan Ekstrim Fungsi dan Penafsirannya . Tentukan nilai maksimum dan minimum pada interval tertutup [, 5] untuk fungsi f(x) x + 9 x. 4. Suatu kolam ikan dipagari kawat berduri, pagar kawat yang tersedia panjangnya 400 m dan kolam berbentuk

Lebih terperinci

MODUL 1 SISTEM KOORDINAT KARTESIUS

MODUL 1 SISTEM KOORDINAT KARTESIUS MODUL 1 SISTEM KOORDINAT KARTESIUS MODUL 1 SISTEM KOORDINAT KARTESIUS Dalam matematika, sistem koordinat kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA Pada Bab II ini akan diuraikan berbagai konsep dasar yang digunakan pada bagian pembahasan. Pada bab II ini akan dibahas pengenalan Geometri Non- Euclid, Geometri Insidensi, Geometri

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS

Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Oleh : Sutopo, S.Pd., M.Pd. Prodi P Mat-Jurusan PMIPA FKIP UNS Materi KKD I Konsep dasar geometri dan segitiga (termasuk teorema dan aksioma terkait) KKD II Poligon dan Lingkaran (sifat dan luas) KKD III

Lebih terperinci

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan

Silabus. Kegiatan Pembelajaran Instrume n. - Menentukan nilai. Tugas individu. (sinus, cosinus, tangen, cosecan, secan, dan Silabus Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMK : MATEMATIKA : XI / TEKNOLOGI, KESEHATAN, DAN PERTANIAN : GANJIL Standar Kompetensi:7. Menerapkan perbandingan, fungsi,, dan identitas

Lebih terperinci

Limit Fungsi. Limit Fungsi di Suatu Titik dan di Tak Hingga ; Sifat Limit Fungsi untuk Menghitung Bentuk Tak Tentu ; Fungsi Aljabar dan Trigonometri

Limit Fungsi. Limit Fungsi di Suatu Titik dan di Tak Hingga ; Sifat Limit Fungsi untuk Menghitung Bentuk Tak Tentu ; Fungsi Aljabar dan Trigonometri 7 Limit Fungsi Limit Fungsi di Suatu Titik dan di Tak Hingga ; Sifat Limit Fungsi untuk Mengitung Bentuk Tak Tentu ; Fungsi Aljabar dan Trigonometri Cobala kamu mengambil kembang gula-kembang gula dalam

Lebih terperinci