terdapat sistem kontrol SPEEDTRONIC TM Mark V dengan fungsi dan tugas masingmasing.

Ukuran: px
Mulai penontonan dengan halaman:

Download "terdapat sistem kontrol SPEEDTRONIC TM Mark V dengan fungsi dan tugas masingmasing."

Transkripsi

1 SISTEM KONTROL SPEEDTRONIC TM MARK V SEBAGAI PENGENDALI STEAM PADA INLET PRESSURE CONTROL (IPC) STEAM TURBINE GENERATOR (STG) Oleh : FX RYAN KURNIAWAN (L2F ) -Abstrak- PT. INDONESIA POWER UNIT BISNIS PEMBANGKITAN SEMARANG dalam proses produksinya di Pembangkit/Pusat Listrik Tenaga Gas Uap (PLTGU) menggunakan pengontrol Programmable Logic Controller (PLC), SPEEDTRONIC TM MARK V, dan Distributed Control System (DCS). Sistem Kontrol SPEEDTRONIC TM MARK V yang dikembangkan oleh General Electric (GE) Industrial Sistem adalah sistem kontrol yang memakai sistem TMR (Triple Modular Redundant) dengan SIFT (Software Implemented Fault Tolerance) yang diprogram untuk memenuhi kebutuhan industri listrik dalam kendali turbin gas dan uap yang semakin komplek. SPEEDTRONIC TM MARK V dapat melakukan kontrol, proteksi, dan monitoring sekaligus terhadap kerja turbin. Sistem kontrol SPEEDTRONIC TM MARK V dapat melakukan kontrol tekanan uap pada Steam Turbin Generator (STG). High Pressure Steam (main steam) merupakan produk utama yang dihasilkan oleh HRSG (Heat Recovery Steam Generator), kemudian gabungan dari ketiga HP steam berkumpul menjadi satu untuk menggerakkan HP steam turbine. High pressure steam dengan kondisi masukan yang bervariasi dapat mengakibatkan ketidakstabilan sistem. Gabungan ketiga HP steam mendapat perlakuan kendali yang dikenal dengan Inlet Pressure Control (IPC) sebelum memasuki HP steam turbine agar sesuai dengan performansi yang diharapkan. Dimana dalam setpoint IPC bertujuan untuk menjaga minimum pressure dalam HP header dan mencegah ketidakseimbangan berlebih dengan operasi boiler. Kata Kunci : SPEEDTRONIC TM Mark V, Steam turbine, High Pressure steam, Inlet Pressure Control (IPC) I. PENDAHULUAN 1.1 Latar Belakang Semakin cepatnya perkembangan teknologi dalam dunia industri menyebabkan peralatan yang digunakan pada proses produksi juga semakin berkembang. Sistem kontrol untuk turbin yang tadinya hanya menggunakan governor dikembangkan oleh General Electric (GE) menjadi sistem kontrol yang lebih modern yang dinamakan SPEEDTRONIC TM. Dengan semakin kompleksnya pengontrolan untuk turbin, SPEEDTRONIC TM pun terus berkembang mulai dari SPEEDTRONIC TM Mark I hingga yang terakhir SPEEDTRONIC TM Mark VI. PT. INDONESIA POWER UNIT BISNIS PEMBANGKITAN SEMARANG menggunakan SPEEDTRONIC TM Mark V sebagai kontroler dalam proses produksi listrik di Pembangkit/Pusat Listrik Tenaga Gas Uap (PLTGU). Pembangkit Listrik Tenaga Gas Uap (PLTGU) merupakan pembangkit listrik gabungan antara Pembangkit Listrik Tenaga Gas (PLTG) dengan Pembangkit Listrik Tenaga Uap (PLTU) yang tersusun oleh 3 komponen utama yaitu Gas Turbine Generator (GTG), Heat Recovery Steam Generator (HRSG), dan Steam Turbine Generator (STG), di mana di tiap-tiap komponen utama tersebut terdapat sistem kontrol SPEEDTRONIC TM Mark V dengan fungsi dan tugas masingmasing. Salah satu kontrol yang dapat dilakukan oleh SPEEDTRONIC TM Mark V adalah sebagai pengendali steam pada Inlet Pressure Control Steam Turbine Generator. Main steam yang keluar dari Heat Recovery Steam Generator mendapat perlakuan kendali yang dikenal dengan nama Inlet Pressure Control sebelum memasuki High Pressure steam turbine agar sesuai dengan performansi yang diharapkan. Tujuan dari kendali IPC ini adalah untuk menjaga minimum pressure dalam HP header dan mencegah ketidakseimbangan berlebih dengan operasi boiler. 1.2 Maksud dan Tujuan Hal-hal yang menjadi tujuan penulisan laporan Kerja Praktek ini adalah: 1. Mengetahui sistem dan lingkungan kerja di PT. Indonesia Power UBP Semarang. 2. Mengetahui sistem kerja Pembangkit Listrik Tenaga Gas Uap (PLTGU). 3. Memberikan gambaran mengenai sistem kontrol SPEEDTRONIC TM Mark V secara umum. 4. Menjelaskan sistem kontrol SPEEDTRONIC TM Mark V untuk pengendalian steam pada Inlet Pressure

2 Control Steam Turbine Generator (STG) di PLTGU. 1.3 Pembatasan Masalah Pada laporan Kerja Praktek ini permasalahan difokuskan pada Sistem Kontrol SPEEDTRONIC TM Mark V untuk pengendalian steam pada Inlet Pressure Control Steam Turbine Generator dengan materi lain yang berkaitan sebagai pelengkap. II. PROSES PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) PLTGU adalah pembangkit listrik yang menggunakan tenaga gas uap dalam menghasilkan energi listrik. Pembakaran bahan bakar pada PLTG akan menghasilkan gas untuk memutar turbin gas. Gas buang dari turbin gas ini akan dialirkan ke HRSG untuk memanaskan air pada HRSG sehingga menghasilkan uap yang akan digunakan untuk memutar turbin uap. Secara umum sistem produksi tenaga listrik pada PLTGU dibagi menjadi dua siklus, yaitu : 1. Open Cycle Biasanya disebut proses turbin gas (PLTG), yaitu gas buang atau uap dari GTG (Gas Turbine Generator) langsung dibuang ke udara melalui stack. 2. Close Cycle Biasanya disebut proses turbin uap (PLTU), yaitu gas buang dari GTG (Gas Turbine Generator) tidak langsung dibuang ke udara tetapi digunakan untuk memanaskan air yang ada di HRSG (Heat Recovery Steam Generator). Uap yang dihasilkan dari HRSG digunakan untuk memutar turbin uap. Proses Pembangkit Listrik Tenaga Gas Uap dapat dibagi menjadi dua proses, yaitu : 1. Proses Turbin Gas Bahan bakar minyak yang dipasok dari kapal atau tongkang ditampung di dalam tangki. Penyaluran bahan bakar dilakukan dengan transportasi laut dengan tujuan memungkinkan bahan bakar yang diangkut lebih banyak daripada melalui transportasi darat. Selain itu lokasi pembangkit yang dekat dengan pelabuhan semakin memperkecil biaya transportasi. Bahan bakar dipompa dari tangki ke combustion chamber (ruang pembakaran) bersama dengan udara dari compressor setelah terlebih dahulu melalui air filter. Campuran ini dibakar dan menghasilkan gas panas yang selanjutnya digunakan untuk memutar turbin gas. Gas buang dari turbin gas akan langsung dibuang melalui cerobong apabila dioperasikan open cycle dan akan dilewatkan HRSG apabila dioperasikan close cycle. 2. Proses Turbin Uap Air pengisi dari deaerator dipompa melalui Low Pressure and High Pressure Water dimasukkan ke HRSG untuk diubah menjadi uap. Hasil uap dari HRSG dimasukkan ke High Pressure Turbine kemudian masuk ke Low Pressure Turbine untuk mengubah energi panas uap menjadi energi putar rotor. Uap bekas setelah dipakai di Low Pressure Turbine dialirkan ke condenser untuk dikondensasikan oleh air pendingin atau air laut yang dipompa melalui Circulating Water Pump (CWP). Air condensate dipompakan oleh condensate pump untuk selanjutnya dimasukkan ke deaerator. III. DASAR TEORI 3.1 Gambaran umum SPEEDTRONIC Mark V SPEEDTRONIC TM Mark V adalah suatu sistem kontrol, proteksi dan monitoring pada turbin yang telah dikembangkan oleh GE dan mewakili kesuksesan dari seri-seri SPEEDTRONIC dalam sistem pengaturan. Tujuan sistem kontrol dan proteksi ini adalah menghasilkan output yang maksimal untuk melindungi turbin dari kerusakan saat turbin dalam kondisi operasi sehingga lifetimenya dapat bertahan lebih lama. 3.2 Konfigurasi kendali SPEEDTRONIC Mark V SPEEDTRONIC TM Mark V adalah sistem kendali turbin yang bersifat programmable yang didesain sesuai dengan kebutuhan industri tenaga modern untuk sistem turbin yang bersifat kompleks dan dinamis. Keunggulan sistem ini pada fitur-fiturnya antara lain: 1. Implementasi software dengan teknologi fault tolerance (SIFT), yang memungkinkan turbin tetap beroperasi meskipun terjadi kesalahan tunggal dengan mempertahankan status on-line, dan memungkinkan operasi saat prosesor kontrol shut down untuk perbaikan atau sebab lain.

3 2. Operator interface yang user-friendly 3. Interface dengan sensor direct yang memungkinkan kendali dan monitoring secara real time 4. Kemampuan diagnosa yang built-in menyatu dengan sistem 5. Arsitektur berbasis TMR (Triple Modular Redundant) SPEEDTRONIC TM Mark V menggunakan tiga buah modul kontrol, masing-masing <R>, <S>, dan <T> yang identik untuk menjalankan keseluruhan algoritma kendali yang vital, proses sinyal proteksi, dan proses sekuensial. Konfigurasi inilah yang disebut TMR (Triple Modular Redundant). Untuk fungsi proteksi dijalankan oleh tiga prosessor proteksi <X>,<Y> dan <Z> pada core <P>. Untuk konfigurasi secara umum dapat dilihat pada gambar berikut ini. Gambar Konfigurasi kontrol TMR Mark V Pada konfigurasi TMR sendiri terdapat tiga buah modul kontrol <R>, <S>, dan <T> yang berfungsi sebagai redundant. Sinyal kontrol yang diberikan merupakan hasil voting dari ketiga modul tersebut. 3.3 Operator Interface Mark V Interface Mark V berfungsi sebagai upload, download, monitoring maupun pengontrolan sehingga dengan interface ini seluruh aktifitas dari Mark V kontrol panel bisa terwakili. Work Station Interface < I >, terdiri dari serangkaian alat alat, antara lain: sebuah PC (Personal Computer) layar monitor berwarna, Cursor Positioning Device (Mouse, atau Trackball), Keyboard (QWERTY Keyboard) dan Printer. Peralatan-peralatan tersebut dapat menghubungkan antara operator dengan keadaan mesin atau sebagai work station pemeliharaan lokal, baik itu pengamatan peralatan turbin, pengontrolan turbin, pengamanan turbin maupun pemasukan data baru ke kontrol panel. 3.4 Hardware Input-Output Mark V di desain untuk berhubungan langsung dengan peralatan turbin dan generator seperti : magnetic speed pickup servo dan LVDT/R sensor vibrasi thermocouples Resistive Temperature Devices (RTD) IV. SISTEM KONTROL SPEEDTRONIC TM MARK V SEBAGAI PENGENDALI STEAM PADA INLET PRESSURE CONTROL STEAM TURBINE GENERATOR (STG) 4.1 Pendahuluan Pembangkit Listrik Tenaga Gas Uap (PLTGU) merupakan pembangkit listrik gabungan antara Pembangkit Listrik Tenaga Gas (PLTG) dengan Pembangkit Listrik Tenaga Uap (PLTU). Siklus pembangkit listrik gabungan (combined cycle powerplant) merupakan metode yang sangat efektif untuk pembangkitan listrik, dimana teknologi ini dapat memanfaatkan gas buang dari gas turbine / turbin gas (pembangkit primer) menjadi pembangkit pada steam turbine / turbin uap (pembangkit sekunder), sehingga teknologi ini menawarkan banyak keuntungan dari segi biaya operasional. High Pressure Steam (main steam) merupakan produk utama yang dihasilkan oleh HRSG (Heat Recovery Steam Generator), kemudian gabungan dari ketiga HP steam berkumpul menjadi satu untuk menggerakkan HP steam turbin. HP Steam yang keluar dari HP Steam Turbine tersebut karena masih mempunyai tekanan cukup tinggi (4,5 s/d 6 barg) bersama-sama dengan gabungan dari ketiga Low Pressure Steam, produk kedua yang dihasilkan oleh HRSG (Heat Recovery Steam Generator), diumpankan untuk menggerakkan LP steam turbin untuk menghasilkan daya listrik. Ketiga High Pressure steam yang berkumpul dalam HP Steam header menjadi komplek karena tambahan main steam yang bervariasi sehingga dapat mengakibatkan ketidakstabilan sistem. Pembangkitan sistem kombinasi pertama kali menggunakan formasi yang berarti sistem pembangkit

4 dioperasikan oleh 1 buah Gas Turbine, 1 buah HRSG, dan produk steam dari HRSG tersebut akan menggerakkan 1 Steam Turbine. Dengan bertambahnya 1 buah Gas Turbine yang distart dan menyusul bertambahnya 1 HRSG pasangannya ikut distart maka formasi menjadi 2.2.1, begitu pula dengan dioperasikannya Gas Turbine dan HRSG yang ketiga maka formasi menjadi HP steam yang keluar dari masingmasing HP Superheater HRSG merupakan HP superheater steam yang dimonitor keadaannya, yaitu keadaan temperatur, tekanan, dan laju aliran massa (flow) yang dijaga pada nilai tertentu. Gabungan dari ketiga HP main steam tersebut kemudian dibagi menjadi dua aliran pemasukan ke HP Steam Turbine dan mendapat perlakuan kendali steam pressure kembali yang sama pada kedua aliran pemasukan tersebut, yang dikenal Inlet Pressure Control (IPC) sebelum memasuki HP Steam Turbine agar sesuai dengan performansi yang diharapkan. Perlakuan kendali ini dalam rangka untuk mengatur karakteristik steam yang masuk ke HP steam turbin. Variabilitas tekanan (32 s/d 86 barg) dan suhu berdampak pada tenaga Steam Turbine yang selanjutnya berdampak langsung terhadap generator sebagai pembangkit listrik. Variabilitas tekanan dan suhu juga berdampak pada listrik yang dihasilkan dan kesalahan disini bisa menyebabkan kerusakan pada plant terutama pada Steam Turbine. Berbeda dengan strategi kendali steam dalam Pembangkit Listrik Tenaga Uap (PLTU), dimana inlet pressure steam dikendalikan dengan load feedback. Kendali steam turbine dalam PLTGU Tambak Lorok terdapat berbagai mode kendali, speed/load control dan IPC, dimana dalam mode kendali IPC tidak ada load feedback. Sesuai dengan filosofi PLTGU, keberadaan steam turbine digunakan untuk memaksimalkan steam yang dihasilkan dalam HRSG. Setpoint IPC bertujuan untuk menjaga minimum pressure dalam steam header, membatasi percepatan kecepatan aliran steam HRSG yang sedang dioperasikan, menjaga keseimbangan produksi steam di HP steam drum dengan steam yang keluar dari kedua main control valve. Minimum header pressure ditentukan untuk mencegah ketidakseimbangan yang berlebih dengan jumlah HRSG yang operasikan dengan daya yang dihasilkan oleh Steam Turbine agar parameter proses dapat dijaga agar tidak menimbulkan gangguan dan bahaya yang serius dalam proses Steam Turbine Steam Turbine pada PLTGU PT. Indonesia Power UBP Semarang adalah turbin kondensasi tanpa pemanasan yang dioperasikan secara bersamaan oleh satu hingga tiga buah gas turbine dan tiga buah Heat Recovery Steam Generator yang menjadi pasangannya. Gas turbine dan Heat Recovery Steam Generator tersebut bertugas memproduksi dan menyalurkan steam ke dalam steam turbine. Steam yang diproduksi kemudian diterima dan disalurkan ke steam turbine melalui dua buah main stop and control (V1) valves menuju high pressure turbine / turbin tekanan tinggi dan melalui satu buah low pressure admission stop and control valves ke LP vertical joint. Inlet Pressure Control (IPC) dan LP admission pressure control diaplikasikan pada proses ini demikian juga Inlet Pressure Limiter (IPL). Gambar Skema steam turbine Main control valve / katup kontrol utama dapat digunakan untuk pengoperasian mode speed/load control dan Inlet Pressure Control tetapi tidak secara bersamaan. Generator pada steam turbine harus tersinkronisasi dan mempunyai beban listrik yang cukup (dalam hal ini steam flow yang cukup) sebelum pressure dapat dikontrol oleh steam turbine. Maka pada kedua main control valve akan dioperasikan dalam speed/load control atau istilah lainnya dengan Mode MW setpoint diatas beban minimum (15 s/d 25MW). Setelah keadaan ini stabil, main control valve dipindah ke mode Inlet Pressure Control. Setelah keadaan (Temperatur, pressure dan flow) pada LP Steam telah memenuhi syarat pada Steam Turbine, maka single low pressure admission valve dioperasikan yaitu dengan membuka LP

5 Steam Stop Valve, dan setting LP Admission Control Valve dilakukan. Istilah disini adalah APC di-on-kan. Gambar Skema aliran uap Steam Turbine Control Modes Steam turbine / turbin uap pada dasarnya memiliki dua mode kontrol: 1. Speed/load control Pada mode ini sistem kontrol akan mampu mengendalikan kecepatan putaran dan beban pada Steam Turbine. Unit mulai beroperasi dan mulai berbeban awal saat berada pada mode speed/load control. Saat mode ini aktif, beban/daya yang dibangkitkan akan konstan sesuai dengan setting beban yang dikehendaki. Dalam mode ini inlet pressure bisa dikontrol oleh perangkat lain seperti steam bypass system. Sedangkan pada admission (LP Steam Control Valve) belum dioperasikan, atau hanya akan menjadi variabel yang tidak dikontrol, dan tidak akan mempengaruhi beban. Speed control akan selalu siap pula untuk mengambil alih kontrol Steam Turbine yang sedang dioperasikan bila terjadi overspeed. 2. Inlet Pressure Control (IPC) Pada mode ini sistem kontrol akan mampu mengendalikan inlet steam pressure dengan asumsi bahwa pengaturan frekuensi diambil alih oleh jaringan listrik atau perangkat yang lain. Saat mode ini aktif, inlet pressure akan relatif konstan selama main control valves / katup kontrol utama berada pada jangkauan operasi efektifnya. Dalam mode ini beban/daya yang dibangkitkan merupakan variabel yang tidak dikontrol yang nilainya berubah-ubah atau bervariasi sesuai produksi uap. Perubahan pada admission flow tidak akan mempengaruhi inlet pressure. 4.2 Inlet Pressure Control High pressure steam dengan kondisi masukan yang bervariasi dapat mengakibatkan ketidakstabilan sistem. Gabungan ketiga HP steam mendapat perlakuan kendali yang dikenal dengan Inlet Pressure Control (IPC) sebelum memasuki HP steam turbine agar sesuai dengan performansi yang diharapkan. Dimana dalam setpoint IPC bertujuan untuk menjaga minimum pressure dalam HP header dan mencegah ketidakseimbangan berlebih dengan operasi boiler Development of control signals Ketika IPC IN yang dipilih, KIPC_L dilewatkan menuju MAX select block, dan sinyal kontrol IPC akan sebanding dengan error tekanan selama nilainya lebih besar dari KIPC_L. Ketika IPC OUT yang dipilih, KIPC_H dilewatkan menuju MAX select block, dan IPC masuk mode off atau tidak digunakan / removed from service. Mengurangi nilai setpoint akan cenderung meningkatkan error, meningkatkan sinyal IPC (control valve / katup kontrol membuka) sehingga inlet flow akan naik dan inlet pressure akan turun. Gambar Inlet Pressure Proportional + Lag Control Pengaturan Inlet Pressure Control akan selalu berkaitan dengan speed/load control sehingga dalam pengolahannya perlu diperhatikan juga mengenai speed/load summer pada load control. Seperti yang ditunjukkan pada diagram Speed/Load Summer, sinyal kontrol TN_LD adalah fungsi dari speed error TNHE, load setpoint LDR_CMD, load limit setpoint LLR_CMD, Inlet Pressure Control demand IPC, dan Inlet Pressure Limiter demand IPL. Untuk kedua jenis mode kontrol, ketika unit tersinkronisasi maka speed error TNHE akan sama dengan nol.

6 Ketika dalam mode Speed/Load Control dan unit tersinkronisasi, jika sinyal LLR_CMD dan IPL lebih besar dari 100% (tanpa ada pembatasan) maka TN_LD hanya akan bergantung pada fungsi load setpoint LDR_CMD. Ketika dalam mode Inlet Pressure Control dan sinyal LDR_CMD lebih dari 100%, IPC akan bernilai minimum (100% atau dibawahnya) sehingga TN_LD hanya akan bergantung dari fungsi IPC. Gambar Speed/load summer Inlet Pressure Control Operation Untuk operasi IPC dapat dikatakan bahwa high pressure steam / uap bertekanan tinggi yang bersumber dari boiler atau HRSG berada di bawah kendali tekanan steam turbine. Dengan kata lain, operasi IPC mengikuti operasi HRSG / HRSG-following mode. IPC bisa diaktifkan setelah memenuhi persyaratan bahwa turbin sudah mempunyai beban listrik yang cukup ( > 20% ) dengan beberapa ketentuan: 1. Unit terhubung paralel dengan perangkat lain yang sanggup menjaga frekuensi dan menyerap perubahan beban lokal. Dalam hal ini unit terhubung dengan jaringan listrik. 2. Mode IPC mengorbankan fungsi dari load control. Load setpoint harus dipindahkan ke nilai maximum setelah mode IPC aktif agar IPC dapat merespon maksimal terhadap inlet pressure demand. 3. Pengendali inlet pressure yang lain (boiler or HRSG control) harus dimatikan. Menjalankan dua sistem kontrol yang mencoba untuk mengontrol header pressure akan menyebabkan pressure menjadi tidak dapat diprediksi, terlebih apabila salah satu sistem kontrolnya mempunyai kontrol integral. Selama unit berada dalam mode IPC, produksi steam akan menentukan posisi main control valves. Bertambahnya steam flow / laju uap akan mengakibatkan bertambahnya beban pada turbin. Jika setpoint berada pada posisi tertentu, bertambahnya steam flow / laju uap akan menyebabkan valves terbuka lebih lebar. Dalam kondisi tersebut, inlet pressure akan bertambah besar. 4.3 IPC SUPPORTING PARTS Dalam pengoperasian Inlet Pressure Control ada beberapa bagian yang memiliki peranan penting Combined Stop and Control Valve Combined stop and control valve digunakan pada Steam Turbine Generator untuk mengatur jumlah main steam yang masuk ke dalam HP turbine. Sesuai dengan namanya, combined valve ini terdiri dari 2 valve, yaitu stop valve (SV) dan control valve (CV) yang tergabung dalam satu casing dan satu dudukan. Walaupun valve ini tergabung dalam satu casing, pengoperasian baik mekanik maupun kontrol terpisah satu sama lain. Control valve dioperasikan dari valve casing bagian atas sementara stop valve dioperasikan dari bawah valve casing Control Valve Fungsi utama dari control valve adalah untuk mengatur kecepatan putaran dan beban speed/load control. Control valve merupakan proteksi awal terhadap turbine overspeed dan itu diatur oleh servo valve yang menerima sinyal dari sistem kontrol electrohydraulic. Sinyal kontrol, yang merepresentasikan posisi control valve, sangat berkaitan dengan overspeed. Ketika kecepatan putaran meningkat menuju nilai diatas normal, control valve dirancang untuk tertutup sepenuhnya HP Stop Valve HP stop valve disediakan hanya untuk perlindungan jika terjadi keadaan darurat. HP stop valve bertindak sebagai proteksi lanjutan jika terjadi kegagalan pada perangkat kontrol baik pada saat keadaan normal atau saat terjadi emergency. Sinyal yang menggerakkan stop valve berasal dari hidrolik, baik saat off (posisi valve tertutup) ataupun saat on (valve reset dan kemudian terbuka).

7 4.3.2 LVDT (Linear Variable Differential Transformer) LVDT digunakan sebagai sensor posisi dari aktuator hidrolik yang dikendalikan. Pada sistem pengendalian Inlet Pressure Control digunakan tiga buah LVDT yang terletak pada control pac 3 lvdt. Posisi fisik dari aktuator dideteksi oleh LVDT (Linear Variable Differential Transformer) dan diubah ke dalam sinyal tegangan yang diumpanbalikkan ke kontroler. Output dari LVDT adalah tegangan AC yang proporsional dengan posisi core dari LVDT. Gambar Linear Variable Differential Transformer 4. Aktuator hidrolik sebagai penggerak dengan daya hidrolik untuk memposisikan perlengkapan mekanis Output dari kontroler memposisikan servo valve sehingga bisa mengalirkan minyak bertekanan tinggi ke salah satu dari dua sisi aktuator hidrolik Servo Valve Servo valve digunakan untuk mengendalikan arah dan besar pergerakan dari aktuator hidrolik suatu peralatan kontrol. Servo valve berfungsi sebagai interface antara sistem mekanis dan elektris dengan cara mengubah sinyal elektris menjadi pergerakan hidrolik. Berdasarkan sinyal input elektris ini, servo valve mengatur cairan hidrolik bertekanan tinggi ke aktuator. Kontrol TMR Mark V menggunakan tiga koil elektrik yang terisolasi pada torsi motor. Tiap koil dihubungkan ke salah satu dari tiga kontroler <R>, <S>, dan <T>. Kegagalan suatu kontroler, baik pada port keluaran atau hubungan fisik ke koil output akan menghasilkan kompensasi untuk channel yang gagal dan menjaga valve tetap memberikan keluaran posisi yang benar. Dengan kata lain, terdapat redundant apabila salah satu koil atau kontroler gagal/rusak. Gambar Grafik hubungan LVDT output voltage dengan LVDT range of travel Servo Valve Drive System Servo valve drive system / sistem pengendalian servo valve merupakan interface antara sistem kontrol Mark V dan aktuator hidrolik yang memposisikan peralatan mekanik. Pada prinsipnya, sistem ini membandingkan posisi aktual dari aktuator hidrolik dengan setpoint dan keluaran dari sinyal kontrol posisi yang mempertahankan kesetimbangan sistem. Sistem ini terdiri dari: 1. Kontroler Mark V 2. Servo valve untuk mengendalikan minyak hidrolik yang masuk ke aktuator 3. LVDT atau LVDR sebagai umpan balik posisi valve ke kontrol Mark V Gambar Electrohydraulic Servovalve Umpan balik posisi LVDT Posisi fisik dari aktuator dideteksi oleh LVDT (Linear Variable Differential Transformer) dan diubah ke dalam sinyal

8 tegangan yang diumpanbalikkan ke kontroler. Jika sistem belum setimbang (aktuator hidrolik tidak berada pada posisi setpoint), sinyal kontroler ke servo valve akan memposisikan valve di posisi yang seharusnya, mengembalikan kesetimbangan sistem dengan mereposisikan aktuator hidrolik. Gambar Type 4 Regulator Signal Flow Diagram Regulator yang digunakan untuk mengatur umpan balik posisi diprogram melalui konfigurator <Q> TCQA I/O. Regulator yang digunakan memiliki tipe 49. Angka 4 menunjukkan bahwa regulator ini mengendalikan posisi (dalam hal ini posisi main stop and control valve) dengan umpan balik posisi. Sedangkan angka 9,yang merupakan sub tipenya, mempunyai arti ratarata dari 3 LVDT yang digunakan. Maka regulator tipe 49 mempunyai arti regulator pengontrolan posisi dengan cara mengumpanbalikkan posisi yang merupakan rata-rata dari ketiga LVDT yang digunakan. V. KESIMPULAN 1. SPEEDTRONIC TM Mark V adalah suatu sistem kontrol dan proteksi yang telah dikembangkan oleh General Electric (GE) dengan menggunakan software dan hardware yang modern. 2. SPEEDTRONIC TM Mark V menggunakan sistem TMR yang terdiri dari tiga buah processor control <R>, <S>, dan <T> pada core <R>, <S>, dan <T> dan tiga prosessor proteksi <X>,<Y> dan <Z> pada core proteksi <P>. 3. Sistem kontrol SPEEDTRONIC TM Mark V merupakan sistem kontrol digital yang berisi logic-logic kontrol, proteksi dan sequence pada operasi turbin baik itu gas turbine ataupun steam turbine. 4. Sistem kontrol SPEEDTRONIC TM Mark V menggunakan card-card multifungsi untuk pemrosesan sinyal kontrol. 5. Steam Turbine pada dasarnya mempunyai 2 mode kontrol yaitu speed/load control dan inlet pressure control. 6. Keberadaan steam turbine pada PLTGU digunakan untuk memaksimalkan steam yang dihasilkan dalam HRSG. 7. Setpoint IPC bertujuan untuk menjaga minimum pressure dalam steam header, membatasi percepatan kecepatan aliran steam HRSG yang sedang dioperasikan, dan menjaga keseimbangan produksi steam di HP steam drum dengan steam yang keluar dari kedua main control valve. VI. DAFTAR PUSTAKA Santoso, Junaidi. Laporan Kerja Praktek Sistem Kontrol SpeedtronicTM Mark V Sebagai Pengendali Turbin Pada Generator Turbin Gas (GTG). Jurusan Teknik Elektro Universitas Diponegoro: Semarang Subroto, Samsu Haryo.SPEEDTRONIC TM Mark V Operator Manual Volume 1A. PT.PLN (Persero) Tambak Lorok Operation and Control System Volume 1. PT.PLN (Persero) Tambak Lorok Operation and Control System Volume 1A. PT.PLN (Persero) Tambak Lorok Maintenance and System Description Steam Turbine Volume 2. PT.PLN (Persero) Tambak Lorok Maintenance and System Description Steam Turbine Volume 2B. PT.PLN (Persero) Tambak Lorok SPEEDTRONIC TM Mark V Control Description and Application.Volume I. 1993

9 BIODATA FX Ryan Kurniawan, adalah mahasiswa Teknik Elektro (S1) Universitas Diponegoro angkatan 2006 dengan mengambil konsentrasi Kontrol. Semarang, Agustus 2010 Mengetahui, Dosen Pembimbing Iwan Setiawan, ST. MT. NIP

PENGENDALIAN SUPPLY BAHAN BAKAR DENGAN PARAMETER EXHAUST TEMPERATURE

PENGENDALIAN SUPPLY BAHAN BAKAR DENGAN PARAMETER EXHAUST TEMPERATURE PENGENDALIAN SUPPLY BAHAN BAKAR DENGAN PARAMETER EXHAUST TEMPERATURE MENGGUNAKAN SPEEDTRONIC TM MARK V PADA GAS TURBIN GENERATOR (GTG) Oleh : ANGGITA P SEPTIANI (L2F 006 009) -Abstrak- PT. INDONESIA POWER

Lebih terperinci

VIBRATION MEASUREMENT AND PROTECTION GAS TURBIN GENERATOR (GTG) PADA SPEEDTRONIC TM MARK V Oleh : EZUFATRIN (L2F )

VIBRATION MEASUREMENT AND PROTECTION GAS TURBIN GENERATOR (GTG) PADA SPEEDTRONIC TM MARK V Oleh : EZUFATRIN (L2F ) VIBRATION MEASUREMENT AND PROTECTION GAS TURBIN GENERATOR (GTG) PADA SPEEDTRONIC TM MARK V Oleh : EZUFATRIN (L2F 008 032) Abstrak PT. INDONESIA POWER UNIT BISNIS PEMBANGKITAN SEMARANG dalam proses produksinya

Lebih terperinci

PENGENDALIAN ELECTROHYDRAULIC SERVO VALVE DENGAN SPEEDTRONIC TM MARK V PADA GAS TURBIN GENERATOR (GTG)

PENGENDALIAN ELECTROHYDRAULIC SERVO VALVE DENGAN SPEEDTRONIC TM MARK V PADA GAS TURBIN GENERATOR (GTG) PENGENDALIAN ELECTROHYDRAULIC SERVO VALVE DENGAN SPEEDTRONIC TM MARK V PADA GAS TURBIN GENERATOR (GTG) Oleh : Aldea Steffi Maharani (L2F607007) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro

Lebih terperinci

PENGATURAN INLET GUIDE VANES

PENGATURAN INLET GUIDE VANES PENGATURAN INLET GUIDE VANES (IGV) PADA PLTGU MENGGUNAKAN SPEEDTRONIC TM MARK V UNTUK PROSES SIMPLE CYCLE DAN COMBINED CYCLE Oleh : SURYA WISNURAHUTAMA (L2F 006 086) Abstrak PT. INDONESIA POWER UNIT BISNIS

Lebih terperinci

SISTEM KONTROL SPEEDTRONIC TM MARK V SEBAGAI PENGENDALI KECEPATAN PADA GAS TURBINE GENERATOR (GTG) Oleh : HARYO PAMUNGKAS S.

SISTEM KONTROL SPEEDTRONIC TM MARK V SEBAGAI PENGENDALI KECEPATAN PADA GAS TURBINE GENERATOR (GTG) Oleh : HARYO PAMUNGKAS S. SISTEM KONTROL SPEEDTRONIC TM MARK V SEBAGAI PENGENDALI KECEPATAN PADA GAS TURBINE GENERATOR (GTG) Oleh : HARYO PAMUNGKAS S. (L2F 006 047) -Abstrak- PT. INDONESIA POWER UNIT BISNIS PEMBANGKITAN SEMARANG

Lebih terperinci

Sistem Kontrol SPEEDTRONIC TM MARK V Pada Proses Penentuan FUEL STROKE REFERENCE Pada GAS TURBINE GENERATOR

Sistem Kontrol SPEEDTRONIC TM MARK V Pada Proses Penentuan FUEL STROKE REFERENCE Pada GAS TURBINE GENERATOR Sistem Kontrol SPEEDTRONIC TM MARK V Pada Proses Penentuan FUEL STROKE REFERENCE Pada GAS TURBINE GENERATOR Muhammad Fadli Nasution (L2F 008 065) Jurusan Teknik Elektro, Universitas Diponegoro Nasution.fadli@gmail.com

Lebih terperinci

KONTROL PEMAKAIAN BAHAN BAKAR CAIR (HSD) PADA GAS TURBINE GENERATOR (GTG) Oleh : ZABIB BASHORI (L2F )

KONTROL PEMAKAIAN BAHAN BAKAR CAIR (HSD) PADA GAS TURBINE GENERATOR (GTG) Oleh : ZABIB BASHORI (L2F ) KONTROL PEMAKAIAN BAHAN BAKAR CAIR (HSD) PADA GAS TURBINE GENERATOR (GTG) Oleh : ZABIB BASHORI (L2F 006096) -Abstrak- SPEEDTRONIC TM MARK V merupakan sistem pengontrolan yang digunakan pada Gas Turbine

Lebih terperinci

SISTEM KONTROL SPEEDTRONIC TM MARK V PADA PENGENDALIAN KECEPATAN TURBIN GAS FASE START UP

SISTEM KONTROL SPEEDTRONIC TM MARK V PADA PENGENDALIAN KECEPATAN TURBIN GAS FASE START UP SISTEM KONTROL SPEEDTRONIC TM MARK V PADA PENGENDALIAN KECEPATAN TURBIN GAS FASE START UP Oleh : Huda Ilal Kirom (L2F 008 045) -Abstrak- PT. Indonesia Power Unit Bisnis Pembangkitan Semarang memiliki tiga

Lebih terperinci

PENGENGENDALIAN DAN PROTEKSI TEMPERATUR EXHAUST GAS TURBIN GENERATOR (GTG) PADA SPEEDTRONIC TM MARK V Oleh : RAHADIAN NURFANSYAH (L2F )

PENGENGENDALIAN DAN PROTEKSI TEMPERATUR EXHAUST GAS TURBIN GENERATOR (GTG) PADA SPEEDTRONIC TM MARK V Oleh : RAHADIAN NURFANSYAH (L2F ) PENGENGENDALIAN DAN PROTEKSI TEMPERATUR EXHAUST GAS TURBIN GENERATOR (GTG) PADA SPEEDTRONIC TM MARK V Oleh : RAHADIAN NURFANSYAH (L2F 006 073) Abstrak PT. INDONESIA POWER UNIT BISNIS PEMBANGKITAN SEMARANG

Lebih terperinci

SISTEM KONTROL PADA HIGH PRESSURE TURBINE BYPASS VALVE. Oleh: Meilia Safitri (L2F008061) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro

SISTEM KONTROL PADA HIGH PRESSURE TURBINE BYPASS VALVE. Oleh: Meilia Safitri (L2F008061) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro SISTEM KONTROL PADA HIGH PRESSURE TURBINE BYPASS VALVE Oleh: Meilia Safitri (L2F008061) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro -Abstrak- PT. INDONESIA POWER UNIT BISNIS PEMBANGKITAN

Lebih terperinci

Kata Kunci : PLC, ZEN OMRON, HP Bypass Turbine System, pompa hidrolik

Kata Kunci : PLC, ZEN OMRON, HP Bypass Turbine System, pompa hidrolik Makalah Seminar Kerja Praktek SIMULASI PLC SEDERHANA SEBAGAI RESPRESENTASI KONTROL POMPA HIDROLIK PADA HIGH PRESSURE BYPASS TURBINE SYSTEM Fatimah Avtur Alifia (L2F008036) Jurusan Teknik Elektro Fakultas

Lebih terperinci

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU)

MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) MODUL V-C PEMBANGKIT LISTRIK TENAGA GAS UAP (PLTGU) DEFINISI PLTGU PLTGU merupakan pembangkit listrik yang memanfaatkan tenaga gas dan uap. Jadi disini sudah jelas ada dua mode pembangkitan. yaitu pembangkitan

Lebih terperinci

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA ANALISA SISTEM KONTROL LEVEL DAN INSTRUMENTASI PADA HIGH PRESSURE HEATER PADA UNIT 1 4 DI PLTU UBP SURALAYA. Disusun Oleh : ANDREAS HAMONANGAN S (10411790) JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA

Lebih terperinci

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts

ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU. Bambang Setyoko * ) Abstracts ANALISA EFISIENSI PERFORMA HRSG ( Heat Recovery Steam Generation ) PADA PLTGU Bambang Setyoko * ) Abstracts Heat Recovery Steam Generator ( HRSG ) is a construction in combine cycle with gas turbine and

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci

STEAM TURBINE. POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai

STEAM TURBINE. POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai STEAM TURBINE POWER PLANT 2 X 15 MW PT. Kawasan Industri Dumai PENDAHULUAN Asal kata turbin: turbinis (bahasa Latin) : vortex, whirling Claude Burdin, 1828, dalam kompetisi teknik tentang sumber daya air

Lebih terperinci

BAB III SISTEM PLTGU UBP TANJUNG PRIOK

BAB III SISTEM PLTGU UBP TANJUNG PRIOK BAB III SISTEM PLTGU UBP TANJUNG PRIOK 3.1 Konfigurasi PLTGU UBP Tanjung Priok Secara sederhana BLOK PLTGU UBP Tanjung Priok dapat digambarkan sebagai berikut: deaerator LP Header Low pressure HP header

Lebih terperinci

ANALISIS PENGOPERASIAN SPEED DROOP GOVERNOR SEBAGAI PENGATURAN FREKUENSI PADA SISTEM KELISTRIKAN PLTU GRESIK

ANALISIS PENGOPERASIAN SPEED DROOP GOVERNOR SEBAGAI PENGATURAN FREKUENSI PADA SISTEM KELISTRIKAN PLTU GRESIK ANALISIS PENGOPERASIAN SPEED DROOP GOVERNOR SEBAGAI PENGATURAN FREKUENSI PADA SISTEM KELISTRIKAN PLTU GRESIK Oleh : Patriandari 2206 100 026 Dosen Pembimbing : Prof. Ir. Ontoseno Penangsang, M.Sc, PhD.

Lebih terperinci

BAB I PENDAHULUAN. Dalam proses PLTU dibutuhkan fresh water yang di dapat dari proses

BAB I PENDAHULUAN. Dalam proses PLTU dibutuhkan fresh water yang di dapat dari proses BAB I PENDAHULUAN 1.1. Latar Belakang Pada Pembangkit Listrik Tenaga Uap, untuk menghasilkan uap dibutuhkan air yang dipanaskan secara bertahap melalui beberapa heater sebelum masuk ke boiler untuk dipanaskan

Lebih terperinci

Session 11 Steam Turbine Protection

Session 11 Steam Turbine Protection Session 11 Steam Turbine Protection Pendahuluan Kesalahan dan kondisi tidak normal pada turbin dapat menyebabkan kerusakan pada plant ataupun komponen lain dari pembangkit. Dibutuhkan sistem pengaman untuk

Lebih terperinci

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure

Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-137 Analisa Pengaruh Variasi Pinch Point dan Approach Point terhadap Performa HRSG Tipe Dual Pressure Ryan Hidayat dan Bambang

Lebih terperinci

PENGENDALIAN START UP GAS TURBINE GENERATOR Di PT INDONESIA POWER UBP SEMARANG

PENGENDALIAN START UP GAS TURBINE GENERATOR Di PT INDONESIA POWER UBP SEMARANG PENGENDALIAN START UP GAS TURBINE GENERATOR Di PT INDONESIA POWER UBP SEMARANG Oleh : Ganis Rama Pradika (L2F 006 043) -Abstrak- PT. INDONESIA POWER UNIT BISNIS PEMBANGKITAN SEMARANG dalam proses produksinya

Lebih terperinci

FUZZY LOGIC UNTUK KONTROL MODUL PROSES KONTROL DAN TRANSDUSER TIPE DL2314 BERBASIS PLC

FUZZY LOGIC UNTUK KONTROL MODUL PROSES KONTROL DAN TRANSDUSER TIPE DL2314 BERBASIS PLC FUZZY LOGIC UNTUK KONTROL MODUL PROSES KONTROL DAN TRANSDUSER TIPE DL2314 BERBASIS PLC Afriadi Rahman #1, Agus Indra G, ST, M.Sc, #2, Dr. Rusminto Tjatur W, ST, #3, Legowo S, S.ST, M.Sc #4 # Jurusan Teknik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori PLTGU atau combine cycle power plant (CCPP) adalah suatu unit pembangkit yang memanfaatkan siklus gabungan antara turbin uap dan turbin gas. Gagasan awal untuk

Lebih terperinci

Pertemuan-1: Pengenalan Dasar Sistem Kontrol

Pertemuan-1: Pengenalan Dasar Sistem Kontrol Pertemuan-1: Pengenalan Dasar Sistem Kontrol Tujuan Instruksional Khusus (TIK): Mengerti filosopi sistem control dan aplikasinya serta memahami istilahistilah/terminology yang digunakan dalam system control

Lebih terperinci

MODUL KULIAH SISTEM KENDALI TERDISTRIBUSI

MODUL KULIAH SISTEM KENDALI TERDISTRIBUSI MODUL KULIAH SISTEM KENDALI TERDISTRIBUSI KOMPONEN DASAR DCS Oleh : Muhamad Ali, M.T JURUSAN PENDIDIKAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA TAHUN 2012 BAB IV KOMPONEN DASAR DCS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik Tenaga Uap (PLTU) PLTU merupakan sistem pembangkit tenaga listrik dengan memanfaatkan energi panas bahan bakar untuk diubah menjadi energi listrik dengan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 54 BAB III METODOLOGI PENELITIAN Pada perancangan modifikasi sistem kontrol panel mesin boiler ini, selain menggunakan metodologi studi pustaka dan eksperimen, metodologi penelitian yang dominan digunakan

Lebih terperinci

SISTEM KENDALI DIGITAL

SISTEM KENDALI DIGITAL SISTEM KENDALI DIGITAL Sistem kendali dapat dikatakan sebagai hubungan antara komponen yang membentuk sebuah konfigurasi sistem, yang akan menghasilkan tanggapan sistem yang diharapkan. Jadi harus ada

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA SISTEM. Pengujian dilakukan dengan menghubungkan Simulator Plant dengan

BAB IV PENGUJIAN DAN ANALISA SISTEM. Pengujian dilakukan dengan menghubungkan Simulator Plant dengan BAB IV PENGUJIAN DAN ANALISA SISTEM Pengujian dilakukan dengan menghubungkan Simulator Plant dengan menggunakan PLC FX series, 3 buah memori switch on/of sebagai input, 7 buah pilot lamp sebagai output

Lebih terperinci

BAB III DASAR TEORI SISTEM PLTU

BAB III DASAR TEORI SISTEM PLTU BAB III DASAR TEORI SISTEM PLTU Sistem pembangkit listrik tenaga uap (Steam Power Plant) memakai siklus Rankine. PLTU Suralaya menggunakan siklus tertutup (closed cycle) dengan dasar siklus rankine dengan

Lebih terperinci

Makalah Seminar Kerja Praktek KONTROL TEMPERATUR PADA RICH SOLUTION HEATER (101-E) DI CO 2 REMOVAL PLANT SUBANG

Makalah Seminar Kerja Praktek KONTROL TEMPERATUR PADA RICH SOLUTION HEATER (101-E) DI CO 2 REMOVAL PLANT SUBANG Makalah Seminar Kerja Praktek KONTROL TEMPERATUR PADA RICH SOLUTION HEATER (101-E) DI CO 2 REMOVAL PLANT SUBANG Lilik Kurniawan (L2F008053) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro

Lebih terperinci

BAB I PENDAHULUAN. Penyusunan tugas akhir ini terinspirasi berawal dari terjadinya kerusakan

BAB I PENDAHULUAN. Penyusunan tugas akhir ini terinspirasi berawal dari terjadinya kerusakan 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Penyusunan tugas akhir ini terinspirasi berawal dari terjadinya kerusakan pada mesin boiler satu burner dengan dua bahan bakar natural gas dan solar bekapasitas

Lebih terperinci

Makalah Seminar Kerja Praktek

Makalah Seminar Kerja Praktek Makalah Seminar Kerja Praktek OPERASI HMXT-200 GENERATOR SEBAGAI PENGHASIL HIDROGEN PADA H 2 PLANT PLTGU PT INDONESIA POWER UBP SEMARANG Adista Ayu Widiasanti (L2F009074), Dr. Ir. Hermawan, DEA. (196002231986021001)

Lebih terperinci

Tabel 1. Parameter yang digunakan pada proses Heat Exchanger [1]

Tabel 1. Parameter yang digunakan pada proses Heat Exchanger [1] 1 feedback, terutama dalam kecepatan tanggapan menuju keadaan stabilnya. Hal ini disebabkan pengendalian dengan feedforward membutuhkan beban komputasi yang relatif lebih kecil dibanding pengendalian dengan

Lebih terperinci

BAB II LANDASAN TEORI. stage nozzle atau nozzle tingkat pertama atau suhu pengapian turbin. Apabila suhu

BAB II LANDASAN TEORI. stage nozzle atau nozzle tingkat pertama atau suhu pengapian turbin. Apabila suhu BAB II LANDASAN TEORI 2.1 Kendali suhu Pembatasan suhu sebenarnya adalah pada turbin inlet yang terdapat pada first stage nozzle atau nozzle tingkat pertama atau suhu pengapian turbin. Apabila suhu pengapian

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

BAB IV HASIL DAN ANALISIS

BAB IV HASIL DAN ANALISIS BAB IV HASIL DAN ANALISIS Gambar 4.1 Lokasi PT. Indonesia Power PLTP Kamojang Sumber: Google Map Pada gambar 4.1 merupakan lokasi PT Indonesia Power Unit Pembangkitan dan Jasa Pembangkitan Kamojang terletak

Lebih terperinci

Dosen Pembimbing : Ir. Teguh Yuwono Ir. Syariffuddin M, M.Eng. Oleh : ADITASA PRATAMA NRP :

Dosen Pembimbing : Ir. Teguh Yuwono Ir. Syariffuddin M, M.Eng. Oleh : ADITASA PRATAMA NRP : STUDI PENENTUAN KAPASITAS MOTOR LISTRIK UNTUK PENDINGIN DAN PENGGERAK POMPA AIR HIGH PRESSURE PENGISI BOILER UNTUK MELAYANI KEBUTUHAN AIR PADA PLTGU BLOK III (PLTG 3x112 MW & PLTU 189 MW) UNIT PEMBANGKITAN

Lebih terperinci

ISTILAH-ISTILAH DALAM SISTEM PENGATURAN

ISTILAH-ISTILAH DALAM SISTEM PENGATURAN ISTILAH-ISTILAH DALAM SISTEM PENGATURAN PENGANTAR Sistem pengaturan khususnya pengaturan otomatis memegang peranan yang sangat penting dalam perkembangan ilmu dan teknologi. Dalam bahasan ini, akan diberikan

Lebih terperinci

SEJARAH DAN STRUKTUR ORGANISASI PT INDONESIA POWER

SEJARAH DAN STRUKTUR ORGANISASI PT INDONESIA POWER LAMPIRAN SEJARAH DAN STRUKTUR ORGANISASI PT INDONESIA POWER Data Umum Perusahaan PT. INDONESIA POWER merupakan salah satu anak perusahaan listrik milik PT. PLN (Persero) yang didirikan pada tanggal 3 Oktober

Lebih terperinci

SESSION 3 GAS-TURBINE POWER PLANT

SESSION 3 GAS-TURBINE POWER PLANT SESSION 3 GAS-TURBINE POWER PLANT Outline 1. Dasar Teori Turbin Gas 2. Proses PLTG dan PLTGU 3. Klasifikasi Turbin Gas 4. Komponen PLTG 5. Kelebihan dan Kekurangan 1. Dasar Teori Turbin Gas Turbin gas

Lebih terperinci

: Sistem Kontrol, Instrumentasi, PLC, Pengontrolan

: Sistem Kontrol, Instrumentasi, PLC, Pengontrolan Makalah Kerja Praktek PERANCANGAN SHUT DOWN SYSTEM PADA UNIT BOILER PLANT SIMULATOR MENGGUNAKAN PLC ALLEN BRADLEY SECARA SIMULASI DI LABORATORIUM INSTRUMENTASI PUSDIKLAT MIGAS CEPU Achmad Hermansyah (21060110120008)

Lebih terperinci

Makalah Seminar Kerja Praktek ANALISA SISTEM FLOW CONTROL amdea DI CO 2 REMOVAL PLANT SUBANG

Makalah Seminar Kerja Praktek ANALISA SISTEM FLOW CONTROL amdea DI CO 2 REMOVAL PLANT SUBANG Makalah Seminar Kerja Praktek ANALISA SISTEM FLOW CONTROL amdea DI CO 2 REMOVAL PLANT SUBANG Bambang Nur Cahyono (L2F008013) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro Semarang Jln.

Lebih terperinci

STUDI PADA PENGARUH FWH7 TERHADAP EFISIENSI DAN BIAYA KONSUMSI BAHAN BAKAR PLTU DENGAN PEMODELAN GATECYCLE

STUDI PADA PENGARUH FWH7 TERHADAP EFISIENSI DAN BIAYA KONSUMSI BAHAN BAKAR PLTU DENGAN PEMODELAN GATECYCLE SEMINAR TUGAS AKHIR STUDI PADA PENGARUH FWH7 TERHADAP EFISIENSI DAN BIAYA KONSUMSI BAHAN BAKAR PLTU DENGAN PEMODELAN GATECYCLE Disusun oleh : Sori Tua Nrp : 21.11.106.006 Dosen pembimbing : Ary Bacthiar

Lebih terperinci

BAB IV ANALISA DATA DAN PEMBAHASAN

BAB IV ANALISA DATA DAN PEMBAHASAN BAB IV ANALISA DATA DAN PEMBAHASAN 4.1 PLC (Programmable Logic Controller) Pada sub bab ini penulis membahas tentang program PLC yang digunakan dalam system ini. Secara garis besar program ini terdiri

Lebih terperinci

BAB I PENDAHULUAN. listrik. Adapun pembangkit listrik yang umumnya digunakan di Indonesia yaitu

BAB I PENDAHULUAN. listrik. Adapun pembangkit listrik yang umumnya digunakan di Indonesia yaitu BAB I PENDAHULUAN 1.1 LATAR BELAKANG Bertambahnya perindustrian di Indonesia menyebabkan peningkatan kebutuhan listrik. Untuk mengatasi hal tersebut maka saat ini pemerintah berupaya untuk meningkatkan

Lebih terperinci

Elemen Dasar Sistem Otomasi

Elemen Dasar Sistem Otomasi Materi #4 Sumber: Mikell P Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, Second Edition, New Jersey, Prentice Hall Inc., 2001, Chapter 3 Elemen Dasar Sistem Otomasi 2

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 36 BAB III METODOLOGI PENELITIAN 3.1 PENDAHULUAN Materi penelitian dalam Tugas Akhir ini adalah analisis proses konversi energi pada PLTU Suralaya Unit 5 mulai dari energi pada batubara hingga menjadi

Lebih terperinci

Pengoperasian pltu. Simple, Inspiring, Performing,

Pengoperasian pltu. Simple, Inspiring, Performing, Pengoperasian pltu PERSIAPAN COLD START PLTU 1. SISTEM AUXILIARY STEAM (UAP BANTU) FUNGSI : a. Menyuplai uap ke sistem bahan bakar minyak pada igniter untuk mengabutkan bahan bakar minyak (Atomizing sistem).

Lebih terperinci

STUDI AUXILIARY STEAM PRESSURE CONTROL PADA PLTU UNIT 3 DAN 4 PT.PLN (PERSERO) WILAYAH II SEKTOR BELAWAN OLEH. : Agus Tanaka Damanik.

STUDI AUXILIARY STEAM PRESSURE CONTROL PADA PLTU UNIT 3 DAN 4 PT.PLN (PERSERO) WILAYAH II SEKTOR BELAWAN OLEH. : Agus Tanaka Damanik. STUDI AUXILIARY STEAM PRESSURE CONTROL PADA PLTU UNIT 3 DAN 4 PT.PLN (PERSERO) WILAYAH II SEKTOR BELAWAN OLEH Nama : Agus Tanaka Damanik Nim : 025203038 PROGRAM DIPOLMA IV TEKNOLOGI INSTRUMENTASI PABRIK

Lebih terperinci

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 EKSERGI Jurnal Teknik Energi Vol No. 2 Mei 214; 65-71 ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 Anggun Sukarno 1) Bono 2), Budhi Prasetyo 2) 1)

Lebih terperinci

Makalah Seminar Kerja Praktek APLIKASI SISTEM PENGAMAN ELEKTRIS UTAMA PADA GAS TURBIN GENERATOR PLTGU

Makalah Seminar Kerja Praktek APLIKASI SISTEM PENGAMAN ELEKTRIS UTAMA PADA GAS TURBIN GENERATOR PLTGU Makalah Seminar Kerja Praktek APLIKASI SISTEM PENGAMAN ELEKTRIS UTAMA PADA GAS TURBIN GENERATOR PLTGU, Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro Jl. Prof. Sudharto, Tembalang, Semarang

Lebih terperinci

ANALISIS PENGARUH PEMAKAIAN BAHAN BAKAR TERHADAP EFISIENSI HRSG KA13E2 DI MUARA TAWAR COMBINE CYCLE POWER PLANT

ANALISIS PENGARUH PEMAKAIAN BAHAN BAKAR TERHADAP EFISIENSI HRSG KA13E2 DI MUARA TAWAR COMBINE CYCLE POWER PLANT ANALISIS PENGARUH PEMAKAIAN BAHAN BAKAR TERHADAP EFISIENSI HRSG KA13E2 DI MUARA TAWAR COMBINE CYCLE POWER PLANT Anwar Ilmar Ramadhan 1,*, Ery Diniardi 1, Hasan Basri 2, Dhian Trisnadi Setyawan 1 1 Jurusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin gas adalah suatu unit turbin dengan menggunakan gas sebagai fluida kerjanya. Sebenarnya turbin gas merupakan komponen dari suatu sistem pembangkit. Sistem turbin gas paling

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA GAS (PLTG)

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) PEMBANGKIT LISTRIK TENAGA GAS (PLTG) A. Pengertian PLTG (Pembangkit listrik tenaga gas) merupakan pembangkit listrik yang memanfaatkan gas untuk memutar turbin dan generator. Turbin dan generator adalah

Lebih terperinci

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik).

BAB I PENDAHULUAN. Turbin uap berfungsi untuk mengubah energi panas yang terkandung. menghasilkan putaran (energi mekanik). BAB I PENDAHULUAN 1.1 LATAR BELAKANG Turbin uap adalah suatu penggerak mula yang mengubah energi potensial menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanik dalam

Lebih terperinci

2. Pengendalian otomat dengan tenaga hydroulic

2. Pengendalian otomat dengan tenaga hydroulic 2. Pengendalian otomat dengan tenaga hydroulic Keuntungan : Pengontrolan mudah dan responnya cukup cepat Menghasilkan tenaga yang besar Dapat langsung menghasilkan gerakan rotasi dan translasi 1 P a g

Lebih terperinci

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN

ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN ANALISIS TERMODINAMIKA PERFORMA HRSG PT. INDONESIA POWER UBP PERAK-GRATI SEBELUM DAN SESUDAH CLEANING DENGAN VARIASI BEBAN Ilham Bayu Tiasmoro. 1), Dedy Zulhidayat Noor 2) Jurusan D III Teknik Mesin Fakultas

Lebih terperinci

BAB II TEORI DASAR. Dasar dari teknologi turbin gas adalah pemanfaatan energi dari gas bersuhu % sebagai pendingin, antara lain

BAB II TEORI DASAR. Dasar dari teknologi turbin gas adalah pemanfaatan energi dari gas bersuhu % sebagai pendingin, antara lain BAB II TEORI DASAR 2.1 PLTG (Open Cycle) Dasar dari teknologi turbin gas adalah pemanfaatan energi dari gas bersuhu tinggi hasil pembakaran campuran bahan bakar dengan udara tekan. Udara tekan dihasilkan

Lebih terperinci

Makalah Seminar Kerja Praktek PERANCANGAN APLIKASI PLC OMRON SYSMAC CPM1A PADA MODUL SISTEM SILO

Makalah Seminar Kerja Praktek PERANCANGAN APLIKASI PLC OMRON SYSMAC CPM1A PADA MODUL SISTEM SILO Makalah Seminar Kerja Praktek PERANCANGAN APLIKASI PLC OMRON SYSMAC CPM1A PADA MODUL SISTEM SILO Muhammad Fajri Nur Reimansyah (L2F009032) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Cilacap, Jl. Letjen Haryono MT. 77 Lomanis, Cilacap, Jawa Tengah, Indonesia.

BAB III METODOLOGI PENELITIAN. Cilacap, Jl. Letjen Haryono MT. 77 Lomanis, Cilacap, Jawa Tengah, Indonesia. BAB III METODOLOGI PENELITIAN 3.1 Lokasi Penelitian Lokasi penelitian tugas akhir berada di PT Pertamina (Persero) RU IV Cilacap, Jl. Letjen Haryono MT. 77 Lomanis, Cilacap, Jawa Tengah, Indonesia. Gambar

Lebih terperinci

BAB II DASAR SISTEM KONTROL. satu atau beberapa besaran (variabel, parameter) sehingga berada pada suatu

BAB II DASAR SISTEM KONTROL. satu atau beberapa besaran (variabel, parameter) sehingga berada pada suatu BAB II DASAR SISTEM KONTROL II.I. Sistem Kontrol Sistem kontrol adalah proses pengaturan ataupun pengendalian terhadap satu atau beberapa besaran (variabel, parameter) sehingga berada pada suatu harga

Lebih terperinci

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 2 Mei 2015; 47-52

I. PENDAHULUAN. EKSERGI Jurnal Teknik Energi Vol 11 No. 2 Mei 2015; 47-52 EKSERGI Jurnal Teknik Energi Vol 11 No. 2 Mei 2015; 47-52 KINERJA MULTISTAGE HP/IP FEED WATER PUMP PADA HRSG DI SEKTOR PEMBANGKITAN PLTGU CILEGON F Gatot Sumarno, Suwarti Program Studi Teknik Konversi

Lebih terperinci

ISTILAH ISTILAH DALAM SISTEM PENGENDALIAN

ISTILAH ISTILAH DALAM SISTEM PENGENDALIAN ISTILAH ISTILAH DALAM SISTEM PENGENDALIAN PENGANTAR Sistem pengendalian khususnya pengendalian otomatis memegang peranan yang sangat penting dalam perkembangan ilmu dan teknologi. Dalam bahasan ini, akan

Lebih terperinci

MODUL KULIAH SISTEM KENDALI TERDISTRIBUSI

MODUL KULIAH SISTEM KENDALI TERDISTRIBUSI MODUL KULIAH SISTEM KENDALI TERDISTRIBUSI FUNGSI DAN CARA KERJA DCS Oleh : Muhamad Ali, M.T JURUSAN PENDIDIKAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA TAHUN 2012 BAB III FUNGSI DAN

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian dilakukan di Pembangkit Listrik Tenaga Uap (PLTU) Lampung 2 x 100 MW unit 5 dan 6 Sebalang, Lampung Selatan. Pengerjaan tugas akhir ini

Lebih terperinci

PERANCANGAN REMOTE TERMINAL UNIT (RTU) PADA SIMULATOR PLANT TURBIN DAN GENERATOR UNTUK PENGENDALIAN FREKUENSI MENGGUNAKAN KONTROLER PID

PERANCANGAN REMOTE TERMINAL UNIT (RTU) PADA SIMULATOR PLANT TURBIN DAN GENERATOR UNTUK PENGENDALIAN FREKUENSI MENGGUNAKAN KONTROLER PID Oleh: Mahsun Abdi / 2209106105 Dosen Pembimbing: 1. Dr.Ir. Mochammad Rameli 2. Ir. Rusdhianto Effendie, MT. Tugas Akhir PERANCANGAN REMOTE TERMINAL UNIT (RTU) PADA SIMULATOR PLANT TURBIN DAN GENERATOR

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Zaman sekarang ini, listrik menjadi kebutuhan primer dalam kehidupan manusia sehari-hari. Sektor rumah tangga, bangunan komersial, dan industri membutuhkan listrik

Lebih terperinci

ANALISIS UNJUK KERJA HEAT RECOVERY STEAM GENERATOR (HRSG) PADA PLTGU MUARA TAWAR BLOK 5 ABSTRAK

ANALISIS UNJUK KERJA HEAT RECOVERY STEAM GENERATOR (HRSG) PADA PLTGU MUARA TAWAR BLOK 5 ABSTRAK ANALISIS UNJUK KERJA HEAT RECOVERY STEAM GENERATOR (HRSG) PADA PLTGU MUARA TAWAR BLOK 5 Anwar Ilmar,ST,MT 1,.Ali Sandra 2 Lecture 1,College student 2,Departement of machine, Faculty of Engineering, University

Lebih terperinci

SESSION 12 POWER PLANT OPERATION

SESSION 12 POWER PLANT OPERATION SESSION 12 POWER PLANT OPERATION OUTLINE 1. Perencanaan Operasi Pembangkit 2. Manajemen Operasi Pembangkit 3. Tanggung Jawab Operator 4. Proses Operasi Pembangkit 1. PERENCANAAN OPERASI PEMBANGKIT Perkiraan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Konsumsi listrik daerah Sumatera bagian Utara setiap tahunnya terus meningkat sejalan dengan peningkatan pertumbuhan ekonomi masyarakatnya. Oleh karena itu, perkiraan

Lebih terperinci

ALAT PEMBAGI TEGANGAN GENERATOR

ALAT PEMBAGI TEGANGAN GENERATOR ALAT PEMBAGI TEGANGAN GENERATOR 1. Pendahuluan Listrik seperti kita ketahui adalah bentuk energi sekunder yang paling praktis penggunaannya oleh manusia, di mana listrik dihasilkan dari proses konversi

Lebih terperinci

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous

PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous PEMBANGKIT LISTRIK TENAGA GAS (PLTG) Prepared by: anonymous Pendahuluan PLTG adalah pembangkit listrik yang menggunakan tenaga yang dihasilkan oleh hasil pembakaran bahan bakar dan udara bertekanan tinggi.

Lebih terperinci

BAB II LANDASAN TEORI. berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah

BAB II LANDASAN TEORI. berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah BAB II LANDASAN TEORI 2.1 Umum Didalam dunia industri, dituntut suatu proses kerja yang aman dan berefisiensi tinggi agar menghasilkan produk dengan kualitas baik dalam jumlah banyak serta dengan waktu

Lebih terperinci

ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR

ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR ANALISIS PERHITUNGAN DAYA TURBIN YANG DIHASILKAN DAN EFISIENSI TURBIN UAP PADA UNIT 1 DAN UNIT 2 DI PT. INDONESIA POWER UBOH UJP BANTEN 3 LONTAR Jamaludin, Iwan Kurniawan Program Studi Teknik mesin, Fakultas

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN ALAT

BAB IV ANALISA DAN PENGUJIAN ALAT BAB IV ANALISA DAN PENGUJIAN ALAT 4.1 Hasil Penelitian Setelah alat dan bahan didapat dan dipersiapkan maka perangkat-keras dan perangkat-lunak telah berhasil dibuat sesuai dengan rancangan awal walau

Lebih terperinci

BAB I PENDAHULUAN. modern ini, Indonesia sudah banyak mengembangkan kegiatan pendirian unit -

BAB I PENDAHULUAN. modern ini, Indonesia sudah banyak mengembangkan kegiatan pendirian unit - BAB I PENDAHULUAN 1.1 Latar Belakang Bertambahnya perindustrian di Indonesia menyebabkan peningkatan kebutuhan listrik. Untuk mengatasi hal ini, maka pemerintah Indonesia melaksanakan kegiatan percepatan

Lebih terperinci

MAKALAH SEMINAR KERJA PRAKTEK. PROSES SINKRON GENERATOR PADA PEMBANGKIT di PT. GEO DIPA ENERGI UNIT I DIENG

MAKALAH SEMINAR KERJA PRAKTEK. PROSES SINKRON GENERATOR PADA PEMBANGKIT di PT. GEO DIPA ENERGI UNIT I DIENG MAKALAH SEMINAR KERJA PRAKTEK PROSES SINKRON GENERATOR PADA PEMBANGKIT di PT. GEO DIPA ENERGI UNIT I DIENG Reza Pahlefi¹, Dr.Ir. Joko Windarto, MT.² ¹Mahasiswa dan ²Dosen Jurusan Teknik Elektro Fakultas

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya MATERI PENGENDALI

Institut Teknologi Sepuluh Nopember Surabaya MATERI PENGENDALI Institut Teknologi Sepuluh Nopember Surabaya MATERI PENGENDALI Contoh Soal Ringkasan Latihan Assessment Kontroler merupakan salah satu komponen dalam sistem pengendalian yang memegang peranan sangat penting.

Lebih terperinci

MODUL V-B PEMBANGKIT LISTRIK TENAGA GAS

MODUL V-B PEMBANGKIT LISTRIK TENAGA GAS 1 MODUL V-B PEMBANGKIT LISTRIK TENAGA GAS 2 DEFINISI PLTG Pembangkit Listrik Tenaga Gas (PLTG) merupakan sebuah pembangkit energi listrik yang menggunakan peralatan/mesin turbin gas sebagai penggerak generatornya.

Lebih terperinci

DESAIN SISTEM KENDALI TEMPERATUR UAP SUPERHEATER DENGAN METODE FUZZY SLIDING MODE CONTROL

DESAIN SISTEM KENDALI TEMPERATUR UAP SUPERHEATER DENGAN METODE FUZZY SLIDING MODE CONTROL J. Math. and Its Appl. ISSN: 1829-605X Vol. 13, No. 1, Mei 2016, 37-48 DESAIN SISTEM KENDALI TEMPERATUR UAP SUPERHEATER DENGAN METODE FUZZY SLIDING MODE CONTROL Mardlijah 1, Mardiana Septiani 2,Titik Mudjiati

Lebih terperinci

UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI PENULISAN ILMIAH

UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI PENULISAN ILMIAH UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI PENULISAN ILMIAH ANALISA PROSES KERJA SOOT BLOWER TIPE FIXED ROTARY PADA PROTOTYPE MINI STEAM POWER PLANT DI PT. NW INDUSTRIES Nama : Rachmat Shaleh NPM

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Sistem Kontrol Sistem kontrol adalah proses pengaturan ataupun pengendalian terhadap satu atau beberapa besaran (variabel, parameter) sehingga berada pada suatu harga atau dalam

Lebih terperinci

BAB I PENDAHULUAN. Salah satu perkembangan pengaplikasian teknologi yang telah lama

BAB I PENDAHULUAN. Salah satu perkembangan pengaplikasian teknologi yang telah lama BAB I PENDAHULUAN I.1. Latar Belakang Masalah Dalam perkembangan teknologi elektronika dewasa ini, sudah sangat maju baik dibidang industri, pertanian, kesehatan, pertambangan, perkantoran, dan lain-lain.

Lebih terperinci

BAB I PENDAHULUAN. Bertambahnya perindustrian di Indonesia menyebabkan meningkatnya

BAB I PENDAHULUAN. Bertambahnya perindustrian di Indonesia menyebabkan meningkatnya BAB I PENDAHULUAN 1.1 Latar Belakang Bertambahnya perindustrian di Indonesia menyebabkan meningkatnya kebutuhan listrik. Untuk mengatasi hal ini, maka pemerintah melaksanakan kegiatan percepatan pembangunan

Lebih terperinci

SIMULASI SISTEM KONTROL SUHU DI REHEATER PADA BOILER DI PLTU PAITON UNIT 7 & 8

SIMULASI SISTEM KONTROL SUHU DI REHEATER PADA BOILER DI PLTU PAITON UNIT 7 & 8 SIMULASI SISTEM KONTROL SUHU DI REHEATER PADA BOILER DI PLTU PAITON UNIT 7 & 8 1 Simulasi Sistem Kontrol Suhu di Reheater pada Boiler di PLTU Paiton Unit 7 & 8 Reza Muhammad Najmul Falah1) Paulus Sesetyo

Lebih terperinci

Makalah Seminar Kerja Praktek Analisis Pressure Control Pada Absorber (101-C1) di CO 2 Removal Field Subang

Makalah Seminar Kerja Praktek Analisis Pressure Control Pada Absorber (101-C1) di CO 2 Removal Field Subang Makalah Seminar Kerja Praktek Analisis Pressure Control Pada Absorber (101-C1) di CO 2 Removal Field Subang Reza Dwi Imami (L2F008080) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro Semarang

Lebih terperinci

BAB II TEORI. 2.1 Pengertian Sistem Pengaturan

BAB II TEORI. 2.1 Pengertian Sistem Pengaturan BAB II TEORI 2.1 Pengertian Sistem Pengaturan Pengertian kontrol atau pengaturan adalah proses atau upaya untuk mencapai tujuan. Sebagai contoh sederhana dan akrab dengan aktivitas sehari-hari dari konsep

Lebih terperinci

PEMELIHARAAN CB DAN ROTATING DIODA, SERTA SISTEM OPERASI PADA PLTU UNIT 3 PT INDONESIA POWER UBP SEMARANG

PEMELIHARAAN CB DAN ROTATING DIODA, SERTA SISTEM OPERASI PADA PLTU UNIT 3 PT INDONESIA POWER UBP SEMARANG PEMELIHARAAN CB DAN ROTATING DIODA, SERTA SISTEM OPERASI PADA PLTU UNIT 3 PT INDONESIA POWER UBP SEMARANG Dwi Harjanto. 1, Dr. Ir. Joko Windarto, MT 1 Mahasiswa dan 2 Dosen Jurusan Teknik Elektro, Fakultas

Lebih terperinci

Analisa Efisiensi Isentropik dan Exergy Destruction Pada Turbin Uap Sistem Pembangkit Listrik Tenaga Gas dan Uap

Analisa Efisiensi Isentropik dan Exergy Destruction Pada Turbin Uap Sistem Pembangkit Listrik Tenaga Gas dan Uap Available online at Website http://ejournal.undip.ac.id/index.php/rotasi Analisa Efisiensi Isentropik dan Exergy Destruction Pada Turbin Uap Sistem Pembangkit Listrik Tenaga Gas dan Uap *Eflita Yohana

Lebih terperinci

Pertemuan ke-2. Pengantar PLC

Pertemuan ke-2. Pengantar PLC Pertemuan ke-2 Pengantar PLC Mengetahui sejarah perkembangan PLC Mengetahui pengontrolan dengan Relay Prinsip dasar operasi PLC Mengetahui informasi umum mengenai PLC Sasaran Pelatihan Sejarah Singkat

Lebih terperinci

OTOMASI WORK STATION (FMS) BERBASIS PROGRAMMABLE LOGIC CONTROLLER Purnawan

OTOMASI WORK STATION (FMS) BERBASIS PROGRAMMABLE LOGIC CONTROLLER Purnawan OTOMASI WORK STATI (FMS) BERBASIS PROGRAMMABLE LOGIC CTROLLER Purnawan A. PENGANTAR Sebagian besar proses di industri menghendaki strategi pengontrolan atau pengendalian sekuensial. Pengendalian sekuensial

Lebih terperinci

+ - KONTROLER. Σ Kontroler Plant. Aktuator C(s) R(s) Sensor / Elemen ukur

+ - KONTROLER. Σ Kontroler Plant. Aktuator C(s) R(s) Sensor / Elemen ukur KONTROLER PENGANTAR merupakan salah satu komponen dalam sistem pengaturan yang memegang peranan sangat penting. menghasilkan sinyal kontrol yang menjadi masukan bagi plant sedemikian hingga plant memberikan

Lebih terperinci

BAB III PERENCANAAN DAN REALISASI SISTEM

BAB III PERENCANAAN DAN REALISASI SISTEM 42 BAB III PERENCANAAN DAN REALISASI SISTEM Pada bab ini dijelaskan pembuatan alat yang dibuat dalam proyek tugas akhir dengan judul rancang bangun sistem kontrol suhu dan kelembaban berbasis mirkrokontroler

Lebih terperinci

PERTEMUAN #3 TEORI DASAR OTOMASI 6623 TAUFIQUR RACHMAN TKT312 OTOMASI SISTEM PRODUKSI

PERTEMUAN #3 TEORI DASAR OTOMASI 6623 TAUFIQUR RACHMAN TKT312 OTOMASI SISTEM PRODUKSI TEORI DASAR OTOMASI Sumber: Mikell P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, Second Edition, New Jersey, Prentice Hall Inc., 2001, Chapter 3 PERTEMUAN #3 TKT312

Lebih terperinci

BAB III PEMBAHASAN MODIFIKASI

BAB III PEMBAHASAN MODIFIKASI BAB III PEMBAHASAN MODIFIKASI 3.1 Pembahasan Modifikasi Positioner Combustion Control Damper Dibawah ini adalah blok diagram combustion control damper pada level C boiler PLTU suralaya. Load + Error -

Lebih terperinci

MAKALAH PEMBANGKIT LISRIK TENAGA GAS (PLTG) DAN PEMBANGKIT LISRIK TENAGA GAS UAP (PLTGU)

MAKALAH PEMBANGKIT LISRIK TENAGA GAS (PLTG) DAN PEMBANGKIT LISRIK TENAGA GAS UAP (PLTGU) MAKALAH PEMBANGKIT LISRIK TENAGA GAS (PLTG) DAN PEMBANGKIT LISRIK TENAGA GAS UAP (PLTGU) Oleh IRHAS MUFTI FIRDAUS 321 11 030 YULIA REZKY SAFITRI 321 11 078 HARDIANA 321 11 046 MUH SYIFAI PIRMAN 321 11

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di PT. Industri Karet Deli Tanjung Mulia

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di PT. Industri Karet Deli Tanjung Mulia BAB III METODOLOGI PENELITIAN 3.1 Lokasi Penelitian Penelitian ini dilaksanakan di PT. Industri Karet Deli Tanjung Mulia Medan. Penelitian ini adalah penelitian dengan membuat simulasi proses pemasakan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Pembangkit Listrik Tenaga Uap (PLTU) Energi Alamraya Semesta adalah PLTU yang menggunakan batubara sebagai bahan bakar. Batubara yang digunakan adalah batubara jenis bituminus

Lebih terperinci