OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009"

Transkripsi

1 OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009 Mata pelajaran Matematika Non Teknologi Kerjasama Dengan FMIPA Universitas Diponegoro Dan Dinas Pendidikan Propinsi Jawa Tengah

2 OLIMPIADE SAINS TERAPAN SEKOLAH MENENGAH KEJURUAN PROPINSI JAWA TENGAH 2009 MATEMATIKA- NON TEKNOLOGI I. BERILAH TANDA SILANG PADA JAWABAN YANG BENAR Setiap jawaban yang benar mendapat nilai 1, salah atau kosong nilai 0,waktu pengerjaan 90 menit 1. Dari 100 orang siswa SMK terdapat 60 orang yang menyukai Bahasa Inggris dan 25 orang menyukai matematika. Lebih lanjut ada 30 orang yang tidak senang dua-duanya, maka banyaknya siswa yang senang dua-duanya adalah..orang A.35 B.15 C. 45 D.10 E Agus, Bagus, Candra, Dewi dan Eni datang ke Semarang untuk mengikuti suatu kompetisi matematika. Agus datang setelah Candra. Bagus datang lebih awal dibanding Agus tetapi setelah Dewi. Dewi datang lebih awal dibanding Candra, tetapi Dewi bukanlah yang paling awal datang. Dapat diambil kesimpulan bahwa yang datang paling awal diantara ke empat siswa adalah (A). Eni (B). Dewi (C). Candra (D). Bagus (E). Agus. 3. Jika H adalah himpunan huruf-huruf vokal dari "AKU SUKA MATEMATIKA", maka banyaknya himpunan bagian dari H adalah A.8 B.16 C. 64 D. 128 E Nilai rata-rata 10 orang siswa adalah 55, jika digabung lagi dengan 5 siswa nilai rata-ratanya 53. Nilai rata-rata 5 siswa itu adalah A.47 B.48 C.49 D.50 E Jika suatu sel membelah menjadi 5 sel setelah 10 detik maka jumlah sel seluruhnya setelah satu menit adalah A. 50 B C D E Suku kedua dari suatu deret aritmatika adalah 5, jumlah suku keempat dan keenam adalah 28. Suku kesembilan deret itu adalah A. 24 B.25 C.26 D.27 E Harga sebuah personal komputer besarnya 12 kali harga sebuah printer. Bila harga 10 komputer dan 1 printer Rp ,00, berapakah harga 1 printer?

3 A Rp ,00 B. Rp ,00 C. Rp ,00 D. Rp ,00 E. Rp ,00 8. Diketahui A= 2 3 a 4, B= , C= 5 2 b 4, artinya A. A=B bila b=5 B. A=B=C C. B=C bila b=5 D. A=C bila a=d E. A=B=C bila a=5, b=3 9. Berapa banyaknya bilangan yang kurang dari 300 yang dibentuk dari bilanganbilangan 1, 2, 3, 4 dan 5 yang terdiri atas tiga angka yang berbeda A. 12 B. 16 C. 20 D. 24 E Enam pasang suami istri berada dalam suatu ruangan, berapa kemungkinan memilih 2 orang secara acak yang mana 2 orang tersebut suami istri A. B. C. D. E a 1 x Jika x dan y memenuhi system persamaan linier = 3 b y 9 x + y = 5. Tentukan a + b A. 1 B. 3 C. 5 D. 7 E. 9 dengan 12.. Ahmad lebih tinggi daripada Ali, tetapi lebih pendek daripada Umar. Aisyah lebih tinggi daripada Nur, tetapi lebih pendek daripada Ahmad. Dari kelima orang, siapa yang tertinggi? a. Ahmad b. Ali c. Umar d. Aisyah e. Nur 13.. Jumlah dua bilangan bulat adalah 7, jika jumlah pangkat dua masing-masing bilangan tersebut adalah 91, maka selisih kedua bilangan adalah a. 10 b. 11 c. 12 d. 13 e Persamaan kuadrat x 2 - ax + a + 1 = 0, mempunyai akar x 1 dan x 2. Jika x 1 x 2 = 1, maka a A. -5 atau 1 C. 5 atau 1 1 E. atau 1 5 B. 5 atau -1 D. -5 atau Nilai x yang memenuhi persamaan : x x ( + 2) 3 log 2 1 log x +, jika x 0

4 a. 0 b. 1 c. 2 d. 3 e Jumlah suku pertama suatu deret ditentukan oleh rumus a n-1 + a n-2 dengan a n =n Tentukan suku ke 5 deret tersebut A. 10 B. 11 C. 12 D. 13 E Terdapat tiga penjaga taman hiburan A,B, dan C. A berjaga setiap 3 hari,b berjaga setiap 4 hari dan C setiap 5 hari. Pada hari minggu mereka berjaga bersama-sama untuk yang pertama kalinya. Pada saat mereka mereka akan bekerja bersama-sama untuk kedua kalinya, A sakit sehingga tidak masuk. Pada hari apa mereka dapat berjaga bersama-sama untuk yang berikutnya. A.Senin B. Rabu C. Kamis D.Jumat E.Minggu 18. Dalam suatu pembuatan obat pada setiap menitnya suatu bahan padat mencair bagian dari bagian bahan yang mencair pada menit sebelumnya. Setelah berapa lama bahan tersebut mencair secara sempurna (benda padat menjadi benda cair) A. 1,5 jam B. Tak hingga C. 2/3 jam D. 1 jam E. 2 jam Jumlah dua bilangan bulat adalah 2, jika jumlah kebalikan dari dua bilangan tersebut adalah , berapa selisih bilangan yang terbesar dan terkecil A. 10 B. 9 C. 8 D. 7 E Jika dua persamaan kuadrat ax 2 + bx + c dan cx 2 + bx + a = 0 mempunyai akar persekutuan dengan a c, maka nilai a + b + c = a. -2 b. -1 c. 0 d. 1 e. 2

5 II.TULIS JAWABAN AKHIR DARI SOAL DIBAWAH INI Setiap jawaban yang benar mendapat nilai 2, jika salah atau kosong nilai 0 1. Pada suatu industri garmen yang mempunyai 100 karyawan, dalam waktu (2 5 )/3 jam bisa dibuat 256 buah celana jean. Bila jadwal kerja karyawan dimulai pukul sampai pukul 12.00, istirahat 1 jam, kemudian mulai bekerja lagi pukul hingga pukul 17.00, berapa kapasitas produksi celana pada perusahaan itu setiap 1 hari kerja? 2. Pada pukul 6.30 Maman berangkat ke sekolahnya, SMK Satria, naik sepeda kesayangannya. Jarak dari rumah Maman ke sekolahnya 4 km. Ia mula-mula mengendarai sepedanya dengan kecepatan rata-ratanya 6 km/jam, kemudian karena takut terlambat dia menambah kecepatan sepedanya menjadi 10 km/jam. Apabila dia sampai ke sekolahnya pukul 7.00, berapa jauhkah jarak yang dia tempuh pada kecepatan 10 km/jam. 3. Diketahui barisan bilangan a n dengan n = 1, 2, 3,, sedemikian sehingga 3a n+ 1 3an = 1 dengan a 1, tentukan a = 4. Umur Budi 2 tahun lalu adalah 2 kali lipat umur Anton. 8 tahun lagi umur Budi kali lipat Anton. Berapa umur mrk masing 20 tahun lagi? 5. Yusuf mempunyai satu bundel tiket sebuah pertunjukan untuk dijual. Pada hari sabtu ia dapat menjual 10 lembar kepada kawan-kawannya. Pada hari minggu ia dapat menjual setengah dari tiket yang tersisa. Pada hari selasa ia menjual 5 tiket kepada teman sekolahnya dan 2 tiket terakhir kepada dua orang gurunya. Berapa tiket yang ada dalam 1 bundel 6. Suatu tim kerja terdiri dari 3 siswa dipilih secara acak dari 6 siswa laki-laki dan 4 siswa perempuan. Peluang bahwa tim tersebut terdiri dari paling tidak 2 siswa perempuan adalah 2 7. Jika akar-akar persamaan kuadrat x ( k + 1) x + k + 3 = 0 mempunyai perbandingan 1:2, maka nilai k adalah

6 8. Luas suatu segitiga siku2 adalah 7cm 2. Sedangkan panjang diagonalnya adalah 6cm. Berapa keliling segitiga itu?. 9. Jika a dan b dua bilangan bulat sedemikian sehingga a² - b² = 7. Tentukan nilai a² + b² Jika 2 log3 = a, 3 log 4 = b, dan 4 2 log5 = c, maka log Sejak tahun 2009 Ahmad bekerja pada sebuah perusahaan dengan gaji awal Rp ,- setiap tahun menerima kenaikan gaji 10% dari gaji yang diterima plus Rp ,-. Berapa gaji Ahmad tahun Setelah lulusdari SMK, Monika memulai bisnisnya dengan meminjam permodalan ke Bank A dengan bunga 12% per tahun, ke bank Bank B dengan bunga 11% per tahun dan ke lembaga keuangan C dengan bunga 15% per tahun. Jumlah seluruh pinjamannya Rp ,00. Sedangkan jumlah pinjamannya ke lembaga keuangan C sebesar Rp ,00. Berapa banyaknya pinjaman Monika ke Bank A bila jumlah bunga tahunan keseluruhan pinjamannya adalah Rp ,00? 13. Tebal kue donat jika dilihat dari atas sebagai daerah yang dibatasi dua lingkaran sepusat. Panjang garis busur yang menyinggung lingkaran kecil adalah 10 cm. Tentukan luas daerah yang berarsir (antara lingkaran besar dan lingkaran kecil) 14. Suatu perusahaan farmasi memproduksi dan menjual obat. Untuk suatu jenis obat tertentu seluruh hasil produksinya dijual dengan harga Rp ,00 per unit. Biaya pembuatannya sebesar Rp ,00 per unit. Biaya tetap preusan Rp ,00 per bulan. Berapa banyak unit obat yang harus dijual per bulan agar tak terjadi kerugian dalam penjualan obat tersebut? 15. Hitung (2009) 4 (2010) 2 x (2008) 2 =...

7 III. SELESAIKAN DENGAN URAIAN LENGKAP SOAL DIBAWAH INI Setiap jawaban mendapat nilai berkisar antara Suatu SMK akan mengadakan studi tour. Panitia merencanakan akan menyewa bus, bus AC ataupun bus non AC, paling banyak 10 bus. Kapasitas tempat duduk bus, diluar tempat duduk untuk supir dan kondektur, AC 42 orang dan bus non AC 50 orang. Jumlah siswa yang ikut studi tour minimal 448 orang. Direncanakan di setiap bus ada 2 orang guru ikut sebagai pendamping. Setelah dilakukan survey diperoleh harga termurah sewa bus AC Rp ,00 dan bus non AC Rp ,00. a) Buatlah model matematika dari permasalahan tersebut. b) Tentukan himpunan penyelesaiannya c) Berapakah banyak bus AC dan bus non AC yang harus disewa agar ke 448 siswa dan guru-guru pendampingnya dapat terangkut tetapi total ongkos sewa bus seminimal mungkin?. 2. Ali menerima gaji setiap bulannya pada tanggal 1. Jika tanggal tersebut jatuh pada hari sabtu atau Minggu, maka Ia baru menerima gaji hari Senin. Tahun yang lalu yaitu tahun 2008 merupakan tahun kabisat, tanggal 1 Januari jatuh pada hari Selasa. Berapa kali Ia menerima gajinya pada hari Senin di tahun tersebut? 3. Diketahui gambar berikut ini : Tentukan luas yang diarsir jika ABCD persegi dengan sisi 3 cm

8 4. Untuk sampai ke rumah Akhmad, Anisah harus melalui rute yang mendaki, menurun dan mendatar dengan pergi-pulang melalui rute yang sama. Dia selalu berjalan dengan kecepatan 2 km/jam ketika jalannya mendaki, 6 km/jam ketika jalannya menurun, dan 3 km/jam ketika jalannya datar. Jika dalam perjalanan pergi-pulang total waktu Anisah 6 jam; berapa km total jarak yang ditempuhnya? 5. Tentukan suku konstan dari bentuk pangkat dibawah ini : 2 1 x + x 12

9 LEMBAR JAWABAN NAMA SEKOLAH NO PESERTA I. PILIHAN GANDA NO JAWABAN NO JAWABAN 1 A B C D E 11 A B C D E 2 A B C D E 12 A B C D E 3 A B C D E 13 A B C D E 4 A B C D E 14 A B C D E 5 A B C D E 15 A B C D E 6 A B C D E 16 A B C D E 7 A B C D E 17 A B C D E 8 A B C D E 18 A B C D E 9 A B C D E 19 A B C D E 10 A B C D E 20 A B C D E

10 LEMBAR JAWABAN NAMA SEKOLAH NO PESERTA II. ISIAN SINGKAT NO JAWABAN SINGKAT NO JAWABAN SINGKAT

11 LEMBAR JAWABAN NAMA SEKOLAH NO PESERTA III. URAIAN

OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009

OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 2009 OLIMPIADE SAINS TERAPAN SMK PROPINSI JAWA TENGAH 009 Mata pelajaran Matematika Teknologi Kerjasama Dengan FMIPA Universitas Diponegoro Dan Dinas Pendidikan Propinsi Jawa Tengah OLIMPIADE SAINS TERAPAN

Lebih terperinci

SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012

SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012 SOAL OSN MATEMATIKA SMP TINGKAT KABUPATEN 2012 BAGIAN A : PILIHAN GANDA SOAL 1 Pernyataan yang benar diantara pernyataan-pernyataan berikut adalah : A. {Ø} Ø D. {a,b} {a, b, {{a,b}}} B. {Ø} Ø E. {a,ø}

Lebih terperinci

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat

SOAL Babak Penyisihan Olimpiade Matematika ITS 2013 (7 th OMITS) Tingkst SMP Se-derajat SOAL Babak Penyisihan Olimpiade Matematika ITS 01 (7 th OMITS) Tingkst SMP Se-derajat SOAL PILIHAN GANDA 1) Sebuah bilangan sempurna adalah sebuah bilangan bulat yang sama dengan jumlah semua pembagi positifnya,

Lebih terperinci

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2004 SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 003 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 004 Bidang Matematika Waktu : 90 Menit DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 01 BAGIAN

Lebih terperinci

KUMPULAN SOAL-SOAL OMITS

KUMPULAN SOAL-SOAL OMITS KUMPULAN SOAL-SOAL OMITS SOAL Babak Penyisihan Olimpiade Matematika ITS 2011 (OMITS 11) Tingkst SMP Se-derajat BAGIAN I.PILIHAN GANDA 1. Berapa banyak faktor positif/pembagi dari 2011? A. 1 B. 2 C. 3 D.

Lebih terperinci

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000 Hal. 1 / 7 METHODIST-2 EDUCATION EXPO LOMBA SAINS PLUS ANTAR PELAJAR TINGKAT SMA SE-SUMATERA UTARA TAHUN 2015 BIDANG WAKTU : MATEMATIKA : 120 MENIT PETUNJUK : 1. Pilihlah jawaban yang benar dan tepat.

Lebih terperinci

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014

LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014 PETUNJUK UNTUK PESERTA 1. Tuliskan nama lengkap, kelas, asal sekolah, alamat sekolah lengkap dengan nomor telepon, faximile, email sekolah dan nama guru Matematika di tempat yang telah disediakan.. Tes

Lebih terperinci

Pola (1) (2) (3) Banyak segilima pada pola ke-15 adalah. A. 235 C. 255 B. 250 D Yang merupakan bilangan terbesar adalah. A. C. B. D.

Pola (1) (2) (3) Banyak segilima pada pola ke-15 adalah. A. 235 C. 255 B. 250 D Yang merupakan bilangan terbesar adalah. A. C. B. D. SOAL SELEKSI AWAL 1. Suhu dalam sebuah lemari es adalah 15 o C di bawah nol. Pada saat mati listrik suhu dalam lemari es meningkat 2 o C setiap 120 detik. Jika listrik mati selama 210 detik, suhu dalam

Lebih terperinci

B. 26 September 1996 D. 28 September 1996

B. 26 September 1996 D. 28 September 1996 1. Ditentukan A = {2, 3, 5, 7, 8, 11} Himpunan semesta yang mungkin adalah... A.{bilangan ganjil yang kurang dari 12} B.{bilangan asli yang kurang dari 12} C.{bilangan prima yang kurang dari 12} D.{bilangan

Lebih terperinci

LATIHAN UJIAN AKHIR SEKOLAH

LATIHAN UJIAN AKHIR SEKOLAH LATIHAN UJIAN AKHIR SEKOLAH BERSTANDAR NASIONAL MATEMATIKA WAKTU : 0 menit DEPARTEMEN PENDIDIKAN NASIONAL PETUNJUK UMUM 1. Periksa dan bacalah soal-soal sebelum menjawab.. Jawaban dikerjakan pada lembar

Lebih terperinci

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0 PETUNJUK UMUM :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 200 BIDANG MATEMATIKA TEKNOLOGI SESI II (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 20 MENIT ============================================================

Lebih terperinci

1. Tentukan nilai-nilai x yang memenuhi pertidaksamaan

1. Tentukan nilai-nilai x yang memenuhi pertidaksamaan OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA NON TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================

Lebih terperinci

PRA UJIAN NASIONAL TAHUN PELAJARAN 2015/2016. Mata Pelajaran : Matematika Hari/tanggal : Selasa, 22 Maret 2016 Waktu :

PRA UJIAN NASIONAL TAHUN PELAJARAN 2015/2016. Mata Pelajaran : Matematika Hari/tanggal : Selasa, 22 Maret 2016 Waktu : PRA UJIAN NASIONAL TAHUN PELAJARAN 2015/2016 Mata Pelajaran : Matematika Hari/tanggal : Selasa, 22 Maret 2016 Waktu : 07.30 09.30 WIB PETUNJUK UMUM: 1. Tulislah terlebih dahulu nama dan nomor tes Anda

Lebih terperinci

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama Disusun Oleh Raja Octovin P D 00 SOAL PILIHAN APRIL 008 SMA NEGERI PEKANBARU Jl Sulthan Syarif Qasim 59 Pekanbaru Bank Soal Matematika Bank Soal Matematika

Lebih terperinci

MATEMATIKA (Paket 2) Waktu : 120 Menit

MATEMATIKA (Paket 2) Waktu : 120 Menit MATEMATIKA (Paket 2) Waktu : 20 Menit (025) 77 2606 Website : Pilihlah jawaban yang paling tepat!. Hasil dari A. B. D. 8 5 8 2 2 8 2 adalah. 2. Hasil dari A. B. D. 8 adalah.. Bentuk sederhana dari A. 2

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TAHUN 014 TINGKAT KABUPATEN/KOTA Sabtu, 8 Maret 014 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH

Lebih terperinci

Soal-soal dan Pembahasan UASBN Matematika SD/MI Tahun Pelajaran 2008/2009

Soal-soal dan Pembahasan UASBN Matematika SD/MI Tahun Pelajaran 2008/2009 Soal-soal dan Pembahasan UASBN Matematika SD/MI Tahun Pelajaran 2008/2009 1. Hasil dari 635 + 175 225 =... A. 575 B. 585 C. 800 D. 900 BAB I Bilangan Penjumlahan dan pengurangan derajatnya sama, pengerjaannya

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 007

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP. 3 dari yang terkecil sampai yang terbesar.

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP. 3 dari yang terkecil sampai yang terbesar. SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 007 BIDANG MATEMATIKA SMP SOAL PILIHAN GANDA. Urutan bilangan bilangan adalah.. a. b. c. d. e., 5,, 5,,, dan, dan, dan 5, dari yang terkecil

Lebih terperinci

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI

OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 2010 BIDANG MATEMATIKA TEKNOLOGI SESI III (ISIAN SINGKAT DAN ESSAY) WAKTU : 180 MENIT ============================================================

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMP Minggu, 0 Oktober 2016 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT

Lebih terperinci

SIAP UJIAN NASIONAL (UCUN MANDIRI)

SIAP UJIAN NASIONAL (UCUN MANDIRI) PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SMP NEGERI 196 JAKARTA Jalan Mabes TNI, Pondok Ranggon, Cipayung, Jakarta Timur, Telp/Fax : 844198/021849992 SIAP UJIAN NASIONAL (UCUN

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2008 BIDANG MATEMATIKA SMP 19 APRIL 2008

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2008 BIDANG MATEMATIKA SMP 19 APRIL 2008 SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 008 BIDANG MATEMATIKA SMP 9 APRIL 008 A. SOAL PILIHAN GANDA. Jika P, Q, R adalah angka-angka dari suatu bilangan dan (00P + 0Q + R)(P + Q +

Lebih terperinci

PETUNJUK MENGERJAKAN SOAL OLIMPIADE MATEMATIKA

PETUNJUK MENGERJAKAN SOAL OLIMPIADE MATEMATIKA PETUNJUK MENGERJAKAN SOAL OLIMPIADE MATEMATIKA 1. Tes ini terdiri dari 30 soal. Waktu yang disediakan adalah 75 menit (1 jam 15 menit). 2. Anda hanya diminta menuliskan jawaban Anda pada Lembar Jawab yang

Lebih terperinci

Olimpiade Matematika Vektor 2009 se-jawa-bali. SOAL PENYISIHAN SD/MI OLIMPIADE MATEMATIKA VEKTOR UNIVERSITAS NEGERI MALANG Tahun 2009

Olimpiade Matematika Vektor 2009 se-jawa-bali. SOAL PENYISIHAN SD/MI OLIMPIADE MATEMATIKA VEKTOR UNIVERSITAS NEGERI MALANG Tahun 2009 SOAL PENYISIHAN SD/MI OLIMPIADE MATEMATIKA VEKTOR UNIVERSITAS NEGERI MALANG Tahun 009 Bagian A. PILIHLAH JAWABAN YANG TEPAT!. Bilangan pecahan berikut yang berada di antara A. 3 574 B. 574 4 3. Simplify

Lebih terperinci

Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika. Tingkat SMK se DIY

Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika. Tingkat SMK se DIY Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika Tingkat SMK se DIY Disusun oleh : DWI LESTARI, M.Sc. Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 008

Lebih terperinci

NASKAH SOAL MATEMATIKA JMSO Tingkat SD/MI 2015

NASKAH SOAL MATEMATIKA JMSO Tingkat SD/MI 2015 Pilihlah jawaban yang benar dari soal-soal berikut dengan cara menyilang abjad jawaban yang benar pada lembar jawaban kerja yang disediakan. 1. Hasil dari 5 + 6 8-3 adalah a. 50 b. 55 c. 80 d. 85 2. Berapa

Lebih terperinci

METHODIST-2 EDUCATION EXPO 2016

METHODIST-2 EDUCATION EXPO 2016 TK/SD/SMP/SMA Methodist- Medan Jalan MH Thamrin No. 96 Medan Kota - 0 T: (+66)56 58 METHODIST- EDUCATION EXPO 06 Lomba Sains Plus Antar Pelajar Tingkat SMA se-sumatera Utara NASKAH SOAL MATEMATIKA - Petunjuk

Lebih terperinci

Soal-soal dan Pembahasan UASBN Matematika SD/MI Tahun Pelajaran 2008/2009

Soal-soal dan Pembahasan UASBN Matematika SD/MI Tahun Pelajaran 2008/2009 Soal-soal dan Pembahasan UASBN Matematika SD/MI Tahun Pelajaran 2008/2009 1. Hasil dari 635 + 175 225 =... A. 575 B. 585 C. 800 D. 900 BAB I Bilangan Penjumlahan dan pengurangan derajatnya sama, pengerjaannya

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 2005

Lebih terperinci

SOAL OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN / KOTA 28 JUNI 2005

SOAL OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN / KOTA 28 JUNI 2005 SOAL OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN / KOTA 28 JUNI 2005 SOAL PILIHAN GANDA 1. 0,036 0,9 =... a. 0,002 b. 0,02 c. 0,2 d. 2 e. 20 11 13 2. Di antara bilangan-bilangan berikut, manakah yang terletak

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-25

LOMBA MATEMATIKA NASIONAL KE-25 LOMBA MATEMATIKA NASIONAL KE-25 Babak Penyisihan Tingkat SMA Minggu, 9 November 20 HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 27 BIDANG MATEMATIKA SMP A. SOAL PILIHAN GANDA. Urutan Bilangan-bilangan 2 5555, 5 2222, dan dari yang terkecil sampai yang terbesar adalah.

Lebih terperinci

MATEMATIKA (Paket 1) Waktu : 120 Menit

MATEMATIKA (Paket 1) Waktu : 120 Menit MATEMATIKA (Paket ) Waktu : 0 Menit (0) 77 0 Website : Pilihlah jawaban yang paling tepat!. Hasil dari 0 : 7 + ( ) adalah.... 0 0. Agus mempunyai sejumlah kelereng, diberikan kepada Rahmat, bagian diberikan

Lebih terperinci

KOTA - PROVINSI - NASIONAL TAHUN 2017 MATA PELAJARAN: MATEMATIKA

KOTA - PROVINSI - NASIONAL TAHUN 2017 MATA PELAJARAN: MATEMATIKA OLIMPIADE SAINS SMP/MTs TINGKAT KOTA - PROVINSI - NASIONAL TAHUN 07 MATA PELAJARAN: MATEMATIKA Mata Pelajaran : Matematika Jenjang : SMP/MTs MATA PELAJARAN PETUNJUK UMUM () Kerjakan soal ini dengan JUJUR,

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-26

LOMBA MATEMATIKA NASIONAL KE-26 LOMBA MATEMATIKA NASIONAL KE-26 Babak Penyisihan Tingkat SMP Minggu, 8 November HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III

Lebih terperinci

UJI COBA KOMPETENSI PESERTA DIDIK. Satuan Pendidikan : Sekolah Menengah Pertama (SMP) : Matematika. : 120 menit

UJI COBA KOMPETENSI PESERTA DIDIK. Satuan Pendidikan : Sekolah Menengah Pertama (SMP) : Matematika. : 120 menit PEMERINTAH PROPINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKANN MUSYAWARAH GURU MATA PELAJARAN (MGMP) MATEMATIKA SMP KOTA ADMINISTRASI JAKARTA TIMUR Sekretariat : SMPN 58, Jl. Cibubur II Ciracas Jakarta

Lebih terperinci

UJI COBA UJIAN NASIONAL SMK

UJI COBA UJIAN NASIONAL SMK UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran / AMA MATEMATIKA TEKNIK KELOMPOKTEKNOLOGI, KESEHATAN, DAN PERTANIAN (UTAMA) Mata Pelajaran Kelompok MATA PELAJARAN : MATEMATIKA : Teknologi, Kesehatan, dan Pertanian

Lebih terperinci

SOAL MATEMATIKA - SMP

SOAL MATEMATIKA - SMP SOAL MATEMATIKA - SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH PERTAMA TAHUN 009

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B29 NO SOAL PEMBAHASAN 362 = 362 = 36 = 6 3 = 216. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B29 NO SOAL PEMBAHASAN 362 = 362 = 36 = 6 3 = 216. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B9 NO SOAL PEMBAHASAN Hasil dari 6 adalah... A. 48. a = a a a B. 7. = C. 08. = D. 6 6 = 6 = 6 = 6 = 6 Hasil dari 6 8 adalah... A. 6 B. 4 C. 4 D. 4 6 4 Hasil dari

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Rabu, 20 Nopember 2013 : 120 menit : 40 Pilihan Ganda 1D Petunjuk :

Lebih terperinci

01. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah... (A) 78 cm (B) 52 cm (C) 26 cm (D) 13 cm

01. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah... (A) 78 cm (B) 52 cm (C) 26 cm (D) 13 cm 0. Perhatikan persegi panjang ABCD di bawah ini. Jika OA = 26 cm, maka panjang BO adalah.... (A) 78 cm (B) 52 cm (C) 26 cm (D) 3 cm 02. Bangun di bawah ini merupakan bangun yang memiliki simetri putar

Lebih terperinci

LOMBA MATEMATIKA NASIONAL KE-27

LOMBA MATEMATIKA NASIONAL KE-27 LOMBA MATEMATIKA NASIONAL KE-27 Babak Penyisihan Tingkat SMA Minggu, 0 Oktober HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR

Lebih terperinci

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006 OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat, maka salah satu

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN SEMARANG SMP NEGERI SATU ATAP AMBARAWA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 2011/2012

DINAS PENDIDIKAN KABUPATEN SEMARANG SMP NEGERI SATU ATAP AMBARAWA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 DOKUMEN SEKOLAH SANGAT RAHASIA PAKET A KODE SOAL : DINAS PENDIDIKAN KABUPATEN SEMARANG SMP NEGERI SATU ATAP AMBARAWA LATIHAN UJIAN NASIONAL TAHUN PELAJARAN 0/0 LEMBAR SOAL Mata Pelajaran : Matematika Hari,

Lebih terperinci

=============================================================

============================================================= OLIMPIADE SAINS TERAPAN NASIONAL SEKOLAH MENENGAH KEJURUAN TINGKAT PROPINSI JAWA TENGAH 00 BIDANG MATEMATIKA NON TEKNOLOGI SESI II (PILIHAN GANDA DAN ISIAN SINGKAT) WAKTU : 0 MENIT ============================================================

Lebih terperinci

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI HAK CIPTA DILINDUNGI UNDANG-UNDANG SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI BIDANG MATEMATIKA Waktu : 210 menit KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL

Lebih terperinci

SIMAK UI 2015 Matematika Dasar

SIMAK UI 2015 Matematika Dasar SIMAK UI 015 Matematika Dasar Soal Doc. Name: SIMAKUI015MATDAS999 Version: 016-05 halaman 1 01. Pernyataan berikut yang BENAR mengenai perkalian matriks (A) Jika A dan B adalah matriks persegi, maka (A+B)(A

Lebih terperinci

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA

SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 2015 BIDANG MATEMATIKA SOLUSI SOAL OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT PROPINSI TAHUN 015 BIDANG MATEMATIKA BAGIAN A: SOAL ISIAN SINGKAT 1. Banyak faktor persekutuan dari 1515 dan 530 yang merupakan bilangan genap positip

Lebih terperinci

SOAL MATEMATIKA SMP OLIMPIADE SAINS NASIONAL

SOAL MATEMATIKA SMP OLIMPIADE SAINS NASIONAL SOAL MATEMATIKA SMP OLIMPIADE SAINS NASIONAL TINGKAT KABUPATEN/KOTA Sabtu, 9 Maret 2013 KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DIREKTORAT PEMBINAAN SEKOLAH MENENGAH

Lebih terperinci

(a) 32 (b) 36 (c) 40 (d) 44

(a) 32 (b) 36 (c) 40 (d) 44 Halaman:. Jika n = 8, maka n0 n bernilai... (a) kurang dari 00 (b) (d) lebih dari 00. Penumpang suatu pesawat terdiri dari anak-anak dari berbagai negara, 6 orang dari Indonesia yang termasuk dari anak-anak

Lebih terperinci

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E.

1. Diketahui fungsi : f mempunyai sifat f x 1 1 f x untuk setiap x. Jika f 2. 2, maka nilai fungsi f B. 2 C. 3 D E. f x f mempunyai sifat f x f x untuk setiap x. Jika f, maka nilai fungsi f 06. Diketahui fungsi : 06 06. Perhatikan gambar berikut ini! Berapakah ukuran luas daerah yang diarsir jika diketahui ukuran luas

Lebih terperinci

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 2006

OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 2006 OLIMPIADE SAINS NASIONAL SMP SELEKSI TINGKAT KABUPATEN-KOTA TAHUN 00 SOAL PILIHAN GANDA. Jumlah dua bilangan bulat yang berbeda adalah 4. Jika hasil bagi kedua bilangan tersebut adalah juga bilangan bulat,

Lebih terperinci

Hak Cipta 2014 Penerbit Erlangga

Hak Cipta 2014 Penerbit Erlangga 003-300-011-0 Hak Cipta 2014 Penerbit Erlangga Berilah tanda silang (X) pada huruf A, B, C, atau D pada jawaban yang benar! 1. Nilai dari 20 + 10 ( 5) ( 20) : 10 adalah.... A. 7 C. 68 B. 5 D. 72 2. Dea

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Rabu,20 Nopember 2013 : 0 menit : 40 Pilihan Ganda 1A Petunjuk : 1.

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Rabu,20 Nopember 2013 : 0 menit : 40 Pilihan Ganda 1E Petunjuk : 1.

Lebih terperinci

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO

KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO KUMPULAN SOAL OSP MATEMATIKA SMP PEMBINAAN GURU OLIMPIADE DISUSUN: DODDY FERYANTO DIURUTKAN BERDASARKAN TAHUN DAN DIKUMPULKAN BERDASARKAN TOPIK MATERI BILANGAN 2011 1. Jika x adalah jumlah 99 bilangan

Lebih terperinci

TRY OUT UJIAN NASIONAL. MATEMATIKA (C-19) SMP/MTs (UTAMA) P19 DINAS PENDIDIKAN PROPINSI KALIMANTAN SELATAN

TRY OUT UJIAN NASIONAL. MATEMATIKA (C-19) SMP/MTs (UTAMA) P19 DINAS PENDIDIKAN PROPINSI KALIMANTAN SELATAN TRY OUT UJIAN NASIONAL P19 MATEMATIKA (C-19) SMP/MTs (UTAMA) DINAS PENDIDIKAN PROPINSI KALIMANTAN SELATAN DOKUMEN NEGARA SANGAT RAHASIA Mata Pelajaran Jenjang : Matematika : SMP/MTs MATA PELAJARAN Hari

Lebih terperinci

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5 Soal Babak Penyisihan OMITS 011 BAGIAN I. PILIHAN GANDA 1. Hasil kali sebarang bilangan rasional dengan sebarang bilangan irasional selalu merupakan anggota dari himpunan bilangan A. Bulat B. Asli C. Rasional

Lebih terperinci

UN SMP 2014 MATEMATIKA

UN SMP 2014 MATEMATIKA UN SMP 2014 MATEMATIKA Latihan soal : Persiapan UN SMP Matematika Doc. Name: UNSMP2014MAT999 Doc. Version : 2014-02 halaman 1 1 01. Tini memiliki persediaan terigu 2 kg, 1 6 kemudian ia membeli lagi 3

Lebih terperinci

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a

2.1 Soal Matematika Dasar UM UGM c. 1 d d. 3a + b. e. 3a + b. e. b + a b a Soal - Soal UM UGM. Soal Matematika Dasar UM UGM 00. Jika x = 3 maka + 3 log 4 x =... a. b. c. d. e.. Jika x+y log = a dan x y log 8 = b dengan 0 < y < x maka 4 log (x y ) =... a. a + 3b ab b. a + b ab

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 MataPelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 MataPelajaran Hari,Tanggal Waktu Jumlah Soal TOKMATC4 UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 0/04 MataPelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Rabu, 0 Nopember 04 : 0 menit : 40 Pilihan Ganda C Petunjuk :. Isikan

Lebih terperinci

PREDIKSI UN MATEMATIKA SMP

PREDIKSI UN MATEMATIKA SMP [Type text] MGMP MATEMATIKA SMPN SATU ATAP KAB. MALANG PREDIKSI UN MATEMATIKA SMP Sesuai kisi-kisi UN 0 plus Marsudi Prahoro 0 [Type text] Page M G M P M A T S A T A P M A L A N G. W O R D P R E S S. C

Lebih terperinci

A. LATIHAN SOAL UNTUK KELAS 9A

A. LATIHAN SOAL UNTUK KELAS 9A A. LATIHAN SOAL UNTUK KELAS 9A. Hasil dari 5 ( 6) + 24 : 2 ( 3) =... A. -5 B. -6. 0 D. 6 2. Hasil dari 2 : 75% + 8,75 =... A. 4 B. 5. 6 D. 7 3. Uang Irna sama dengan 2 3 uang Tuti. Jika jumlah uang mereka

Lebih terperinci

2. Masing-masing angka 5,6,7,8, dan 9 akan ditempatkan tepat satu-satu ke sebuah kotak dalam diagram berikut :

2. Masing-masing angka 5,6,7,8, dan 9 akan ditempatkan tepat satu-satu ke sebuah kotak dalam diagram berikut : SOAL PENYISIHAN OMITS 2011 I. PILIHAN GANDA 1. Babak final lomba renang gaya dada 100 m putera diikuti oleh 4 perenang, yaitu Wawan, Satria, Kresna dan Paul. Pemenang pertama, kedua dan ketiga memperoleh

Lebih terperinci

UJIAN SEKOLAH TAHUN PELAJARAN 2016/2017

UJIAN SEKOLAH TAHUN PELAJARAN 2016/2017 PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA NEGERI 199 Jl.Arabika 8 Blok AC.3 Pondok Kopi, Duren Sawit, Jakarta Timur UJIAN SEKOLAH TAHUN PELAJARAN 2016/2017

Lebih terperinci

4. Sebuah toko perlengkapan olahraga menyebarkan brosur sebagai berikut :

4. Sebuah toko perlengkapan olahraga menyebarkan brosur sebagai berikut : 1. Jika 3x2006 = 2005+2007+a, maka a sama dengan A) 2003 B) 2004 C) 2005 D) 2006 2. Berapa angka terbesar yang mungkin didapat dari kombinasi susunan enam kartu angka di bawah ini? A) 6 475 413 092 B)

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O. BOX BLS 2 YOGYAKARTA5528 lmnas@ugm.ac.id http://lmnas.fmipa.ugm.ac.id

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C37 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C37 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : C7 SMP N Kalibagor NO SOAL PEMBAHASAN Hasil dari 5 + ( : ) adalah... Urutan pengerjaan operasi hitung A. 9 Operasi hitung Urutan pengerjaan B. Dalam kurung C. 9 Pangkat

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : D45 NO SOAL PEMBAHASAN 5 Hasil dari 8 adalah... 5. a = a a a a a A. 0 B. 5. = C.. = D. 64 Hasil dari 8 adalah... A. 6 B. 8 C. 6 D. 4 6 4 Hasil dari 7 ( ( 8)) adalah...

Lebih terperinci

UJICOBA UJIAN NASIONAL MATA PELAJARAN : MATEMATIKA Hari Tanggal : 2012

UJICOBA UJIAN NASIONAL MATA PELAJARAN : MATEMATIKA Hari Tanggal : 2012 UJIOBA UJIAN NASIONAL MATA PELAJARAN : MATEMATIKA Hari Tanggal : 0 Waktu : 0 Menit Jenjang : SMP/MTS Petunjuk : Berikanlah tanda () pada salah satu huru a, b, c atau d pada jawaban yang benar.. Hasil dari

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2013 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM MATA PELAJARAN Mata Pelajaran : Matematika PELAKSANAAN Hari/Tanggal : Selasa, 8 November 008 Jam :.0 7.0 PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional (LJUN) yang tersedia

Lebih terperinci

NO SOAL PEMBAHASAN 1

NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : C7 NO SOAL PEMBAHASAN Hasil dari 5 + ( : ) adalah... Urutan pengerjaan operasi hitung A. 9 Operasi hitung Urutan pengerjaan B. Dalam kurung C. 9 Pangkat ; Akar D.

Lebih terperinci

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2

M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2 SISTEM PERSAMAAN LINEAR M. PRAHASTOMI M. S. 0. MD-8-8 B C G E F A D H 6 7 8 6 Jika gradien garis AB = m, gradien garis CD = m, gradien garis EF = m dan gradien garis GH = m, maka... () m = () m = 0 ()

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B5 SMP N Kalibagor Hasil dari 7 ( ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. 7 Pangkat ; Akar D.

Lebih terperinci

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1 1. Diketahui : A = { m, a, d, i, u, n } dan B = { m, e, n, a, d, o } Diagram Venn dari kedua himpunan di atas adalah... D. A B = {m, n, a, d} 2. Jika P = bilangan prima yang kurang dari Q = bilangan ganjil

Lebih terperinci

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Akt, Pjl Hari/Tanggal : S Prog. Keahlian : Akt, Pjl W a k t u : S

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Akt, Pjl Hari/Tanggal : S Prog. Keahlian : Akt, Pjl W a k t u : S Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Akt, Pjl Hari/Tanggal : S Prog. Keahlian : Akt, Pjl W a k t u : S PETUNJUK UMUM :. Isikan identitas Anda ke dalam Lembar Jawaban Komputer yang

Lebih terperinci

C. { 0, 1, 2, 3, 4 } D. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

C. { 0, 1, 2, 3, 4 } D. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } 1. Himpunan penyelesaian dari 2x - 3 7, x { bilangan cacah }, adalah... A. { 0, 1, 2 } B. { 0, 1, 2, 3, 4, 5 } 2x - 3 7, x {bilangan cacah} 2x 7 + 3 2x 10 x 5 Hp : { 0, 1, 2, 3, 4, 5 } C. { 0, 1, 2, 3,

Lebih terperinci

2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi , yaitu. c. 1 d.

2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi , yaitu. c. 1 d. Halaman: 1 1. Akar pangkat empat dari 4 adalah a. 4 b. 4 c. 4 d. 4 2. Di antara bilangan-bilangan berikut, hanya ada satu yang habis membagi 100 000 064, yaitu a. 10404 b. 10408 c. 10804 d. 10808 3. Banyaknya

Lebih terperinci

Menggunakan Pengukuran Waktu, Sudut, Jarak, dan Kecepatan dalam Pemecahan Masalah

Menggunakan Pengukuran Waktu, Sudut, Jarak, dan Kecepatan dalam Pemecahan Masalah Bab Menggunakan Pengukuran Waktu, Sudut, Jarak, dan Kecepatan dalam Pemecahan Masalah Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan siswa dapat: 1. menuliskan tanda waktu dengan notasi 1

Lebih terperinci

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 MATEMATIKA SMA/MA PETUNJUK UNTUK PESERTA: 1. Tes terdiri dari dua bagian. Tes bagian pertama terdiri dari 20 soal isian singkat dan

Lebih terperinci

NO SOAL PEMBAHASAN 1

NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : B5 1 Hasil dari 17 (3 ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 41 Dalam kurung 1 C. 7 Pangkat ; Akar D. 41 Kali

Lebih terperinci

UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 2004/2005

UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 2004/2005 UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 004/005 Mata Pelajaran : MATEMATIKA Hari/Tanggal : RABU, 8 JUNI 005 Waktu : 0 MENIT PETUNJUK UMUM. Periksa dan bacalah soal-soal sebelum kamu menjawab. Tulis nomor

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 2002

MATEMATIKA EBTANAS TAHUN 2002 MATEMATIKA EBTANAS TAHUN UAN-SMP-- Notasi pembentukan himpunan dari B = {, 4, 9} adalah A. B = { kuadrat tiga bilangan asli yang pertama} B = { bilangan tersusun yang kurang dari } C. B = { kelipatan bilangan

Lebih terperinci

C. B dan C B. A dan D

C. B dan C B. A dan D 1. Perhatikan Himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = {x < x 11, x bilangan ganjil} C = {semua faktor dari 12} D = {bilangan genap antara 2 dan 14} Himpunan di atas yang ekuivalen

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Selasa, 11 Maret 2014 : 120 menit : 40 Soal 2B Petunjuk : 1. Isikan

Lebih terperinci

TRY OUT MATEMATIKA SMP - 02

TRY OUT MATEMATIKA SMP - 02 1. Dalam suatu kelas terdapat 25 anak gemar melukis, 21 anak gemar menyanyi, serta 14 anak gemar melukis dan menyanyi, maka jumlah siswa dalam kelas tersebut adalah a. 60 anak b. 46 anak c. 32 anak d.

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 1993

MATEMATIKA EBTANAS TAHUN 1993 MATEMATIKA EBTANAS TAHUN 99 EBT-SMP-9-0 Ditentukan A = {v, o, k, a, l} ; B = {a, i, u, e, o} Diagram yang menyatakan hal tersebut di atas A. B. v o u v o i a k u k l I l a e v o u v o u a k a k l e l i

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 7/8 PANDUAN MATERI MATEMATIKA Kelompok Seni, Pariwisata, Teknologi Kerumahtanggan, Pekerjaan Sosial dan Administrasi Perkantoran PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS

Lebih terperinci

Kompetisi Sains Madrasah 2015 Tingkat Propinsi-Madrasah Tsanawiyah-Matematika NASKAH SOAL BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH TSANAWIYAH

Kompetisi Sains Madrasah 2015 Tingkat Propinsi-Madrasah Tsanawiyah-Matematika NASKAH SOAL BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH TSANAWIYAH Nama : Sekolah : Kab / Kota : Propinsi : NASKAH SOAL BIDANG STUDI : MATEMATIKA TINGKAT : MADRASAH TSANAWIYAH SELEKSI TINGKAT PROPINSI KOMPETISI SAINS MADRASAH TAHUN 2015 Halaman 1 dari 9 halaman Petunjuk

Lebih terperinci

= 100 km/jam [1] 0,1 jam. Jawab: Berdasarkan kesebangunan ABE dengan ACD didapat hubungan CD EB = AB AC [1.5] AC = 4 AB

= 100 km/jam [1] 0,1 jam. Jawab: Berdasarkan kesebangunan ABE dengan ACD didapat hubungan CD EB = AB AC [1.5] AC = 4 AB SOAL URAIAN 1. Karena macet, pada 10 km pertama dari jarak 0 km yang harus dilaluinya, Amir terpaksa mengendarai sepeda motornya dengan kecepatan km/jam. Berapakah kecepatan rata-rata Amir 10 km berikutnya

Lebih terperinci

PREDIKSI UN MATEMATIKA SMP

PREDIKSI UN MATEMATIKA SMP MGMP MATEMATIKA SMPN SATU ATAP KAB. MALANG PREDIKSI UN MATEMATIKA SMP Sesuai kisi-kisi UN 2012 plus Pembahasan Marsudi Prahoro 2012 M G M P M A T S A T A P M A L A N G. W O R D P R E S S. C O M 1. Menyelesaikan

Lebih terperinci

D. 18 anak Kunci : C Penyelesaian : Gambarkan dalam bentuk diagram Venn seperti gambar di bawah ini :

D. 18 anak Kunci : C Penyelesaian : Gambarkan dalam bentuk diagram Venn seperti gambar di bawah ini : 1. Dalam suatu kelas terdapat 25 anak gemar melukis, 21 anak gemar menyanyi, serta 14 anak gemar melukis dan menyanyi, maka jumlah siswa dalam kelas tersebut adalah... A. 60 anak C. 32 anak B. 46 anak

Lebih terperinci

Soal Babak Penyisihan OMITS 2008

Soal Babak Penyisihan OMITS 2008 Soal Babak Penyisihan OMITS 008. Banyak pembagi positif dari.50.000 adalah..... a. 05 b. 0 c. 75 d. 0 e.5. Jari-jari masing-masing lingkaran adalah 5 cm. Tentukan panjang busur ketiga lingkaran tersebut.....

Lebih terperinci

UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 PAKET 01 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA)

UJI COBA UJIAN NASIONAL SMK. Tahun Pelajaran 2014 / 2015 PAKET 01 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA) UJI COBA UJIAN NASIONAL SMK Tahun Pelajaran 04 / 0 PAKET 0 MATEMATIKA NON TEKNIK KELOMPOK AKUNTANSI DAN PENJUALAN (UTAMA) A Mata Pelajaran Kelompok : MATEMATIKA : Akuntansi dan Penjualan MATA PELAJARAN

Lebih terperinci