DIKTAT KULIAH RADAR DAN NAVIGASI

Ukuran: px
Mulai penontonan dengan halaman:

Download "DIKTAT KULIAH RADAR DAN NAVIGASI"

Transkripsi

1 DIKTAT KULIAH RADAR DAN NAVIGASI Disusun Oleh Wahyu Pamungkas,ST.MT Akademi Teknik Telekomunikasi Sandhy Putra 011

2 DIKTAT KULIAH RADAR & NAVIGASI A. ELEMENTARY CONCEPTS Radar merupakan nama dari sebuah sistem elektronis yang digunakan untuk pendeteksian lokasi dari sebuah obyek. Dalam teknologi radar maka selanjutnya obyek radar akan diberi nama target. Kata radar itu sendiri merupakan sebuah akronim dari radio detection and ranging. Pada awalnya radar muncul dengan berbagai nama di dunia sebelum distandarisasi oleh ITU menjadi Radar seperti sekarang. Fungsi dari sebuah radar sangat erat hubunganya dengan sifat dari gelombang elektromagnetis yang bersinggungan dengan obyek fisik (target). Semua teknologi radar pada awalnya menggunakan gelombang radio sebagai media transmisinya, namun seiring dengan perkembangan jaman media transmisi yang dikembangkan berbentuk fiber optics atau laser. Teknologi Radar dipelopori oleh penemuan Maxwell pada tahun 1865 yang meneliti tentang karakteristik perambatan gelombang elektromagnetik dan selanjutnya dikembangkan oleh percobaan Hertz pada tahun Inti dari pengembangan konsep Maxwell tersebut adalah gelombang radio dapat dipantulkan oleh suatu obyek yang berbentuk fisik. Inilah yang selanjutnya dikembangkan menjadi sebuah aplikasi Radar di mana fungsinya dengan mendeteksi keberadaan sinyal pantul, Radar dapat menentukan di mana obyek (target) radar berada. Bentuk Radar pertama kali dikembangkan pada kurun waktu 190 sd 195 yang sudah bisa mendeteksi jarak target di samping fungsi utamanya adalah mendeteksi keberadaan target tersebut. Pada tahun 195 Brief dan Tuve (196) pertama kali mengaplikasikan metode Pulse-Wave yang sampai sekarang digunakan sebagai pengembangan radar modern. Selanjutnya dengan adanya perang dunia II perkembangan radar semakin cepat berkembang dan sampai sekarang penggunaanya banyak dirasakan manfaatnya. B. FUNDAMENTAL ELEMENTS OF RADAR Pada saat sekarang ini Radar berkembang dengan berbagai macam bentuk, fungsi dan type dari targetnya. Gambar di bawah ini akan sangat membantu mempelajari struktur / bagian penting radar sebelum mempelajarinya secara detail.

3 Antenna Tx S (t) R1 Target R3 Rx Sr (t) R Antenna Medium Blok diagram fungsi radar Blok diagram di atas merupakan blok diagram yang paling umum yang digunakan segala jenis radar. Bagian pentingnya terdiri dari transmitter (Tx) yang dihubungkan dengan antena yang akan mengirimkan gelombang elektromagnetik ke arah target, Receiver (Rx) yang dihubungkan dengan sebuah antena penerima yang akan menerima semua gelombang hasil pantulan dari target radar Pada blok diagram di atas, sebuah persamaan sinyal s (t) dihasilkan pada bagian output terminal dari transmitter. Antena akan mengkonversi sinyal tersebut dan mengarahkan sinyal radio menuju ke arah target. Sinyal yang menuju ke target dengan kecepatan 3 x 10 8 m /dt akhirnya akan menabrak target dan berdasarkan sifat dan karakteristik target radar sebagian sinyal tersebut dipantulkan kembali menuju ke arah antena penerima radar. Pantulan sinyal yang menuju ke antena penerima radar mempunyai bentuk dan persamaan yang berbeda dengan persamaan sinyal asal. Persamaan sinyal hasil pantulan, sr (t) selanjutnya diterima antena penerima radar dan dikonversikan menjadi sinyal elektronis sebelum diteruskan ke bagian penerima. Bagian penerima radar selanjutnya menganalisis persamaan sinyal sr (t) sehingga selanjutnya dapat menganalisa di mana keberadaan dan jarak dari target radar yang dimaksud.

4 I. TYPE RADAR Secara umum, blok pemancar sinyal radar dan penerima sinyal radar dapat berada pada satu lokasi. Jenis radar seperti ini di mana jarak antara pemancar dan penerima radar adalah 0 ( R3 = 0 ) dinamakan Bistatic Radar. Sedangkan jika R1 = R dan R3 = 0, antena yang digunakan hanya satu, yaitu untuk bagian transmit dan receive sinyal maka radar demikian dinamakan Monostatic Radar. Untuk radar jenis sekarang yang banyak dipakai, dapat mempunyai satu atau lebih bagian pengirim (transmitter) demikian juga dengan bagian penerima (receiver) sehingga radar jenis ini dinamakan dengan Multistatic Radar. Type radar juga dapat dibedakan dari jenis modulasi dan jenis gelombang yang dipakai, Sebuah sinyal dengan sifat continues (continues wave / cw) yang ditransmisikan dari bagian pemancar radar biasanya menggunakan amplitudo yang konstan sehingga type modulasi yang digunakan adalah FM. Ketika jenis modulasi yang digunakan adalah berbentuk pulsa (dengan jenis modulasi FM) maka radar demikian dinamakan dengan Radar Pulsa. Sedangkan di bagian type yang lain, sebuah radar yang memiliki bagian pemancar dinamakan Active Radar dan yang tidak memiliki bagian pemancar dinamakan Passive Radar. Pada pembahasan selanjutnya, segala perhitungan akan berdasarkan type Monostatic Pulsed Radar yang akan dipakai sebagai referensi, mengingat dengan menggunakan sistem monostatic radar sistem perhitungan akan menjadi lebih sederhana. II. FUNGSI RADAR Secara umum radar menjalankan 3 fungsi utama yaitu: Resolution Merupakan fungsi radar untuk dapat memisahkan satu sinyal yang diinginkan dari beberapa sinyal hasil pantulan yang masuk ke bagian penerima dan fungsi radar untuk dapat memisahkan sinyal dari noise yang masuk ke bagian penerima. Idealnya seberapa dekat atau jauh target radar, kecermatan pendeteksian harus tetap diperhatikan. Prinsipnya, semakin lebar bandwidth sinyal yang disediakan maka akan semakin baik parameter resolusi, semakin jauh target radar maka dibutuhkan frekuensi kerja radar yang semakin tinggi dan semakin kecil main lobe dari antena maka pendeteksian posisi target akan semakin cermat.

5 Deteksi Fungsi deteksi radar meliputi pendeteksian sinyal pantul dari target radar yang diinginkan. Namun biasanya sinyal hasil pantulan akan bercampur dengan berbagai macam sinyal yang tidak diinginkan seperti sinyal hasil gema ( pantulan dari target lain) dan noise. Noise dapat dikurangi dengan design penerima radar yang baik dan menggunakan sinyal transmisi dengan energi bit yang besar. Sinyal yang tidak diinginkan biasanya dapat diatasi dengan menggunakan filter dan signal processing methods. Pengukuran Merupakan fungsi radar yang sebenarnya melekat pada akronim Radar itu sendiri. Pada fungsi pengukuran, yang terpenting diketahui adalah kemampuan radar mengukur parameter pengukuran tertentu seperti posisi target dalam 3 dimensi, velocity vector (kecepatan target dalam 3 dimensi / koordinat), angular direction, vector angular velocity ( besarnya sudut dalam dimensi). JENIS TARGET RADAR Jenis target radar sangat bervariatif dan bermacam-macam definisinya. Definisi paling sederhana yang biasanya dipakai adalah point target. Point targer adalah jenis target radar yang mempunyai bentuk fisik yang cukup besar namun jika dibandingkan dengan jarak antara Tx dan target akan menjadi relatif kecil. Contoh dari point target ini adalah pesawat terbang, kapal laut, manusia, binatang atau satelit. Point target radar seperti di atas tidak akan menyebabkan penyebaran pulsa ketika proses pendeteksian pada sisi Rx. Jenis target radar yang lainya yang menyebabkan penyebaran pulsa dalam tahap pendeteksian adalah extended targets. Extended targets selain menyebabkan penyebaran pulsa pada pendeteksian juga akan menyebabkan redaman yang tinggi pada sinyal yang dipantulkan oleh mereka. Contoh extended target ini adalah gedung bertingkat, bangunan yg tinggi, menara dll. Bentuk target radar dalam dua dimensi ( still target ) dinamakan dengan

6 1. Elemen-elemen dasar dari Radar Pada saat sekarang ini, radar berkembang dengan berbagai macam bentuk, fungsi dan tipe dari targetnya. Gambar berikut ini akan sangat membantu dalam mempelajari struktur/ bagian penting radar sebelum mempelajarinya secara mendetail. Antenna Tx S (t) R1 Target Sr (t) R3 Rx R Antena Medium (channel) Gambar.1 Blok Diagram Radar Blok diagram tersebut merupakan blok digram yang paling umum yang digunakan segala jenis radar. Bagian pentingnya terdiri dari transmitter (Tx) yang dihubungkan dengan antena transmitting yang akan mengirimkan gelombang elektromagnetik ke arah target, receiver (Rx) yang dihubungkan dengan sebuah antena receiving yang akan menerima gelombang hasil pantulan dari target radar. Pada blok diagram tersebut, sebuah persamaan sinyal s(t) dihasilkan pada bagian output terminal dari transmitter. Antena akan mengkonversi sinyal tersebut dan mengarahkan sinyal radio menuju ke arah target. Sinyal yang menuju ke target dengan kecepatan 3 x 10 8 m/s akhirnya akan menabrak target dan berdasarkan sifat dan karakteristik target radar sebagian sinyal tersebut dipantulkan kembali menuju ke arah antena penerima radar. Pantulan sinyal yang menuju ke antena penerima radar mempunyai bentuk dan persamaan yang berbeda dengan persamaan sinyal asal.

7 Persamaan sinyal hasil pantulan, sr (t) selanjutnya diterima antena penerima radar dan dikonversikan menjadi sinyal elektronis sebelum diteruskan ke bagian penerima. Bagian penerima radar selanjutnya menganalisis persamaan sinyal sr (t) sehingga selanjutnya dapat menganalisa dimana keberadaan dan jarak dari target radar yang dimaksud. a. Tipe Radar Secara umum, blok pemancar sinyal radar dan penerima sinyal radar dapat berada pada satu lokasi. Jenis radar seperti ini di mana jarak antara pemancar dan penerima radar adalah 0 ( R3 = 0 ) dinamakan Bistatic Radar. Sedangkan jika R1 = R dan R3 = 0, antena yang digunakan hanya satu, yaitu untuk bagian transmit dan receive sinyal maka radar demikian dinamakan Monostatic Radar. Untuk radar jenis sekarang yang banyak dipakai, dapat mempunyai satu atau lebih bagian pengirim (transmitter) demikian juga dengan bagian penerima (receiver) sehingga radar jenis ini dinamakan dengan Multistatic Radar. Tipe radar juga dapat dibedakan dari jenis modulasi dan jenis gelombang yang dipakai, Sebuah sinyal dengan sifat continuous (continuous wave / cw) yang ditransmisikan dari bagian pemancar radar biasanya menggunakan amplitudo yang konstan sehingga tipe modulasi yang digunakan adalah FM. Ketika jenis modulasi yang digunakan adalah berbentuk pulsa (dengan jenis modulasi FM) maka radar demikian dinamakan dengan radar pulsa. Sedangkan di bagian tipe yang lain, sebuah radar yang memiliki bagian pemancar dinamakan active radar dan yang tidak memiliki bagian pemancar dinamakan passive radar. b. Tipe dari Target Radar Target radar yang dapat ditangkap banyak sekali jenis dan variasinya. Target radar tersebut dapat dikategorikan menjadi: 1) Point Target Merupakan jenis target radar yang mempunyai ukuran besar dan bila dikenai sinyal elektromagnetis tidak menyebabkan penyebaran pulsa pada sinyal pantulnya. Contoh target radar ini adalah pesawat terbang, kapal kecil, satelit, manusia dan binatang, mobil dan lain-lain.

8 ) Extended Target Merupakan target radar yang mempunyai ukuran yang lebih besar dari point target dan menyebabkan penyebaran pulsa pada sinyal hasil pantulannya. Contoh target radar ini adalah gedung bertingkat, kapal, menara, mercusuar dan lain-lain. 3) Distributed Target Merupakan target radar yang berbentuk image dua dimensi dan tidak bergerak dari tempat asalnya. Distributed target dibagi menjadi dua yaitu area target dan volume target. Contoh dari area target adalah hutan, lautan, sawah dan gunung. Sedangkan untuk volume target contohnya adalah hujan, salju, hujan es, awan, kabut dan asap. 4) Moving Target Merupakan target radar yang jaraknya selalu relatif terhadap Tx/ Rx radar selain kategori dari volume target. Target radar yang berpindah dengan kecepatan tertentu ini akan mengakibatkan suatu efek yang disebut sebagai efek doppler. c. Fungsi Radar Secara umum radar menjalankan 3 fungsi utama yaitu: 1) Resolution Merupakan fungsi radar untuk dapat memisahkan satu sinyal yang diinginkan dari beberapa sinyal hasil pantulan yang masuk ke bagian penerima dan fungsi radar untuk dapat memisahkan sinyal dari noise yang masuk ke bagian penerima. Idealnya seberapa dekat atau jauh target radar, kecermatan pendeteksian harus tetap diperhatikan. Prinsipnya, semakin lebar bandwidth sinyal yang disediakan maka akan semakin baik parameter resolusi, semakin jauh target radar maka dibutuhkan frekuensi kerja radar yang semakin tinggi dan semakin kecil main lobe dari antena maka pendeteksian posisi target akan semakin cermat. ) Deteksi Fungsi deteksi radar meliputi pendeteksian sinyal pantul dari target radar yang diinginkan. Namun biasanya sinyal hasil pantulan akan bercampur dengan berbagai macam sinyal yang tidak diinginkan seperti sinyal hasil gema (pantulan dari target lain) dan noise. Noise dapat dikurangi dengan design penerima radar yang baik dan menggunakan sinyal transmisi dengan energi bit yang besar. Sinyal yang tidak diinginkan biasanya dapat diatasi dengan menggunakan filter dan signal processing methods.

9 3) Pengukuran Merupakan fungsi radar yang sebenarnya melekat pada akronim Radar itu sendiri. Pada fungsi pengukuran, yang terpenting diketahui adalah kemampuan radar mengukur parameter pengukuran tertentu seperti posisi target dalam 3 dimensi, velocity vector (kecepatan target dalam 3 dimensi / koordinat), angular direction, vector angular velocity ( besarnya sudut dalam dimensi). Selain ketiga fungsi tersebut, radar juga dapat dimanfaatkan untuk bermacammacam keperluan antara lain sebagai alat bantu dalam pelayaran, untuk keperluan dalam dunia penerbangan dan untuk keperluan militer. Manfaat radar dalam dunia penerbangan dan kelautan, antara lain: 1) Peralatan radar pada pesawat udara dapat memberikan informasi-informasi tentang keadaan permukaan bumi, walaupun dalam keadaan gelap. ) Peralatan radar dalam kapal laut dapat memberikan informasi tentang letak dari kapal-kapal laut yang lain, bukit, tanah dan sebagainya. 3) Memberikan informasi pada pilot-pilot pesawat udara dan nakhoda kapal laut mengenai posisi mereka yang tepat pada setiap saat. 4) Membantu pilot pesawat udara dalam melakukan pendaratan. 5) Memungkinkan pesawat udara mengetahui ketinggiannya di atas permukaan bumi. Manfaat radar dalam bidang militer, yaitu: 1) Membantu pengarahan senjata-senjata di darat terhadap sasaran-sasaran di laut dan udara. ) Menentukan posisi sasaran di permukaan bumi untuk pemboman dari pesawat udara. 3) Menentukan posisi pesawat atau sasaran yang bergerak bagi pesawat pemburu. 4) Menuntun arah peluru-peluru kendali dari permukaan bumi, kapal laut ataupun dari pesawat udara.

10 B. Radar Basic Equation Antenna Tx S (t) R1 Target R3 Rx S r (t) R Antena Medium Gambar. Blok Diagram Radar Jika suatu blok pemancar radar memancarkan sinyal dengan daya rata-rata puncak adalah P(t), daya rata-rata ini akan menuju ke bagian antena untuk dipancarkan. Selama perjalanan dari transmitter ke antena Tx daya sinyal tersebut mengalami loss yang disebabkan oleh loss konektor, loss duplexer, loss isolator dan lain-lain. Rugi-rugi sinyal selama menempuh perjalanan dari transmitter ke antena Tx disebut dengan L t (L t >1). Daya yang diterima pada bagian antena dinotasikan sebagai P acc yang bernilai: P = acc P L t t (.1) P t L t = daya rata-rata puncak (W) = loss daya, loss yang terjadi dari transmitter menuju antena Tx

11 Pada bagian antena sendiri, daya sinyal juga mengalami reduksi/ loss yang diakibatkan oleh struktur antena dan faktor panas. Loss yang terjadi pada antena Tx radar dikenal dengan istilah loss radiasi (L rt ). Dimana nilai L rt didefinisikan sebagai berikut: 1 L rt = 1 (.) ρrt ρ rt = efisiensi radiasi antena (%) L rt = loss radiasi dari transmitting antena (db) Daya yang dikeluarkan dari antena menuju target dikenal dengan istilah P rad, dimana: P Pt (.3) L L acc P rad = = Lrt Daya radiasi tersebut selama perjalananya dari antena Tx menuju target akan banyak mengalami loss yang disebut loss channel (L ch1 ). Sehingga untuk menghitung daya rata-rata sebenarnya yang di transmisikan antena Tx menuju target yang dipengaruhi oleh semua loss tersebut adalah G dt R 1 P t L t L rt L ch1 PG rt t dt 4πR1 Lt Lrt Lch 1 t t = (.4) = gain directivity antenna Tx = jarak antara antena Tx dengan target (meter) = daya rata-rata puncak (W) = loss daya, loss yang terjadi dari transmitter menuju antena Tx = loss radiasi dari transmitting antena = loss daya yang terjadi saat proses transmitting dari antena Tx ke target Daya rata-rata yang dipantulkan target menuju receiver: rt = PG σ t dt 4πR 1 Lt Lrt Lch 1 (.5) σ = radar cross section (m ) Daya rata-rata tersebut selama menempuh media transmisi dengan jarak R akan terpengaruh noise, redaman yang dikenal dengan istilah L ch (loss yang terjadi saat proses

12 transmisi sinyal dari target menuju antena Rx). Sehingga pada sisi antena Rx, daya yang diterima menjadi: i = P G σ (.6) t dt ( 4π ) R1 R Lt Lrt Lch1Lch L ch = loss daya yang terjadi saat transmisi sinyal dari target ke receiving antena (db) Di sisi antena penerima juga akan ada loss radiasi antena penerima (L rr ) yang bernilai (1/ρ π ) 1, sehingga daya yang dikeluarkan antena Rx menuju penerima radar menjadi: Bisatic/ multistatic radar PG G λ σ S r = t dt dr (.7) 3 ( 4π ) R1 R Lt Lrt Lch 1Lch Lrr Monostatic radar yang menggunakan dua antenna P G G λ σ S r = t dt dr 3 4 ( 4π ) R Lt Lrt Lch Lrr (.8) Monostatic radar yang menggunakan satu antena untuk aplikasi Tx dan Rx S r = Pt G d λ σ (.9) 3 4 ( 4 π ) R L t L ch L r L r λ R = loss radiasi dari receiving antena (db) = panjang gelombang (meter) = Jarak antara target dengan antena Rx (m) C. Radar Cross Section Merupakan suatu parameter radar yang sangat penting dan sering digunakan untuk menghitung link budget dari radar. Radar cross section ini berhubungan dengan banyaknya sinyal datang, sinyal pantul dan sinyal yang diserap oleh obyek. Selain itu,

13 radar cross section juga ditentukan oleh jenis target radar yang dilihat dari sisi bentuk, volume dan sifatnya. Pada banyak sistem radar yang dipakai, target radar diasumsikan mempunyai ukuran yang kecil dengan tujuan untuk lebih memfokuskan beamwidth dari antena pemancar radar ke target. Ketika sebuah pemancar radar memancarkan sinyalnya ke arah target, beberapa bagian dari sinyal akan memantul ke semua arah termasuk penerima dan sebagian lagi akan diserap oleh target radar. Pemantulan dan penyerapan tentunya akan menurunkan daya total pemancar radar. Jika total daya yang dipantulkan dilambangkan dengan σ T dan daya yang diserap dilambangkan dengan σ a maka total daya yang dikirimkan dari pemancar akan menjadi σ c yaitu: σ c = σ T + σ a (.10) σ T σ a σ c = total daya yang dipantulkan (db) = daya yang diserap (db) = total daya yang dikirimkan dari pemancar (db) a) Cross section dari area target Meskipun radar biasanya beroperasi pada distributed target, pada kenyataanya ketika sebuah sinyal dari pemancar radar memancar maka sinyal ini akan mengenai semua target-target yang tidak diinginkan. Target-target radar yang tidak diinginkan tersebut akan memantulkan sinyalnya ke semua arah termasuk ke arah penerima radar. Sinyal-sinyal yang tidak diinginkan ini akan disebut sebagai clutter. Jika sinyal datang dari permukaan laut maka dinamakan sea clutter, jika datang dari permukaan tanah akan dinamakan land clutter. Pantulan-pantulan sinyal dari clutter akan disebut sebagai cross section clutter σ c di mana nilainya adalah: σ c = σ o A c (.11) σ c = Cross Section Clutter (m )

14 σ o = Surface Backscaterring Coefisien A c = Efektif Clutter Scattering Area (m ) Jika diekspresikan dalam bentuk db maka σ o akan menjadi : (σ o )db = 10 Log 10 ( σ o ) (.1) Besarnya daya sinyal Cross Section Clutter yang tidak diinginkan ini dapat dihitung dengan menggunakan rumus : P t G d λ = daya pancar sinyal radar (W) = gain directivity antenna (db) = panjang gelombang (m) σ c = cross section scattered (m ) R L S PG t d λ σ c = 3 ( 4π ) R L rc 4 = jarak antara radar dengan target yang tidak dinginkan (m) = total loss (db) b) Cross section dari volume target σ = σ 1 c Vc (.13) Ketika sinyal dari pemancar radar merambat pada ruang bebas di udara maka akan terjadi banyak sekali kemungkinan sinyal radar tersebut akan menabrak butiran hujan, salju, kabut atau asap yang dikenal sebagai volume target. Nilai cross section yang dihasilkan volume target tersebut akan ditentukan oleh volume dari target, polarisasi sinyal radar, frekuensi dan karakteristik dari target yang tertabrak sinyal radar. Nilai dari cross section pantulan volume target dapat dihitung dengan menggunakan rumus di bawah ini: Dengan nilai : σ c = cross section scattered (m ) σ 1 = efektif scatering volume Vc = Volume backscaterring koefisien (m /m 3 ) (.14) Pada penghitungan nilai cross section dari volume target akan terlihat lebih rumit dari menentukan cross section dari area target di mana dalam volume target, luas areanya mempunyai nilai sangat kecil dan tidak pasti. Contohnya adalah bila suatu butiran hujan

15 dibandingkan dengan asap atau butiran salju dan sebagainya. Untuk itu pada volume target banyak sekali dipakai angka-angka koefisien hasil penelitian untuk merepresentasikan parameter dari cross section pada masing-masing target seperti hujan, salju, kabut atau asap. Nilai dari σ 1 pada masing-masing target tersebut akan ditentukan dengan menggunakan rumus : σ 1 S = π 5 K PG t d λ σ c = 3 ( 4π ) R L rc 4 4 λ ar b (.15) K = Konstanta dielektrik dari bahan target a = 00 b =1,6 r = curah hujan rata-rata (cm/bulan) Nilai K tersebut akan bervariasi untuk berbagai macam jenis volume target seperti hujan (K = 0,93) dan untuk partikel salju (K = 0,0). Sehingga nilai akhir dari daya sinyal yang dipantulkan dan bersifat clutter dari volume target akan bernilai: (.16) P t G d λ = daya pancar sinyal radar (W) = gain directivity antena (W) = panjang gelombang (meter) σ c = cross section scattered (m ) R = jarak antara radar dengan target yang tidak dinginkan (meter) L = total loss (W)

16 RADAR CROSS SECTION Pada banyak sistem radar yang dipakai, target radar diasumsikan mempunyai ukuran yang kecil, dengan tujuan untuk lebih memfokuskan beamwidth dari antena pemancar radar ke target. Ketika sebuah pemancar radar memancarkan sinyalnya ke arah target, beberapa bagian dari sinyal akan memantul ke semua arah termasuk ke penerima dan sebagian lagi akan diserap oleh target radar. Pemantulan dan penyerapan tentunya akan menurunkan daya total pemancar radar. Jika total daya yang dipantulkan dilambangkan dengan σ T dan daya yang diserap dilambangkan dengan σ a maka total daya yang dikirimkan dari pemancar akan menjadi σ c yaitu: σ c = σ T + σ a Pantulan yang dihasilkan oleh target radar akan memantul ke semua arah. Jika arah pantulan berlawanan dengan arah gelombang datang maka disebut dengan Back Scattering Cross Section dan bila pantulanya mengarah ke semua arah kecuali Back Scattering Cross Section disebut dengan Bistatic Scattering Cross Section. Total Cross Section ditemukan dengan menjumlahkan antara Bistatic dan Back Scattering Cross Section. Dari pendahuluan di atas maka definisi dari Radar Cross Section dapat diartikan sebagai bagian dari Scattering / Pemantulan sinyal dari target yang berhubungan dengan sinyal polarisasi dari antena. Radar Cross Section dapat dirumuskan sebagai berikut: σ = Lim R 4π R power unit area in scattered wave at receiving antena which is in the polarization of receiving antena { power per unit area in wave incident on target} atau dapat didefinisikan bahwa nilai σ adalah sama dengan : di mana Ps adalah daya yang dipantulkan oleh target dan Pi adalah daya yang datang menuju ke arah target. Dalam elektromagnetik analisis dapat dikatakan bahwa nilai σ akan sama dengan :

17 Hubungan antara Radar Cross Section σ dengan polarisasi antena adalah sebagai berikut: σ = σ s ρ pol dengan : σ = Radar Cross Section σ s = Scattering Cross Section ρ pol = Polarisasi efisiensi Ingat bahwa jenis polarisasi adalah linear, circular dan eliptical Contoh Soal : 1. Sebuah target radar mempunyai scattering cross section sebesar 3 m ketika sinyal pantul dipantulkan target menggunakan right hand circular polarized. Jika nilai efisiensi polarisasi menggunakan nilai 1 / maka berapa σ? CROSS SECTION DARI AREA TARGET Meskipun radar biasanya beroperasi pada distributed target, pada kenyataanya ketika sebuah sinyal dari pemancar radar memancar maka sinyal ini akan mengenai semua target-target yang tidak diinginkan. Target radar yang tidak diinginkan tersebut akan memantulkan sinyalnya ke semua arah termasuk ke arah penerima radar. Sinyalsinyal yang tidak diinginkan ini akan disebut sebagai clutter. Jika sinyal datang dari permukaan laut maka dinamakan sea clutter, jika datang dari permukaan tanah akan dinamakan land clutter. Pantulan sinyal dari clutter akan disebut sebagai cross section clutter σ c di mana nilainya adalah: σ c = σ o A c di mana : σ c = Cross Section Clutter σ o = Surface Backscaterring Coefisien ( m / m ) A c = Efektif Clutter Scattering Area Jika diekspresikan dalam bentuk db maka σ o akan menjadi : (σ o )db = 10 Log 10 ( σ o )

18 Besarnya Daya sinyal Cross Section Clutter yang tidak diinginkan ini dapat dihitung dengan menggunakan rumus : S rc = P tg d 4 λ σ c 3 ( 4π ) R L Contoh Soal: 1. Jika sebuah radar mempunyai frekuensi 10 Ghz, dengan daya transmit 100 KW dengan total Loss sebesar 1 w, digunakan untuk mendeteksi target radar. Jika di sekitar radar terdapat target yang tidak diinginkan dengan jarak 40 Km dengan nilai Efektif Clutter Scattering Area 4 m dan Surface Backscaterring Coefisien sebesar 3 m / m, berapakah nilai Daya sinyal clutter yang dipantulkan, dengan nilai Gain antenna sebesar 3781? Besar masing-masing nilai cross section untuk jenis target seperti pesawat terbang, kapal laut ataupun kendaraan bermotor lainya mulai diteliti oleh para pakar radar. Hasilnya masing-masing target radar tersebut sudah mempunyai nilai cross section yang tetap. Nathanson pada tahun 1991 menghitung cross section untuk berbagai macam kapal milik Soviet dengan luas permukaan dari 110 sd 1, m dan berat kapal dari 80 sd ton. Ilmuwan lain yaitu Morchin menghitung cross section dari berbagai macam pesawat terbang yang pernah dibuat. Perhitungan para ilmuwan tersebut diawali dari perhitungan seorang ilmuwan radar yaitu Skolnik ( 1974 ) yang menghitung cross section dari kapal laut dengan rumus : Dengan : f = frekuensi kerja radar σ = 5 f 1 D D = Maksimal beban dari kapal dalam kiloton 3

19 CROSS SECTION DARI VOLUME TARGETS Ketika sinyal dari pemancar radar merambat pada ruang bebas di udara maka akan terjadi banyak sekali kemungkinan sinyal radar tersebut akan menabrak butiran hujan, salju, kabut atau asap yang dikenal sebagai volume target. Nilai cross section yang dihasilkan volume target tersebut akan ditentukan oleh volume dari target, polarisasi sinyal radar, frekuensi dan karakteristik dari target yang tertabrak sinyal radar. Nilai dari cross section pantulan volume target dapat dihitung dengan menggunakan rumus di bawah ini: Dengan nilai : σc = cross section scattered σ 1 = efektif scatering volume σ = σ 1 c Vc Vc = Volume backscaterring koefisien Pada penghitungan nilai cross section dari volume target akan terlihat lebih rumit dari menentukan cross section dari area target di mana dalam volume target, luas areanya mempunyai nilai sangat kecil dan tidak pasti. Contohnya adalah bila suatu butiran hujan dibandingkan dengan asap atau butiran salju dan sebagainya. Untuk itu pada volume target banyak sekali dipakai angka koefisien hasil penelitian untuk merepresentasikan parameter dari cross section pada masing target seperti hujan, salju, kabut atau asap. Nilai dari σ 1 pada masing-masing target tersebut akan ditentukan dengan menggunakan rumus : Di mana : 1 σ 5 π = K = Konstanta dielektrik dari bahan target a = 00 b =1,6 r = curah hujan rata K 4 λ a r b

20 Nilai K di atas akan bervariasi untuk berbagai macam jenis volume target seperti hujan ( K = 0,93 ) dan untuk partikel salju ( K = 0,0 ). Sehingga nilai akhir dari daya sinyal yang dipantulkan dan bersifat clutter dari volume target akan bernilai : S rc = P tg d 4 λ σ c 3 ( 4π ) R L Contoh soal 1. Jika sebuah radar mempunyai frekuensi 10 Ghz, dengan daya transmit 100 KW dengan total Loss sebesar 1 watt, digunakan untuk mendeteksi target radar. Jika di sekitar radar terdapat target yang tidak diinginkan dengan jarak 40 Km dengan curah hujan rata adalah 76 (mm / hari ) dengan nilai Volume Backscaterring Coefisien sebesar 3, berapakah nilai Daya sinyal clutter dari volume target berupa hujan yang dipantulkan, dengan nilai Gain antenna sebesar 3781?. Berapa nilai radar cross section dari sebuah pemancar radar yang menabrak suatu kapal laut dengan bobot maksimal 000 ton dengan frekuensi kerja 10 Ghz?

APLIKASI PERHITUNGAN PERENCANAAN RADAR DENGAN JAVA (J2ME) MENGGUNAKAN HANDPHONE

APLIKASI PERHITUNGAN PERENCANAAN RADAR DENGAN JAVA (J2ME) MENGGUNAKAN HANDPHONE 44 APLIKASI PERHITUNGAN PERENCANAAN RADAR DENGAN JAVA (JME) MENGGUNAKAN HANDPHONE Eka Wahyudi, Taufan Faozi Rachman, Program Studi Diploma III Teknik Telekomunikasi, Purwokerto ekawahyudi@akatelsp.ac.id

Lebih terperinci

II. TINJAUAN PUSTAKA. perang ataupun sebagai bagian dari sistem navigasi pada kapal [1].

II. TINJAUAN PUSTAKA. perang ataupun sebagai bagian dari sistem navigasi pada kapal [1]. II. TINJAUAN PUSTAKA 2.1. Radio Detecting and Ranging (Radar) Radio Detecting and Ranging (Radar) adalah perangkat yang digunakan untuk menentukan posisi, bentuk, dan arah pergerakan dari suatu objek yang

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK FREKUENSI TINGGI DAN GELOMBANG MIKRO

LAPORAN PRAKTIKUM TEKNIK FREKUENSI TINGGI DAN GELOMBANG MIKRO LAPORAN PRAKTIKUM TEKNIK FREKUENSI TINGGI DAN GELOMBANG MIKRO No Percobaan : 01 Judul Percobaan Nama Praktikan : Perambatan Gelombang Mikro : Arien Maharani NIM : TEKNIK TELEKOMUNIKASI D3 JURUSAN TEKNIK

Lebih terperinci

LABORATORIUM SWTICHING &TRANSMISI MODUL PRAKTIKUM KOMUNIKASI SATELIT DISUSUN OLEH: WAHYU PAMUNGKAS, ST

LABORATORIUM SWTICHING &TRANSMISI MODUL PRAKTIKUM KOMUNIKASI SATELIT DISUSUN OLEH: WAHYU PAMUNGKAS, ST LABORATORIUM SWTICHING &TRANSMISI MODUL PRAKTIKUM KOMUNIKASI SATELIT DISUSUN OLEH: WAHYU PAMUNGKAS, ST AKADEMI TEKNIK TELEKOMUNIKASI SANDHY PUTRA PURWOKERTO 2005 MODUL PRAKTIKUM KOMUNIKASI SATELIT LAB

Lebih terperinci

ANALISIS LINK BUDGET ANTENA SIDEBAND DOPPLER VERY HIGH OMNI-DIRECTIONAL RANGE (DVOR) PADA JALUR LINTASAN PENERBANGAN

ANALISIS LINK BUDGET ANTENA SIDEBAND DOPPLER VERY HIGH OMNI-DIRECTIONAL RANGE (DVOR) PADA JALUR LINTASAN PENERBANGAN ANALISIS LINK BUDGET ANTENA SIDEBAND DOPPLER VERY HIGH OMNI-DIRECTIONAL RANGE (DVOR) PADA JALUR LINTASAN PENERBANGAN Eka Wahyudi 1 Wahyu Pamungkas 2 Bayu Saputra 3 1,2,3 Program Studi Teknik Telekomunikasi,

Lebih terperinci

Aplikasi Modulasi pada Gelombang Radar

Aplikasi Modulasi pada Gelombang Radar Research Based Learning Wave 2015 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Aplikasi Modulasi pada Gelombang Radar Wildan Syahrun Nahar 1,a,

Lebih terperinci

BAB IV KOMUNIKASI RADIO DALAM SISTEM TRANSMISI DATA DENGAN MENGGUNAKAN KABEL PILOT

BAB IV KOMUNIKASI RADIO DALAM SISTEM TRANSMISI DATA DENGAN MENGGUNAKAN KABEL PILOT BAB IV KOMUNIKASI RADIO DALAM SISTEM TRANSMISI DATA DENGAN MENGGUNAKAN KABEL PILOT 4.1 Komunikasi Radio Komunikasi radio merupakan hubungan komunikasi yang mempergunakan media udara dan menggunakan gelombang

Lebih terperinci

Materi II TEORI DASAR ANTENNA

Materi II TEORI DASAR ANTENNA Materi II TEORI DASAR ANTENNA 2.1 Radiasi Gelombang Elektromagnetik Antena (antenna atau areal) adalah perangkat yang berfungsi untuk memindahkan energi gelombang elektromagnetik dari media kabel ke udara

Lebih terperinci

I. PENDAHULUAN. transmisi. Selain sebagai media transmisi, gelombang elektromagnetik juga biasa

I. PENDAHULUAN. transmisi. Selain sebagai media transmisi, gelombang elektromagnetik juga biasa I. PENDAHULUAN 1.1. Latar Belakang Telekomunikasi merupakan salah satu bidang dari teknik elektro yang saat ini perkembangannya cukup pesat. Perkembangan tersebut menjadikan banyaknya perangkat yang membangkitkan

Lebih terperinci

BAB I PENDAHULUAN. Radio Detecting and Ranging (Radar) merupakan salah satu alat yang

BAB I PENDAHULUAN. Radio Detecting and Ranging (Radar) merupakan salah satu alat yang BAB I PENDAHULUAN 1.1 Latar Belakang Radio Detecting and Ranging (Radar) merupakan salah satu alat yang menerapkan sistem komunikasi di dalamnya. Radar berfungsi untuk mendeteksi benda-benda yang jaraknya

Lebih terperinci

BAB II ANTENA MIKROSTRIP. dalam sistem komunikasi tanpa kabel atau wireless. Perancangan antena yang baik

BAB II ANTENA MIKROSTRIP. dalam sistem komunikasi tanpa kabel atau wireless. Perancangan antena yang baik BAB II ANTENA MIKROSTRIP 2.1 Pengertian Antena Antena merupakan salah satu dari beberapa komponen yang paling kritis dalam sistem komunikasi tanpa kabel atau wireless. Perancangan antena yang baik akan

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 Blok diagram sistem radar [2]

BAB I PENDAHULUAN. Gambar 1.1 Blok diagram sistem radar [2] BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan teknologi begitu pesat, dari generasi ke generasi lahir berbagai inovasi yang merupakan objek pembaharuan penunjang kehidupan manusia. Di bidang komunikasi

Lebih terperinci

BAB II TEORI DASAR ANTENA. Dilihat dari latar belakang telekomunikasi berupa komunikasi wireless,

BAB II TEORI DASAR ANTENA. Dilihat dari latar belakang telekomunikasi berupa komunikasi wireless, BAB II TEORI DASAR ANTENA 2.1 Umum Dilihat dari latar belakang telekomunikasi berupa komunikasi wireless, antena radio pertama dibuat oleh Heinrich Hertz yang tujuannya untuk membuktikan keberadaan gelombang

Lebih terperinci

BAB II LANDASAN TEORI. objek yang terdeteksi. Pada mulanya radar digunakan sebagai salah satu alat

BAB II LANDASAN TEORI. objek yang terdeteksi. Pada mulanya radar digunakan sebagai salah satu alat BAB II LANDASAN TEORI 2.1 Radio Detecting and Ranging (Radar) Radio Detecting and Ranging (Radar) merupakan suatu perangkat yang digunakan untuk menentukan posisi objek, arah pergerakannya maupun bentuk

Lebih terperinci

DASAR TELEKOMUNIKASI ARJUNI BP JPTE-FPTK UNIVERSITAS PENDIDIKAN INDONESIA. Arjuni Budi P. Jurusan Pendidikan Teknik Elektro FPTK-UPI

DASAR TELEKOMUNIKASI ARJUNI BP JPTE-FPTK UNIVERSITAS PENDIDIKAN INDONESIA. Arjuni Budi P. Jurusan Pendidikan Teknik Elektro FPTK-UPI DASAR TELEKOMUNIKASI ARJUNI BP JPTE-FPTK UNIVERSITAS PENDIDIKAN INDONESIA Pendahuluan Telekomunikasi = Tele -- komunikasi Tele = jauh Komunikasi = proses pertukaran informasi Telekomunikasi = Proses pertukaran

Lebih terperinci

Radio dan Medan Elektromagnetik

Radio dan Medan Elektromagnetik Radio dan Medan Elektromagnetik Gelombang Elektromagnetik Gelombang Elektromagnetik adalah gelombang yang dapat merambat, Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa

Lebih terperinci

MODULASI. Ir. Roedi Goernida, MT. Program Studi Sistem Informasi Fakultas Rekayasa Industri Institut Teknologi Telkom Bandung

MODULASI. Ir. Roedi Goernida, MT. Program Studi Sistem Informasi Fakultas Rekayasa Industri Institut Teknologi Telkom Bandung MODULASI Ir. Roedi Goernida, MT. (roedig@yahoo.com) Program Studi Sistem Informasi Fakultas Rekayasa Industri Institut Teknologi Telkom Bandung 2010 1 Pengertian Modulasi Merupakan suatu proses penumpangan

Lebih terperinci

TUGAS BESAR SISTEM KOMUNIKASI I SISTEM KOMUNIKASI RADAR

TUGAS BESAR SISTEM KOMUNIKASI I SISTEM KOMUNIKASI RADAR TUGAS BESAR SISTEM KOMUNIKASI I SISTEM KOMUNIKASI RADAR DISUSUN OLEH : Intan Budi Harjayanti 15101105 PROGRAM STUDI S1 TEKNIK TELEKOMUNIKASI SEKOLAH TINGGI TEKNOLOGI TELEMATIKA TELKOM PURWOKERTO 2015 BAB

Lebih terperinci

BAB II DASAR TEORI. (transmitting antenna) adalah sebuah transduser (pengubah) elektromagnetis,

BAB II DASAR TEORI. (transmitting antenna) adalah sebuah transduser (pengubah) elektromagnetis, BAB II DASAR TEORI 2.1 Umum Antena adalah elemen penting yang ada pada sistem telekomunikasi tanpa kabel (nirkabel/wireless), tidak ada sistem telekomunikasi wireless yang tidak memiliki antena. Pemilihan

Lebih terperinci

SINYAL & MODULASI. Ir. Roedi Goernida, MT. Program Studi Sistem Informasi Fakultas Rekayasa Industri Institut Teknologi Telkom Bandung

SINYAL & MODULASI. Ir. Roedi Goernida, MT. Program Studi Sistem Informasi Fakultas Rekayasa Industri Institut Teknologi Telkom Bandung SINYAL & MODULASI Ir. Roedi Goernida, MT Program Studi Sistem Informasi Fakultas Rekayasa Industri Institut Teknologi Telkom Bandung 2012 1 Pengertian Sinyal Merupakan suatu perubahan amplitudo dari tegangan,

Lebih terperinci

BAB III GROUND PENETRATING RADAR

BAB III GROUND PENETRATING RADAR BAB III GROUND PENETRATING RADAR 3.1. Gelombang Elektromagnetik Gelombang elektromagnetik adalah gelombang yang terdiri dari medan elektrik (electric field) dan medan magnetik (magnetic field) yang dapat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENELITIAN TERDAHULU Sebelumnya penelitian ini di kembangkan oleh mustofa, dkk. (2010). Penelitian terdahulu dilakukan untuk mencoba membuat alat komunikasi bawah air dengan

Lebih terperinci

BAB 11 MICROWAVE ANTENNA. Gelombang mikro (microwave) adalah gelombang elektromagnetik dengan frekuensi super

BAB 11 MICROWAVE ANTENNA. Gelombang mikro (microwave) adalah gelombang elektromagnetik dengan frekuensi super BAB 11 MICROWAVE ANTENNA Kompetensi: Mahasiswa mampu menjelaskan secara lisan/tertulis mengenai antenna microwave desain, aplikasi dan cara kerjanya. Gelombang mikro (microwave) adalah gelombang elektromagnetik

Lebih terperinci

BAB II DASAR TEORI. radiasi antena tidak tetap, tetapi terarah dan mengikuti posisi pemakai (adaptive).

BAB II DASAR TEORI. radiasi antena tidak tetap, tetapi terarah dan mengikuti posisi pemakai (adaptive). BAB II DASAR TEORI 2.1 Pengerian Smart Antenna Istilah smart antenna umumnya mengacu kepada antena array yang dikombinasikan dengan pengolahan sinyal yang canggih, yang mana desain fisiknya dapat dimodifikasi

Lebih terperinci

ANALISIS ANTENA MIKROSTRIP PATCH SEGIEMPAT DENGAN TEKNIK PLANAR ARRAY

ANALISIS ANTENA MIKROSTRIP PATCH SEGIEMPAT DENGAN TEKNIK PLANAR ARRAY ANALISIS ANTENA MIKROSTRIP PATCH SEGIEMPAT DENGAN TEKNIK PLANAR ARRAY Maria Natalia Silalahi, Ali Hanafiah Rambe Konsentrasi Teknik Telekomunikasi, Departemen Teknik Elektro Fakultas Teknik Universitas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang RADAR (selanjutnya ditulis sebagai radar) ialah singkatan dari Radio Detection and Ranging dimana merupakan sistem elektromagnetik untuk mendeteksi & memberi informasi

Lebih terperinci

Dikumpulkan pada Hari Sabtu, tanggal 27 Februari 2016 Jam di N107, berupa copy file, bukan file asli.

Dikumpulkan pada Hari Sabtu, tanggal 27 Februari 2016 Jam di N107, berupa copy file, bukan file asli. Nama: NIM : Kuis I Elektromagnetika II TT38G1 Dikumpulkan pada Hari Sabtu, tanggal 27 Februari 2016 Jam 14.30 15.00 di N107, berupa copy file, bukan file asli. Kasus #1. Medium A (4 0, 0, x < 0) berbatasan

Lebih terperinci

DASAR TELEKOMUNIKASI. Kholistianingsih, S.T., M.Eng

DASAR TELEKOMUNIKASI. Kholistianingsih, S.T., M.Eng DASAR TELEKOMUNIKASI Kholistianingsih, S.T., M.Eng KONTRAK PEMBELAJARAN UAS : 35% UTS : 35% TUGAS : 20% KEHADIRAN : 10% KEHADIRAN 0 SEMUA KOMPONEN HARUS ADA jika ada satu komponen yang kosong NILAI = E

Lebih terperinci

BAB II TEORI DASAR. tracking untuk mengarahkan antena. Sistem tracking adalah suatu sistem yang

BAB II TEORI DASAR. tracking untuk mengarahkan antena. Sistem tracking adalah suatu sistem yang BAB II TEORI DASAR 2.1 Umum Kualitas suatu sistem komunikasi sangat ditentukan oleh kuat sinyal yang diterima. Salah satu cara agar sinyal dapat diterima secara maksimal adalah dengan mengarahkan antena

Lebih terperinci

BAB II PEMODELAN PROPAGASI. Kondisi komunikasi seluler sulit diprediksi, karena bergerak dari satu sel

BAB II PEMODELAN PROPAGASI. Kondisi komunikasi seluler sulit diprediksi, karena bergerak dari satu sel BAB II PEMODELAN PROPAGASI 2.1 Umum Kondisi komunikasi seluler sulit diprediksi, karena bergerak dari satu sel ke sel yang lain. Secara umum terdapat 3 komponen propagasi yang menggambarkan kondisi dari

Lebih terperinci

BAB IV PENGUKURAN DAN ANALISIS

BAB IV PENGUKURAN DAN ANALISIS BAB IV PENGUKURAN DAN ANALISIS 4.1 Syarat Pengukuran Pengukuran suatu antena yang ideal adalah dilakukan di suatu ruangan yang bebas pantulan atau ruang tanpa gema (Anechoic Chamber). Pengukuran antena

Lebih terperinci

BAB 2 LANDASAN TEORI. suatu media transmisi (Forouzan, 2007). transmitter, transmission system, receiver, dan media

BAB 2 LANDASAN TEORI. suatu media transmisi (Forouzan, 2007). transmitter, transmission system, receiver, dan media BAB 2 LANDASAN TEORI 2.1. Komunikasi Data Komunikasi data merupakan pertukaran data antara dua devicemelalui suatu media transmisi (Forouzan, 2007). 2.1.1. Komponen Komunikasi Data Komunikasi data terdiri

Lebih terperinci

Pertemuan ke-6 Sensor : Bagian 2. Afif Rakhman, S.Si., M.T. Drs. Suparwoto, M.Si. Geofisika - UGM

Pertemuan ke-6 Sensor : Bagian 2. Afif Rakhman, S.Si., M.T. Drs. Suparwoto, M.Si. Geofisika - UGM Pertemuan ke-6 Sensor : Bagian 2 Afif Rakhman, S.Si., M.T. Drs. Suparwoto, M.Si. Geofisika - UGM Agenda Pendahuluan : gelombang EM dan antena RF Parameter antena RF Penggunaan antena RF dalam metode geofisika

Lebih terperinci

KOMUNIKASI DATA Data, Sinyal & Media Transmisi. Oleh: Fahrudin Mukti Wibowo, S.Kom., M.Eng

KOMUNIKASI DATA Data, Sinyal & Media Transmisi. Oleh: Fahrudin Mukti Wibowo, S.Kom., M.Eng KOMUNIKASI DATA Data, Sinyal & Media Transmisi Oleh: Fahrudin Mukti Wibowo, S.Kom., M.Eng Data 10110111 sinyal Untuk dapat ditransmisikan, data harus ditransformasikan ke dalam bentuk gelombang elektromagnetik

Lebih terperinci

Transmisi Signal Wireless. Pertemuan IV

Transmisi Signal Wireless. Pertemuan IV Transmisi Signal Wireless Pertemuan IV 1. Panjang Gelombang (Wavelength) Adalah jarak antar 1 ujung puncak gelombang dengan puncak lainnya secara horizontal. Gelombang adalah sinyal sinus. Sinyal ini awalnya

Lebih terperinci

KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER DOSEN : SUSMINI I. LESTARININGATI, M.T

KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER DOSEN : SUSMINI I. LESTARININGATI, M.T KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER 3 GANJIL 2017/2018 DOSEN : SUSMINI I. LESTARININGATI, M.T Sinyal Digital Selain diwakili oleh sinyal analog, informasi juga dapat diwakili oleh sinyal digital.

Lebih terperinci

BAB 2 PERENCANAAN CAKUPAN

BAB 2 PERENCANAAN CAKUPAN BAB 2 PERENCANAAN CAKUPAN 2.1 Perencanaan Cakupan. Perencanaan cakupan adalah kegiatan dalam mendesain jaringan mobile WiMAX. Faktor utama yang dipertimbangkan dalam menentukan perencanaan jaringan berdasarkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 PERENCANAAN LINK MICROWAVE Tujuan utama dari perencanaan link microwave adalah untuk memastikan bahwa jaringan microwave dapat beroperasi dengan kinerja yang tinggi pada segala

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. 1 Umum Antena adalah perangkat yang berfungsi untuk memindahkan energi gelombang elektromagnetik dari media kabel ke udara atau sebaliknya dari udara ke media kabel. Sistem Telekomunikasi

Lebih terperinci

Kata Kunci : Radio Link, Pathloss, Received Signal Level (RSL)

Kata Kunci : Radio Link, Pathloss, Received Signal Level (RSL) Makalah Seminar Kerja Praktek ANALISIS KEKUATAN DAYA RECEIVE SIGNAL LEVEL(RSL) MENGGUNAKAN PIRANTI SAGEM LINK TERMINAL DI PT PERTAMINA EP REGION JAWA Oleh : Hanief Tegar Pambudhi L2F006045 Jurusan Teknik

Lebih terperinci

TEORI MAXWELL Maxwell Maxwell Tahun 1864

TEORI MAXWELL Maxwell Maxwell Tahun 1864 TEORI MAXWELL TEORI MAXWELL Maxwell adalah salah seorang ilmuwan fisika yang berjasa dalam kemajuan ilmu pengetahuan serta teknologi yang berhubungan dengan gelombang. Maxwell berhasil mempersatukan penemuanpenumuan

Lebih terperinci

GROUND PENETRATING RADAR (GPR)

GROUND PENETRATING RADAR (GPR) BAB II GROUND PENETRATING RADAR (GPR) 2.1 Gelombang Elektromagnetik Gelombang adalah energi getar yang merambat. Bentuk ideal dari suatu gelombang akan mengikuti gerak sinusoidal. Selain radiasi elektromagnetik,

Lebih terperinci

BAB IV PENGUKURAN ANTENA

BAB IV PENGUKURAN ANTENA BAB IV PENGUKURAN ANTENA 4.1 METODOLOGI PENGUKURAN PARAMETER ANTENA Parameter antena yang diukur pada skripsi ini adalah return loss, VSWR, diagram pola radiasi, dan gain. Ke-empat parameter antena yang

Lebih terperinci

Pertemuan 9 SISTEM ANTENA. DAHLAN ABDULLAH

Pertemuan 9 SISTEM ANTENA. DAHLAN ABDULLAH Pertemuan 9 SISTEM ANTENA DAHLAN ABDULLAH dahlan.unimal@gmail.com http://www.dahlan.web.id PENDAHULUAN Dalam sejarah komunikasi, perkembangan teknik informasi tanpa menggunakan kabel ditetapkan dengan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi radar pada awalnya dikembangkan untuk mendeteksi target dilangit, maupun benda-benda diatas permukaan tanah atau dilaut. Radar itu sendiri pada prinsip dasarnya

Lebih terperinci

Rijal Fadilah. Transmisi & Modulasi

Rijal Fadilah. Transmisi & Modulasi Rijal Fadilah Transmisi & Modulasi Pendahuluan Sebuah sistem komunikasi merupakan suatu sistem dimana informasi disampaikan dari satu tempat ke tempat lain. Misalnya tempat A yang terletak ditempat yang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini telepon selular sudah menjadi bagian yang tidak terpisahkan dari aktivitas kehidupan manusia sehari-hari. Penggunaan telepon selular sudah melingkupi masyarakat

Lebih terperinci

PERANCANGAN DAN REALISASI ANTENNA CONTROL UNIT BERUPA PHASE SHIFTER DIGITAL UNTUK ANTENA PHASED ARRAY 4X4 PADA FREKUENSI S-BAND UNTUK RADAR 3D

PERANCANGAN DAN REALISASI ANTENNA CONTROL UNIT BERUPA PHASE SHIFTER DIGITAL UNTUK ANTENA PHASED ARRAY 4X4 PADA FREKUENSI S-BAND UNTUK RADAR 3D PERANCANGAN DAN REALISASI ANTENNA CONTROL UNIT BERUPA PHASE SHIFTER DIGITAL UNTUK ANTENA PHASED ARRAY 4X4 PADA FREKUENSI S-BAND UNTUK RADAR 3D Fahmi Lismar Halim 1), Bambang Setia Nugroho 2), Yuyu Wahyu

Lebih terperinci

BAB II TEORI DASAR. Propagasi gelombang adalah suatu proses perambatan gelombang. elektromagnetik dengan media ruang hampa. Antenna pemancar memang

BAB II TEORI DASAR. Propagasi gelombang adalah suatu proses perambatan gelombang. elektromagnetik dengan media ruang hampa. Antenna pemancar memang BAB II TEORI DASAR 2.1. PROPAGASI GELOMBANG Propagasi gelombang adalah suatu proses perambatan gelombang elektromagnetik dengan media ruang hampa. Antenna pemancar memang didesain untuk memancarkan sinyal

Lebih terperinci

BAB IV PENGUKURAN DAN ANALISIS

BAB IV PENGUKURAN DAN ANALISIS BAB IV PENGUKURAN DAN ANALISIS 4.1 Syarat Pengukuran Pengukuran suatu antena yang ideal adalah dilakukan di suatu ruangan yang bebas pantulan atau ruang tanpa gema (Anechoic Chamber). Pengukuran antena

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Komunikasi Point to Point Komunikasi point to point (titik ke titik ) adalah suatu sistem komunikasi antara dua perangkat untuk membentuk sebuah jaringan. Sehingga dalam

Lebih terperinci

BAB II ANTENA MIKROSTRIP. Antena adalah komponen pada sistem telekomunikasi nirkabel yang

BAB II ANTENA MIKROSTRIP. Antena adalah komponen pada sistem telekomunikasi nirkabel yang BAB II ANTENA MIKROSTRIP 2.1 Umum Antena adalah komponen pada sistem telekomunikasi nirkabel yang berfungsi sebagai pengirim dan penerima gelombang elektromagnetik. Antena menjadi suatu bagian yang tidak

Lebih terperinci

LINK BUDGET. Ref : Freeman FAKULTAS TEKNIK ELEKTRO

LINK BUDGET. Ref : Freeman FAKULTAS TEKNIK ELEKTRO LINK BUDGET Ref : Freeman 1 LINK BUDGET Yang mempengaruhi perhitungan Link Budget adalah Frekuensi operasi (operating frequency) Spektrum yang dialokasikan Keandalan (link reliability) Komponen-komponen

Lebih terperinci

BAB III PROPAGASI GELOMBANG RADIO GSM. Saluran transmisi antara pemancar ( Transmitter / Tx ) dan penerima

BAB III PROPAGASI GELOMBANG RADIO GSM. Saluran transmisi antara pemancar ( Transmitter / Tx ) dan penerima BAB III PROPAGASI GELOMBANG RADIO GSM Saluran transmisi antara pemancar ( Transmitter / Tx ) dan penerima (Receiver / Rx ) pada komunikasi radio bergerak adalah merupakan line of sight dan dalam beberapa

Lebih terperinci

RANCANG BANGUN ANTENA MIKROSTRIP PATCH ARRAY SEGI EMPAT TRIPLE BAND PADA FREKUENSI 2,3, 3,3 GHz DAN 5,8 GHz

RANCANG BANGUN ANTENA MIKROSTRIP PATCH ARRAY SEGI EMPAT TRIPLE BAND PADA FREKUENSI 2,3, 3,3 GHz DAN 5,8 GHz RANCANG BANGUN ANTENA MIKROSTRIP PATCH ARRAY SEGI EMPAT TRIPLE BAND PADA FREKUENSI 2,3, 3,3 GHz DAN 5,8 GHz Ramli Qadar, Ali Hanafiah Rambe Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, Telkom University sedang mengembangkan satelit mikro yang mengorbit pada ketinggian 600-700 km untuk wahana pembelajaran space engineering. Sebelum satelit

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pendahuluan Perkembangan antenna saat ini semakin berkembang terutama untuk system komunikasi. Antenna adalah salah satu dari beberapa komponen yang paling kritis. Perancangan

Lebih terperinci

Teknik Sistem Komunikasi 1 BAB I PENDAHULUAN

Teknik Sistem Komunikasi 1 BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Model Sistem Komunikasi Sinyal listrik digunakan dalam sistem komunikasi karena relatif gampang dikontrol. Sistem komunikasi listrik ini mempekerjakan sinyal listrik untuk membawa

Lebih terperinci

BAB II TEORI DASAR ANTENA

BAB II TEORI DASAR ANTENA BAB II TEORI DASAR ANTENA 2.1 Antena Dipole Antena dipole tunggal adalah suatu antena resonan yang mempunyai panjang total nominal ½ λ pada frekuensi pembawa, biasanya disebut antena dipole setengah gelombang

Lebih terperinci

BAB II PROPAGASI GELOMBANG MENENGAH

BAB II PROPAGASI GELOMBANG MENENGAH BAB II PROPAGASI GELOMBANG MENENGAH. GELOMBANG MENENGAH Berdasarkan spektrum frekuensi radio, pita frekuensi menengah adalah gelombang dengan rentang frekuensi yang terletak antara 300 khz sampai 3 MHz

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Global Positioning System (GPS) Global Positioning System (GPS) merupakan sebuah sistem navigasi satelit yang digunakan untuk menentukan lokasi yang tepat pada permukaan bumi.

Lebih terperinci

Sistem Transmisi Telekomunikasi. Kuliah 6 Jalur Gelombang Mikro

Sistem Transmisi Telekomunikasi. Kuliah 6 Jalur Gelombang Mikro TKE 8329W Sistem Transmisi Telekomunikasi Kuliah 6 Jalur Gelombang Mikro Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Program Studi Teknik Informatika Fakultas Teknik dan Ilmu Komputer Universitas

Lebih terperinci

Perencanaan Transmisi. Pengajar Muhammad Febrianto

Perencanaan Transmisi. Pengajar Muhammad Febrianto Perencanaan Transmisi Pengajar Muhammad Febrianto Agenda : PATH LOSS (attenuation & propagation model) FADING NOISE & INTERFERENCE G Tx REDAMAN PROPAGASI (komunikasi point to point) SKEMA DASAR PENGARUH

Lebih terperinci

DESAIN DAN PEMBUATAN ANTENA LOG PERIODIC DIPOLE ARRAY PADA RENTANG FREKUENSI MHz DENGAN GAIN 8,5 dbi

DESAIN DAN PEMBUATAN ANTENA LOG PERIODIC DIPOLE ARRAY PADA RENTANG FREKUENSI MHz DENGAN GAIN 8,5 dbi DESAIN DAN PEMBUATAN ANTENA LOG PERIODIC DIPOLE ARRAY PADA RENTANG FREKUENSI 425-890 MHz DENGAN GAIN 8,5 dbi LAPORAN TUGAS AKHIR Disusun Sebagai Salah Satu Syarat Untuk Menyelesaikan Program Pendidikan

Lebih terperinci

RANCANG BANGUN ANTENA YAGI 2,1 GHz UNTUK MEMPERKUAT PENERIMAAN SINYAL 3G

RANCANG BANGUN ANTENA YAGI 2,1 GHz UNTUK MEMPERKUAT PENERIMAAN SINYAL 3G RANCANG BANGUN ANTENA YAGI 2,1 GHz UNTUK MEMPERKUAT PENERIMAAN SINYAL 3G Abdullah Habibi Lubis, Rahmad Fauzi Konsentrasi Teknik Telekomunikasi, Departemen Teknik Elektro Fakultas teknik Universitas Sumatera

Lebih terperinci

ANALISIS COVERAGE AREA WIRELESS LOCAL AREA NETWORK (WLAN) b DENGAN MENGGUNAKAN SIMULATOR RADIO MOBILE

ANALISIS COVERAGE AREA WIRELESS LOCAL AREA NETWORK (WLAN) b DENGAN MENGGUNAKAN SIMULATOR RADIO MOBILE ANALISIS COVERAGE AREA WIRELESS LOCAL AREA NETWORK (WLAN) 802.11b DENGAN MENGGUNAKAN SIMULATOR RADIO MOBILE Dontri Gerlin Manurung, Naemah Mubarakah Konsentrasi Teknik Telekomunikasi, Departemen Teknik

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. Alat dan Bahan Perangkat keras dan perangkat lunak yang digunakan dalam penelitian ini antara lain: 1. Dua unit komputer 2. Path Profile 3. Kalkulator 4. GPS 5. Software D-ITG

Lebih terperinci

ELECTROMAGNETIC WAVE AND ITS CHARACTERISTICS

ELECTROMAGNETIC WAVE AND ITS CHARACTERISTICS WIRELESS COMMUNICATION Oleh: Eko Marpanaji INTRODUCTION Seperti dijelaskan pada Chapter 1, bahwa komunikasi tanpa kabel menjadi pilihan utama dalam membangun sistem komunikasi dimasa datang. Ada beberapa

Lebih terperinci

BAB II DASAR TEORI. Antena adalah sebuah komponen yang dirancang untuk bisa memancarkan

BAB II DASAR TEORI. Antena adalah sebuah komponen yang dirancang untuk bisa memancarkan BAB II DASAR TEORI 2.1 Antena Antena merupakan elemen penting yang terdapat dalam sistem telekomunikasi tanpa kabel (wireless). Pemilihan antena yang tepat, perancangan yang baik dan pemasangan yang benar

Lebih terperinci

BAB II GROUND PENETRATING RADAR (GPR)

BAB II GROUND PENETRATING RADAR (GPR) BAB II GROUND PENETRATING RADAR (GPR).1 Prinsip Dasar GPR Ground Penetrating Radar (GPR) biasa disebut georadar. Berasal dari dua kata yaitu geo berarti bumi dan radar singkatan dari radio detection and

Lebih terperinci

BAB IV TINJAUAN MENGENAI SENSOR LASER

BAB IV TINJAUAN MENGENAI SENSOR LASER 41 BAB IV TINJAUAN MENGENAI SENSOR LASER 4.1 Laser Laser atau sinar laser adalah singkatan dari Light Amplification by Stimulated Emission of Radiation, yang berarti suatu berkas sinar yang diperkuat dengan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pendahuluan Pengertian sistem jaringan komunikasi Radio Gelombang Mikro yang paling sederhana adalah saling berkomunikasinya antara titik A dan titik B dengan menggunakan perangkat

Lebih terperinci

PERBANDINGAN KINERJA ANTENA MIKROSTRIP SUSUN DUA ELEMEN PATCH

PERBANDINGAN KINERJA ANTENA MIKROSTRIP SUSUN DUA ELEMEN PATCH PERBANDINGAN KINERJA ANTENA MIKROSTRIP SUSUN DUA ELEMEN PATCH SEGI EMPAT MENGGUNAKAN TEKNIK DGS (DEFECTED GROUND STRUCTURE) DAN TANPA DGS BERBENTUK SEGITIGA SAMA SISI Meinarty Sinurat, Ali Hanafiah Rambe

Lebih terperinci

RANCANG BANGUN ANTENA MIKROSTRIP DIPOLE UNTUK FREKUENSI 2,4 GHz

RANCANG BANGUN ANTENA MIKROSTRIP DIPOLE UNTUK FREKUENSI 2,4 GHz RANCANG BANGUN ANTENA MIKROSTRIP DIPOLE UNTUK FREKUENSI 2,4 GHz Iswandi, Ali Hanafiah Rambe Konsentrasi Teknik Telekomunikasi, Departemen Teknik Elektro Fakultas Teknik, Universitas Sumatera Utara Jl.

Lebih terperinci

DAFTAR PUSTAKA. 1. Balanis Constatantine, A John Wiley - Sons Analysis And Design Antena Theory Third Edition.

DAFTAR PUSTAKA. 1. Balanis Constatantine, A John Wiley - Sons Analysis And Design Antena Theory Third Edition. DAFTAR PUSTAKA 1. Balanis Constatantine, A John Wiley - Sons.2005. Analysis And Design Antena Theory Third Edition. 2. Pozar,DM. Mikrostrip Antenna. Proceeding of the IEEE,Vol 80.No : 1, January 1992 3.

Lebih terperinci

Jenis-jenis Antena pada Wireless

Jenis-jenis Antena pada Wireless Jenis-jenis Antena pada Wireless Pengertian Antena Antena adalah alat untuk mengirim dan menerima gelombang elektromagnetik, bergantung kepada pemakaian dan penggunaan frekuensinya, antena bisa berwujud

Lebih terperinci

Analisa Perencanaan Power Link Budget untuk Radio Microwave Point to Point Frekuensi 7 GHz (Studi Kasus : Semarang)

Analisa Perencanaan Power Link Budget untuk Radio Microwave Point to Point Frekuensi 7 GHz (Studi Kasus : Semarang) Analisa Perencanaan Power Link Budget untuk Radio Microwave Point to Point Frekuensi 7 GHz (Studi Kasus : Semarang) Subuh Pramono Jurusan Teknik Elektro, Politeknik Negeri Semarang E-mail : subuhpramono@gmail.com

Lebih terperinci

BAB I PENDAHULUAN. Ground Penetrating Radar (GPR) merupakan sistem yang saat ini marak

BAB I PENDAHULUAN. Ground Penetrating Radar (GPR) merupakan sistem yang saat ini marak BAB I PENDAHULUAN 1.1 Latar Belakang Ground Penetrating Radar (GPR) merupakan sistem yang saat ini marak dikembangkan baik dari sisi teknologi maupun segi bisnis. GPR adalah sistem radar yang digunakan

Lebih terperinci

PENGUJIAN DAYA PANCAR ANTENA YAGI TERHADAP EMPAT JENIS ANTENA PENERIMA

PENGUJIAN DAYA PANCAR ANTENA YAGI TERHADAP EMPAT JENIS ANTENA PENERIMA PENGUJIAN DAYA PANCAR ANTENA YAGI TERHADAP EMPAT JENIS ANTENA PENERIMA Andi Sri Irtawaty 1, Maria Ulfah 2, Hadiyanto 3 1,2,3 Jurusan Teknik Elektronika Politeknik Negeri Balikpapan E-mail: andi.sri@poltekba.ac.id,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sensor RF (Radio Frekuensi) Sensor RF (Radio Frekuensi) adalah komponen yang dapat mendeteksi sinyal gelombang elektromagnetik yang digunakan oleh sistem komunikasi untuk mengirim

Lebih terperinci

Spektrum Gelombang Elektromagnetik

Spektrum Gelombang Elektromagnetik Spektrum Gelombang Elektromagnetik Gelombang elektromagnetik yang dirumuskan oleh Maxwell ternyata terbentang dalam rentang frekuensi yang luas. Sebagai sebuah gejala gelombang, gelombang elektromagnetik

Lebih terperinci

Analisis SNR (Signal To Noise Ratio) terhadap Jarak Deteksi pada RADAR Menggunakan MATLAB

Analisis SNR (Signal To Noise Ratio) terhadap Jarak Deteksi pada RADAR Menggunakan MATLAB Analisis SNR (Signal To Noise Ratio) terhadap Jarak Deteksi pada RADAR Menggunakan MATLAB Ade Firmansyah 1) 1) Program Studi Teknik Elektro, Fakultas Teknik Universitas Muhammadiyah Prof. Dr. HAMKA, Jakarta

Lebih terperinci

BAB III PERENCANAAN MINILINK ERICSSON

BAB III PERENCANAAN MINILINK ERICSSON BAB III PERENCANAAN MINILINK ERICSSON Tujuan utama dari perancangan Minilink Ericsson ini khususnya pada BTS Micro Cell adalah merencanakan jaringan Microwave untuk mengaktifkan BTS BTS Micro baru agar

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah Antena merupakan suatu bagian yang mutlak diperlukan dalam sistem

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah Antena merupakan suatu bagian yang mutlak diperlukan dalam sistem BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Antena merupakan suatu bagian yang mutlak diperlukan dalam sistem komunikasi radio. Dalam dunia telekomunikasi antena didefinisikan sebagai struktur yang berfungsi

Lebih terperinci

BAB III PERANCANGAN ANTENA DAN METODOLOGI PENGUKURAN

BAB III PERANCANGAN ANTENA DAN METODOLOGI PENGUKURAN BAB III PERANCANGAN ANTENA DAN METODOLOGI PENGUKURAN 3.1. UMUM Pada bagian ini akan dirancang antena mikrostrip patch segiempat planar array 4 elemen dengan pencatuan aperture coupled, yang dapat beroperasi

Lebih terperinci

Rahasia RADAR. Analogi dengan prinsip gema pada gelombang suara

Rahasia RADAR. Analogi dengan prinsip gema pada gelombang suara Rahasia RADAR Militer! Pasti itu yang terlintas di benak kita kalau mendengar istilah Radar. Padahal radar sangat luas aplikasinya, tidak hanya dalam dunia militer! Teknologinya sendiri sangat sederhana

Lebih terperinci

BAB II SISTEM KOMUNIKASI SERAT OPTIK

BAB II SISTEM KOMUNIKASI SERAT OPTIK BAB II SISTEM KOMUNIKASI SERAT OPTIK 2.1 Dasar Sistem Komunikasi Serat Optik Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang sangat halus dan lebih kecil dari sehelai rambut,

Lebih terperinci

PERANCANGAN ANTENA HELIX PADA FREKUENSI 433 MHz

PERANCANGAN ANTENA HELIX PADA FREKUENSI 433 MHz PERANCANGAN ANTENA HELIX PADA FREKUENSI 433 MHz Disusun Oleh : BUDI SANTOSO (11411552) JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK TELEKOMUNIKASI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA Jakarta,

Lebih terperinci

Analisa Penggunaan Sinyal Radar Bentuk Pulsa dan Gelombang Kontinyu untuk Target Bergerak dengan Model Clutter Terdistribusi Rayleigh

Analisa Penggunaan Sinyal Radar Bentuk Pulsa dan Gelombang Kontinyu untuk Target Bergerak dengan Model Clutter Terdistribusi Rayleigh JURNAL TEKNIK POMITS Vol. 2, No. 2, (213) ISSN: 2337-3539 (231-9271 Print) A-235 Analisa Penggunaan Sinyal Radar Bentuk Pulsa dan Gelombang Kontinyu untuk Target Bergerak dengan Model Clutter Terdistribusi

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 10 BAB III LANDASAN TEORI 3.1 Definisi VSAT VSAT merupakan singkatan dari Very Small Aperture Terminal, awalnya merupakan suatu trademark untuk stasiun bumi kecil yang dipasarkan sekitar tahun 1980 oleh

Lebih terperinci

Rijal Fadilah. Transmisi Data

Rijal Fadilah. Transmisi Data Rijal Fadilah Transmisi Data Review Sistem Komunikasi Data Entitas yg melambangkan suatu pengertian Jenis : data analog & data digital Signal / Sinyal Suatu bentuk/cara utk menyalurkan data Jenis : signal

Lebih terperinci

Sistem Ground Penetrating Radar untuk Mendeteksi Benda-benda di Bawah Permukaan Tanah

Sistem Ground Penetrating Radar untuk Mendeteksi Benda-benda di Bawah Permukaan Tanah Sistem Ground Penetrating Radar untuk Mendeteksi Benda-benda di Bawah Permukaan Tanah Folin Oktafiani folin@ppet.lipi.go.id Sulistyaningsih sulis@ppet.lipi.go.id Yusuf Nur Wijayanto yusuf@ppet.lipi.go.id

Lebih terperinci

DESAIN ANTENA MIKROSTRIP RECTANGULAR GERIGI UNTUK RADAR ALTIMETER

DESAIN ANTENA MIKROSTRIP RECTANGULAR GERIGI UNTUK RADAR ALTIMETER DESAIN ANTENA MIKROSTRIP RECTANGULAR GERIGI UNTUK RADAR ALTIMETER Aries Asrianto Ramadian 1) 1) Magister Teknik Elektro, Fakultas Teknologi Industri, Universitas Trisakti, Jakarta 1) aries.asrianto@gmail.com

Lebih terperinci

DESAIN DAN PEMBUATAN ANTENA LOG - PERIODIC DIPOLE ARRAY PADA RENTANG FREKUENSI MHz DENGAN GAIN 9 dbi

DESAIN DAN PEMBUATAN ANTENA LOG - PERIODIC DIPOLE ARRAY PADA RENTANG FREKUENSI MHz DENGAN GAIN 9 dbi DESAIN DAN PEMBUATAN ANTENA LOG - PERIODIC DIPOLE ARRAY PADA RENTANG FREKUENSI 430-1000 MHz DENGAN GAIN 9 dbi LAPORAN TUGAS AKHIR Disusun Sebagai Salah Satu Syarat Untuk Menyelesaikan Program Pendidikan

Lebih terperinci

BAB III TEORI DASAR UHF (Ultra high Frekuensi) UHF adalah merupakan gelombang elektromagnetik yang berada

BAB III TEORI DASAR UHF (Ultra high Frekuensi) UHF adalah merupakan gelombang elektromagnetik yang berada BAB III TEORI DASAR 3.1 UHF (Ultra high Frekuensi) UHF adalah merupakan gelombang elektromagnetik yang berada pada frekuensi antara 300 MHz sampai dengan 3 GHz (3.000 MHz). Panjang gelombang berkisar dari

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Pada bab ini akan dibahas mengenai perancangan dalam implementasi Passive

BAB III METODOLOGI PENELITIAN. Pada bab ini akan dibahas mengenai perancangan dalam implementasi Passive BAB III METODOLOGI PENELITIAN Pada bab ini akan dibahas mengenai perancangan dalam implementasi Passive Bistatic Radar (PBR) berbasis Wi-Fi IEEE 802.11 dalam pendeteksian objek diam. Pembahasan diawali

Lebih terperinci

Materi Pendalaman 03 GELOMBANG ELEKTROMAGNETIK =================================================

Materi Pendalaman 03 GELOMBANG ELEKTROMAGNETIK ================================================= Materi Pendalaman 03 GELOMBANG ELEKTROMAGNETIK ================================================= Bila dalam kawat PQ terjadi perubahan-perubahan tegangan baik besar maupun arahnya, maka dalam kawat PQ

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang

BAB I PENDAHULUAN. A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Ilmu pengetahuan dan teknologi selalu berkembang dan mengalami kemajuan, sesuai dengan perkembangan zaman dan perkembangan cara berpikir manusia. Bangsa Indonesia sebagai

Lebih terperinci

Gambar 2.1 Radiosonde

Gambar 2.1 Radiosonde BAB II DASAR TEORI 2.1 Radiosonde Radiosonde adalah alat untuk mengukur tekanan, suhu, arah, kecepatan angin dan kelembaban udara diberbagai lapisan udara. Alat tersebut berungsi sebagai alat ukur untuk

Lebih terperinci

BAB. IV SIMULASI DAN EKSPERIMEN SISTEM PENCITRAAN ULTRASONIK

BAB. IV SIMULASI DAN EKSPERIMEN SISTEM PENCITRAAN ULTRASONIK BAB. IV SIMULASI DAN EKSPERIMEN SISTEM PENCITRAAN ULTRASONIK 4.1 Simulasi Simulasi merupakan penggambaran suatu sistem atau proses dengan memperagakan atau menirukan (menyerupai) sesuatu yg besar dengan

Lebih terperinci