BAB I PENDAHULUAN I.1

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN I.1"

Transkripsi

1 BAB I PENDAHULUAN I.1 Latar Belakang VICO atau Virginia Indonesia Company, merupakan salah satu perusahaan Kontraktor Kontrak Kerja Sama (KKKS) ditunjuk BPMIGAS untuk melakukan proses pengeboran minyak dan gas bumi. Berdiri dengan nama awal HUFFCO Indonesia atau Huffington Company Indonesia yang didirikan oleh pengusaha minyak asal Texas, Roy Huffington dan pengusaha asal Virginia, General Arch Sproul. Dengan menggandeng perusahaan Ultramar Indonesia Limited, Union Texas East Kalimantan Limited dan Universe Tankships, Inc., pada bulan Februari 1972 HUFFCO menemukan daerah Badak, sebagai salah satu cadangan minyak dan gas terbesar di Kalimantan Timur. VICO mengoperasikan 7 lapangan produksi minyak dan gas bumi di daratan (onshore) Kalimantan Timur, Indonesia, dekat dengan Delta Mahakam. Lapangan-lapangan itu adalah Badak, Nilam, Pamaguan, Semberah, Mutiara, Beras, and Lempake. Produksi minyak dan gas bumi yang dihasilkan lapangan-lapangan tersebut diproses di empat stasiun produksi. Stasiun produksi pertama yang dibangun adalah Badak (1972), diikuti Nilam (1982), Mutiara (1990) dan Semberah (1991). Pada proyek ini, Vico Indonesia berencana untuk memodifikasi beberapa produksi lapangan antara lain untuk iventarisasi pipa dan model 3D pipa yang berlokasi di Pamaguan, Plant Satellite Nilam 2, Nilam 4, Nilam 5 dan Badak, Kalimantan Timur. PT. Vico Indonesia melalui PT. Rekayasa Engineering melakukan penawaran untuk proyeknya dan meminta PT. Lidar Indonesia Geospasial untuk melakukan pengukuran laser scanner di daerah tersebut untuk mendukung proyek mereka. Terrestrial Laser scanner merupakan alat pemindai yang mampu menghasilkan suatu kenampakan dari obyek yang diukur dalam bentuk 3D. Bentuk 3D yang dihasilkan merupakan kumpulan dari jutaan titik (point cloud), disetiap titik memiliki

2 nilai vector (x, y dan z). Hasil dari scanning menghasilkan visualisasi 3D sesuai obyek sebenarnya dimana sebelumnya harus dilakukan suatu proses registrasi. Registrasi merupakan proses penggabungan data hasil perekaman laser scanner dari berbagai posisi berdiri alat (scanworld) kedalam satu sistem koordinat yang sama atau tunggal. Registrasi yang digunakan adalah registrasi berbasis target (target based registration), dimana pada metode registrasi ini menggunakan target yang berfungsi sebagai obyek acuan untuk registrasi. Target pada metode ini berupa target planar cyrax yang dipasang disekitar area obyek yang diidentifikasikan pada saat perekaman data dilapangan maupun saat post processing. Registrasi pada pengunaan metode berbasis target berupa data konstrain yang disebut sebagai tie point, dimana tie point yang dimaksud pada target berupa pusat koordinat dari suatu target yang digunakan. Metode terrestrial laser scaning mempunyai beberapa keunggulan antara lain dalam satu kali berdiri alat dapat merekam ribuan hingga jutaan titik sehingga mempersingkat waktu pengukuran. Data yang dihasilkan berupa data DTM sehingga akan mempercepat proses perekaman datanya. Pengukuran menggunakan alat ini sangat cocok untuk pengukuran pipa, karena bisa mengambil gambar secara detil kerumitan jalur pipa dan lebih akurat data pengambilanya. Teknik ini dapat memvisualisasikan data yang diukur untuk memantau kelengkapan data ukuran. Pengukuran dilakukan secara otomatis sehingga akan meminimalisir kesalahan karena kelalaian pengukur. Kelemahan dari teknik ini antara lain harga alat yang mahal serta dibutuhkan komputer dengan spesifikasi yang tinggi untuk pengolahan datanya, selain itu karena dimensinya yang besar akan mengurangi fleksibilitas dalam pengukurannya. Dalam proyek ini dilakukan pengukuran mengunakan teknologi Terresrial Laser Scanner di Plant Satellite Nilam 2, PT. Vico Indonesia, dimana hasil penyiaman dari alat laser scanner berbentuk point could yang nantinya di registrasi menggunakan metode target to target untuk menggabungkan point cloud hasil penyiaman. Point cloud yang telah teregistrasi dijadikan acuan untuk pemodelan 3 dimensi.

3 I.2 Batasan masalah Pada proyek ini batasan masalah yang digunakan yaitu : 1. Lokasi area proyek adalah Plant Satellite Nilam 2, PT. Vico Indonesia, Kalimantan Timur. 2. Metode registrasi data menggunakan metode target to target 3. Kualitas hasil registasi ditentukan dari nilai RMSE pada tiap target 4. Tampilan data dalam bentuk model space 5. Sistem koordinat yang digunakan dalam proyek ini adalah sistem koordinat lokal yang mengacu pada scanworld 1. I.3 Tujuan Proyek Tujuan proyek ini adalah melakukan pengukuran Plant Satelitte Nilam 2, menggunakan terrestial laser scanner scanstation 2 dengan registrasi metode target to target. I.4 Manfaat Proyek Manfaat proyek ini adalah untuk pemodelan 3D Plant Satelitte Nilam 2 agar bisa mengetahui jalur rancangan pipa dari model yang telah dibuat tanpa harus penijawan ke lapangan serta untuk invetarisasi pipa yang ada di Plant Satelitte Nilam 2.

4 I.5 Landasan Teori I.5.1. Terrestrial laser scanner Terrestrial Laser Scanner adalah suatu peralatan yang memanfaatkan aplikasi sinar laser dimana digunakan untuk penyiaman suatu kenampakan obyek dengan memanfaatkan sensor aktif. Laser merupakan mekanisme suatu alat yang memancarkan radiasi elektromagnetik, umumnya dalam bentuk cahaya yang tidak dapat dilihat maupun dengan mata normal, melalui proses pancaran terstimulasi. LASER sendiri kepanjangan dari Light Amplification by Stimulated Emission of Radiation. (Lichti 2004). Sensor aktif ini memberikan suatu keuntungan yaitu tidak adanya ketergantungan terhadap kondisi pencahayaan yang mungkin berbeda secara signifikan misal daerah bervegetasi. Hasil dari peyiaman ini memperoleh kumpulan titik-titik 3D (X, Y dan Z) atau point cloud dari obyek tersebut secara cepat dan akurat dalam jumlah titik penyiaman ( point cloud ) yang banyak dan real time. Terdapat 2 jenis scanner berdasarkan sistem pengukurannya, antara lain : 1. Time of flight scanner. Akurasi rendah karena merupakan tipe scanner jarak jauh dengan cakupan 1, meter. Scanner jenis ini cepat dalam melakukan akuisisi data dan titik yang didapat hingga mencapai titik setiap detiknya. 2. Phase comparison scanner. Akurasi yang dihasilkan tinggi karena merupakan tipe scanner jarak menengah. Akan tetapi, scanner jenis ini dapat mengukur hingga titik setiap detiknya. Kelebihan Terrestrial Laser Scanner dibandingkan dengan alat ukur konvensional lainnya yaitu pengambilan data lebih cepat dan kualitas hasil pengukuran yang jauh lebih akurat. Kemudian untuk pengambilan data dan pengukuran dapat dilakukan dari jarak yang cukup jauh sehingga efisiensi dan keselamatan pekerja dapat terjamin, kemudian densitas titik yang didapat sangat tinggi sehingga menjamin survey topografi yang lengkap dan cepat. (Lichti 2004). Scanner Scantations 2 merupakan salah satu alat dibidang survei yang berbasis 3D laser mapping yang dikeluarkan oleh Leica Geosistems. Karakteristik Laser Scanner Scantation 2 dalam melakukan perekaman data yaitu setiap titik obyek direkam dengan ketelitian yang tinggi. Banyaknya titik obyek yang direkam pada

5 satu kali berdiri alat mencapai ribuan, bahkan jutaan titik, sehingga data hasil perekam dikenal dengan nama Point Cloud (titik awan). Banyaknya titik yang direkam dapat diatur dengan mengatur jarak spasi titik obyek yang akan di rekam. Secara umum spesifikasi dari Laser Scanner Scantation 2 bisa dilihat di lampiran B (Leica Geosistems, 2001) I.5.2 Sistem perekaman data Prinsip dasar perekaman data pada laser scanner adalah pulsa ditransmisikan tercermin dari obyek yang kemudian dikembalikan ke sistem penerima yaitu memancarkan gelombang sinar laser hingga mengenai obyek yang diukur kemudian obyek tersebut memantulkan kembali gelombang sinar tersebut ke sistem penerima (Kholiq, 2006). Selama proses pancaran gelombang diperoleh perbedaan lama waktu saat gelombang laser dipancarkan keobyek dan waktu saat gelombang dipantulkan kembali ke alat laser scanner. Perbedaan waktu tersebut yang digunakan dalam menentukan jarak ukuran dari scan head ke obyek. Adapun prinsip perekaman data jarak dan arah jalannya sinar laser dapat dijelaskan pada ganbar berikut : Gambar I.1 Perekaman data jarak (Reddington, 2005) Persamaan untuk menentukan jarak ukuran dari scan head ke obyek pada laser scanner sebagai berikut : Distance ( R ) = ( C x T )/ (1.1) Dimana :

6 R C T : jarak scanner dari titik obyek : kecepatan gelombang sinar laser ( 3 x 10 8 m/s) : jumlah waktu pergi dan pulang Data yang direkam berupa data sudut horizontal (α), sudut vertikal (β), dan jarak antara pusat koordinat scanner dengan obyek yang direkam (R) seperti pada persamaan 1.2. dan Seperti dapat dilihat pada Gambar 1.2 prinsip perekaman data scanner untuk bidang X dan Y dijadikan sebagai reference plane dalam koordinat scan. Laser bergerak dari atas ke bawah dan ke samping kanan sesuai dengan arah perputaran jarum jam (Handoko 2005). Dimana hasil pengukuran maka koordinat 3D obyek yang direkam dapat ditentukan dengan persamaan berikut : X= R. cos β.sin α (1.2) Y= R. cos β. cos α (1.3) Z= R. sin β (1.4) Dimana : R α β X,Y,Z : jarak dari scanner ke titik obyek : sudut horizontal titik obyek : sudut vertikal obyek : koordinat titik point cloud Z+ Pusat origin O α R β Titik obyek X+ Proyeksi Y+ obyek pada bidang XY Gambar I.2. Prinsip perekaman data dengan scanner (Soeta at 2005)

7 I.5.3. Registrasi data titik awan (point cloud) Data hasil penyiaman kemudian dilakukan registrasi. Fungsi dilakukannya registrasi adalah untuk proses penggabungan data hasil perekaman kedalam satu sistem koordinat tunggal. Penggabungan ini merupakan gabungan data-data dari beberapa posisi hasil penyiaman (scanworld) agar semua scanworld bisa menjadi satu sistem yang sama. Ada 3 metode yang digunakan dalam melakukan registrasi data (Reddington, 2005). yaitu: 1. Metode target to target, pada metode target to target titik ikat yang digunakan untuk registrasi adalah titik target yang dipasang di sekitar obyek dan diidentifikasi pada saat perekaman data. Bentuk target beraneka ragam ada yang berbentuk target bola yang terbuat dari bahan khusus, kemudian target lainnya berupa target planar hitam putih, kemudian target khusus seperti cyrax target yang berbentuk plan bulat dan masih banyak yang lain. Target diletakkan secara merata ke areal penyiaman dari berbagai posisi berdiri alat atau diletakkan pada cakupan scanner yang bisa terlihat dari berbagai arah tempat berdiri scanner. Identifikasi target kemudian dilakukan untuk pada masing-masing titik target tersebut. Persebaran titik target yang merata dan banyak akan memberikan kualitas registrasi yang lebih baik dari pada metode cloud to cloud. Ketentuan ini berlaku dengan syarat minimal titik target yang saling terlihat antara scanworld harus minimal 3 titik target. Dikarenakan pada sistem transformasi koordinat 3D terdapat 7 parameter. 2. Metode cloud to cloud, titik ikat yang digunakan untuk registrasi didapat dari titik titik obyek hasil perekaman sehingga pada saat perekaman target tidak perlu pemasangan target. Syarat agar scanworld dapat diregistrasi, maka antar scanworld harus memiliki pertampalan atau overlap antar scan point cloud minimum sebesar 20 % dari daerah yang direkam. Kelebihan metode cloud to cloud adalah apabila hasil registrasi memiliki ketelitian yang kurang maka data diulang lagi dengan menggunakan titik ikat yang lain tanpa harus melakukan pengukuran kembali. Selain itu dengan registrasi metode cloud to cloud maka lebih efisien dalam hal waktu dan biaya, karena pada saat melakukan pengukuran tidak memerlukan identifikasi target sehingga waktu yang dibutuhkan lebih singkat. Kekurangan untuk metode ini kualitas registrasinya

8 paling rendah dibanding dengan metode lainnya. Dalam registrasi metode cloud to cloud, registrasi dapat dilakukan dengan 2 cara yitu registrasi secara bertahap dan registrasi secara keseluruhan. Dalam registrasi secara bertahap, registrasi scanworld dilakukan dalam beberapa tahap registrasi. Dalam registrasi secara keseluruhan, semua scanworld diregistrasi dalam satu kali tahapan registrasi. 3. Metode kombinasi antara metode Clouds to Clouds dengan Target to Target yaitu suatu metode dengan proses registrasi yang dilakukan secara kombinasi yaitu antara cloud to cloud dengan target to target. Sehingga untuk kualitas hasil registrasi dan ukurannya untuk metode ini memiliki kualitas yang lebih baik dibanding dengan cloud to cloud maupun target to target. Prinsip dasar proses registrasi mengacu pada transformasi koordinat sebangun 3 dimensi dimana parameter transformasinya diperoleh dari hubungan antar SW dengan menggunakan data konstrain, karena jumlah persamaan lebih banyak dari jumlah parameter maka nilai parameter ditentukan berdasarkan algoritma ICP dengan metode hitung kuadrat terkecil (Besl, 1992). I Jenis dan bentuk target pada target based registration Metode target based registration sering diterapkan dalam pengukuran untuk bidang sipil. Proses registrasinya memanfaatkan suatu titik ikat atau titik kontrol yang terbentuk dari titik pusat target yang digunakan (target based). Hasil registrasi target based memiliki kualitas yang lebih baik atau akurat dibanding metode cloud to cloud. Kualitas untuk metode target lebih baik karena dengan target untuk registrasinya menggunkan tie point atau titik sekutu yang diperoleh dari koordinat pusat target, kemudian tie point tersebut dijadikan sebagai titik ikat untuk membawa satu sistem ke sistem referensi. Penentuan pusat titik target (tie point) yang digunakan sebagai titik ikat tersebut berbeda-beda sesuai target yang digunakan, dalam pekerjaan ini target yang digunakan adalah target planar. Pusat target planar tersebut dapat diperoleh dengan menggunakan cara solusi hitungan kuadrat terkecil (least square) dengan menerapkan rumus persamaan lingkaran. Bentuk dan jenis untuk target based ada beberapa macam, dan yang umum digunakan planar, target hitam putih, sphere (bola), cyrax planar dan reflective

9 target, dimana ini merupakan target-target khusus yang diterapkan pada proses pengambilan data metode target. Namun ada juga yang menggunakan target natural contohnya suatu obyek misal lampu taman yang berbentuk bola yang bisa terlihat di setiap scanworld dan misal obyek lainnya yang bisa digunakan untuk titik sekutu. Bentuk target umum yang digunakan dalam target based meliputi (Elkhrachy, 2008): 1. Sphere (bola) Permukaan bola merupakan tempat kedudukan dari kumpulan titik ujung vektor-vektor di dalam ruang yang titik awalnya adalah titik tertentu, dan panjangnya adalah konstant. Titik awal tertentu itu disebut titik pusat bola, dan panjang vektor yang konstant itu disebut jari-jari bola. Hasil scanning dari bola menghasilkan bentuk yang konsisten dari berbagai sudut cakupan scanner selama proses perekaman data dan dapat mengestimasi pusat koordinat 3D nya. Kemudian keuntungan yang lainnya dengan bola, permukaannya dapat terlihat dari berbagai arah dengan model yang sama yaitu lingkaran (Elkhrachy, 2008). Sehingga banyak pemilihan target berupa bola karena bola merupakan target dengan bentuk yang terbaik dan efisien. Dengan rumusan umum untuk persamaan bola dengan mengasumsikan X o, Y o dan Z o merupakan koordinat permukaan bola dan a, b dan c merupakan parameter pusat bola dan R jarak pusat ke permukaan bola untuk jelasnya seperti pada gambar gambar I.3 bentuk perspektif bola, dan berikut rumusan umum persamaan bola untuk menentukan parameter-parameter dari bola: R² = (xo a)² + (yo b)² + (zo c)²......(1.5) Dimana : R : jari-jari bola x 0, y 0, z 0 : koordinat permukaan bola (surface) a, b, c : koordinat pusat bola

10 (X o,y o,z o ) R (a,b,c) Z X Y Gambar I.3. Bentuk perspektif bola (Isnuardani 2013). 2. Planar hitam putih Planar hitam putih merupakan target yang berbentuk planar dimana berbentuk persegi empat yang berwarna hitam putih, dengan ukuran tertentu dan terbuat dari bahan khusus yang mampu tahan dari pancaran laser dan mampu memantulakan laser tersebut kembali ke scaner (reflecktifitas). Ini merupakan target yang juga umum digunakan dalam scanning karena bentuk dan model yang mudah diidentifikasi baik sebelum discan maupun dalam data point cloud. 3. Planar cyrax Planar cyrax merupakan target yang terbuat dari bahan khusus. Target ini berbentuk lingkaran dengan titik tengah sebagai titik pusat yang dijadikan tie point. Penentuan nilai tengah pusat target cyrax tersebut sama dengan target berupa bola hanya pada cyrax berupa lingkaran, sehingga penyelesaiannya menggunakan persamaan lingkaran. Persamaan lingkarannya sebagai berikut : R² = (xo a)² + (yo b)² (1.6) Dimana : R : jari-jari bola x 0, y 0 : koordinat permukaan lingkaran (surface) a, b : koordinat pusat lingkaran

11 1.5.4 Transformasi koordinat Transformasi koordinat 3D adalah suatu proses untuk melakukan suatu perubahan sistem dari sistem koordinat 3D yang satu ke sistem koordinat 3D lainnya dengan salib sumbu antar kedua sistem sama-sama tegak lurus. Perubahan sistem ini adalah perubahan sistem untuk koordinat point sumbu x y z yang direferensikan ke sistem sumbu X Y Z (referensi). Transformasi koordinat 3D sebangun merupakan salah satu yang digunakan untuk proses registrasi antar scanworld atau yang disebut juga transformasi Helmert. Faktor penentu transformasi 3D adalah parameterparameter tranformasi, yang mana parameter tersebut adalah independent. Parameter-parameter tersebut adalah rotasi, translasi dan skala (Book element of photogrametri). Parameter transformasi 3D ada 7 parameter, sehingga untuk proses registrasi antar sistem ke sistem yang lain parameter yang harus dicari yaitu skala ( λ ), rotasi ( ω,ψ,k ) dan translasi ( Tx, Ty, Rz ). Berbeda dengan transformasion rigid body dimana parameter skala tidak diperlukan karena secara umum skala pada rigid body dianggap 1 (satu) berarti ukuran pada masing-masing sistem dianggap sama tidak mengalami scaling. Hasil untuk penyiaman suatu laser scanner sendiri skalanya dianggap sama sehingga bisa dikatakan rigid body namun untuk kenyataannya tidak menutup kemungkinan skalanya berbeda. Kesalahan untuk skala tetap ada walaupun kecil maka penentuan untuk nilai parameter transformasi 3D diperoleh dengan persamaan transformasi 7 parameter. Persamaan tersebut merupakan suatu persamaan yang non-linier (ω,ψ,k), maka untuk penyelesainnya harus dilinierkan terlebih dahulu sehingga penyelesaiannya dapat menggunakan solusi hitungan iterative least square. Setiap 1 scanworld pada registrasi laser scanner memiliki sistem koordinat local masing-masing, sehingga setiap tie point pada target bola otomatis masingmasing memiliki sistem koordinat yang sesuai dengan scan headnya. Proses registrasi antar scanworld yang saling berdekatan harus memiliki acuan target yang sama dalam artian adalah posisi target sebagai tie point yang sama. Kesamaan posisi acuan target untuk proses registrasi bisa ditentukan dengan transformasi koordinat 3D yang akan memeperoleh nilai parameter-parameter antar kedua sistem acuan tersebut. Salah satu dari scanworld tersebut harus dijadikan sebagai koordinat acuan

12 (referensi) sebagai acuan bagi scanworld lainnya. Proses dalam melakukan registrasi data laser scanner minimal harus ada 2 scanworld yang masing-masing sistem sebagai koordiant lokal dan koordinat global (referensi). Model matematika untuk sistem transformasi koordinat sebangun 3D adalah seperti pada persamaan 1.9 (Soeta at 2005). Sistem koordinat global (Referensi), X: [...,Xi, Yi, Zi,...]T (1.7) Sstem koordinat local, x: [..., xi, yi, zi,...]t (1.8) Rumus umum transformasi koordinat 3D menjadi berikut : X = T + S r x (1.9) = λ R (2.0) Dimana : X S T R x : Vector yang memuat 3 koordinat pada point n i pada sistem koordinat pertama : scale factor between two systems. : translation vector. : rotation matrix. : Vector yang memuat 3 koordinat pada point n i pada sistem koordinat kedua adalah sistem koordinat baru merupakan sistem koordinat yang dijadikan referensi ini sering disebut sebagai template surface,

13 adalah sistem koordinat lama yang akan dilakukan transformasi disebut juga sebagai search surface, merupakan matrik translasi (sumbu x, y dan z) Rotasi ( R ) pada transformasi koordinat 3D sebangun berupa rotasi pada sumbu x, pada sumbu y, dan pada sumbu z yang memeiliki element rotasi R x,r y,dan R z. masing masing sumbu R x,r y,dan R z yang merupakan fungsi dari 3 sudut rotasi ( ω, ψ, k) yang akan dijelaskan dalam suatu matriks sebagai berikut ( Soeta at 2005 ). Untuk rotasi berpusat pada sumbu x, sebagai berikut : Rx = Cos( ) Sin( ) Sin( ) Cos( )...(2.1) Sudut rotasi berpusat pada sumbu y, sebagai berikut : Ry = Cos( ) Sin( ) 0 Sin( ) 0 Cos( ) Rotasi berpusat pada sumbu z, sebagai berikut :...(2.2) Rz = Cos( ) Sin( ) 0 Sin( ) Cos( ) (2.3) Kombinasi dari R z, R y, R x adalah : R = r r r r r r r r r (2.4)

14 Dimana : r 11 = cos φ. cos κ r 21 = - cos φ. sin κ r 31 = sin φ r 12 = cos ω. sin κ + sin ω. sin φ. cos κ r 22 = cos ω. cos κ - sin ω. sin φ. sin κ r 32 = - sin ω. cos φ r 13 = sin ω. sin κ - cos ω. sin φ. cos κ r 23 = sin ω. cos κ + cos ω. sin φ. sin κ r 33 = cos ω. cos φ Persamaan umum untuk transformasi koordinat 3D sebangun sebagai berikut : X = λ ( r 11 x + r 12 y + r 13 z ) + T x Y = λ ( r 21 x + r 22 y + r 23 z ) + T y Z = λ ( r 31 x + r 32 y + r 33 z ) + T z..... (2.5) I.5.5. Uji ketelitian hasil registrasi Setiap pengukuran pasti disertai kesalahan, sebagai proses pengolahan data ukuran maka data hasil registrasi tak luput dari kesalahan. Besarnya nilai kesalahan ini ditunjukkan dengan nilai RMSE dan mean absolute error. Ketelitian standar hasil pengolahan data TLS Scanstation 2 untuk Plant Satellite Nilam 2 belum ada maka pada pekerjaan ini nilai toleransi kesalahan didasarkan pada single point positional accuracy yang merepresentasikan nilai ketelitian posisi tiap point cloud. Nilai ketelitian posisi ini didasarkan pada besarnya kesalahan pada sumbu X (dx), kesalahan pada sumbu Y (dy), dan kesalahan pada sumbu Z (dz). Besarnya nilai kesalahan pada sumbu Y identik dengan kesalahan pengukuran jarak yaitu sebesar + 4 mm, sedangkan nilai kesalahan pada sumbu X dan sumbu Z identik dengan kesalahan pengukuran sudut sebesar 60 mikroradian. Besarnya nilai dx dan dz pada jarak 50 m dapat ditentukan sebagai berikut (Reddington, 2005). 5 mikroradian = 1 second

15 60 mikroradian = 12 second dx = dz = sin (12 second) 50 m = 3 mm Nilai single point positional accuracy dapat ditentukan sebagai berikut σ = dx 2 + dy 2 + dz 2 = = 34 = 5,85 mm Besarnya nilai toleransi kesalahan ditetapkan berdasarkan tingkat kepercayaan 90%, sebagai berikut (Soetaat, 2003). Nilai toleransi kesalahan = 1,645σ = 1,645 (5.85 mm) = 9,62325 mm ~ 10 mm Dari perhitungan di atas dapat disimpulkan bahwa data hasil registrasi dinyatakan memenuhi toleransi kesalahan apabila nilai RMSE atau mean absolute error yang diperoleh < 10 mm. RMSE (Root Mean Square Error) merupakan suatu nilai yang digunakan untuk menunjukkan ketelitian dengan melibatkan semua faktor kesalahan yang terjadi selama proses pengukuran atau produksi data. Definisi matematis dari RMSE mirip dengan kesalahan baku, yaitu akar kuadrat dari rata-rata jumlah kuadrat residual. Dimana kesalahan baku didefinisikan sebagai akar dari jumlah kuadrat residual seperti pada persamaan 2.6. ( x i ) n 1 2 (2.6) Dengan : = kesalahan baku x i = nilai hasil ukuran = nilai sebenarnya n = jumlah pengukuran

16 I.5.6. Perangkat lunak cyclone 7.0 Cyclone adalah software yang digunakan untuk mendukung proses penyiaman dan aplikasi pemrosesan software lain. Cyclone dikembangkan oleh perusahaan software Cyra untuk efisiensi semua operasional alat laser scanner HDS. Cyclone menjadi standar industri dalam perekaman data point cloud, pengolahan data point cloud, dan mengintegrasikan informasi atau data kedalam software aplikasi CAD. Sofware Cyclone dapat diaplikasikan dengan berbagai macam alat pemetaan yang prinsip kerjanya berdasarkan lasermapping, diantaranya adalah HDS 2500, HDS 3000, HDS 4500, REIGL, Optech, Trimbel dan I-Site. Didalam perangkat lunak cyclone ada beberapa istilah yang penting untuk diketahui, antara lain : 1. Scanworld Scanworld merupakan kumpulan titik-titik obyek hasil penyiaman (Point Cloud) dalam satu posisi, dimana kumpulan titik-titik obyek tersebut memiliki satu sistem koordinat tertentu. Suatu scanworld dapat terdiri dari scanworld lain melalui registrasi data. Umumnya satu scanworld terdiri atas Control Space, Model Space, Scan, dan Image. 2. Control Space Control Space hampir sama dengan Model Space View yaitu berisi data titiktitik obyek hasil scanning, bedanya Control Space digunakan sebagai dasar untuk proses registrasi. 3. Model Space Model Space berisi informasi data Point Could dari database yang telah diproses, dimodelkan, atau diubah dengan fungsi tertentu. Dalam Model Space berisi Model Space view. 4. Model Space View Model Space View merupakan bagian dari Model Space yang berisi tampilan data hasil penyiaman (Point Could). Sehingga pengolahan data hasil peyiaman maupun registrasi diolah di bagian ini. (Kholiq 2006)

BAB I PENDAHULUAN I.1. Latar belakang

BAB I PENDAHULUAN I.1. Latar belakang 1 BAB I PENDAHULUAN I.1. Latar belakang Perkembangan teknologi dalam survey pemetaan pada masa kini berkembang sangat cepat. Dimulai dengan alat - alat yang bersifat manual dan konvensional, sekarang banyak

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. 1 BAB I PENDAHULUAN I.1. Latar Belakang Pemantauan dan pemeliharaan infrastruktur khususnya bangunan dapat dilakukan dengan bentuk model tiga dimensi (3D) yang diukur dengan Terrestrial Laser Scanner (TLS).

Lebih terperinci

BAB I PENDAHULUAN. Latar Belakang

BAB I PENDAHULUAN. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang SUTET (Saluran Udara Tegangan Ekstra Tinggi) yang berfungsi untuk menyalurkan tegangan listrik dari pusat tegangan yang memiliki jarak yang jauh. Menara SUTET terbuat

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar belakang

BAB I PENDAHULUAN I.1. Latar belakang BAB I PENDAHULUAN I.1. Latar belakang Listrik merupakan sumber energi yang paling vital di dunia ini. Perusahaan Listrik Negara (PLN) terus berupaya memberikan pelayanan terbaik dalam memasok energi listrik

Lebih terperinci

BAB 2 STUDI REFERENSI

BAB 2 STUDI REFERENSI BAB 2 STUDI REFERENSI Bab ini berisi rangkuman hasil studi referensi yang telah dilakukan. Referensi- referensi tersebut berisi konsep dasar pengukuran 3dimensi menggunakan terrestrial laser scanner, dan

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Dalam pekejaan monitoring konstruksi, displin ilmu geodesi sangat membantu dalam hal pengukuran dan penyajiaan data. Penyajian data dilakukan dalam bentuk model tiga

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Meningkatnya kegiatan pembangunan khususnya pada daerah perkotaan menyebabkan orientasi pembangunan mengarah secara vertikal pada pemanfaatan ruang baik ke atas maupun

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Tinjauan Umum Teknologi Pemetaan Tiga Dimensi

BAB 2 DASAR TEORI. 2.1 Tinjauan Umum Teknologi Pemetaan Tiga Dimensi BB 2 DSR TEORI 2.1 Tinjauan Umum Teknologi Pemetaan Tiga Dimensi Pemetaan objek tiga dimensi diperlukan untuk perencanaan, konstruksi, rekonstruksi, ataupun manajemen asset. Suatu objek tiga dimensi merupakan

Lebih terperinci

BAB 3 PERBANDINGAN GEOMETRI DATA OBJEK TIGA DIMENSI

BAB 3 PERBANDINGAN GEOMETRI DATA OBJEK TIGA DIMENSI BAB 3 PERBANDINGAN GEOMETRI DATA OBJEK TIGA DIMENSI Pada bab ini akan dijelaskan tentang perbandingan tingkat kualitas data, terutama perbandingan dari segi geometri, selain itu juga akan dibahas mengenai

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Kebutuhan data pengukuran terestris menuntut pemenuhan aspek efisien, efektif, presisi dan akurat. Perkembangan ilmu pengetahuan dan teknologi dalam lingkup survei

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Bangunan sejarah mempunyai nilai penting di suatu negara karena dari bangunan bersejarah tersebut dapat diketahui kisah yang terkait dari bangunan tersbut. Pemanfaatan

Lebih terperinci

BAB 4 ANALISIS 4.1 Analisis Prinsip Penggunaan dan Pengolahan TLS 4.2 Analisis Penggunaan TLS Untuk Pemantauan Longsoran

BAB 4 ANALISIS 4.1 Analisis Prinsip Penggunaan dan Pengolahan TLS 4.2 Analisis Penggunaan TLS Untuk Pemantauan Longsoran BAB 4 ANALISIS 4.1 Analisis Prinsip Penggunaan dan Pengolahan TLS Dasar dari prinsip kerja TLS sudah dijelaskan di Bab 3, pada pengambilan data dengan TLS, setiap satu kali pengambilan data pada satu tempat

Lebih terperinci

BAB 3. Akuisisi dan Pengolahan Data

BAB 3. Akuisisi dan Pengolahan Data BAB 3 Akuisisi dan Pengolahan Data 3.1 Peralatan yang digunakan Pada pengukuran TLS, selain laser scanner itu sendiri, receiver GPS tipe geodetik juga digunakan untuk penentuan posisi titik referensi yang

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Virginia Indonesia Company (VICO) berencana memodifikasi beberapa kilang (plant) yang berlokasi di Pamaguan, Nilam 2, Nilam 4, Nilam 5 dan Badak. VICO perlu membangun

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 BAB I PENDAHULUAN I.1 Latar Belakang Tugu Yogyakarta adalah sebuah monumen yang menjadi simbol Kota Yogyakarta. Monumen ini berada tepat di tengah perempatan Jalan Pengeran Mangkubumi, Jalan Jendral Sudirman,

Lebih terperinci

BAB III PENGOLAHAN DATA Proses Pengolahan Data LIDAR Proses pengolahan data LIDAR secara umum dapat dilihat pada skema 3.1 di bawah ini.

BAB III PENGOLAHAN DATA Proses Pengolahan Data LIDAR Proses pengolahan data LIDAR secara umum dapat dilihat pada skema 3.1 di bawah ini. BAB III PENGOLAHAN DATA 3.1. Pengolahan Data LIDAR 3.1.1. Proses Pengolahan Data LIDAR Proses pengolahan data LIDAR secara umum dapat dilihat pada skema 3.1 di bawah ini. Sistem LIDAR Jarak Laser Posisi

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Objek tiga dimensi (3D) merupakan suatu objek yang direpresentasikan dengan ukuran panjang, lebar, dan tinggi. Data objek tiga dimensi secara spasial umumnya diperoleh

Lebih terperinci

BAB V TINJAUAN MENGENAI DATA AIRBORNE LIDAR

BAB V TINJAUAN MENGENAI DATA AIRBORNE LIDAR 51 BAB V TINJAUAN MENGENAI DATA AIRBORNE LIDAR 5.1 Data Airborne LIDAR Data yang dihasilkan dari suatu survey airborne LIDAR dapat dibagi menjadi tiga karena terdapat tiga instrumen yang bekerja secara

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi yang semakin pesat dewasa ini dan semakin kompleksnya pekerjaan-pekerjaan engineering yang menuntut ketelitian dan kecepatan tinggi

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Pembangkit Listrik Tenaga Uap (PLTU) adalah pembangkit listrik dengan menggunakan uap sebagai penggerak utama dan menggunakan bahan bakar residu (Sunarni dkk, 2012).

Lebih terperinci

BAB VII ANALISIS. Airborne LIDAR adalah survey untuk mendapatkan posisi tiga dimensi dari suatu titik

BAB VII ANALISIS. Airborne LIDAR adalah survey untuk mendapatkan posisi tiga dimensi dari suatu titik 83 BAB VII ANALISIS 7.1 Analisis Komponen Airborne LIDAR Airborne LIDAR adalah survey untuk mendapatkan posisi tiga dimensi dari suatu titik dengan memanfaatkan sinar laser yang ditembakkan dari wahana

Lebih terperinci

BAB 4 ANALISIS DAN DISKUSI

BAB 4 ANALISIS DAN DISKUSI 4.1 Analisis Perencanaan BAB 4 ANALISIS DAN DISKUSI Dari segi perencanaan,metode registrasi cloud to cloud adalah metode yang paling praktis. Metode registrasi cloud to cloud ini hanya memperhatikan pertampalan

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Manusia hidup di bumi yang merupakan dunia 3D. Para peneliti dan insinyur kebumian telah lama mencoba membuat tampilan grafis tentang aspek spasial 3D dari dunia nyata

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Pemodelan tiga dimensi suatu obyek di atas permukaan bumi pada saat ini dapat dilakukan dengan cara teristris maupun non-teristris, menggunakan sensor aktif berupa

Lebih terperinci

BAB 3 AKUSISI DAN PENGOLAHAN DATA

BAB 3 AKUSISI DAN PENGOLAHAN DATA BAB 3 AKUSISI DAN PENGOLAHAN DATA Bab pembahasan ini berisi tentang proses pengambilan dan pengolahan data. Proses pengambilan dengan TLS dibagi menjadi dua bagian yaitu proses persiapan dan proses pengukuran.

Lebih terperinci

Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan

Pengertian. Transformasi geometric transformation. koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Pengertian Transformasi geometric transformation Transformasi = mengubah deskripsi koordinat dari objek Transformasi dasar: Translasi Rotasi Penskalaan Translasi Mengubah posisi objek: perpindahan lurus

Lebih terperinci

BAB 2 TEKNOLOGI LIDAR

BAB 2 TEKNOLOGI LIDAR BAB 2 TEKNOLOGI LIDAR 2.1 Light Detection and Ranging (LiDAR) LiDAR merupakan sistem penginderaan jauh aktif menggunakan sinar laser yang dapat menghasilkan informasi mengenai karakteristik topografi permukaan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI 2.1. Sistem 3D Scanner Pemindaian tiga dimensi (3D) merupakan proses pengambilan data berupa bentuk suatu objek untuk membuat pemodelan 3D dari objek tersebut. Model 3D yang tercipta

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang As built drawing adalah produk dan dokumen pemeliharaan konstruksi pada semua instalasi proyek. Sebuah dokumen As built drawing memuat perubahan yang ada di lapangan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Teknik pemodelan balik sering dikenal juga reverse engineering adalah teknik pemodelan ulang dari benda yang sudah ada. Teknik ini berlaku dalam bidang geodesi. Dalam

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan Negara yang memiliki daerah pegunungan yang cukup luas. Tingginya tingkat curah hujan pada sebagian besar area pegunungan di Indonesia dapat menyebabkan

Lebih terperinci

BAB III TEKNOLOGI LIDAR DALAM PEKERJAAN EKSPLORASI TAMBANG BATUBARA

BAB III TEKNOLOGI LIDAR DALAM PEKERJAAN EKSPLORASI TAMBANG BATUBARA BAB III TEKNOLOGI LIDAR DALAM PEKERJAAN EKSPLORASI TAMBANG BATUBARA 3.1 Kebutuhan Peta dan Informasi Tinggi yang Teliti dalam Pekerjaan Eksplorasi Tambang Batubara Seperti yang telah dijelaskan dalam BAB

Lebih terperinci

1. BAB I PENDAHULUAN PENDAHULUAN

1. BAB I PENDAHULUAN PENDAHULUAN 1. BAB I PENDAHULUAN PENDAHULUAN 1.1. Latar Belakang Peta menggambarkan data spasial (keruangan) yang merupakan data yang berkenaan dengan lokasi atau atribut dari suatu objek atau fenomena di permukaan

Lebih terperinci

PERATURAN KEPALA BADAN INFORMASI GEOSPASIAL NOMOR 15 TAHUN 2014 TENTANG PEDOMAN TEKNIS KETELITIAN PETA DASAR DENGAN RAHMAT TUHAN YANG MAHA ESA,

PERATURAN KEPALA BADAN INFORMASI GEOSPASIAL NOMOR 15 TAHUN 2014 TENTANG PEDOMAN TEKNIS KETELITIAN PETA DASAR DENGAN RAHMAT TUHAN YANG MAHA ESA, PERATURAN KEPALA BADAN INFORMASI GEOSPASIAL NOMOR 15 TAHUN 2014 TENTANG PEDOMAN TEKNIS KETELITIAN PETA DASAR DENGAN RAHMAT TUHAN YANG MAHA ESA, Menimbang : a. bahwa dalam penetapan standar ketelitian peta

Lebih terperinci

Transformasi Datum dan Koordinat

Transformasi Datum dan Koordinat Transformasi Datum dan Koordinat Sistem Transformasi Koordinat RG091521 Lecture 6 Semester 1, 2013 Jurusan Pendahuluan Hubungan antara satu sistem koordinat dengan sistem lainnya diformulasikan dalam bentuk

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu bentuk dari digitalisasi yang sedang berkembang saat ini adalah teknologi 3D Scanning yang merupakan proses pemindaian objek nyata ke dalam bentuk digital.

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Undang-Undang No. 11 Tahun 2010 tentang Cagar Budaya, menyebutkan Cagar Budaya merupakan kekayaan budaya bangsa sebagai wujud pemikiran dan perilaku kehidupan manusia

Lebih terperinci

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY SISTEM-SISTEM KOORDINAT Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Sistem Koordinat Kartesian Dalam sistem koordinat Kartesian, terdapat tiga sumbu koordinat yaitu sumbu x, y, dan z. Suatu titik

Lebih terperinci

Penerapan Pemodelan Matematika untuk Visualisasi 3D Perpustakaan Universitas Mercu Buana

Penerapan Pemodelan Matematika untuk Visualisasi 3D Perpustakaan Universitas Mercu Buana Penerapan Pemodelan Matematika untuk Visualisasi 3D Perpustakaan Universitas Mercu Buana Walid Dulhak 1, Abdusy Syarif 2 dan, Tri Daryanto 3 Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Universitas

Lebih terperinci

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014

Transformasi Geometri Sederhana. Farah Zakiyah Rahmanti 2014 Transformasi Geometri Sederhana Farah Zakiyah Rahmanti 2014 Grafika Komputer TRANSFORMASI 2D Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut

Lebih terperinci

BAB VI TINJAUAN MENGENAI APLIKASI AIRBORNE LIDAR

BAB VI TINJAUAN MENGENAI APLIKASI AIRBORNE LIDAR 63 BAB VI TINJAUAN MENGENAI APLIKASI AIRBORNE LIDAR Survey airborne LIDAR terdiri dari beberapa komponen alat, yaitu GPS, INS, dan laser scanner, yang digunakan dalam wahana terbang, seperti pesawat terbang

Lebih terperinci

BAB III METODA. Gambar 3.1 Intensitas total yang diterima sensor radar (dimodifikasi dari GlobeSAR, 2002)

BAB III METODA. Gambar 3.1 Intensitas total yang diterima sensor radar (dimodifikasi dari GlobeSAR, 2002) BAB III METODA 3.1 Penginderaan Jauh Pertanian Pada penginderaan jauh pertanian, total intensitas yang diterima sensor radar (radar backscattering) merupakan energi elektromagnetik yang terpantul dari

Lebih terperinci

BAB IV TINJAUAN MENGENAI SENSOR LASER

BAB IV TINJAUAN MENGENAI SENSOR LASER 41 BAB IV TINJAUAN MENGENAI SENSOR LASER 4.1 Laser Laser atau sinar laser adalah singkatan dari Light Amplification by Stimulated Emission of Radiation, yang berarti suatu berkas sinar yang diperkuat dengan

Lebih terperinci

CAHAYA. Cahaya: Cahaya adalah suatu bentuk radiasi energi elektromagnetik yang dipancarkan dalam bagian spektrum yang dapat dilihat.

CAHAYA. Cahaya: Cahaya adalah suatu bentuk radiasi energi elektromagnetik yang dipancarkan dalam bagian spektrum yang dapat dilihat. CAHAYA Cahaya: Cahaya adalah suatu bentuk radiasi energi elektromagnetik yang dipancarkan dalam bagian spektrum yang dapat dilihat. Energi panas di radiasikan / dipancarkan pada suatu media oleh suatu

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Koreksi Geometrik Langkah awal yang harus dilakukan pada penelitian ini adalah melakukan koreksi geometrik pada citra Radarsat. Hal ini perlu dilakukan karena citra tersebut

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Geodesi secara umum merupakan disiplin ilmu kebumian yang mempelajari tentang pengukuran dan perepresentasian bumi dan benda-benda langit lainya, termasuk medan gaya

Lebih terperinci

Posisi&Orientasi dan Transformasi

Posisi&Orientasi dan Transformasi Posisi&Orientasi dan Transformasi Nuryono S.W.-UAD TH22452 Robotika Pengantar Robot, sebagaimana definisi dan fungsinya adalah suatu sistem yang bergerak baik dalam gerak 2 dimensi maupun 3 dimensi Robotika

Lebih terperinci

Analisis Ketelitian Geometric Citra Pleiades 1B untuk Pembuatan Peta Desa (Studi Kasus: Kelurahan Wonorejo, Surabaya)

Analisis Ketelitian Geometric Citra Pleiades 1B untuk Pembuatan Peta Desa (Studi Kasus: Kelurahan Wonorejo, Surabaya) Analisis Ketelitian Geometric Citra Pleiades 1B untuk Pembuatan Peta Desa (Studi Kasus: Kelurahan Wonorejo, Surabaya) Iva Nurwauziyah, Bangun Muljo Sukojo, Husnul Hidayat Jurusan Teknik Geomatika, Fakultas

Lebih terperinci

BAB III PELAKSANAAN PENELITIAN

BAB III PELAKSANAAN PENELITIAN BAB III PELAKSANAAN PENELITIAN Pada bab ini akan dijelaskan mengenai alat dan bahan yang digunakan dalam penelitian ini serta tahapan-tahapan yang dilakukan dalam mengklasifikasi tata guna lahan dari hasil

Lebih terperinci

ANALISIS KETELITIAN DATA PENGUKURAN MENGGUNAKAN GPS DENGAN METODE DIFERENSIAL STATIK DALAM MODA JARING DAN RADIAL

ANALISIS KETELITIAN DATA PENGUKURAN MENGGUNAKAN GPS DENGAN METODE DIFERENSIAL STATIK DALAM MODA JARING DAN RADIAL ANALISIS KETELITIAN DATA PENGUKURAN MENGGUNAKAN GPS DENGAN METODE DIFERENSIAL STATIK DALAM MODA JARING DAN RADIAL Oleh : Syafril Ramadhon ABSTRAK Ketelitian data Global Positioning Systems (GPS) dapat

Lebih terperinci

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40.

PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor 1 sampai dengan nomor 40. PR ONLINE MATA UJIAN: MATEMATIKA IPA (KODE: A05) Petunjuk A digunakan untuk menjawab soal nomor sampai dengan nomor 0. 5. Jika a b 5, maka a + b = 5 (A). (C) 0. 0.. 7.. Nilai x yang memenuhi pertidaksamaan

Lebih terperinci

BAB III IMPLEMENTASI METODE CRP UNTUK PEMETAAN

BAB III IMPLEMENTASI METODE CRP UNTUK PEMETAAN BAB III IMPLEMENTASI METODE CRP UNTUK PEMETAAN 3.1. Perencanaan Pekerjaan Perencanaan pekerjaan pemetaan diperlukan agar pekerjaan pemetaan yang akan dilakukan akan berhasil. Tahap pertama dalam perencanaan

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Data spasial sangat dibutuhkan untuk menyediakan informasi tentang kebumian. Untuk memenuhi data spasial yang baik dan teliti, maka diperlukan suatu metode yang efektif

Lebih terperinci

Perspective & Imaging Transformation

Perspective & Imaging Transformation Perspective & Imaging Transformation Perspective & Imaging Transformation y Y Bidang Citra x X (X,Y,Z) (x,y) Pusat Lensa z Z x Z - X 3 Camera coordinate system (x,y,z) dan World coordinate system (X,Y,Z)

Lebih terperinci

APLIKASI TERRESTRIAL LASER SCANNER UNTUK PEMODELAN TAMPAK MUKA BANGUNAN (STUDI KASUS: GEDUNG PT. ALMEGA GEOSYSTEMS, KELAPA GADING-JAKARTA)

APLIKASI TERRESTRIAL LASER SCANNER UNTUK PEMODELAN TAMPAK MUKA BANGUNAN (STUDI KASUS: GEDUNG PT. ALMEGA GEOSYSTEMS, KELAPA GADING-JAKARTA) APLIKASI TERRESTRIAL LASER SCANNER UNTUK PEMODELAN TAMPAK MUKA BANGUNAN (STUDI KASUS: GEDUNG PT. ALMEGA GEOSYSTEMS, KELAPA GADING-JAKARTA) Pitto Yuniar Maharsayanto 1) Ir. Sutomo Kahar, M.Si. 2) Bandi

Lebih terperinci

BAB IV ANALISIS. Ditorsi radial jarak radial (r)

BAB IV ANALISIS. Ditorsi radial jarak radial (r) BAB IV ANALISIS 4.1. Analisis Kalibrasi Kamera Analisis kalibrasi kamera didasarkan dari hasil percobaan di laboratorium dan hasil percobaan di lapangan. 4.1.1. Laboratorium Dalam penelitian ini telah

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Undang-undang Republik Indonesia Nomor 11 Tahun 2010 pasal 1 tentang Cagar Budaya menjelaskan bahwa cagar budaya adalah warisan budaya bersifat kebendaan berupa Benda

Lebih terperinci

Analisa Kelayakan Penggunaan Citra Satelit WorldView-2 untuk Updating Peta Skala 1:1.000 (Studi Kasus :Surabaya Pusat)

Analisa Kelayakan Penggunaan Citra Satelit WorldView-2 untuk Updating Peta Skala 1:1.000 (Studi Kasus :Surabaya Pusat) 1 Analisa Kelayakan Penggunaan Citra Satelit WorldView-2 untuk Updating Peta Skala 1:1.000 (Studi Kasus :Surabaya Pusat) Qurrata A yun, Agung Budi C. 1), Udiana Wahyu D. 2) Jurusan Teknik Geomatika, Fakultas

Lebih terperinci

Transformasi Geometri Sederhana

Transformasi Geometri Sederhana Transformasi Geometri Sederhana Transformasi Dasar Pada Aplikasi Grafika diperlukan perubahan bentuk, ukuran dan posisi suatu gambar yang disebut dengan manipulasi. Perubahan gambar dengan mengubah koordinat

Lebih terperinci

Gambar 4.1. Kemampuan sensor LIDAR untuk memisahkan antara permukaan tanah dengan vegetasi di atasanya [Karvak, 2007]

Gambar 4.1. Kemampuan sensor LIDAR untuk memisahkan antara permukaan tanah dengan vegetasi di atasanya [Karvak, 2007] BAB IV ANALISIS 4.1. Analisis Data LIDAR 4.1.1. Analisis Kualitas Data LIDAR Data LIDAR memiliki akurasi yang cukup tinggi (akurasi vertikal = 15-20 cm, akurasi horizontal = 0.3-1 m), dan resolusi yang

Lebih terperinci

PENGUKURAN GROUND CONTROL POINT UNTUK CITRA SATELIT CITRA SATELIT RESOLUSI TINGGI DENGAN METODE GPS PPP

PENGUKURAN GROUND CONTROL POINT UNTUK CITRA SATELIT CITRA SATELIT RESOLUSI TINGGI DENGAN METODE GPS PPP PENGUKURAN GROUND CONTROL POINT UNTUK CITRA SATELIT CITRA SATELIT RESOLUSI TINGGI DENGAN METODE GPS PPP Oleh A. Suradji, GH Anto, Gunawan Jaya, Enda Latersia Br Pinem, dan Wulansih 1 INTISARI Untuk meningkatkan

Lebih terperinci

KINEMATIKA GERAK 1 PERSAMAAN GERAK

KINEMATIKA GERAK 1 PERSAMAAN GERAK KINEMATIKA GERAK 1 PERSAMAAN GERAK Posisi titik materi dapat dinyatakan dengan sebuah VEKTOR, baik pada suatu bidang datar maupun dalam bidang ruang. Vektor yang dipergunakan untuk menentukan posisi disebut

Lebih terperinci

Fourier Descriptor Based Image Alignment (FDBIA) (1)

Fourier Descriptor Based Image Alignment (FDBIA) (1) Fourier Descriptor Based Image Alignment (FDBIA) (1) Metode contour tracing digunakan untuk mengidentifikasikan boundary yang kemudian dideskripsikan secara berurutan pada FD. Pada aplikasi AOI variasi

Lebih terperinci

ANALISA PERBANDINGAN KOORDINAT HASIL PENGUKURAN TERRESTRIAL LASER SCANNER (TLS) DAN ELECTRONIC TOTAL STATION (ETS)

ANALISA PERBANDINGAN KOORDINAT HASIL PENGUKURAN TERRESTRIAL LASER SCANNER (TLS) DAN ELECTRONIC TOTAL STATION (ETS) GEOID Vol. 13, No. 1, 2017 (49-54) ANALISA PERBANDINGAN KOORDINAT HASIL PENGUKURAN TERRESTRIAL LASER SCANNER (TLS) DAN ELECTRONIC TOTAL STATION (ETS) Agung Budi Cahyono, Alif Fariq an Setiawan Departemen

Lebih terperinci

KOREKSI GEOMETRIK. Tujuan :

KOREKSI GEOMETRIK. Tujuan : Tujuan : KOREKSI GEOMETRIK 1. rektifikasi (pembetulan) atau restorasi (pemulihan) citra agar kordinat citra sesuai dengan kordinat geografi 2. registrasi (mencocokkan) posisi citra dengan citra lain atau

Lebih terperinci

Matematika Proyek Perintis I Tahun 1979

Matematika Proyek Perintis I Tahun 1979 Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Indonesia adalah negara kepulauan terbesar di dunia dengan 13.466 pulau yang sudah terdaftar dan berkoordinat (BIG, 2014). Indonesia memiliki luas wilayah kurang lebih

Lebih terperinci

Bab III Pelaksanaan Penelitian

Bab III Pelaksanaan Penelitian Bab III Pelaksanaan Penelitian Tahapan penelitian secara garis besar terdiri dari persiapan, pengumpulan data, pengolahan data, analisis data dan kesimpulan. Diagram alir pelaksanaan penelitian dapat dilihat

Lebih terperinci

Jurnal Geodesi Undip Oktober 2017

Jurnal Geodesi Undip Oktober 2017 ANALISIS PERBANDINGAN KETELITIAN METODE REGISTRASI ANTARA METODE KOMBINASI DAN METODE TRAVERSE DENGAN MENGGUNAKAN TERRESTRIAL LASER SCANNER DALAM PEMODELAN OBJEK 3 DIMENSI Alfred B S Simbolon, Bambang

Lebih terperinci

Kinematika Gerak KINEMATIKA GERAK. Sumber:

Kinematika Gerak KINEMATIKA GERAK. Sumber: Kinematika Gerak B a b B a b 1 KINEMATIKA GERAK Sumber: www.jatim.go.id Jika kalian belajar fisika maka kalian akan sering mempelajari tentang gerak. Fenomena tentang gerak memang sangat menarik. Coba

Lebih terperinci

Bab 1 : Skalar dan Vektor

Bab 1 : Skalar dan Vektor Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar

Lebih terperinci

BAB III APLIKASI PEMANFAATAN BAND YANG BERBEDA PADA INSAR

BAB III APLIKASI PEMANFAATAN BAND YANG BERBEDA PADA INSAR BAB III APLIKASI PEMANFAATAN BAND YANG BERBEDA PADA INSAR III.1 Model Tinggi Digital (Digital Terrain Model-DTM) Model Tinggi Digital (Digital Terrain Model-DTM) atau sering juga disebut DEM, merupakan

Lebih terperinci

Pengukuran Kekotaan. Lecture Note: by Sri Rezki Artini, ST., M.Eng. Geomatic Engineering Study Program Dept. Of Geodetic Engineering

Pengukuran Kekotaan. Lecture Note: by Sri Rezki Artini, ST., M.Eng. Geomatic Engineering Study Program Dept. Of Geodetic Engineering Pengukuran Kekotaan Lecture Note: by Sri Rezki Artini, ST., M.Eng Geomatic Engineering Study Program Dept. Of Geodetic Engineering Contoh peta bidang militer peta topografi peta rute pelayaran peta laut

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

PENDAHULUAN I.1 Latar Belakang

PENDAHULUAN I.1 Latar Belakang 1 PENDAHULUAN I.1 Latar Belakang Di dalam dunia pertambangan tidak terlepas dari hal mengenai kelerengan. Hal ini dapat dilihat dari struktur dan bentuk dari final wall yang terbentuk akibat proses penambangan

Lebih terperinci

2009 ACADEMY QU IDMATHCIREBON

2009 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2008/2009 Jenjang Sekolah : SMA/MA Hari/Tanggal : Rabu/22 April 2009 Program Studi : IPA Waktu : 08.00 10.00 Petunjuk: Pilihlah satu jawababan yang tepat! 1. Perhatikan

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengenalan Marka Jalan Marka jalan merupakan suatu penanda bagi para pengguna jalan untuk membantu kelancaran jalan dan menghindari adanya kecelakaan. Pada umumnya marka jalan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Persiapan Tahap persiapan merupakan tahapan penting dalam penelitian ini. Proses persiapan data ini berpengaruh pada hasil akhir penelitian. Persiapan yang dilakukan meliputi

Lebih terperinci

Pembahasan Matematika IPA SNMPTN 2012 Kode 132

Pembahasan Matematika IPA SNMPTN 2012 Kode 132 Tutur Widodo Pembahasan Matematika IPA SNMPTN 0 Pembahasan Matematika IPA SNMPTN 0 Kode Oleh Tutur Widodo. Lingkaran (x 6) + (y + ) = menyinggung garis x = di titik... (, 6) d. (, ) (, 6) e. (, ) c. (,

Lebih terperinci

Matematika EBTANAS Tahun 1991

Matematika EBTANAS Tahun 1991 Matematika EBTANAS Tahun 99 EBT-SMA-9-0 Persamaan sumbu simetri dari parabola y = 8 x x x = 4 x = x = x = x = EBT-SMA-9-0 Salah satu akar persamaan kuadrat mx 3x + = 0 dua kali akar yang lain, maka nilai

Lebih terperinci

BAB I PENDAHULUAN. tujuan dan manfaat penelitian. Berikut ini uraian dari masing-masing sub bab. I.1. Latar Belakang

BAB I PENDAHULUAN. tujuan dan manfaat penelitian. Berikut ini uraian dari masing-masing sub bab. I.1. Latar Belakang BAB I PENDAHULUAN Bab pendahuluan ini terdiri dari dua sub bab yaitu latar belakang serta tujuan dan manfaat penelitian. Berikut ini uraian dari masing-masing sub bab tersebut. I.1. Latar Belakang Dinamika

Lebih terperinci

BAB 2 DATA DAN METODA

BAB 2 DATA DAN METODA BAB 2 DATA DAN METODA 2.1 Pasut Laut Peristiwa pasang surut laut (pasut laut) adalah fenomena alami naik turunnya permukaan air laut secara periodik yang disebabkan oleh pengaruh gravitasi bendabenda-benda

Lebih terperinci

Matematika EBTANAS Tahun 1999

Matematika EBTANAS Tahun 1999 Matematika EBTANAS Tahun 999 EBT-SMA-99-0 Akar-akar persamaan kuadrat + = 0 adalah α dan β. Persamaan kuadrat baru yang akar-akarnya (α + ) dan (β + ) + = 0 + 7 = 0 + = 0 + 7 = 0 + = 0 EBT-SMA-99-0 Akar-akar

Lebih terperinci

Studi Perbandingan Total Station dan Terrestrial Laser Scanner dalam Penentuan Volume Obyek Beraturan dan Tidak Beraturan

Studi Perbandingan Total Station dan Terrestrial Laser Scanner dalam Penentuan Volume Obyek Beraturan dan Tidak Beraturan A723 Studi Perbandingan Total Station dan Terrestrial Laser Scanner dalam Penentuan Volume Obyek Beraturan dan Tidak Beraturan Reza Fajar Maulidin, Hepi Hapsari Handayani, Yusup Hendra Perkasa Jurusan

Lebih terperinci

BAB 2 SISTEM OPERASI LASER SCANNER

BAB 2 SISTEM OPERASI LASER SCANNER BAB 2 SISTEM OPERASI LASER SCANNER 2.1 Laser Scanner 2.1.1 Definisi 3D Laser Scanner 3D Laser Scanner atau lebih dikenal dengan sebutan laser scanner saja merupakan instrumen analisis objek real world

Lebih terperinci

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =...

12. Diketahui segitiga ABC dengan AC = 5 cm, AB = 7 cm, dan BCA = 120. Keliling segitiga ABC =... 1 1. Diketahui: Premis 1 : Jika hari hujan maka tanah basah. Premis : Tanah tidak basah. Ingkaran dari penarikan kesimpulan yang sah dari premis-premis di atas adalah.... Agar F(x) = (p - ) x² - (p - 3)

Lebih terperinci

ORIENTASI PADA PRA PLOTTING PETA BERSISTEM KOORDINAT LOKAL TERHADAP SISTEM KOORDINAT FIX (TETAP)

ORIENTASI PADA PRA PLOTTING PETA BERSISTEM KOORDINAT LOKAL TERHADAP SISTEM KOORDINAT FIX (TETAP) Orientasi pada Pra Plotting... ORIENTASI PADA PRA PLOTTING PETA BERSISTEM KOORDINAT LOKAL TERHADAP SISTEM KOORDINAT FIX (TETAP) Yuwono 1), AdiKurniawan 2) 1) Jurusan Teknik Geomatika, ITS, 2) Jurusan Teknik

Lebih terperinci

Perbandingan Penentuan Volume Suatu Obyek Menggunakan Metode Close Range Photogrammetry Dengan Kamera Non Metrik Terkalibrasi Dan Pemetaan Teristris

Perbandingan Penentuan Volume Suatu Obyek Menggunakan Metode Close Range Photogrammetry Dengan Kamera Non Metrik Terkalibrasi Dan Pemetaan Teristris JURNAL TEKNIK POMITS Vol. X, No. X, (20XX) ISSN: XXXX-XXXX (XXXX-XXXX Print) 1 Perbandingan Penentuan Volume Suatu Obyek Menggunakan Metode Close Range Photogrammetry Dengan Kamera Non Metrik Terkalibrasi

Lebih terperinci

II.1. Persiapan II.1.1. Lokasi Penelitian II.1.2. Persiapan Peralatan Penelitian II.1.3. Bahan Penelitian II.1.4.

II.1. Persiapan II.1.1. Lokasi Penelitian II.1.2. Persiapan Peralatan Penelitian II.1.3. Bahan Penelitian II.1.4. DAFTAR ISI HALAMAN PENGESAHAN... v PERNYATAAN... vi PERSEMBAHAN... vii KATA PENGANTAR... viii DAFTAR ISI... x DAFTAR GAMBAR... xii DAFTAR TABEL... xiv DAFTAR LAMPIRAN... xv DAFTAR ISTILAH... xvi INTISARI...

Lebih terperinci

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA

ISTIYANTO.COM. memenuhi persamaan itu adalah B. 4 4 C. 4 1 PERBANDINGAN KISI-KISI UN 2009 DAN 2010 SMA IPA PERBANDINGAN KISI-KISI UN 009 DAN 00 SMA IPA Materi Logika Matematika Kemampuan yang diuji UN 009 UN 00 Menentukan negasi pernyataan yang diperoleh dari penarikan kesimpulan Menentukan negasi pernyataan

Lebih terperinci

Fisika Dasar 9/1/2016

Fisika Dasar 9/1/2016 1 Sasaran Pembelajaran 2 Mahasiswa mampu mencari besaran posisi, kecepatan, dan percepatan sebuah partikel untuk kasus 1-dimensi dan 2-dimensi. Kinematika 3 Cabang ilmu Fisika yang membahas gerak benda

Lebih terperinci

Drawing, Viewport, dan Transformasi. Pertemuan - 02

Drawing, Viewport, dan Transformasi. Pertemuan - 02 Drawing, Viewport, dan Transformasi Pertemuan - 02 Ruang Lingkup Definisi Drawing Viewport Transfomasi Definisi Bagian dari grafik komputer meliputi: 1. Citra (Imaging) : mempelajari cara pengambilan dan

Lebih terperinci

Konsep Dasar Pengolahan Citra. Pertemuan ke-2 Boldson H. Situmorang, S.Kom., MMSI

Konsep Dasar Pengolahan Citra. Pertemuan ke-2 Boldson H. Situmorang, S.Kom., MMSI Konsep Dasar Pengolahan Citra Pertemuan ke-2 Boldson H. Situmorang, S.Kom., MMSI Definisi Citra digital: kumpulan piksel-piksel yang disusun dalam larik (array) dua-dimensi yang berisi nilai-nilai real

Lebih terperinci

Aplikasi Survei GPS dengan Metode Statik Singkat dalam Penentuan Koordinat Titik-Titik Kerangka Dasar Pemetaan Skala Besar

Aplikasi Survei GPS dengan Metode Statik Singkat dalam Penentuan Koordinat Titik-Titik Kerangka Dasar Pemetaan Skala Besar Reka Geomatika Jurusan Teknik Geodesi Itenas No. 2 Vol. 1 ISSN 2338-350X Desember 2013 Jurnal Online Institut Teknologi Nasional Aplikasi Survei GPS dengan Metode Statik Singkat dalam Penentuan Koordinat

Lebih terperinci

SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521

SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 SISTEM KOORDINAT SISTEM TRANSFORMASI KOORDINAT RG091521 Sistem Koordinat Parameter SistemKoordinat Koordinat Kartesian Koordinat Polar Sistem Koordinat Geosentrik Sistem Koordinat Toposentrik Sistem Koordinat

Lebih terperinci

Bahan ajar On The Job Training. Penggunaan Alat Total Station

Bahan ajar On The Job Training. Penggunaan Alat Total Station Bahan ajar On The Job Training Penggunaan Alat Total Station Direktorat Pengukuran Dasar Deputi Bidang Survei, Pengukuran dan Pemetaan Badan Pertanahan Nasional Republik Indonesia 2011 Pengukuran Poligon

Lebih terperinci

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010

Soal UN 2009 Materi KISI UN 2010 Prediksi UN 2010 PREDIKSI UN 00 SMA IPA BAG. (Berdasar buku terbitan Istiyanto: Bank Soal Matematika-Gagas Media) Logika Matematika Soal UN 009 Materi KISI UN 00 Prediksi UN 00 Menentukan negasi pernyataan yang diperoleh

Lebih terperinci

BAB 4 ANALISIS 4.1 Analisis Perbandingan Posisi Titik Perbandingan Posisi Titik dari Elektronik Total Station

BAB 4 ANALISIS 4.1 Analisis Perbandingan Posisi Titik Perbandingan Posisi Titik dari Elektronik Total Station BAB 4 ANALISIS 4.1 Analisis Perbandingan Posisi Titik Kualitas koordinat dari suatu titik dalam suatu sistem koordinat dapat dilihat setelah melakukan trasformasi koordinat ke suatu sistem koordinat yang

Lebih terperinci

Bab IV Analisa dan Pembahasan. Dalam bab ini akan dikemukakan mengenai analisa dari materi penelitian secara menyeluruh.

Bab IV Analisa dan Pembahasan. Dalam bab ini akan dikemukakan mengenai analisa dari materi penelitian secara menyeluruh. 38 Bab IV Analisa dan Pembahasan Dalam bab ini akan dikemukakan mengenai analisa dari materi penelitian secara menyeluruh. IV.1. Analisis Sumber Data Peta-peta Pendaftaran Tanah yang kami jadikan obyek

Lebih terperinci