PERANCANGAN ALGORITMA KETERHUBUNGAN SUATU GRAF DAN PENERAPANNYA DALAM PENGATURAN ARUS LALU LINTAS JALAN RAYA

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERANCANGAN ALGORITMA KETERHUBUNGAN SUATU GRAF DAN PENERAPANNYA DALAM PENGATURAN ARUS LALU LINTAS JALAN RAYA"

Transkripsi

1 PERANCANGAN ALGORITMA KETERHUBUNGAN SUATU GRAF DAN PENERAPANNYA DALAM PENGATURAN ARUS LALU LINTAS JALAN RAYA Nama Mahasiswa : Darill Muflih Arief NRP : Jurusan : Matematika FMIPA-ITS Pembimbing I : Drs. Sumarno, DEA. Pembimbing II : Drs. Soetrisno, MI.Komp. Abstrak Graf merupakan topik yang banyak mendapat perhatian, karena banyak masalah yang bisa diselesaikan dengan graf. Graf digunakan untuk merepresentasikan sistem diskrit dan hubungan antara objek-objek tersebut. Salah satu masalah diskrit pada graf adalah keterhubungan. Aplikasi keterhubungan graf dapat diterapkan dalam sistem lalu lintas jalan raya. Sistem lalu lintas jalan raya haruslah memiliki keterhubungan yang kuat antara satu jalan dengan jalan yang lain sehingga terdapat suatu lintasan untuk setiap tempat yang dilalui. Pada tugas akhir ini dirancang algoritma untuk mengecek status keterhubungan suatu graf. Algoritma dirancang dengan memperhatikan arah busur pada masing-masing simpul. Jumlah eksekusi algoritma berbanding lurus dengan banyaknya busur pada graf. Akan tetapi, untuk menentukan jumlah maksimum eksekusi mengacu pada banyaknya simpul pada graf. Algoritma tersebut kemudian diimplementasikan ke bahasa JavaScript dan diaplikasikan dengan membuat abstraksi graf dari arus lalu lintas pada jalan raya. Keywords: Graf, Algoritma keterhubungan, JavaScript 1. Pendahuluan Graf adalah salah satu bidang dalam ilmu matematika. Graf sering digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek objek tersebut. Representasi visual dari graf dapat dilakukan dengan menyatakan objek sebagai noktah, bulatan, atau titik, sedangkan hubungan antara objek dinyatakan dengan garis. Graf merupakan topik yang banyak mendapat perhatian, karena representasinya sangat berguna untuk aplikasi yang luas. Dari masalah yang terdapat pada berbagai disiplin ilmu dapat diselesaikan dengan membuat representasi grafnya. Salah satu masalah diskrit pada graf adalah masalah keterhubungan, yaitu apakah suatu graf merupakan graf terhubung atau graf tak terhubung. Suatu graf terhubung yang memiliki arah juga harus dicek lagi apakah merupakan graf terhubung kuat atau tidak. Informasi mengenai keterhubungan suatu graf merupakan suatu informasi yang sangat penting untuk memecahkan masalahmasalah lainnya. Lalu lintas merupakan gerak kendaraan di ruang lalu lintas yang telah disediakan. Ruang lalu lintas darat salah satunya adalah jalan raya. Dalam sistem lalu lintas jalan raya, sangatlah penting memiliki suatu lintasan yang terhubung satu sama lain. Selain itu, diperlukan suatu manajemen arus lalu lintas yang bisa menjangkau seluruh bagian yang dilalui oleh jalan raya tersebut. Banyak cara dalam memanajemen arus lalu lintas jalan raya, antara lain dengan memberikan rambu-rambu, traffic light, dan bisa juga dengan mengubah arah arus lalu lintas. Dalam kebijakan mengubah arah lalu lintas, baik dengan mengganti arah suatu jalan maupun menjadikan jalan yang pada awalnya dua arah menjadi satu arah, memerlukan suatu pertimbangan yang matang. Salah satu pertimbangan yang paling mendasar adalah dengan mengecek apakah jalan tersebut masih terhubung secara kuat atau tidak setelah perubahan arah tersebut dilakukan. Pada tugas akhir ini, suatu sistem lalu lintas jalan raya diabstraksi ke dalam bentuk graf dan akan dicek status keterhubungannya dengan algoritma yang telah dirancang sebelumnya. Algoritma adalah urutan langkah-langkah logis penyelesaian masalah yang disusun secara sistematis. 2. Dasar Teori 2.1. Graf Secara matematis graf didefinisikan sebagai pasangan himpunan G(V, E) dimana V adalah himpunan hingga tidak kosong dari simpul (vertex) V dan E himpunan berhingga sisi (edge). Maka graf G = (V, E), dimana : V = {v 1, v 2, v m } E = {e 1, e 2, e n } Sebuah graf G berisikan dua himpunan yaitu himpunan berhingga tak kosong V(G) dari obyek-obyek yang disebut simpul dan himpunan berhingga (mungkin kosong) E(G) yang elemen-elemennya disebut sisi sedemikian hingga setiap elemen e dalam E(G) merupakan pasangan tak berurutan dari Preprint submitted to Elsevier January 26, 2012

2 simpul-simpul di V(G). Himpunan V(G) disebut himpunan simpul G, dan himpunan E(G) disebut himpunan sisi G. Misalkan u dan v adalah dua simpul di G dan e = {u, v} (sering ditulis e = uv) adalah sebuah sisi G. Kita katakan simpul u dan simpul v berhubungan langsung (adjacent) di G; sisi e menghubungkan (joining) simpul u dan simpul v di G; u dan v simpul-simpul ujung sisi e; sisi e terkait (incident) dengan simpul v dan juga simpul u. [1] Definisi tersebut menyatakan bahwa V tidak boleh kosong, sedangkan E boleh kosong. Jadi, sebuah graf dimungkinkan tidak mempunyai sisi satu buah pun, tetapi simpulnya harus ada, minimal satu. Graf yang hanya mempunyai satu buah simpul tanpa sebuah sisi pun dinamakan graf trivial Graf Berarah (directed graph atau digraph) Graf berarah adalah graf yang sisinya memiliki orientasi arah. Sisi berarah lebih dikenal dengan sebutan busur (arc). Simpul yang tidak bertanda disebut juga simpul asal atau inisial vertex sedangkan simpul yang ditunjuk oleh tanda panah disebut juga simpul terminal atau terminal vertex. Sebuah graf berarah D adalah suatu pasang berurutan dari dua himpunan V(D) yaitu himpunan berhingga tak kosong yang anggota-anggotanya yang disebut simpul dan E(D) yaitu himpunan berhingga (boleh kosong) yang anggotanya-anggotanya disebut busur sedemikian hingga setiap busur merupakan pasangan berurutan dari dua simpul di V(D). Jika v 1 dan v 2 adalah dua simpul pada graf berarah D dan e (v 1, v 2 ) sebuah busur D, maka e disebut busur-keluar dari simpul v 1 dan e disebut busur-menuju simpul v 2. Untuk efisiensi, busur e = (v i, v j ) sering ditulis (i, j). [1] Misalkan D sebuah graf berarah dan v V(D). Derajatkeluar simpul v, dilambangkan od(v), adalah banyaknya busur pada graf berarah D yang keluar dari simpul v. Sedangkan, derajat-masuk simpul v, dilambangkan id(v), adalah banyaknya busur D yang menuju ke simpul v. [4] Dengan menggunakan konsep lintasan berarah dan konsep graf dasar dari suatu graf berarah kita definisikan konsep keterhubungan pada graf berarah. Ada dua macam keterhubungan pada graf berarah D yaitu terhubung lemah dan terhubung kuat. Graf berarah D dikatakan terhubung lemah jika graf dasarnya terhubung, sedangkan dikatakan terhubung kuat jika untuk setiap dua simpul v i dan v j di D terdapat lintasan berarah dari v i ke v j dan atau sebaliknya. [1] dari simpul u ke simpul v dapat digambarkan dengan kurva sederhana berarah dari simpul u ke simpul v. Misalnya, graf berarah C=({v 1, v 2, v 3, v 4 }, {(v 1, v 2 ), (v 1, v 3 ), (v 3, v 4 ), (v 4, v 2 ), (v 2, v 3 )}) dapat dipresentasikan dalam bentuk figural seperti tampak pada Gambar 1(c). Demikian pula dengan graf berarah B=(V(H), E(H)) dengan V(H)={v 1, v 2, v 3, v 4 } dan E(H)={(v 1, v 3 ), (v 3, v 4 ), (v 4, v 2 ), (v 2, v 1 ), (v 2, v 3 )} dapat direpresentasikan secara figural seperti tampak pada Gambar 1(b). Sebagai contoh, graf berarah pada Gambar 1(b) adalah graf terhubung lemah karena graf dasarnya, yaitu graf pada Gambar 1(a) terhubung. Karena tidak ada lintasan berarah dari simpul v 4 ke simpul v 1 pada graf berarah B, maka graf berarah B tidak terhubung kuat. Sedangkan graf berarah pada Gambar 2.1(c) adalah graf berarah terhubung kuat. Jelaslah bahwa setiap graf berarah terhubung kuat pasti graf berarah tersebut terhubung lemah, tetapi sebaliknya tidak berlaku. Pada graf berarah, komponen terhubung kuat (strongly connected component) adalah jumlah maksimum subgraf yang terhubung kuat. Graf berarah disebut terhubung kuat jika untuk setiap pasangan simpul a dan b terdapat lintasan dari a ke b serta dari b ke a. Komponen terhubung kuat pada graf berarah merupakan subgraf terhubung kuat maksimal pada suatu graf. Komponen ini membentuk partisi dari graf Representasi Graf Berarah dalam Matriks Cara menyatakan graf berarah dalam matriks sebenarnya tidak jauh berbeda dengan cara menyatakan graf tak berarah dalam suatu matriks. Perbedaannya hanya terletak pada keikutsertaan informasi tentang busur (arah garis) yang terdapat dalam graf berarah. [4] Gambar 2: Graf Berarah Terhubung Gambar 1: (a) Graf dasar dari graf berarah (b) maupun (c), (b) Graf berarah terhubung lemah (c) Graf berarah terhubung kuat. Secara figural setiap simpul dari suatu graf berarah digambarkan dengan sebuah noktah, sedangkan setiap busur 2 Salah satu cara merepresentasikan suatu graf berarah adalah dengan matriks hubung. Misalkan G adalah graf berarah yang terdiri dari n simpul tanpa garis paralel. Matriks hubung yang sesuai dengan graf G adalah matriks bujur sangkar n n, M = (m i j ) dengan { 1, jika ada busur dari vi ke v m i j = j 0, jika tidak ada busur dari v i ke v j Untuk lebih jelasnya akan diberikan contoh representasi matriks hubung dari graf berarah. Gambar 2.2 merupakan graf berarah yang terhubung. Graf G adalah sebuah graf berarah dengan representasi matriks hubung

3 v 6 v 7 v 8 v v v v M = v v v v Apabila terdapat loop pada simpul v i (seperti pada simpul v 1 ), maka m ii = Algoritma Pencarian Pertama secara Mendalam (Depth First Search) Algoritma Depth First Search (DFS) mencari solusi dengan mengunjungi simpul akar, lalu simpul-simpul yang bertetangga dengan simpul akar (setingkat di bawahnya), terus sampai simpul paling dalam pada bagian tersebut. Setelah itu, dicari simpul yang telah dikunjungi pada tingkat terdekat dan terdalam, lalu simpul yang bertetangga dengan simpul ini dikunjungi, demikian seterusnya sampai seluruh simpul telah dikunjungi. [2] 2. Implementasi (pelaksanaan) algoritma Pada tahap ini dilakukan implementasi algoritma yang telah dirancang sebelumnya. 3. Aplikasi (penerapan) Pada tahap ini dilakukan abstraksi model data arah jalan raya ke dalam bentuk graf dan dikenakan algoritma yang telah diimplementasi sebelumnya. 4. Pengujian dan evaluasi Pada tahap ini dilakukan pengujian serta evaluasi dari implementasi dan aplikasi yang telah dilakukan. 5. Penarikan kesimpulan Pada tahap ini dilakukan penarikan kesimpulan berdasarkan hasil implementasi, aplikasi dan evaluasi. 4. Perancangan Algoritma dan Implementasi 4.1. Ide Dasar Ide dasar dari algoritma ini adalah algoritma pencarian pertama secara mendalam yaitu menelusuri lintasan dari setiap simpul serta mendapatkan simpul-simpul yang dilaluinya. Pada graf berarah terhubung, jika setiap simpul pada graf G memiliki lintasan ke setiap simpul di G, maka graf G terhubung kuat. Jika terdapat satu simpul saja yang tidak memiliki lintasan ke salah satu simpul pada graf G, maka graf tersebut bukan merupakan graf terhubung kuat. Berikut akan disajikan 2 algoritma untuk mengecek status suatu graf dengan menelusuri busur-busur pada setiap simpul, kemudian salah satunya diimplementasikan dan diaplikasikan dalam pengaturan arus lalu lintas jalan raya. Gambar 3: Ilustrasi Urutan Kunjungan Simpul pada algoritma DFS Dari Gambar 3, dapat dilihat bahwa dengan algoritma DFS, setiap anak simpul pertama yang bertetangga dengan simpul akar dikunjungi sampai tingkat terdalamnya lebih dahulu, lalu seluruh simpul pada subpohon tersebut, sebelum simpul lain yang juga bertetangga dengan simpul akar. Jika algoritma DFS dapat mencari komponen kuat pada graf berarah. Graf berarah disebut terhubung kuat jika untuk setiap pasangan simpul A dan B terdapat lintasan dari A ke B serta dari B ke A. Komponen terhubung kuat pada graf berarah merupakan subgraf terhubung kuat maksimal pada suatu graf. Komponen ini membentuk partisi dari graf. 3. Metode Penelitian Pada bagian ini dibahas langkah-langkah yang dilakukan dalam menyelesaikan Tugas Akhir ini. Langkah-langkah untuk menyelesaikan Tugas Akhir adalah sebagai berikut: 1. Perancangan algoritma Pada tahap ini dilakukan perancangan algoritma untuk mengetahui status keterhubungan suatu graf Algoritma Status Keterhubungan Suatu Graf Algoritma I Algoritma untuk mengecek status keterhubungan suatu graf ini dilakukan dengan cara menelusuri lintasan dari setiap simpul pada graf. Ada beberapa tahap yang harus dilakukan untuk mengetahui status keterhubungan suatu graf. 1. Inisialisasi (a) Input merupakan graf terhubung berarah. (b) n sebagai banyaknya simpul. (c) m sebagai banyaknya busur. 2. Representasi matriks dari graf (a) Dibuat matriks D dengan ukuran n x n. (b) Matriks { D diisi dengan aturan 1, jika ada busur dari vi ke v d i j = j 0, jika tidak ada busur dari v i ke v j Apabila terdapat loop pada simpul v i, maka d ii = Operasi baris (a) Baris pertama dioperasikan dengan baris yang menjadi kolom bernilai 1 pada baris tersebut. (b) Operasi baris yang digunakan adalah operasi penjumlahan biner yaitu = 1, = 1, = 1, dan 0+0 = 0 (d ik d ik +d jk dengan k sebagai indeks kolom)

4 (c) Jika pada baris yang dioperasikan terdapat lagi kolom yang bernilai 1, maka baris tersebut dioperasikan lagi dengan baris yang menjadi kolom bernilai 1 pada baris tersebut (rekursif). (d) Operasi dilakukan dengan meninjau tiap-tiap baris pada matriks. 4. Pengecekan kondisi berhenti Operasi baris berhenti jika seluruh baris pada matriks telah selesai ditinjau. 5. Penentuan Status (a) Didapat matriks akhir hasil operasi baris yang merepresentasikan keterhubungan serta lintasan yang mungkin dari tiap-tiap simpul. (b) Jika elemen-elemen pada matriks akhir bernilai 1 semua, maka matriks tersebut merepresentasikan sebuah graf terhubung kuat D = (c) Jika terdapat elemen bernilai 0 pada matriks akhir, maka matriks tersebut merepresentasikan sebuah graf yang tidak terhubung kuat. Matriks hasil akhir merepresentasikan lintasan (simpul yang dilalui) dari tiap-tiap simpul. Untuk membuat graf terhubung kuat adalah dengan menambahkan busur (dari simpul yang belum memiliki lintasan ke semua simpul) ke salah satu busur yang memiliki lintasan ke semua simpul (barisnya bernilai 1 semua). Gambar 4: Graf Berarah Terhubung Untuk ilustrasi diberikan graf D seperti pada Gambar 4 dengan representasi matriks : v v D = v Dilakukan operasi baris pada baris pertama dengan baris yang menjadi kolom bernilai 1 pada baris pertama. Baris ke-1 ( ) dioperasikan dengan baris ke , didapat matriks hasil operasi v v D = v Pada baris ke-2 terdapat elemen bernilai 1 pada kolom ke-3, ( maka baris) ke-1 ( dioperasikan) juga ( dengan baris ) ke = , sehingga didapat matriks hasil operasi v D = v Pada baris ke-3 terdapat elemen bernilai 1 pada kolom ke-4, ( maka baris) ke-1 ( dioperasikan) juga ( dengan baris ) ke = , sehingga didapat matriks hasil operasi v D = v Pada baris ke-4 terdapat elemen bernilai 1 pada kolom ke-5, ( maka baris) ke-1 ( dioperasikan) juga ( dengan baris ) ke = , sehingga didapat matriks hasil operasi v D 1 = v Pada baris ke-5 terdapat elemen bernilai 1 pada kolom ke- 4. Namun, karena baris ke-4 sudah dioperasikan dengan baris ke-4 maka operasi baris tidak dilakukan. Hal yang serupa dilakukan terhadap baris-baris yang memiliki elemen bernilai 1. Operasi yang dilakukan terhadap baris ke-2 adalah operasi dengan baris ke-3, baris ke-4, dan baris ke-5 sehingga didapat matriks hasil operasi v D 2 = v Pada baris ke-3 terdapat elemen bernilai 1 pada kolom ke-4, ( maka baris ) ke-3 ( dioperasikan ) dengan ( baris ke ) = , kemudian ( dilanjutkan ) ( operasi ) dengan ( baris ke-5, ) = , 4 sehingga didapat matriks hasil operasi

5 v D 3 = v ( Baris ke-4 ) dioperasikan ( dengan ) ( baris ke-5 ) = , sehingga didapat matriks hasil operasi v D 4 = v ( dan baris ke-5 ) ( dioperasikan ) dengan ( baris ke-4 ) = , sehingga didapat matriks hasil operasi v D 5 = v v Setelah semua baris yang memiliki elemen bernilai 1 dioperasikan, didapat matriks akhir yang merepresentasikan lintasan dari tiap-tiap simpul v D = v v Dari matriks akhir tersebut dapat disimpulkan bahwa graf tersebut bukan merupakan graf terhubung kuat karena setelah dilakukan algoritma operasi baris, masih ada elemen yang bernilai 0 yang menandakan bahwa terdapat simpul yang tidak memiliki lintasan ke simpul lainnya Algoritma II Algoritma untuk mengecek status keterhubungan suatu graf ini dilakukan dengan cara memberi label pada tiap-tiap simpul dengan meninjau busur masuk dan busur keluarnya. 1. Inisialisasi Input merupakan graf terhubung berarah. 2. Pelabelan Simpul (a) Label ± diberikan pada sebarang simpul v a pada graf (Gambar 5). (b) Label + diberikan pada simpul yang dituju oleh busur keluar simpul v a. (c) Misalkan v b adalah simpul yang dituju oleh busur keluar simpul v a, label + diberikan juga pada simpul yang dituju oleh busur keluar simpul v b. (d) Pelabelan (label +) dilanjutkan terhadap semua simpul yang mungkin diberi label + sesuai dengan aturan pada poin (c). 5 Gambar 5: Pelabelan Simpul v a, a = 1 (e) Label - diberikan pada simpul awal busur masuk simpul v a. (f) Misalkan v c adalah simpul awal busur masuk simpul v c, label - diberikan juga pada simpul awal busur masuk simpul v c. (g) Pelabelan (label -) dilanjutkan terhadap semua simpul yang mungkin diberi label - sesuai dengan aturan pada poin (e). Gambar 6: Pelabelan Seluruh Simpul Pada Graf 3. Pengecekan kondisi berhenti Pelabelan berhenti jika sudah tidak ada lagi simpul dan busur yang ditinjau (Gambar 6). 4. Penentuan Status (a) Didapat label ±, +, atau - pada masing-masing simpul. (b) Jika semua simpul memiliki label ±, maka graf tersebut merupakan graf terhubung kuat. Untuk membuat graf menjadi terhubung kuat, maka dilakukan reduksi graf dengan cara : 1. Simpul yang berlabel ± dikelompokkan menjadi satu (sebagai suatu komponen terhubung kuat). 2. Langkah 2 (pelabelan simpul) diulangi kembali dengan membuang simpul yang telah dikelompokkan (Gambar 7 dan Gambar 8). 3. Langkah ini berulang terus sampai sudah tidak ada lagi simpul yang bisa direduksi (dikelompokkan). Setelah didapat graf hasil reduksi dari graf awal (Gambar 9). Maka untuk membuat graf terhubung kuat cukup dengan memberi busur yang berlawanan dari satu elemen dalam komponen terhubung kuat ke salah satu komponen terhubung kuat lainnya. Atau dengan merubah orientasi arah sehingga didapat graf reduksi yang terhubung kuat.

6 Gambar 7: Pelabelan Simpul v a, a = 6 Gambar 8: Pelabelan Simpul Tahap II Gambar 9: Graf Hasil Reduksi Gambar 10: Diagram Alir Status Keterhubungan Graf Kedua Algoritma tersebut bekerja berbanding lurus dengan banyaknya busur pada suatu graf. Semakin banyak busur yang ada pada suatu graf, maka semakin besar alokasi waktu untuk mendapatkan hasil yang dikehendaki. Algoritma yang akan diimplementasi adalah algoritma I yaitu dengan cara memanipulasi matriks hubung dari representasi grafnya. 5. Pengujian dan Pembahasan 5.1. Lingkungan Uji Coba Lingkungan uji coba perangkat lunak yang dibangun dalam Tugas Akhir ini meliputi perangkat keras dan perangkat lunak yang digunakan. Spesifikasinya disajikan dalam Tabel Kompleksitas Algoritma Jumlah maksimum mekanisme setiap operasi ini adalah sebanyak n 1 (dengan n sebagai jumlah simpul pada graf) yaitu jika suatu baris dioperasikan dengan seluruh baris yang lain (kecuali dengan barisnya sendiri) dan karena setiap operasi baris melakukan paling banyak n operasi penjumlahan biner, maka batas atas waktu eksekusi algoritma untuk setiap baris adalah sebesar n(n 1). Hal ini berakibat untuk mengeksekusi matriks representasi dari graf dengan n simpul (n baris), didapat batas atas waktu eksekusi algoritma sebesar n(n 1). Jumlah maksimum mekanisme pelabelan pada algoritma II adalah 2n(n 1), dengan n sebagai jumlah simpul dan 2 sebagai tanda peninjauan 2 kali terhadap maksimum busur (busur masuk dan busur keluar) dari satu simpul ke satu simpul yang lain. n 1 adalah kemungkinan maksimum terhubungnya suatu simpul dengan simpul yang lain pada graf. 6 Perangkat Keras Perangkat Lunak Prosesor : Intel Atom Memory : 1.83 GHz, RAM 1 GB Sistem Operasi : Windows7 Home Basic Skrip editor : Notepad ++ Framework: Backbone.js Library: JQuery, Raphael Piranti pembuka : Google Chrome Tabel 1: Tabel Lingkungan Uji Coba Sistem Backbone.js memasok struktur untuk aplikasi JavaScript dengan menyediakan model dengan key-value dan koleksikoleksi yang kaya fungsi serta menghubungkan aplikasi yang sudah ada melalui JSON. JQuery adalah pustaka JavaScript yang cepat dan ringkas dalam penyederhanaan dokumen HTML, penanganan event, animasi, dan interaksi Ajax untuk pengembangan web. Raphael adalah pustaka JavaScript yang menyederhanakan pekerjaan vektor grafis di web.

7 5.2. Uji Coba Proses Uji coba proses dilakukan pada setiap step-step yang ada dalam implementasi algoritma dan aplikasinya 1. Step render vertex dan edge Membuat model graf dengan mengambil data-data dari file vertex.json dan edge.json. JSON sendiri merupakan singkatan dari JavaScript Object Notation (notasi objek JavaScript), adalah suatu format ringkas pertukaran data komputer. Formatnya berbasis teks dan terbaca manusia serta digunakan untuk merepresentasikan struktur data sederhana dan larik asosiatif (disebut objek). Gambar 11: Rendering Vertex dan Edge 2. Step generate matriks Membuat representasi matriks hubung dari graf berarah (Gambar { 12) yang sudah ada dengan ketentuan 1, jika ada busur dari vi ke v m i j = j 0, jika tidak ada busur dari v i ke v j Gambar 13: Step Operasi Baris Operasi pertama dilakukan pada baris ke-1. Operasi dilakukan dengan mencari elemen yang bernilai 1 pada baris tersebut kemudian dioperasikan dengan baris yang menjadi kolom bernilai 1 pada baris itu. Pertama-tama yang dilakulan adalah mencari nilai 1 dari indeks terkecil pada baris ke-1. Pada kolom ke-2 terdapat nilai 1. Hal ini berakibat baris ke-1 dioperasikan dengan baris ( ke-2. ) = Gambar 12: Graf Berarah dan Representasi Matriksnya 3. Step operasi baris Operasi baris dilakukan dengan mencari elemen yang bernilai 1 pada baris tersebut kemudian dioperasikan dengan baris yang menjadi kolom bernilai 1 pada baris pertama tadi. Operasi ini berjalan secara rekursif (memanggil dirinya sendiri). Operasi yang digunakan yaitu = 1, 1+0 = 1, 0+1 = 1, dan 0+0 = 0. Operasi baris dimulai dari baris pertama hingga baris terakhir secara berurutan. 7 ( ). Kemudian kita lihat pada baris ke-2 (yang baru saja dioperasikan), terdapat elemen bernilai 1 pada kolom ke-1 dan ke-8, maka baris ke-1 (hasil operasi dengan baris ke- 2) dioperasikan lagi (selanjutnya diistilahkan dengan suboperasi) dengan baris ke-1 (dirinya sendiri) dan baris ke-8. ( ) = Karena algoritma ini berjalan secara rekursif, maka kita mencari juga elemen yang bernilai 1 pada baris ke-8 (ada pada kolom ke-7) untuk kemudian dioperasikan (sub-

8 operasi) dengan baris ke-1 (hasil operasi dengan baris ke- 8) = Gambar 14: Konsol Operasi Baris Setelah itu kita lihat apakah ada elemen yang bernilai 1 pada baris ke-1 untuk di operasikan lagi. Langkah yang serupa dilakukan terhadap baris-baris berikutnya (Gambar 13). Untuk operasi langkah per langkahnya bisa diamati melalui konsol (Gambar 14). Dari graf pada Gambar 12 didapat matriks hasil akhir dengan nilai elemen-elemennya 0 dan 1. Hal ini menunjukkan bahwa graf tersebut bukan merupakan graf terhubung kuat, karena bila dilihar dari matriks akhirnya hanya baris ke-1, 2, 3, 4, dan 5 yang berisikan nilai 1 semua, yang berarti simpul 1, 2, 3, 4, dan 5 memiliki lintasan ke semua simpul pada graf tersebut, sedangkan yang lain tidak. Simpul 6,7, dan 8 hanya memiliki lintasan ke simpul 6 dan 7 saja. Gambar 16: Matriks Hasil Akhir Dari matriks hasil akhir (Gambar 16) dapat dilihat bahwa simpul 1, 2, 3, 4, dan 5 adalah suatu komponen terhubung kuat. Komponen terhubung kuat lainnya adalah simpul 6 dan 7. Sehingga didapat graf hasil reduksi seperti pada Gambar Step pengecekan kondisi berhenti Kondisi berhenti jiga semua simpul sudah selesai ditelusuri lintasannya dan didapat sebuah matriks hasil akhir. Adapun jika hanya untuk mengecek status keterhubungan suatu graf, kondisi berhenti jika ada baris yang elemen-elemennya 0 semua atau jika ada simpul yang setelah ditelusuri lintasannya (setelah dioperasikan barisnya) terdapat nilai 0 (yang artinya tidak terhubung ke suatu simpul tertentu). Gambar 15: Pohon Lintasan Graf pada Gambar 12 Ilustrasi lintasan yang mungkin dari tiap-tiap simpul dapat dilihat pada Gambar 15 dengan simpul ayah hanya dapat mengunjungi simpul akar-akarnya. Sehingga jelas bahwa simpul 1 memiliki lintasan ke semua simpul pada graf tersebut. Begitu pula simpul 2, 3, 4, dan 5. Simpul 6, 7, dan 8 hanya memiliki akar simpul 6 dan simpul 5. Karena graf pada Gambar 12 bukan merupakan graf terhubung kuat, maka untuk membuatnya menjadi graf terhubung kuat adalah dengan cara mencari graf reduksi dimana setiap komponennya merupakan simpul-simpul yang terhubung kuat Uji Coba Program Ujicoba program dilakukan dengan cara menjalankan skrip yang telah diimplementasikan sebelumnya. Skrip dibuka melalui peramban web (web browser) dengan terlebih dahulu menginstal server yang berdiri sendiri (localhost). Ketika program pertama kali dibuka, maka yang akan muncul adalah interface seperti pada Gambar 17. Kemudian kita bisa membuat abstraksi graf dari peta yang tersedia dengan mengklik tulisan Buat Graf di bagian atas (di bawah judul) sehingga akan muncul tampilan seperti pada Gambat 18. Untuk mengkustomisasi tampilan (melihat peta dan graf atau salah satu dari keduanya), dapat dilakukan dengan mengklik tulisan (di bawah judul) Hilangkan/Munculkan Peta atau Hilangkan/Munculkan Graf. Pengecekan status keterhubungan graf tersebut adalah dengan menekan tombol eksekusi berwarna biru (Gambar 19) dibawah peta/graf sampai muncul keterangan terkait status keterhubungan dari graf (arus lalu lintas). Setelah itu, akan muncul status keterhubungan graf tersebut beserta representasi matriks hubung (Gambar 20 dan Gambar 21) dan representasi matriks lintasan beserta matriks hasil operasi baris per baris Pembahasan Pada algoritma I, untuk mengetahui simpul yang dituju oleh simpul ke-i, cukup dengan hanya mencari elemen yang berni-

9 Gambar 19: Interface Tombol Eksekusi Gambar 17: Interface Awal Gambar 20: Matriks Awal Gambar 18: Interface Peta dan Graf lai 1 pada baris ke-i. Agar algoritma lebih sistematis, maka penelusuran dilakukan berurutan dari simpul dengan dengan index terkecil terlebih dahulu (v 1, v 2, v 3,..., v n ) Kemudian dari simpul-simpul yang telah dikunjungi akan ditelusuri lagi simpul-simpul yang tertuju berikutnya. Demikian seterusnya sehingga didapat suatu lintasan yang melalui atau tidak melalui simpul-simpul pada graf G. Apabila setiap simpul pada graf G memiliki lintasan yang melalui 9 semua simpul pada graf G (jika dilihat matriks hubungnya semua elemennya bernilai 1), maka graf tersebut merupakan graf terhubung kuat. Akan tetapi, jika terdapat minimal satu simpul yang tidak memiliki lintasan yang melalui semua simpul pada graf G (jika dilihat matriks hubungnya, elemen baris kei tidak seragam), maka graf tersebut bukanlah merupakan graf terhubung kuat. Jika setiap selesai operasi baris didapat bahwa elemen baris tersebut tidak bernilai 1 semua, maka bisa langsung disimpulkan bahwa graf tersebut bukan merupakan graf terhubung kuat. Akan tetapi, perhitungan terus dilanjutkan untuk mendapatkan semua lintasan yang mungkin dari setiap simpul pada graf. Sehingga mempermudah untuk mengubah graf tersebut menjadi graf terhubung kuat. Adapun aturan pembacaan matriks yang didapat adalah sebagai berikut : Elemen bernilai 1 di tiap-tiap baris pada matriks hasil

10 graf lalu lintas jalan raya tersebut dengan cara melihat baris dan kolom dari matriks akhirnya. Setelah memperoleh graf reduksi dari graf awal (baik dengan algoritma I maupun algoritma II) maka untuk membuat graf terhubung kuat dari model tersebut adalah dengan memberikan arah bolak-balik (busur masuk dan busur keluar) dari minimal satu elemen (simpul) di dalam suatu graf hasil reduksi ke minimal satu elemen (simpul) graf hasil reduksi yang lain. Pembentukan graf terhubung kuat dapat juga dilalukan dengan cara menambahkan busur keluar dari suatu simpul (yang belum memiliki lintasan ke semua simpul pada graf) menuju simpul lain (yang sudah memiliki lintasan ke semua simpul pada graf). 6. Penutup Gambar 21: Matriks Akhir akhir menandakan adanya lintasan dari simpul yang diwakili oleh baris tersebut Kesimpulan 1. Baik pada algoritma I maupun algoritma II, jumlah eksekusi algoritma berbanding lurus dengan banyaknya busur pada graf. Namun, untuk menentukan jumlah maksimum eksekusi mengacu pada banyaknya simpul pada graf. 2. Batas atas kompleksitas algoritma I adalah n 2 (n 1) dengan waktu eksekusi terlama sebesar n 2 (n 1) maksimum waktu yang diperlukan dalam 1 kali iterasi. 3. Batas atas kompleksitas algoritma II adalah 2n(n 1) dengan waktu eksekusi terlama sebesar 2n(n 1) maksimum waktu yang diperlukan dalam 1 kali iterasi. Jika pada baris ke-i kolom ke-j terdapat elemen yang bernilai 0, maka simpul ke-i tidak memiliki lintasan menuju simpul ke-j. Jika baris ke-i pada matriks akhir graf berarah bernilai 1 semua, maka simpul yang diwakili oleh baris ke-i memiliki lintasan ke setiap simpul pada graf. Jika kolom ke- j pada matriks akhir graf berarah bernilai 1 semua, maka simpul yang diwakili oleh kolom ke- j dapat dilintasi oleh setiap simpul pada graf. Karena eksekusi algoritma ini (algoritma I) berbanding lurus dengan banyaknya busur pada graf. maka jumlah eksekusi algoritma pengecekan status keterhubungan suatu graf ini adalah banyaknya elemen bernilai 1 pada representasi matriksnya. Jumlah maksimum mekanisme operasi ini adalah sebanyak n 1 (maksimum busur keluar pada suatu simpul), dengan n sebagai jumlah simpul pada graf. Dan karena setiap operasi penyatuan melakukan paling banyak n operasi, maka batas atas kompleksitas algoritma program tersebut sebesar n 2 (n 1). Eksekusi algoritma II juga berbanding lurus dengan banyaknya busur pada graf dengan jumlah minimum busur adalah n 1 (dengan n adalah banyaknya simpul pada graf) dan maksimum busur yang mungkin 2n(n 1) Untuk menyelesaikan permasalahan perubahan arus lalu lintas maka haruslah didapat keluaran (dari program) graf terhubung kuat. Jika hasil keluarannya belum merupakan graf terhubung kuat, maka akan dibentuk graf reduksi dari model Saran Untuk pengembangan penelitian lebih lanjut, disarankan: 1. Implementasi algoritma dapat dicoba dalam bentuk struktur data yang lain selain matriks. 2. Untuk pembanding proses dari algoritma I, dapat dilakukan implementasi dan aplikasi terhadap algoritma II. References [1] Budayasa, I.K., 2007, Teori Graph dan Aplikasinya Surabaya: Unesa Press. [2] Madanella,Ella, 2007, Strategi Algoritmik Bandung: Program Studi Teknik Informatika STEI ITB. [3] Munir,Rinaldi, 2007, Diktat Kuliah IF 2153, Matematika Diskrit, Edisi Keempat Bandung: Program Studi Teknik Informatika STEI ITB. [4] Siang, J. J., 2002, Matematika Diskrit dan Aplikasinya pada Ilmu Komputer Yogyakarta: Andi.

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017 Graf dan Analisa Algoritma Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017 Who Am I? Stya Putra Pratama, CHFI, EDRP Pendidikan - Universitas Gunadarma S1-2007 Teknik Informatika S2-2012

Lebih terperinci

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf Nur Fajriah Rachmah - 0609 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan

Lebih terperinci

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini. 6 II. LANDASAN TEORI Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada sub bab ini akan diberikan

Lebih terperinci

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf Rahadian Dimas Prayudha - 13509009 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB

TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB STEVIE GIOVANNI NIM : 13506054 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jln, Ganesha 10, Bandung

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 4 BAB 2 LANDASAN TEORI 2.1 Pengertian Kemacetan Kemacetan adalah situasi atau keadaan tersendatnya atau bahkan terhentinya lalu lintas yang disebabkan oleh banyaknya jumlah kendaraan melebihi kapasitas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Suatu graf G adalah suatu himpunan berhingga tak kosong dari objek-objek yang disebut verteks (titik/simpul) dengan suatu himpunan yang anggotanya

Lebih terperinci

Algoritma Penentuan Graf Bipartit

Algoritma Penentuan Graf Bipartit Algoritma Penentuan Graf Bipartit Zain Fathoni - 13508079 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Kampus ITB Jln. Ganesha No. 10 Bandung e-mail:

Lebih terperinci

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013 Dasar-Dasar Teori Graf Sistem Informasi Universitas Gunadarma 2012/2013 Teori Graf Teori Graf mulai dikenal saat matematikawan kebangsaan Swiss bernama Leonhard Euler, yang berhasil mengungkapkan Misteri

Lebih terperinci

Pemanfaatan Algoritma Sequential Search dalam Pewarnaan Graf untuk Alokasi Memori Komputer

Pemanfaatan Algoritma Sequential Search dalam Pewarnaan Graf untuk Alokasi Memori Komputer Pemanfaatan Algoritma Sequential Search dalam Pewarnaan Graf untuk Alokasi Memori Komputer Vivi Lieyanda - 13509073 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Bab 2. Teori Dasar. 2.1 Definisi Graf

Bab 2. Teori Dasar. 2.1 Definisi Graf Bab 2 Teori Dasar Pada bagian ini diberikan definisi-definisi dasar dalam teori graf berikut penjabaran mengenai kompleksitas algoritma beserta contohnya yang akan digunakan dalam tugas akhir ini. Berikut

Lebih terperinci

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik 2. TINJAUAN PUSTAKA 2.1 Konsep Dasar Graf Pada bagian ini akan diberikan konsep dasar graf yang diambil dari buku Chartrand dan Zhang (2005) yaitu sebagai berikut: Suatu Graf G adalah suatu pasangan himpunan

Lebih terperinci

Penerapan Teori Graf Pada Algoritma Routing

Penerapan Teori Graf Pada Algoritma Routing Penerapan Teori Graf Pada Algoritma Routing Indra Siregar 13508605 Program Studi Teknik Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10, Bandung

Lebih terperinci

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang anggotanya

Lebih terperinci

Penerapan Algoritma Backtracking pada Pewarnaan Graf

Penerapan Algoritma Backtracking pada Pewarnaan Graf Penerapan Algoritma Backtracking pada Pewarnaan Graf Deasy Ramadiyan Sari 1, Wulan Widyasari 2, Eunice Sherta Ria 3 Laboratorium Ilmu Rekayasa dan Komputasi Departemen Teknik Informatika, Fakultas Teknologi

Lebih terperinci

Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf

Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf Algoritma Brute-Force dan Greedy dalam Pemrosesan Graf Marvin Jerremy Budiman / 13515076 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Oleh Lukman Hariadi

Oleh Lukman Hariadi ANALISIS PENYELESAIAN PUZZLE SUDOKU DENGAN MENERAPKAN ALGORITMA BACKTRACKING (berbentuk piramida terbalik) PROPOSAL JUDUL Diajukan Untuk Menempuh Tugas Akhir Oleh Lukman Hariadi 14201045 PROGRAM STUDI

Lebih terperinci

Pemanfaatan Directed Acyclic Graph untuk Merepresentasikan Hubungan Antar Data dalam Basis Data

Pemanfaatan Directed Acyclic Graph untuk Merepresentasikan Hubungan Antar Data dalam Basis Data Pemanfaatan Directed Acyclic Graph untuk Merepresentasikan Hubungan Antar Data dalam Basis Data Winson Waisakurnia (13512071) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun

MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun MA3051 Pengantar Teori Graf Semester 1 2013/2014 Pengajar: Hilda Assiyatun Bab 1: Graf dan subgraf Graf G : tripel terurut VG, E G, ψ G ) V G himpunan titik (vertex) E G himpunan sisi (edge) ψ G fungsi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Informasi Geografis (SIG) Sistem Informasi Geografis atau Geographic Information System (GIS) merupakan suatu sistem informasi yang berbasis komputer, dirancang untuk bekerja

Lebih terperinci

Pendeteksian Deadlock dengan Algoritma Runut-balik

Pendeteksian Deadlock dengan Algoritma Runut-balik Pendeteksian Deadlock dengan Algoritma Runut-balik Rita Wijaya - 13509098 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Algoritma adalah teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun secara logis dan sitematis

Lebih terperinci

II. LANDASAN TEORI. Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan

II. LANDASAN TEORI. Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan 4 II. LANDASAN TEORI Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan Konisberg yang kemudian menghasilkan konsep graf Eulerian merupakan awal dari lahirnya teori graf. Euler mengilustrasikan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Graf (Graph) Graf G didefinisikan sebagai pasangan himpunan (V, E) yang dinotasikan dalam bentuk G = {V(G), E(G)}, dimana V(G) adalah himpunan vertex (simpul) yang tidak kosong

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 39 BAB 2 TINJAUAN PUSTAKA 2.1. Teori Graf 2.1.1 Definisi Graf Teori graf merupakan salah satu cabang matematika yang paling banyak aplikasinya dalam kehidupan sehari hari. Salah satu bentuk dari graf adalah

Lebih terperinci

MATEMATIKA DISKRIT RELASI

MATEMATIKA DISKRIT RELASI MATEMATIKA DISKRIT RELASI Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh

Lebih terperinci

Pencarian Jalur Terpendek dengan Algoritma Dijkstra

Pencarian Jalur Terpendek dengan Algoritma Dijkstra Volume 2 Nomor 2, Oktober 207 e-issn : 24-20 p-issn : 24-044X Pencarian Jalur Terpendek dengan Algoritma Dijkstra Muhammad Khoiruddin Harahap Politeknik Ganesha Medan Jl.Veteran No. 4 Manunggal choir.harahap@yahoo.com

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Konsep Dasar Teori Graph 2.1.1 Graph Tak Berarah dan Digraph Suatu Graph Tak Berarah (Undirected Graph) merupakan kumpulan dari titik yang disebut verteks dan segmen garis yang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Teori Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan

Lebih terperinci

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN Eric Cahya Lesmana - 13508097 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jalan Ganesa

Lebih terperinci

APLIKASI ALGORITMA SEQUENTIAL COLOR UNTUK PEWARNAAN PETA WILAYAH KABUPATEN KUANTAN SINGINGI PROVINSI RIAU TUGAS AKHIR

APLIKASI ALGORITMA SEQUENTIAL COLOR UNTUK PEWARNAAN PETA WILAYAH KABUPATEN KUANTAN SINGINGI PROVINSI RIAU TUGAS AKHIR APLIKASI ALGORITMA SEQUENTIAL COLOR UNTUK PEWARNAAN PETA WILAYAH KABUPATEN KUANTAN SINGINGI PROVINSI RIAU TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada Jurusan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Terminologi graf Tereminologi termasuk istilah yang berkaitan dengan graf. Di bawah ini akan dijelaskan beberapa definisi yang sering dipakai terminologi. 2.1.1 Graf Definisi

Lebih terperinci

BAB 2 LANDASAN TEORI. Secara garis besar ilmu statistik dibagi menjadi dua bagian yaitu:

BAB 2 LANDASAN TEORI. Secara garis besar ilmu statistik dibagi menjadi dua bagian yaitu: BAB 2 LANDASAN TEORI 2.1 Pembagian Ilmu Statistik Secara garis besar ilmu statistik dibagi menjadi dua bagian yaitu: 1. Statistik Parametrik Statistik parametrik adalah ilmu statistik yang digunakan untuk

Lebih terperinci

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika Discrete Mathematics & Its Applications Chapter 10 : Graphs Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika 16/12/2015 2 Sub Topik A. Graf dan Model Graf B. Terminologi Dasar Graf dan Jenis

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Graf 2.1.1 Defenisi Graf Graf G didefenisikan sebagai pasangan himpunan (V,E), ditulis dengan notasi G = (V,E), yang dalam hal ini V adalah himpunan tidak kosong dari simpul-simpul

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Konsep Dasar Graph Sebelum sampai pada pendefenisian masalah lintasan terpendek, terlebih dahulu pada bagian ini akan diuraikan mengenai konsep-konsep dasar dari model graph dan

Lebih terperinci

ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF

ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF ALGORITMA PENCARIAN SIMPUL SOLUSI DALAM GRAF Anthony Rahmat Sunaryo NIM: 3506009 Jurusan Teknik Informatika ITB, Bandung email : if6009@students.if.itb.ac.id Abstract -- Makalah ini membahas tentang analsis

Lebih terperinci

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM

BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM BAB III ANALISIS MASALAH DAN RANCANGAN PROGRAM III.1. Analisis Masalah Proses analisa sistem merupakan langkah kedua pada pengembangan sistem. Analisa sistem dilakukan untuk memahami informasi-informasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Sebuah graf didefinisikan sebagai pasangan terurut himpunan dimana: 1. adalah sebuah himpunan tidak kosong yang berhingga yang anggotaanggotanya

Lebih terperinci

BAB 2 DIGRAPH. Representasi dari sebuah digraph D dapat dilihat pada contoh berikut. Contoh 2.1. Representasi dari digraph dengan 5 buah verteks.

BAB 2 DIGRAPH. Representasi dari sebuah digraph D dapat dilihat pada contoh berikut. Contoh 2.1. Representasi dari digraph dengan 5 buah verteks. BAB 2 DIGRAPH Pada bab ini akan dijelaskan teori-teori dasar tentang digraph yang meliputi definisi dua cycle, primitifitas dari digraph, eksponen, dan lokal eksponen. Dengan demikian, akan mempermudah

Lebih terperinci

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY Latar belakang Masalah Pada setiap awal semester bagian pendidikan fakultas Matematika dan Ilmu Pengetahuan Universitas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.. Definisi Graf Secara matematis, graf G didefinisikan sebagai pasangan himpunan (V,E) ditulis dengan notasi G = (V, E), yang dalam hal ini: V = himpunan tidak-kosong dari simpul-simpul

Lebih terperinci

Penggunaan Algoritma Backtracking Untuk Menentukan Keisomorfikan Graf

Penggunaan Algoritma Backtracking Untuk Menentukan Keisomorfikan Graf Abstrak Penggunaan Algoritma Backtracking Untuk Menentukan Keisomorfikan Graf Neni Adiningsih, Dewi Pramudi Ismi, Ratih Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik Informatika, Institut

Lebih terperinci

Memanfaatkan Pewarnaan Graf untuk Menentukan Sifat Bipartit Suatu Graf

Memanfaatkan Pewarnaan Graf untuk Menentukan Sifat Bipartit Suatu Graf Memanfaatkan Pewarnaan Graf untuk Menentukan Sifat Bipartit Suatu Graf Gianfranco Fertino Hwandiano - 13515118 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan diberikan beberapa definisi dan konsep dasar dalam teori graf dan pelabelan graf yang akan digunakan pada bab selanjutnya. 2.1 Definisi dan Istilah Dalam Teori Graf

Lebih terperinci

CRITICAL PATH. Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5. Graph G. Alternatif

CRITICAL PATH. Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5. Graph G. Alternatif CRITICAL PATH Menggunakan Graph berbobot dan mempunya arah dari Critical Path: simpul asal : 1 simpul tujuan : 5 Graph G Path Bobot Alternatif 1 4 5 16 1 2 5 15 1 2 3 5 24 1 4 3 5 19 1 2 3 4 5 29 1 4 3

Lebih terperinci

Penerapan Graf dalam Algoritma PageRank Mesin Pencari Google

Penerapan Graf dalam Algoritma PageRank Mesin Pencari Google Penerapan Graf dalam Algoritma PageRank Mesin Pencari Google Adya Naufal Fikri - 13515130 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang BAB III KONSEP DASAR TEORI GRAF Teori graf adalah salah satu cabang matematika yang terus berkembang dengan pesat. Teori ini sangat berguna untuk mengembangkan model-model terstruktur dalam berbagai keadaan.

Lebih terperinci

Menyelesaikan Topological Sort Menggunakan Directed Acyclic Graph

Menyelesaikan Topological Sort Menggunakan Directed Acyclic Graph Menyelesaikan Topological Sort Menggunakan Directed Acyclic Graph Muhammad Afif Al-hawari (13510020) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

PELABELAN TOTAL SISI AJAIB PADA GRAF BINTANG

PELABELAN TOTAL SISI AJAIB PADA GRAF BINTANG Jurnal Matematika UNAND Vol. 2 No. 1 Hal. 85 89 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PELABELAN TOTAL SISI AJAIB PADA GRAF BINTANG DINA IRAWATI Program Studi Matematika, Fakultas Matematika

Lebih terperinci

Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan

Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan Relasi dan Fungsi Relasi Adalah hubungan antara elemen himpunan dengan elemen himpunan yang lain. Cara paling mudah untuk menyatakan hubungan antara elemen 2 himpunan adalah dengan himpunan pasangan terurut.

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan teori dalam penelitian ini. Konsep dasar tersebut berkaitan dengan definisi graf,

Lebih terperinci

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }

R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) } Pertemuan 9 Relasi Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b

Lebih terperinci

Algoritma Branch & Bound untuk Optimasi Pengiriman Surat antar Himpunan di ITB

Algoritma Branch & Bound untuk Optimasi Pengiriman Surat antar Himpunan di ITB Algoritma Branch & Bound untuk Optimasi Pengiriman Surat antar Himpunan di ITB Mohamad Ray Rizaldy - 13505073 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini. BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori dari penelitian ini. 2.1 Konsep Dasar Graf Beberapa konsep dasar

Lebih terperinci

Graph. Politeknik Elektronika Negeri Surabaya

Graph. Politeknik Elektronika Negeri Surabaya Graph Politeknik Elektronika Negeri Surabaya Pengantar Teori graph merupakan pokok bahasan yang memiliki banyak penerapan. Graph digunakan untuk merepresentasikan obyek-obyek diskrit dan hubungan antar

Lebih terperinci

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf BAB 2 GRAF PRIMITIF Pada Bagian ini akan dijelaskan beberapa definisi dan teorema terkait graf, matriks adjency, terhubung, primitifitas, dan scrambling index sebagai landasan teori yang menjadi acuan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II LNSN TEORI Landasan teori dalam penyusunan tugas akhir ini menggunakan beberapa teori pendukung yang akan digunakan untuk menentukan lintasan terpendek pada jarak esa di Kecamatan Rengat arat. 2.1 Graf

Lebih terperinci

BAB 1 PENDAHULUAN. Persoalan lintasan terpanjang (longest path) merupakan persoalan dalam mencari

BAB 1 PENDAHULUAN. Persoalan lintasan terpanjang (longest path) merupakan persoalan dalam mencari BAB 1 PENDAHULUAN 1.1 Latar Belakang Persoalan lintasan terpanjang (longest path) merupakan persoalan dalam mencari lintasan sederhana terpanjang maksimum dalam suatu graph yang diberikan. Lintasan terpanjang

Lebih terperinci

MILIK UKDW BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

MILIK UKDW BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Graf adalah suatu himpunan simpul yang dihubungkan dengan busurbusur. Pada sebuah graf hubungan antar simpul yang dihubungkan oleh busur memiliki sebuah keterkaitan.

Lebih terperinci

Studi Algoritma Optimasi dalam Graf Berbobot

Studi Algoritma Optimasi dalam Graf Berbobot Studi Algoritma Optimasi dalam Graf Berbobot Vandy Putrandika NIM : 13505001 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 10, Bandung E-mail : if15001@students.if.itb.ac.id

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB 2 LANDASAN TEORI 2.1 Pengertian Algoritma Menurut (Suarga, 2012 : 1) algoritma: 1. Teknik penyusunan langkah-langkah penyelesaian masalah dalam bentuk kalimat dengan jumlah kata terbatas tetapi tersusun

Lebih terperinci

BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan

BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan

Lebih terperinci

II. TINJAUAN PUSTAKA. kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini

II. TINJAUAN PUSTAKA. kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini 5 II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf, graf pohon dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini 2.1 KONSEP DASAR GRAF Konsep

Lebih terperinci

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )}

GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )} GRAF Graf G(V,E) didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan berhingga dan tidak kosong dari simpul-simpul (verteks atau node). Dan E adalah himpunan berhingga dari busur (vertices

Lebih terperinci

Pengaplikasian Graf dalam Pendewasaan Diri

Pengaplikasian Graf dalam Pendewasaan Diri Pengaplikasian Graf dalam Pendewasaan Diri Syafira Fitri Auliya 13510088 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi yang akan dihasilkan pada penelitian ini. 2.1 Beberapa Definisi dan Istilah 1. Graf (

Lebih terperinci

BAB II LANDASAN TEORI. Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah

BAB II LANDASAN TEORI. Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah BAB II LANDASAN TEORI 2.1. Pendahuluan Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah berkembang sangat pesat dan digunakan untuk menyelesaikan persoalanpersoalan pada berbagai bidang

Lebih terperinci

Kode MK/ Matematika Diskrit

Kode MK/ Matematika Diskrit Kode MK/ Matematika Diskrit TEORI GRAF 1 8/29/2014 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 TEORI GRAF Tujuan Mahasiswa memahami konsep

Lebih terperinci

v 3 e 2 e 4 e 6 e 3 v 4

v 3 e 2 e 4 e 6 e 3 v 4 5 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan dimensi partisi graf sebagai landasan teori dari penelitian ini... Konsep Dasar Graf Pada bagian ini akan diberikan

Lebih terperinci

DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

DEFINISI. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). BAB 3 RELASI DEFINISI Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Sejarah Graf Lahirnya teori graf pertama kali diperkenalkan oleh Leonhard Euler seorang matematikawan berkebangsaan Swiss pada Tahun 1736 melalui tulisan Euler yang berisi tentang

Lebih terperinci

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar Arifin Luthfi Putranto (13508050) Program Studi Teknik Informatika Institut Teknologi Bandung Jalan Ganesha 10, Bandung E-Mail: xenoposeidon@yahoo.com

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 21 2 TINJUN PUSTK 2.1. lgoritma lgoritma merupakan suatu langkah langkah untuk menyelesaikan masalah yang disusun secara sistematis, tanpa memperhatikan bentuk yang akan digunakan sebagai implementasinya,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bagian ini akan dijelaskan beberapa konsep dasar yang berkaitan dengan permasalahan, seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. 2.1 Graf Graf

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Logika Fuzzy Logika fuzzy pertama kali dikembangkan oleh Prof. Lotfi A. Zadeh, seorang peneliti dari Universitas California, pada tahun 1960-an. Logika fuzzy dikembangkan dari

Lebih terperinci

UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

UKDW BAB 1 PENDAHULUAN. 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Graf adalah suatu diagram yang memuat informasi tertentu jika diinterpretasikan secara tepat. Tujuannya adalah sebagai visualisasi objek-objek agar lebih mudah

Lebih terperinci

Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B).

Relasi. Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). Relasi Relasi biner R antara himpunan A dan B adalah himpunan bagian dari A B. Notasi: R (A B). a R b adalah notasi untuk (a, b) R, yang artinya a dihubungankan dengan b oleh R a R b adalah notasi untuk

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 15 BAB II LANDASAN TEORI 2.1 Konsep Dasar Graf Definisi 2.1.1 Graf Sebuah graf G adalah pasangan (V,E) dengan V adalah himpunan yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

Lebih terperinci

Penerapan Algoritma BFS & DFS untuk Routing PCB

Penerapan Algoritma BFS & DFS untuk Routing PCB Penerapan Algoritma BFS & DFS untuk Routing PCB Hisham Lazuardi Yusuf 13515069 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga TEORI GRAPH Graph Graph Graph digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar berikut ini sebuah graph yang menyatakan peta jaringan jalan raya yang

Lebih terperinci

PRESENTASI TUGAS AKHIR KI IMPLEMENTASI ALGORITMA PENCARIAN K JALUR SEDERHANA TERPENDEK DALAM GRAF

PRESENTASI TUGAS AKHIR KI IMPLEMENTASI ALGORITMA PENCARIAN K JALUR SEDERHANA TERPENDEK DALAM GRAF PRESENTASI TUGAS AKHIR KI099 IMPLEMENTASI ALGORITMA PENCARIAN K JALUR SEDERHANA TERPENDEK DALAM GRAF (Kata kunci: Algoritma deviasi, algoritma Dijkstra, jalur sederhana, jalur terpendek) Penyusun Tugas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Matematika merupakan ilmu yang tidak dapat dipisahkan dari kehidupan manusia. Matematika juga merupakan media untuk melatih kemampuan berfikir kritis, kreatif dan dapat

Lebih terperinci

Penerapan Graf pada PageRank

Penerapan Graf pada PageRank Penerapan Graf pada PageRank Hartono Sulaiman Wijaya 13509046 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi

TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi II. TINJAUAN PUSTAKA Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi pada suatu graf sebagai landasan teori pada penelitian ini.. Konsep Dasar Graf Pada bagian ini akan

Lebih terperinci

Penggunaan Perwarnaan Graf dalam Mencari Solusi Sudoku

Penggunaan Perwarnaan Graf dalam Mencari Solusi Sudoku Penggunaan Perwarnaan Graf dalam Mencari Solusi Sudoku Mahdan Ahmad Fauzi Al-Hasan - 13510104 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM

ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM ANALISIS JARINGAN LISTRIK DI PERUMAHAN JEMBER PERMAI DENGAN MENGGUNAKAN ALGORITMA PRIM SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Pendidikan

Lebih terperinci

Aplikasi Pewarnaan Graf pada Pemecahan Masalah Penyusunan Jadwal

Aplikasi Pewarnaan Graf pada Pemecahan Masalah Penyusunan Jadwal Aplikasi Pewarnaan Graf pada Pemecahan Masalah Penyusunan Jadwal abila As ad 1) 135 07 006 2) 1) Jurusan Teknik Informatika ITB, Bandung 40135, email: nabilaasad@students.itb.ac.id Abstract Dalam kehidupan

Lebih terperinci

Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian

Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian Penggunaan Pohon Biner Sebagai Struktur Data untuk Pencarian Rita Wijaya/13509098 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

Penerapan Teori Graf untuk Menentukan Tindakan Pertolongan Pertama pada Korban Kecelakaan

Penerapan Teori Graf untuk Menentukan Tindakan Pertolongan Pertama pada Korban Kecelakaan Penerapan Teori Graf untuk Menentukan Tindakan Pertolongan Pertama pada Korban Kecelakaan Rinda Nur Hafizha 13516151 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Muhamad Irfan Maulana - 13515037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

TEOREMA POHON MATRIKS UNTUK MENENTUKAN BANYAKNYA POHON RENTANGAN GRAF WHEELS W n

TEOREMA POHON MATRIKS UNTUK MENENTUKAN BANYAKNYA POHON RENTANGAN GRAF WHEELS W n Info Artikel UJM 3 (2 (2014 UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm TEOREMA POHON MATRIKS UNTUK MENENTUKAN BANYAKNYA POHON RENTANGAN GRAF WHEELS W n DAN KIPAS F n Firdha

Lebih terperinci

Graf dan Pengambilan Rencana Hidup

Graf dan Pengambilan Rencana Hidup Graf dan Pengambilan Rencana Hidup M. Albadr Lutan Nasution - 13508011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung e-mail: albadr.ln@students.itb.ac.id

Lebih terperinci

II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan

II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan 5 II. TINJAUAN PUSTAKA Definisi 2.1 Graf (Deo,1989) Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan tak kosong dengan elemen-elemennya disebut vertex, sedangkan E(G)

Lebih terperinci

ANALISA DAN IMPLEMENTASI ALGORITMA BELLMAN FORD DALAM MNENTUKAN JALUR TERPENDEK PENGANTARAN BARANG DALAM KOTA

ANALISA DAN IMPLEMENTASI ALGORITMA BELLMAN FORD DALAM MNENTUKAN JALUR TERPENDEK PENGANTARAN BARANG DALAM KOTA ANALISA DAN IMPLEMENTASI ALGORITMA BELLMAN FORD DALAM MNENTUKAN JALUR TERPENDEK PENGANTARAN BARANG DALAM KOTA Paska Marto Hasugian Program Studi Teknik Informatika STMIK Pelita Nusantara Medan, Jl. Iskandar

Lebih terperinci

IMPLEMENTASI ALGORITMA DIJKSTRA DALAM PENCARIAN LINTASAN TERPENDEK LOKASI RUMAH SAKIT, HOTEL DAN TERMINAL KOTA MALANG BERBASIS WEB

IMPLEMENTASI ALGORITMA DIJKSTRA DALAM PENCARIAN LINTASAN TERPENDEK LOKASI RUMAH SAKIT, HOTEL DAN TERMINAL KOTA MALANG BERBASIS WEB IMPLEMENTASI ALGORITMA DIJKSTRA DALAM PENCARIAN LINTASAN TERPENDEK LOKASI RUMAH SAKIT, HOTEL DAN TERMINAL KOTA MALANG BERBASIS WEB Riyadhush Sholichin, Mohamad Yasindan Lucky Tri Oktoviana Universitas

Lebih terperinci

Graf. Program Studi Teknik Informatika FTI-ITP

Graf. Program Studi Teknik Informatika FTI-ITP Graf Program Studi Teknik Informatika FTI-ITP Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan

Lebih terperinci

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf Bab 2 LANDASAN TEORI 2.1. Konsep Dasar Graf Definisi Graf Suatu graf G terdiri atas himpunan yang tidak kosong dari elemen elemen yang disebut titik atau simpul (vertex), dan suatu daftar pasangan vertex

Lebih terperinci

Penerapan Algoritma BFS dan DFS dalam Mencari Solusi Permainan Rolling Block

Penerapan Algoritma BFS dan DFS dalam Mencari Solusi Permainan Rolling Block Penerapan Algoritma dan DFS dalam Mencari Solusi Permainan Rolling Block Zakiy Firdaus Alfikri 13508042 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

SPECTRUM DETOUR GRAF n-partisi KOMPLIT

SPECTRUM DETOUR GRAF n-partisi KOMPLIT SPECTRUM DETOUR GRAF n-partisi KOMPLIT Desy Norma Puspita Dewi Jurusan Matematika UIN Maulana Malik Ibrahim Malang e-mail:phyta_3@yahoo.co.id ABSTRAK Matriks detour dari graf G adalah matriks yang elemen

Lebih terperinci