BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Rangkaian proses pengeringan secara garis besar merupakan metoda penguapan yang dapat dilakukan untuk melepas air dalam fasa uapnya dari dalam objek yang dikeringkan. Penguapan ini dapat dilakukan dengan dua cara yakni: cara pertama adalah dengan memberikan panas kedalam bahan tersebut sehingga terjadi kenaikan temperaturnya untuk keperluan memanaskan dan selanjutnya untuk menguapkan sejumlah air. Ataupun dengan cara menangkap uap air oleh udara yang telah dikondisikan (dipanaskan atau didinginkan). Setiap operasi dalam rantai produksi memanfaatkan sumberdaya dan menigkatkan biaya, maka pemahaman yang tinggi tentang proses pengeringan dalam kaitannya dengan produk tertentu adalah penting. Proses pengeringan meliputi perpindahan panas dan massa. Uap air yang dihilangkan dapat berada dipermukaan dan juga didalam produk; sehingga pengeringan secara normal mengeluarkan air dari dua level ini. Kandungan air yang lebih rendah pada permukaan akan memaksa keluar air dari dalam produk. Migrasi kandungan air keluar diperlambat oleh daya tarik molekul air. Tingkatan daya tarik ini dan karenanya tahanan internal terhadap kehilangan uap air tergantung pada sifat higroskopis dan koloid serta ukuran pori yang membangun gerakan kapiler fluida. Keluar/lepasnya air dari permukaan produk tergantung pada kondisi udara pengeringan, sementara kondisi uap air di permukaan mempengaruhi perpindahan massa dari dalam ke permukaan. Pelepasan uap air pada batas antar-muka produkudara tergantung pada temperatur produk dan medium pengeringan, humiditas udara, laju alir udara dan kondisi tekanan volume serta luas permukaan produk yang dikenai medium pengeringan (Sumber : Menon and Mujumdar, 1987). Pengaruh temperatur dan humiditas udara pengeringan terhadap pelepasan uap air adalah saling berhubungan. Semakin tinggi temperatur udara diikuti dengan humiditas udara yang lebih rendah pada volume udara tertentu akan meningkatkan kapasitasnya dalam mengikat uap air. Temperatur udara yang lebih

2 tinggi menambah kemungkinan perpindahan panas pada produk. Ketika yang terakhir ini terjadi, tekanan uap didalam produk meningkat dan evaporasi uap air dari permukaan menjadi lebih mudah (Sumber : Menon and Mujumdar, 1987). Ketika penguapan berlangsung dan kandungan uap air pada volume tetap terus bertambah, kapasitas udara untuk mengakomodir lebih banyak uap semakin berkurang. Oleh karenanya udara jenuh disekitar produk harus segera digantikan Dengan menetapkan kondisi tertentu untuk temperatur dan humiditas udara, maka jumlah uap air yang dihilangkan tergantung pada volume udara yang dibawa pada kontak dengan produk. Ketika evaporasi uap air tidak terbatas, menjaga atau meningkatkan laju alir udara dapat menjamin keberlangsungan proses pengeringan. 2.2 Pengeringan Buatan Pengeringan dengan menggunakan alat pengering dimana, suhu, kelembapan udara, kecepatan udara dan waktu dapat diatur dan di awasi. Keuntungan pengering buatan: a) Tidak tergantung cuaca b) Kapasitas pengeringan dapat dipilih sesuai dengan yang diperlukan c) Tidak memerlukan tempat yang luas d) Kondisi pengeringan dapat dikontrol e) Pekerjaan lebih mudah Jenis - Jenis Pengeringan Buatan Berdasarkan media panasnya, a) Pengeringan adiabatis ; pengeringan dimana panas dibawa ke alat pengering oleh udara panas, fungsi udara memberi panas dan membawa air. b) Pengeringan isotermik; bahan yang dikeringkan berhubungan langsung dengan alat/ plat logam yang panas Proses pengeringan: a) Proses pengeringan diperoleh dengan cara penguapan air

3 b) Dengan cara menurunkan RH dengan mengalirkan udara panas disekeliling bahan c) Proses perpindahan panas; proses pemanasan dan terjadi panas sensible dari medium pemanas ke bahan, dari permukaan bahan kepusat bahan. d) Proses perpindahan massa ; proses pengeringan (penguapan), terjadi panas laten, dari permukaan bahan ke udara e) Panas sensible ; panas yang dibutuhkan /dilepaskan untuk menaikkan /menurunkan suhu suatu benda f) Panas laten ; panas yang diperlukan untuk mengubah wujud zat dari padat kecair, cair ke gas, dst, tanpa mengubah suhu benda tersebut Faktor faktor yang mempengaruhi pengeringan. Pada pengeringan selalu di inginkan kecepatan pengeringan yang maksimal. Oleh karena itu perlu dilakukan usaha- usaha untuk memercepat pindah panas dan pindah massa ( pindah massa dalam hal ini adalah perpindahan air keluar dari bahan yang dikeringkan dalam proses pengeringan tersebut. Ada beberapa faktor yang perlu diperhatikan untuk memperoleh kecepatan pengeringan maksimum, yaitu : (a) Luas permukaan (b) (c) (d) (e) Suhu Kecepatan udara Kelembaban udara Waktu. Dalam proses pengeringan ini faktor yang perlu diperhatikan untuk memperoleh kecepatan pengeringan maksimum adalah : a) Suhu Semakin besar perbedaan suhu (antara medium pemanas dengan bahan bahan) maka akan semakin cepat proses pindah panas berlangsung

4 sehingga mengakibatkan proses penguapan semakin cepat pula. Atau semkain tinggi suhu udara pengeringan maka akan semakin besar anergi panas yang dibawa ke udara yang akan menyebabkan proses pindahan panas semakin cepat sengingga pindah massa akan berlangsung juga dengan cepat. b) Kecepatan udara Umumnya udara yang bergerak akan lebih banyak mengambil uap air dari permukaan bahan yang dikeringkan. Udara yang bergerak adalah udara yang mempunyai kecepatan gerak yang tinggi yang berguna untuk mengambil uap air dan menghilangkan uapa air dari permukaan bahan yang dikeringkan, sehingga dapat mencegah terjadinya udara jenuh yang dapat memperlambat penghilangan air. c) Kelembaban Udara (RH) Semakin lembab udara di dalam ruang pengering dan sekitarnya maka akan semakin lama proses pengeringan berlangsung kering, begitu juga sebaliknya. Karena udara kering dapat mengabsorbsi dan menahan uap air. Setiap bahan mempunyai keseimbangan kelembaban nisbi (RH keseimbangan) masing- masing, yaitu kelembapan pada suhu tertentu dimana bahan tidak akan kehilangan air (pindah) ke atmosfir atau tidak akan mengambil uap air dari atmosfir. Jika RH udara < RH keseimbangan maka bahan masih dapat dikeringkan. Jika RH udara > RH keseimbangan maka bahan malahan akan menarik uap air dari udara. d) Waktu Semakin lama waktu (batas tertentu) pengeringan maka akan semakin cepat proses pengeringan selesai. Dalam pengeringan diterapkan konsep HTST (High Temperature Short Time), short time dapat menekan biayapengeringan. 2.3 Pompa Kalor Pompa kalor (heat pump) adalah suatu perangkat yang mentransfer panas dari media suhu rendah ke suhu tinggi. Sebagian besar teknologi pompa kalor

5 memindahkan panas dari sumber panas yang bertemperatur rendah ke lokasi bertemperatur lebih tinggi. Contoh yang paling umum adalah lemari es, freezer, pendingin ruangan, dan sebagainya. Pompa kalor merupakan perangkat yang sama dengan mesin pendingin (Refrigerator), perbedaannya hanya pada tujuan akhirnya. Mesin pendingin bertujuan menjaga ruangan pada suhu rendah (dingin) dengan membuang panas dari ruangan. Sedangkan pompa kalor bertujuan menjaga ruangan berada pada suhu yang tinggi (panas). Hal ini diilustrasikan seperti pada gambar 2.1. Gambar 2.1 Refrigerator Dan Pompa Kalor (Heat Pump) Sumber: (Cengel & Boles Fifth Edition Hal.608 Pompa kalor memanfaatkan sifat fisik dari penguapan dan pengembunan dari suatu fluida kerja yang disebut dengan refrigeran. Pada aplikasi sistem pemanas, ventilasi, dan pendingin ruangan, pompa kalor merujuk pada alat pendinginan kompresi uap yang mencakup saluran pembalik dan penukar panas sehingga arah aliran panas dapat dibalik. Secara umum, pompa kalor mengambil panas dari udara atau dari permukaan. Beberapa jenis pompa kalor dengan sumber

6 panas udara tidak bekerja dengan baik setelah temperatur jatuh di bawah - 5 o C/23 o F (sumber : Siklus Kompresi Uap (SKU) Siklus Kompresi Uap (SKU) adalah siklus termodinamika yang digunakan untuk memindahkan panas dari medium yang bertemperatur rendah ke medium yang bertemperatur lebih tinggi. Fluida kerja yang mengalir selama siklus disebut fluida kerja atau refrigeran. Pada SKU, selama siklus, refrigeran mengalami perubahan fasa, yaitu menjadi uap (evaporation) dan menjadi cair (condensation). Berdasarkan proses perubahan fasa inilah, maka pada SKU kita kenal beberapa komponen seperti Evaporator dan Kondensor. Saat ini mesin pendingin yang menggunakan SKU sangat mudah dijumpai, seperti pada pendingin/pemanas yang digunakan untuk pengkondisian udara (AC-Split/Heat Pump) di perumahan atau perkantoran dalam skala kecil. Sistem kompresi uap mempunyai 4 komponen utama, yaitu kompresor, kondensor, katup ekspansi (Throttling Device) dan evaporator seperti yang ditunjukkan pada Gambar 2.3. Keempat komponen tersebut melakukan proses yang saling berhubungan dan membentuk siklus refrigerasi kompresi uap. [Sumber : Buku Kuliah Thermodinamika Teknik II, hal. 54] Siklus refrigerasi kompresi uap ini dapat digambarkan seperti gambar berikut:

7 WARM environment Q H Condenser Expansion valve Compressor Win Evaporator COLD Refrigerated space Gambar 2.2 Skema siklus refrigerasi kompresi uap (Sumber : Buku Kuliah Thermodinamika Teknik II) Siklus refrigerasi kompresi uap merupakan siklus yang paling umum digunakan untuk mesin pendingin dan pompa kalor. Komponen utama dari sebuah siklus kompresi uap adalah : 1. Kompresor, berfungsi untuk memindahkan uap refrigeran dari evaporator dan menaikkan tekanan dan temperatur uap refrigeran ke suatu titik di mana uap tersebut dapat berkondensasi dengan normal sesuai dengan media pendinginnya. 2. Kondensor, berfungsi melakukan perpindahan kalor melalui permukaannya dari uap refrigeran ke media pendingin kondensor. 3. Katup Ekspansi, berfungsi untuk mengatur jumlah refrigeran yang mengalir ke evaporator dan menurunkan tekanan dan temperatur refrigeran cair yang masuk ke evaporator, sehingga refrigeran cair akan menguap dalam evaporator pada tekanan rendah. 4. Evaporator, berfungsi melakukan perpindahan kalor dari ruangan yang didinginkan ke refrigeran yang mengalir di dalamnya melalui permukaan dindingnya. Pada gambar dapat dilihat bahwa dengan menggunakan evaporator panas diserap dari ruangan yang dikondisikan. Kemudian kompresor menerima kerja

8 mekanik. Setelah melalui kompresor, refrigeran masuk ke kondensor. Di sini refrigeran membuang panas ke lingkungan dan akhirnya mencair. Setelah mencair, tekanan refrigeran diturunkan sampai tekanan evaporator dengan menggunakan katup ekspansi. SKU mempunyai 4 komponen utama, yaitu kompresor, kondensor, katup expansi, dan evaporator, seperti yang ditunjukkan pada Gambar 2.3 Gambar 2.3 Siklus Kompresi Uap sederhana (Sumber : Buku kuliah Teknik Pendingin & Pengkondisian Udara) Diagram T-s (T adalah temperatur dan s adalah entropi [kj/kgk]) ditampilkan pada Gambar 2.2(a). Diagram P-h (P adalah tekanan dan h adalah entalpi) ditampilkan pada grafik pada Gambar 2.2(b). Proses-proses termodinamika yang terjadi pada SKU ini dapat dibagi atas 4 proses ideal, yaitu s: adalah proses kompresi isentropik dari tekanan evaporator ke tekanan kondensor. Pada titik 1, idealnya refrigeran berada pada fasa cair jenuh setelah menyerap panas pada suhu rendah dari evaporator. 2. 2s-3: adalah perpindahan panas yang diikuti kondensasi dari kondensor pada tekanan konstan. Pada bagian awal sisi masuk kondensor refrigeran masih dalam kondisi superheat dan akibat pendingin akan turun suhunya hingga mencapai temperatur kondensasi, dan akhirnya menjadi cair jenuh

9 pada sisi keluar kondensor : adalah ekspansi adiabatik dari tekanan kondensor ke tekanan evaporator. Akibat penurunan tekanan, temperatur akan turun. Pada sisi masuk evaporator sebagian fluida berada pada fasa cair dan sebagian lagi menjadi uap : adalah penguapan pada tekanan konstan. Di sini fluida menyerap panas dari medium agar dapat menguap. Refrigeran akan, seluruhnya menguap di sisi keluar evaporator dan siklus akan berulang ke langkah 1: Gambar 2.4 Diagram T-s siklus standar (Sumber : Buku kuliah Teknik Pendingin & Pengkondisian Udara) Gambar 2.5 Diagram P-h Siklus ideal (Sumber : Buku kuliah Teknik Pendingin & Pengkondisian Udara) Proses Kompresi (1 2s) Proses ini berlangsung di kompresor secara isentropik adiabatik. Tugas utama kompresor adalah menaikkan tekanan refrigeran, sekaligus juga menaikkan

10 temperaturnya lebih tinggi dari temperatur lingkungan. Tujuannya adalah agar dapat melepaskan panas pada temperatur tinggi ke lingkungan. Kondisi awal refrigeran pada saat masuk di kompresor adalah uap jenuh bertekanan rendah, setelah di kompresi refrigeran menjadi uap bertekanan tinggi. Oleh karena proses ini dianggap isentropik, maka temperatur keluar kompresor pun meningkat. Besarnya kerja kompresi per satuan massa refrigeran bisa dihitung dengan rumus : Gambar 2.6 Proses kompresi W c = mm qq ww = mm( h 2 h 1 )...(2.1) qq ww = besarnya kerja kompresi yang dilakukan (kj/kg) h 1 = entalpi refrigeran saat masuk kompresor (kj/kg) h 2 = entalpi refrigeran saat keluar kompresor (kj/kg) ṁ = laju aliran refrigeran pada sistem (kg/s) h 1 diperoleh dari tekanan pada evaporator, h 2 diperoleh dari tekanan pada kondensor. Dalam pengujian besarnya daya kompresor untuk melakukan kerja dapat juga ditentukan dengan rumus: Wc = VV II cccccc...(2.2) W c = daya listrik kompresor (Watt) VV = tegangan listrik (Volt) II = kuat arus listrik (Ampere) cccccc φφ = 0,6 0,8

11 2.4.2 Proses Kondensasi (2 3) Proses ini berlangsung di kondensor, refrigeran yang bertekanan dan temperatur tinggi keluar dari kompresor membuang kalor sehingga fasanya berubah menjadi cair. Hal ini berarti bahwa di kondensor terjadi penukaran kalor antara refrigeran dengan udara, sehingga panas berpindah dari refrigeran ke udara pendingin dan akhirnya refrigeran mengembun menjadi cair. Besarnya kalor per satuan massa refrigeran yang di lepaskan di kondensor dinyatakan sebagai: Gambar 2.7 Proses kondensasi QQ kk = mm qq cc = mm (h 2 h 3 )...(2.3) qq cc = besarnya kalor dilepas di kondensor (kj/kg) h 2 = entalpi refrigeran saat masuk kondensor (kj/kg) h 3 = entalpi refrigeran saat keluar kondensor (kj/kg) ṁ = laju aliran refrigeran pada sistem (kg/s) Proses Ekspansi (3 4) Proses ini berlangsung secara isoentalpi, hal ini berarti tidak terjadi penambahan entalpi tetapi terjadi drop tekanan dan penurunan temperatur. Proses penurunan tekanan terjadi pada katup ekspansi yang berbentuk pipa kapiler atau orifice yang berfungsi mengatur laju aliran refrigeran dan menurunkan tekanan. h 3 = h 4 h 3 = entalpi refrigeran saat keluar kondensor (kj/kg) h 4 = harga entalpi masuk ke evaporator (kj/kg) Proses Evaporasi (4 1) Proses ini berlangsung di evaporator secara isobar isotermal. Refrigeran dalam wujud cair bertekanan rendah menyerap kalor dari lingkungan / media yang didinginkan sehingga wujudnya berubah menjadi gas bertekanan rendah.

12 Besarnya kalor yang diserap evaporator adalah : Gambar 2.8 Proses evaporasi QQ ee = mm qq ee = mm (h 1 h 4 )...(2.4) QQ ee = kalor yang di serap di evaporator ( kw ) qq ee = efek pendinginan (efek refrigerasi) (kj/kg) h 1 = harga entalpi ke luar evaporator (kj/kg) h 4 = harga entalpi masuk ke evaporator (kj/kg) ṁ = laju aliran refrigeran pada sistem (kg/s) Selanjutnya refrigeran kembali masuk ke kompresor dan bersirkulasi kembali, begitu seterusnya sampai kondisi yang diinginkan tercapai. 2.5 Pengering Sistem Pompa Kalor Pompa kalor merupakan salah satu sistem yang dapat dimanfaatkan pada teknologi pengeringan. Teknologi ini telah banyak di manfaatkan di Australia dan Eropa. Pompa kalor sebagai pengering berpotensi menghemat energi.. Pompa kalor untuk pengeringan pakaian atau Heat Pump Clothes Dryers (HPCDs) dapat menghemat energi sebesar 50% dibanding sistem pengering pakaian listrik konvensional, dan karenanya memiliki potensi menyimpan energi yang besar (Meyers, et al. 2010). Prinsip kerja pengering pakaian pompa kalor diilustrasikan seperti gambar 2.9. Pompa kalor memberikan panas dengan mengekstraksi energi dari udara sekitar. Panas kering udara diproses memasuki belakang drum dan berinteraksi dengan cucian. Udara lembab yang hangat dari drum diproses melalui layar serat

13 dan melalui evaporator dimana sebagian besar kelembaban akan di hilangkan sebelum mengalir melalui kondensor dan kembali ke drum.(meyers, et al. 2010). Gambar 2.9 Diagram pengering pakaian pompa kalor. Sumber:(Meyers, et al. 2010) Melalui skema siklus refrigrasi kompresi uap, panas yang dikeluarkan oleh kondensor dimanfaatkan untuk mengeringkan pakaian. Udara panas dari kondensor dialirkan ke ruang pengeringan, selanjutnya udara hasil pengeringan menjadi lembab (basah). Udara dari ruang pengeringan kemudian dialirkan ke evaporator untuk didinginkan dan dikeringkan, udara tersebut selanjutnya akan menuju kondensor untuk dipanaskan. Demikian seteruanya siklus dari udara pengering tersebut bersikulasi. Skema dari pengering pakaian ini terlihat pada gambar 2.10.

14 Gambar 2.10 Skema pengeringan Kinerja alat pengering salah satunya dapat ditentukan dari efisiensi pengeringan. Efisiensi pengeringan merupakan perbandingan antara energi yang digunakan untuk menguapkan kandungan air abahan dengan energi untuk memanaskan udara pengering. Efisiensi pengeringan biasanya dinyatakan dalam persen. Semakin tinggi nilai efisiensi pengeringan maka alat pengering tersebut semakin baik. Pada penelitian ini, panas buangan kondensor yang akan dimanfaatkan sebagai sumber energi untuk melakukan pengeringan. Prinsip kerja pengering pompa kalor diilustrasikan seperti Gambar Pompa kalor melalui kondensor memberikan panas kepada aliran udara luar. Proses ini akan menghasilkan udara panas dan kering. Udara ini akan dimasukkan ke dalam ruang pengering dan berinteraksi dengan bahan yang akan akan dimasukkan ke dalam ruang pengering dan berinteraksi dengan bahan yang akan dikeringkan. Seperti yang ditunjukkan gambar, panas yang dikeluarkan oleh kondensor dimanfaatkan untuk menguapkan air dari suatu bahan. Udara panas dari kondensor dialirkan ke ruang pengeringan, selanjutnya udara hasil pengeringan menjadi lembab (basah). Udara sisa ini akan dibuang ke lingkungan. Sementara sisi evaporator tidak akan diganggu atau tetap melakukan fungsi refrigerasi.

15 Gambar 2.11 Siklus pengering dengan sistem pompa kalor. Karakteristik penting dari sebuah pompa kalor adalah bahwa jumlah panas yang dapat ditransfer lebih besar daripada energi yang diperlukan untuk menggerakkan siklus. Perbandingan antara panas yang dapat diserap dan energi yang dibutuhkan dikenal dengan Coefficient of Performance (COP). Energi Listrik yang digunakan untuk menggerakkan pompa kalor yang digunakan untuk memanaskan lingkungan beriklim sedang biasanya memiliki COP 3,5 pada kondisi desain. Ini berarti bahwa untuk setiap1 kwh listrik yang digunakan untuk menggerakkan pompa kalor akan dapat ditarik panas di evaporator sebesar 3,5 kwh (Brown 2009). Kemudian gabungan panas ini, sebesara 4,5 kwh, akan dibuang di kondensor berupa panas sisa atau buangan. Beberapa peneliti telah melaporkan penelitian yang berhubungan dengan pompa kalor untuk pengeringan beberapa produk. Hii, dkk (2010) melakukan pengeringan biji kakao menggunakan sistem pompa kalor yang beroperasi pada temperatur dan humiditas rendah. Hasil pengeringan ini mampu meningkatkan mutu (ph, warna dan aroma) dibanding sampel komersial dari negara-negara produsen kakao. P. Suntivarakorn dkk (2010) melakukan penelitian kajian pengering pakaian dengan menggunakan panas sisa dari Air Conditioner (AC) dengan kapasitas Btu/h. Luas ruang pengeringan 0,5 x 1,0 m2. Percobaan

16 dilakukan dalam 2 aspek yaitu pengeringan pakaian dengan dan tanpa kipas tambahan dan hasilnya adalah laju pengeringan 2,26 kg/jam dan 1,1 kg/jam. 2.6 Analisis Performansi Pengering Pompa Kalor Kajian tentang performansi suatu unit pengering system pompa kalor dapat dianalisis dengan cara menghitung beberapa parameter performansi, seperti: efisiensi pengeringan, nilai laju ekstraksi air spesifik, konsumsi energi spesifik, laju pengeringan kinerja dari pompa kalor (COP) dan kinerja dari sistem kompresi uap hybrid Efisiensi Pengeringan (EP) EP dihitung dengan cara membandingkan jumlah energi yang digunakan untuk menguapkan kandungan air bahan dengan jumlah energi yang digunakan untuk memanaskan udara pengering, dinyatakan dalam persen. Semakin tinggi nilai efisiensi pengeringan maka performansi alat pengering tersebut semakin baik. Perhitungan Efisiensi pengeringan dapat dilakukan dengan mengunakan persamaan :..... (2.5) Q p Q = energi yang digunakan untuk pengeringan (kj) = energi untuk memanaskan udara pengering (kj) Nilai Laju Ekstraksi uap Spesifik atau specific moisture extraction rate (SMER) Nilai laju ekstraksi air spesifik atau specific moisture extraction rate (SMER) merupakan perbandingan jumlah air yang dapat diuapkan dari bahan dengan energi listrik yang digunakan tiap jam atau energi yang dibutuhkan untuk menghilangkan 1 kg air. Dinyatakan dalam kg/kwh.

17 Perhitungan SMER menggunakan persamaan (Sumber : Mahlia, Hor and Masjuki 2010): SMER = m X x Cp x ( T T ) Wc udara in out + M udara = laju aliran massa udara ( kg/s) Cp = Panas Jenis udara (kj/kg)... (2.6) T in = Temperatur udara masuk evaporator ( 0 C) T out = Temperatur udara keluar evaporator ( 0 C) Wc X = Daya kompressor (kw) = Air yang di serap Perhitungan Specific moisture extraction rate (SMER) didefiniskan sebagai perbandingan air yang disingkirkan dari bahan dalam kg/jam dengan input energi dalam kw, dapat juga dicari dengan menggunakan persamaan [13] : SMER = mm dd WW cc +WW bb..... (2.7) W c W b mm dd = Daya kondensor (kw) = Daya blower (kw) = Laju pengeringan (kg/jam) Konsumsi Energi Spesifik atau specific energy consumption (SEC) Energi yang dikonsumsi spesifik atau specific energy consumption (SEC) adalah perbandingan energi yang dikonsumsi dengan kandungan air yang hilang, dinyatakan dalam kwh/kg dan dihitung dengan menggunakan persamaan (Sumber : Mahlia, Hor and Masjuki 2010): m SEC = x Cp x X ( T T ) udara in out + Wc M udara = laju aliran massa udara ( kg/s) Cp = Panas Jenis udara (kj/kg)...(2.8)

18 T in = Temperatur udara masuk evaporator ( 0 C) T out = Temperatur udara keluar evaporator ( 0 C) Wc X = Daya kompressor (kw) = Air yang di serap Mahlia dkk [6] melakukan pengujian pengeringan pakaian dengan menggunakan panas dari pembuangan kondensor satu unit AC tipe split. Spesifikasi utama AC yang digunakan adalah dengan kapasitas pendinginan Btu/hr. Lemari pengering yang digunakan dapat bergerak bebas dan dihubungkan langsung dengan kondensor. Tiga metode pengeringan dibandingkan, yaitu pengeringan di dalam ruangan (indoor drying), pengeringan di jemua langsung, dan pengeringan dengan lemari pengering dengan variasi suhu ruangan (17 o C, 19 o C, 21 o C, 23 o C, dan 25 o C). Parameter yang digunakan untuk membandingkan ketiga metode pengeringan adalah SMER. Sebagai catatan dalam penelitian ini digunakan juga parameter SEC (specific energy consumption). Hubungan antara SMER dan SEC adalah: 1 SEC =... (2.9) SMER Laju Pengeringan (drying rate) Laju pengeringan (drying rate; kg/jam) adalah banyaknya air yang diuapkan tiap satuan waktu atau penurunan kadar air bahan dalam satuan waktu. Penurunan kadar air produk selama proses pengeringan dihitung dengan menggunakan persamaan 2.8 (Sumber : Suntivarakorn, Satmarong, Benjapiyaporn, & Theerakulpisut, 2010). [11]. mm dd = WW oo WW ff tt.... (2.10) W o = Berat pakaian sebelum pengeringan (kg) W f = Berat pakaian setelah pengeringan (kg) t = Waktu pengeringan (jam)

19 Laju pengeringan biasanya meningkat di awal pengeringan kemudian konstan dan selanjutnya semakin menurun seiring berjalannya waktu dan berkurangnya kandungan air pada bahan yang dikeringkan.laju pengeringan merupakan jumlah kandungan air bahan yang diuapkan tiap satuan berat kering bahan dan tiap satuan waktu Kinerja dari Pompa Kalor Kinerja dari suatu pompa kalor dapat dinyatakan dalam coefficient of performance (COP), yang didefinisikan sebagai perbandingan antara kalor yang dilepaskan oleh kondensor dengan kerja yang dibutuhkan untuk menggerakkan kompresor (Oktay and Hepbasli 2003): CCCCCC hpp,h = QQ cccc WW cc... (2.11) QQ cccc = Kalor yang dilepaskan oleh kondensor WW cc = Kerja yang masuk dalam kompresor Kalor yang dilepaskan oleh kondensor dihitung dengan persamaan: QQ cccc = mm aaaaaa CC pp,aaaaaa TT oo,aaaaaa TT ii,aaaaaa... (2.12) Dimana: mm aaaaaa = laju aliran massa udara (kg/s) CC pp,aaaaaa = panas spesifik udara (kj/kg) TT oo,aaaaaa = suhu rata-rata udara keluar kondensor ( 0 C) TT ii,aaaaaa = suhu rata-rata udara keluar kondensor ( 0 C) Kerja yang masuk ke dalam sistem (kerja kompresor) di hitung dengan persamaan: WW cc = mm (h 2 h 1 )... (2.13)

20 W c h 1, h 2 = kerja yang masuk dalam kompresor (kj), = entalpi pada tekanan evaporator dan kondensor (kj/s) Total Performance (TP) Sebuah Sistem kompresi uap dengan memanfaatkan evaporator dan kondensor sekaligus disebut dengan sistem kompresi uap hibrid. Kinerja dari sebuah sistem kompresi uap hibrid dinyatakan dengan Total Performance (TP), yang dirumuskan dengan: (2.14) Q e Q c W c = kalor yang diserap oleh evaporator (kw), = kalor yang dilepaskan oleh kondensor(kw), = kerja Kompresor(kW). Kalor yang diserap oleh evaporator dihitung dengan menggunakan persamaan berikut: (2.15) Faktor Prestasi (PF) Sebuah Sistem Kompresi Uap (SKU) dapat dimanfaatkan sebagai sumber panas, dengan memanfaatkan panas buangan kondensornya. Jika hal ini yang terjadi, maka performansinya dinyatakan dengan Faktor Prestasi (FP), yang didefinisikan sebagai laju pelepasan kalor di kondensor dibagi dengan kerja kompresor. FFFF = QQQQ WW cc = h 2 h 3 h 2 h 1.. (2.16)

21 QQ KK WW cc = Kalor yang dilepas oleh kondensor (kw) = Kerja yang masuk dalam kompresor (kw) 2.7 Periode Laju Pengeringan Menurut Henderson dan Perry (1955), proses pengeringan memiliki 2 (dua) periode utama yaitu periode pengeringan dengan laju pengeringan tetap dan periode laju pengeringan menurun. Kedua periode utama ini dibatasi oleh kadar air kritis (critical moisture content). Henderson dan Perry (1955) menyatakan bahwa pada periode pengeringan dengan laju tetap, bahan mengendung air yang cukup banyak, dimana pada permukaan bahan berlangsung penguapan yang lajunya dapat disamakan dengan laju penguapan pada permukaan air bebas. Laju penguapan sebagian besar tergantung pada keadaan sekeliling bahan, sedangkan pengaruh bahannya sendiri relative kecil. Laju pengeringan akan menurun seiring dengan penurunan kadar air selama pengeringan. Jumlah air terikat makin lama semakin berkurang. Perubahan dari laju pengeringan tetap menjadi laju pengeringan menurun untuk bahan yang berbeda akan terjadi pada kadar air yang berbeda pula. Pada periode laju pengeringan menurun permukaan partikel bahan yang dikeringkan tidak lagi ditutupi oleh lapisan air. Selama periode laju pengeringan menurun, energi panas yang diperoleh bahan digunakan untuk menguapkan sisa air bebas yang sedikit sekali jumlahnya. Laju pengeringan menurun terjadi setelah laju pengeringan konstan dimana kadar air bahan lebih kecil daripada kadar air kritis (Gambar 2.12). Periode laju pengeringan menurun meliputi dua proses, yaitu : perpindahan dari dalam ke permukaan dan permindahan uap air dari permukaan bahan ke udara sekitarnya.

22 Gambar 2.12 Grafik Hubungan Kadar Air Dengan Waktu. Keterangan : AB = Periode pemanasan BC = Periode laju pengeringan menurun pertama CD = Periode laju pengeringan menurun pertama DE = Periode laju pengeringan menurun kedua 2.8 Kadar Air Kadar air merupakan salah satu sifat fisik dari bahan yang menunjukan banyaknya air yang terkandung di dalam bahan. Kadar air biasanya dinyatakan dengan persentase berat air terhadap bahan basah atau dalam gram air untuk setiap 100 gram bahan yang disebut dengan kadar air basis basah (bb). Berat bahan kering atau padatan adalah berat bahan setelah mengalami pemanasan beberapa waktu tertentu sehingga beratnya tetap atau konstan. Kadar air bahan menunjukkan banyaknya kandungan air persatuan bobot bahan. Dalam hal ini terdapat dua metode untuk menentukan kadar air bahan tersebut yaitu berdasarkan bobot kering (dry basis) dan berdasarkan bobot basah (wet basis) [4]. Kadar air basis basah dapat ditentukan dengan persamaan berikut: Ka bb = Wa Wt x 100%= Wt-Wk Wt x 100%.. (2.17)

23 Dimana: Ka bb = Kadar air basis basah (%) Wa = Berat air dalam bahan (gram) Wk = Berat kering mutlak bahan (gram) Wt = Berat total (gram) = Wa + Wk Kadar air basis kering adalah perbandingan antara berat air yang ada dalam bahan dengan berat padatan yang ada dalam bahan. Kadar air berat kering dapat ditentukan dengan persamaan berikut: Ka bk = Wa Wk Dimana: x 100%= Wt-Wk Wt-Wa x 100%...(2.18) Ka bk = Kadar air basis kering (%) Wa = Berat air dalam bahan (g) Wk Wt = Berat kering mutlak bahan (g) = Berat total (g) = Wa + Wk Kadar air basis kering adalah berat bahan setelah mengalami pengeringan dalam waktu tertentu sehingga beratnya konstan. Pada proses pengeringan, air yang terkandung dalam bahan tidak dapat seluruhnya diuapkan meskipun demikian yang diperoleh disebut juga sebagai berat bahan kering [4]. 2.9 Moisture Ratio (Rasio Kelembaban) Sama halnya dengan laju kadar air, rasio kelembaban juga mengalami penurunan selama proses pengeringan. kenaikan suhu udara pengeringan mengurangi waktu yang diperlukan untuk mencapai setiap tingkat rasio kelembaban sejak proses transfer panas dalam ruang pengeringan meningkat. Sedangkan, pada suhu tinggi, perpindahan panas dan massa juga meningkat dan kadar air bahan akan semakin berkurang [7]. Rasio kelembaban (moisture ratio) pada pakaian selama pengeringan dihitung dengan menggunakan persamaan berikut:

24 MR= M t - M e M o - M e.....(2.19) Dimana MR merupakan moisture ratio (rasio kelembaban), M t merupakan kadar air pada saat t (waktu selama pengeringan, menit), M o merupakan kadar air awal bahan, dan M e merupakan kadar air yang diperoleh setelah berat bahan konstan. Nilai satuan M t, M o dan M e merupakan persentase dari kadar air basis kering bahan.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah... DAFTAR ISI KATA PENGANTAR... i ABSTRAK... iii ABSTRACT... iv DAFTAR ISI... v DAFTAR GAMBAR... viii DAFTAR TABEL... x DAFTAR NOTASI... xi BAB I PENDAHULUAN... 1 1.1. Latar Belakang... 1 1.2. Rumusan Masalah...

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Proses Pengeringan Pengeringan adalah proses perpindahan panas dan uap air secara simultan yang memerlukan energi panas uantuk menguapkan kandungan air yang dipindahkan dari

Lebih terperinci

Universitas Sumatera Utara

Universitas Sumatera Utara BAB II TINJAUAN PUSTAKA 2.1. Pengeringan Rangkaian proses pengeringan secara garis besar merupakan metoda penguapan yang dapat dilakukan untuk melepas air dalam fasa uapnya dari dalam objek yang dikeringkan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Prinsip Pengeringan Pengeringan (drying) merupakan proses perpindahan panas dan uap air secara secara simultan yang memerlukan energi panas untuk menguapkan kandungan air yang

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump

BAB II DASAR TEORI. 2.1 Pengertian Sistem Heat pump BAB II DASAR TEORI 2.1 Pengertian Sistem Heat pump Heat pump adalah pengkondisi udara paket atau unit paket dengan katup pengubah arah (reversing valve) atau pengatur ubahan lainnya. Heat pump memiliki

Lebih terperinci

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air

Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Studi Eksperimen Pemanfaatan Panas Buang Kondensor untuk Pemanas Air Arif Kurniawan Jurusan Teknik Mesin Institut Teknologi Nasional (ITN) Malang E-mail : arifqyu@gmail.com Abstrak. Pada bagian mesin pendingin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Refrigerasi Refrigerasi merupakan suatu kebutuhan dalam kehidupan saat ini terutama bagi masyarakat perkotaan. Refrigerasi dapat berupa lemari es pada rumah tangga, mesin

Lebih terperinci

TINJAUAN PUSTAKA. Df adalah driving force (kg/kg udara kering), Y s adalah kelembaban

TINJAUAN PUSTAKA. Df adalah driving force (kg/kg udara kering), Y s adalah kelembaban TINJAUAN PUSTAKA Mekanisme Pengeringan Udara panas dihembuskan pada permukaan bahan yang basah, panas akan berpindah ke permukaan bahan, dan panas laten penguapan akan menyebabkan kandungan air bahan teruapkan.

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Penyimpanan Energi Termal Es merupakan dasar dari sistem penyimpanan energi termal di mana telah menarik banyak perhatian selama beberapa dekade terakhir. Alasan terutama dari penggunaan

Lebih terperinci

RANCANG BANGUN ALAT PENGERING PAKAIAN SISTEM HIBRIDA DENGAN KAPASITAS RUANG PENGERING SATU METER KUBIK

RANCANG BANGUN ALAT PENGERING PAKAIAN SISTEM HIBRIDA DENGAN KAPASITAS RUANG PENGERING SATU METER KUBIK RANCANG BANGUN ALAT PENGERING PAKAIAN SISTEM HIBRIDA DENGAN KAPASITAS RUANG PENGERING SATU METER KUBIK SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik IMMANUEL SP

Lebih terperinci

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda

BAB II DASAR TEORI. Tabel 2.1 Daya tumbuh benih kedelai dengan kadar air dan temperatur yang berbeda BAB II DASAR TEORI 2.1 Benih Kedelai Penyimpanan benih dimaksudkan untuk mendapatkan benih berkualitas. Kualitas benih yang dapat mempengaruhi kualitas bibit yang dihubungkan dengan aspek penyimpanan adalah

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori. 2.1 AC Split

BAB II DASAR TEORI. BAB II Dasar Teori. 2.1 AC Split BAB II DASAR TEORI 2.1 AC Split Split Air Conditioner adalah seperangkat alat yang mampu mengkondisikan suhu ruangan sesuai dengan yang kita inginkan, terutama untuk mengkondisikan suhu ruangan agar lebih

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] BAB II DASAR TEORI

BAB II DASAR TEORI. Gambar 2.1 sistem Blast Chiller [PT.Wardscatering, 2012] BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Blast Chiller Blast Chiller adalah salah satu sistem refrigerasi yang berfungsi untuk mendinginkan suatu produk dengan cepat. Waktu pendinginan yang diperlukan untuk sistem Blast

Lebih terperinci

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR

PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR PENGARUH STUDI EKSPERIMEN PEMANFAATAN PANAS BUANG KONDENSOR UNTUK PEMANAS AIR Arif Kurniawan Institut Teknologi Nasional (ITN) Malang; Jl.Raya Karanglo KM. 2 Malang 1 Jurusan Teknik Mesin, FTI-Teknik Mesin

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini

BAB II TINJAUAN PUSTAKA. temperatur di bawah 123 K disebut kriogenika (cryogenics). Pembedaan ini BAB II TINJAUAN PUSTAKA 21 Mesin Refrigerasi Secara umum bidang refrigerasi mencakup kisaran temperatur sampai 123 K Sedangkan proses-proses dan aplikasi teknik yang beroperasi pada kisaran temperatur

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI

BAB II DASAR TEORI BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem refrigerasi kompresi uap Sistem refrigerasi yang umum dan mudah dijumpai pada aplikasi sehari-hari, baik untuk keperluan rumah tangga, komersial dan industri adalah sistem

Lebih terperinci

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage Sugiyono 1, Ir Sumpena, MM 2 1. Mahasiswa Elektro, 2. Dosen

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori

BAB II DASAR TEORI. BAB II Dasar Teori BAB II DASAR TEORI 2.1 Pengertian Air Conditioner Air Conditioner (AC) digunakan untuk mengatur temperatur, sirkulasi, kelembaban, dan kebersihan udara didalam ruangan. Selain itu, air conditioner juga

Lebih terperinci

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap

BAB II DASAR TEORI Prinsip Kerja Mesin Refrigerasi Kompresi Uap 4 BAB II DASAR TEORI 2.1 Sistem Pengkondisian Udara Pengkondisian udara adalah proses untuk mengkondisikan temperature dan kelembapan udara agar memenuhi persyaratan tertentu. Selain itu kebersihan udara,

Lebih terperinci

BAB II STUDI PUSTAKA

BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA.1 Teori Pengujian Sistem pengkondisian udara (Air Condition) pada mobil atau kendaraan secara umum adalah untuk mengatur kondisi suhu pada ruangan didalam mobil. Kondisi suhu yang

Lebih terperinci

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008

Termodinamika II FST USD Jogja. TERMODINAMIKA II Semester Genap TA 2007/2008 TERMODINAMIKA II Semester Genap TA 007/008 Siklus Kompresi Uap Ideal (A Simple Vapor-Compression Refrigeration Cycle) Mempunyai komponen dan proses.. Compressor: mengkompresi uap menjadi uap bertekanan

Lebih terperinci

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM :

LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC NPM : NPM : LAPORAN AKHIR FISIKA ENERGI II PEMANFAATAN ENERGI PANAS TERBUANG PADA MESIN AC Nama Praktikan : Utari Handayani NPM : 140310110032 Nama Partner : Gita Maya Luciana NPM : 140310110045 Hari/Tgl Percobaan

Lebih terperinci

Laporan Tugas Akhir 2012 BAB II DASAR TEORI

Laporan Tugas Akhir 2012 BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Definisi Vaksin Vaksin merupakan bahan antigenik yang digunakan untuk menghasilkan kekebalan aktif terhadap suatu penyakit sehingga dapat mencegah atau mengurangi pengaruh infeksi

Lebih terperinci

KARAKTERISTIK MESIN PENGERING PAKAIAN MENGGUNAKAN AC (AIR CONDITIONER) DENGAN SIKLUS KOMPRESI UAP SISTEM UDARA TERBUKA

KARAKTERISTIK MESIN PENGERING PAKAIAN MENGGUNAKAN AC (AIR CONDITIONER) DENGAN SIKLUS KOMPRESI UAP SISTEM UDARA TERBUKA KARAKTERISTIK MESIN PENGERING PAKAIAN MENGGUNAKAN AC (AIR CONDITIONER) DENGAN SIKLUS KOMPRESI UAP SISTEM UDARA TERBUKA Tio Vani Nesri 1, Azridjal Aziz 1 dan Rahmat Iman Mainil 1 1 Laboratorium Rekayasa

Lebih terperinci

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng

MULTIREFRIGERASI SISTEM. Oleh: Ega T. Berman, S.Pd., M,Eng MULTIREFRIGERASI SISTEM Oleh: Ega T. Berman, S.Pd., M,Eng SIKLUS REFRIGERASI Sistem refrigerasi dengan siklus kompresi uap Proses 1 2 : Kompresi isentropik Proses 2 2 : Desuperheating Proses 2 3 : Kondensasi

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada

Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak. daur ini terjadi proses kompresi (1 ke 2), 4) dan penguapan (4 ke 1), seperti pada Siklus Kompresi Uap Sistem pendingin siklus kompresi uap merupakan daur yang terbanyak digunakan dalam daur refrigerasi, pada daur ini terjadi proses kompresi (1 ke 2), pengembunan( 2 ke 3), ekspansi (3

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

BAB II. Prinsip Kerja Mesin Pendingin

BAB II. Prinsip Kerja Mesin Pendingin BAB II Prinsip Kerja Mesin Pendingin A. Sistem Pendinginan Absorbsi Sejarah mesin pendingin absorbsi dimulai pada abad ke-19 mendahului jenis kompresi uap dan telah mengalami masa kejayaannya sendiri.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara

BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara BAB I PENDAHULUAN 1.1 Definisi Pengkondisian Udara Sistem pengkondisian udara adalah suatu proses mendinginkan atau memanaskan udara sehingga dapat mencapai temperatur dan kelembaban yang sesuai dengan

Lebih terperinci

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN

ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN ANALISA KINERJA MESIN REFRIGERASI RUMAH TANGGA DENGAN VARIASI REFRIGERAN 1 Amrullah, 2 Zuryati Djafar, 3 Wahyu H. Piarah 1 Program Studi Perawatan dan Perbaikan Mesin, Politeknik Bosowa, Makassar 90245,Indonesia

Lebih terperinci

Seminar Nasional Mesin dan Industri (SNMI4) 2008 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12

Seminar Nasional Mesin dan Industri (SNMI4) 2008 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12 ANALISIS PERBANDINGAN UNJUK KERJA REFRIGERATOR KAPASITAS 2 PK DENGAN REFRIGERAN R-12 DAN MC 12 Suroso, I Wayan Sukania, dan Ian Mariano Jl. Let. Jend. S. Parman No. 1 Jakarta 11440 Telp. (021) 5672548

Lebih terperinci

Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap

Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap Pengaruh Penggunaan Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Efisiensi Mesin Pendingin Siklus Kompresi Uap Azridjal Aziz 1,a* dan Boby Hary Hartanto 2,b 1,2 Jurusan Teknik Mesin, Fakultas Teknik

Lebih terperinci

BAB II DASAR TEORI. 2.1 Blood Bank Cabinet

BAB II DASAR TEORI. 2.1 Blood Bank Cabinet BAB II DASAR TEORI 2.1 Blood Bank Cabinet Darah merupakan suatu cairan yang sangat penting bagi manusia karena berfungsi sebagai alat transportasi serta memiliki banyak kegunaan lainnya untuk menunjang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Latar Belakang Pengkondisian udaraa pada kendaraan mengatur mengenai kelembaban, pemanasan dan pendinginan udara dalam ruangan. Pengkondisian ini bertujuan bukan saja sebagai penyejuk

Lebih terperinci

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage Jurnal Ilmiah Teknik Mesin Vol. 4 No.. April 00 (43-50) Analisa Performansi Sistem Pendingin Ruangan dan Efisiensi Energi Listrik padasistem Water Chiller dengan Penerapan Metode Cooled Energy Storage

Lebih terperinci

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN PENGARUH MEDIA PENDINGIN AIR PADA KONDENSOR TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN Kemas. Ridhuan 1), I Gede Angga J. 2) Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Metro Jl. Ki Hjar

Lebih terperinci

POMPA SISTEM DEPARTE FAKULTAS TEKNIKK UTARA MEDAN 2014 SKRIPSI. Universitas Sumatera Utara

POMPA SISTEM DEPARTE FAKULTAS TEKNIKK UTARA MEDAN 2014 SKRIPSI. Universitas Sumatera Utara KARAKTERISTIK LAJU PENGERINGAN PADA MESIN PENGERING PAKAIAN SISTEM POMPA KALORR DENGAN DAYA 1 PK SKRIPSI Skripsi Yangg Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjanaa Teknik CAKRA MESSA ABADI

Lebih terperinci

BAB IV PEMBAHASAN. 4.1 Rangkaian Alat Uji Dan Cara Kerja Sistem Refrigerasi Tanpa CES (Full Sistem) Heri Kiswanto / Page 39

BAB IV PEMBAHASAN. 4.1 Rangkaian Alat Uji Dan Cara Kerja Sistem Refrigerasi Tanpa CES (Full Sistem) Heri Kiswanto / Page 39 BAB IV PEMBAHASAN Pada pengujian ini dilakukan untuk membandingkan kerja sistem refrigerasi tanpa metode cooled energy storage dengan sistem refrigerasi yang menggunakan metode cooled energy storage. Pengujian

Lebih terperinci

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut.

BAB II DASAR TEORI. perpindahan kalor dari produk ke material tersebut. BAB II DASAR TEORI 2.1 Sistem Refrigerasi Refrigerasi adalah suatu proses penarikan kalor dari suatu ruang/benda ke ruang/benda yang lain untuk menurunkan temperaturnya. Kalor adalah salah satu bentuk

Lebih terperinci

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage

Gambar 5. Skematik Resindential Air Conditioning Hibrida dengan Thermal Energy Storage BAB 5. HASIL DAN PEMBAHASAN Prinsip Kerja Instalasi Instalasi ini merupakan instalasi mesin pendingin kompresi uap hibrida yang berfungsi sebagai mesin pendingin pada lemari pendingin dan pompa kalor pada

Lebih terperinci

BAB II DASAR TEORI. 2.1 Cooling Tunnel

BAB II DASAR TEORI. 2.1 Cooling Tunnel BAB II DASAR TEORI 2.1 Cooling Tunnel Cooling Tunnel atau terowongan pendingin merupakan sistem refrigerasi yang banyak digunakan di industri, baik industri pengolahan makanan, minuman dan farmasi. Cooling

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka Refrigeran merupakan media pendingin yang bersirkulasi di dalam sistem refrigerasi kompresi uap. ASHRAE 2005 mendefinisikan refrigeran sebagai fluida kerja

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI

BAB II DASAR TEORI. Laporan Tugas Akhir BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Sistem Refrigerasi Freezer Freezer merupakan salah satu mesin pendingin yang digunakan untuk penyimpanan suatu produk yang bertujuan untuk mendapatkan produk dengan kualitas yang

Lebih terperinci

BAB II LANDASAN TEORI. Suatu mesin refrigerasi akan mempunyai tiga sistem terpisah, yaitu:

BAB II LANDASAN TEORI. Suatu mesin refrigerasi akan mempunyai tiga sistem terpisah, yaitu: BAB II LANDASAN TEORI 2.1 Pendahuluan Refrigerasi adalah proses pengambilan kalor atau panas dari suatu benda atau ruang tertutup untuk menurunkan temperaturnya. Kalor adalah salah satu bentuk dari energi,

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA 11 BAB III TINJAUAN PUSTAKA 3.1 PENDAHULUAN Air conditioner atau yang biasa di sebut AC merupakan sebuah alat yang mampu mengondisikan udara. Dengan kata lain, AC berfungsi sebagai penyejuk udara. Penggunaan

Lebih terperinci

BAB II DASAR TEORI 2012

BAB II DASAR TEORI 2012 BAB II DASAR TEORI 2.1 Pengertian Sistem Brine Sistem Brine adalah salah satu sistem refrigerasi kompresi uap sederhana dengan proses pendinginan tidak langsung. Dalam proses ini koil tidak langsung mengambil

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Air Conditioner Split Air Conditioner (AC) split merupakan sebuah alat yang digunakan untuk mengkondikan udara didalam ruangan sesuai dengan yang diinginkan oleh penghuni.

Lebih terperinci

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT

Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin. Galuh Renggani Wilis, ST.,MT Penggunaan Refrigeran R22 dan R134a pada Mesin Pendingin Galuh Renggani Wilis, ST.,MT ABSTRAKSI Pengkondisian udara disebut juga system refrigerasi yang mengatur temperature & kelembaban udara. Dalam beroperasi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Perencanaan pengkondisian udara dalam suatu gedung diperlukan suatu perhitungan beban kalor dan kebutuhan ventilasi udara, perhitungan kalor ini tidak lepas dari prinsip perpindahan

Lebih terperinci

Komparasi Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Temperatur dan Tekanan Mesin Pendingin

Komparasi Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Temperatur dan Tekanan Mesin Pendingin Komparasi Katup Ekspansi Termostatik dan Pipa Kapiler terhadap Temperatur dan Tekanan Mesin Pendingin Azridjal Aziz Program Studi Teknik Mesin, Fakultas Teknik, Universitas Riau Kampus Binawidya Km 12,5

Lebih terperinci

BAB II DASAR TEORI BAB II DASAR TEORI. 2.1 Tinjauan Pustaka

BAB II DASAR TEORI BAB II DASAR TEORI. 2.1 Tinjauan Pustaka BAB II DASAR TEORI 2.1 Tinjauan Pustaka Untuk memperbaiki kualitas ikan, dibutuhkan suatu alat yaitu untuk menjaga kondisi ikan pada kondisi seharusnya dengan cara menyimpannya didalam sebuah freezer yang

Lebih terperinci

BAB I PENDAHULUAN Latar belakang

BAB I PENDAHULUAN Latar belakang BAB I PENDAHULUAN 1.1. Latar belakang Refrigerasi merupakan suatu kebutuhan dalam kehidupan saat ini terutama bagi masyarakat perkotaan. Sistem refrigerasi kompresi uap paling umum digunakan di antara

Lebih terperinci

Ahmad Farid* dan Moh. Edi.S. Iman Program Studi Teknik Mesin, Universitas Pancasakti Tegal Jl. Halmahera km 1, Tegal *

Ahmad Farid* dan Moh. Edi.S. Iman Program Studi Teknik Mesin, Universitas Pancasakti Tegal Jl. Halmahera km 1, Tegal * ANALISA EFEKTIFITAS PENAMBAHAN MEDIA AIR KONDENSAT PADA AC SPLIT 1,5 PK TERHADAP RASIO EFISIENSI ENERGI (EER) Ahmad Farid* dan Moh. Edi.S. Iman Program Studi Teknik Mesin, Universitas Pancasakti Tegal

Lebih terperinci

MESIN PENGERING HANDUK DENGAN ENERGI LISTRIK

MESIN PENGERING HANDUK DENGAN ENERGI LISTRIK Volume Nomor September MESIN PENGERING HANDUK DENGAN ENERGI LISTRIK Kurniandy Wijaya PK Purwadi Teknik Mesin Fakultas Sains dan Teknologi Universitas Sanata Dharma Yogyakarta Indonesia Email : kurniandywijaya@gmail.com

Lebih terperinci

Bab IV Analisa dan Pembahasan

Bab IV Analisa dan Pembahasan Bab IV Analisa dan Pembahasan 4.1. Gambaran Umum Pengujian ini bertujuan untuk menentukan kinerja Ac split TCL 3/4 PK mengunakan refrigeran R-22 dan MC-22. Pengujian kinerja Ac split TCL mengunakan refrigeran

Lebih terperinci

ANALISIS PERFORMANSI MODEL PENGERING GABAH POMPA KALOR

ANALISIS PERFORMANSI MODEL PENGERING GABAH POMPA KALOR ANALISIS PERFORMANSI MODEL PENGERING GABAH POMPA KALOR Budi Kristiawan 1, Wibowo 1, Rendy AR 1 Abstract : The aim of this research is to analyze of rice heat pump dryer model performance by determining

Lebih terperinci

ANALISA EKSERGI SISTEM POMPA PANAS PENGERING PAKAIAN KAPASITAS 7 KG PADA AC ¾ PK. Jl. Tamansiswa No. 261 Palembang *

ANALISA EKSERGI SISTEM POMPA PANAS PENGERING PAKAIAN KAPASITAS 7 KG PADA AC ¾ PK. Jl. Tamansiswa No. 261 Palembang * ANALISA EKSERGI SISTEM POMPA PANAS PENGERING PAKAIAN KAPASITAS 7 KG PADA AC ¾ PK Ambo Intang 1*, Nursiwan 1 1 JurusanTeknik Mesin. Fakultas Teknik, Universitas Tamansiswa Palembang, Jl. Tamansiswa No.

Lebih terperinci

Bab IV Analisa dan Pembahasan

Bab IV Analisa dan Pembahasan Bab IV Analisa dan Pembahasan 4.1. Gambaran Umum Tujuan dari pengujian ini adalah untuk mengetahui kinerja Ac split TCL 3/4 PK mengunakan refrigeran R-22 dan refrigeran MC-22. Pengujian kinerja Ac split

Lebih terperinci

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1)

BAB II DASAR TEORI. Energy balance 1 = Energy balance 2 EP 1 + EK 1 + U 1 + EF 1 + ΔQ = EP 2 + EK 2 + U 2 + EF 2 + ΔWnet ( 2.1) BAB II DASAR TEORI 2.1 HUKUM TERMODINAMIKA DAN SISTEM TERBUKA Hukum pertama termodinamika adalah hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan ataupun dimusnahkan. Energi

Lebih terperinci

Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a

Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a Pengaruh Debit Udara Kondenser terhadap Kinerja Mesin Tata Udara dengan Refrigeran R410a Faldian 1, Pratikto 2, Andriyanto Setyawan 3, Daru Sugati 4 Politeknik Negeri Bandung 1,2,3 andriyanto@polban.ac.id

Lebih terperinci

BAB III SISTEM REFRIGERASI DAN POMPA KALOR

BAB III SISTEM REFRIGERASI DAN POMPA KALOR BAB III SISTEM REFRIGERASI DAN POMPA KALOR Untuk mengenalkan aspek-aspek refrigerasi, pandanglah sebuah siklus refrigerasi uap Carnot. Siklus ini adalah kebalikan dari siklus daya uap Carnot. Gambar 1.

Lebih terperinci

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika

Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Tugas akhir Perencanan Mesin Pendingin Sistem Absorpsi (Lithium Bromide) Dengan Tinjauan Termodinamika Oleh : Robbin Sanjaya 2106.030.060 Pembimbing : Ir. Denny M.E. Soedjono,M.T PENDAHULUAN 1. Latar Belakang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Simulator Pengertian simulator adalah program yg berfungsi untuk menyimulasikan suatu peralatan, tetapi kerjanya agak lambat dari pada keadaan yg sebenarnya. Atau alat untuk melakukan

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN Tahapan-tahapan pengerjaan yang dilakukan dalam penelitian ini adalah sebagai berikut : 1. Tahap Persiapan Penelitian Pada tahapan ini akan dilakukan studi literatur dan pendalaman

Lebih terperinci

BAB II LANDASAN TEORI. tropis dengan kondisi temperatur udara yang relatif tinggi/panas.

BAB II LANDASAN TEORI. tropis dengan kondisi temperatur udara yang relatif tinggi/panas. BAB II LANDASAN TEORI 2.1 Pengertian Sistem Pendingin Sistem pendingin merupakan sebuah sistem yang bekerja dan digunakan untuk pengkondisian udara di dalam ruangan, salah satunya berada di mobil yaitu

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Air Conditioning (AC) atau alat pengkondisian udara merupakan modifikasi pengembangan dari teknologi mesin pendingin. Alat ini dipakai bertujuan untuk mengkondisikan

Lebih terperinci

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin

Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin Pengaruh Pipa Kapiler yang Dililitkan pada Suction Line terhadap Kinerja Mesin Pendingin BELLA TANIA Program Pendidikan Fisika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya May 9, 2013 Abstrak Mesin

Lebih terperinci

BAB II TEORI DASAR. 2.1 Pengertian Sistem Tata Udara

BAB II TEORI DASAR. 2.1 Pengertian Sistem Tata Udara BAB II TEORI DASAR 2.1 Pengertian Sistem Tata Udara Sistem tata udara adalah suatu sistem yang digunakan untuk menciptakan suatu kondisi pada suatu ruang agar sesuai dengan keinginan. Sistem tata udara

Lebih terperinci

Kaji Eksperimental Pemanfaatan Panas Kondenser pada Sistem Vacuum Drying untuk Produk Kentang

Kaji Eksperimental Pemanfaatan Panas Kondenser pada Sistem Vacuum Drying untuk Produk Kentang Kaji Eksperimental Pemanfaatan Panas Kondenser pada Sistem Vacuum Drying untuk Produk Kentang Ade Suryatman Margana, Doni Oktaviana Refrigeration And Air Conditioning Department Politeknik Negeri Bandung

Lebih terperinci

BAB II DASAR TEORI 0,93 1,28 78,09 75,53 20,95 23,14. Tabel 2.2 Kandungan uap air jenuh di udara berdasarkan temperatur per g/m 3

BAB II DASAR TEORI 0,93 1,28 78,09 75,53 20,95 23,14. Tabel 2.2 Kandungan uap air jenuh di udara berdasarkan temperatur per g/m 3 BAB II DASAR TEORI 2.1 Pengering Udara Pengering udara adalah suatu alat yang berfungsi untuk menghilangkan kandungan air pada udara terkompresi (compressed air). Sistem ini menjadi satu kesatuan proses

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN

HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN Eko Budiyanto Program Studi Teknik Mesin Fakultas Teknik Universitas Muhammadiyan Metro Jl. KH. Dewantara No.

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 diagram blok siklus Sistem Refrigerasi Kompresi Uap

BAB II DASAR TEORI. Gambar 2.1 diagram blok siklus Sistem Refrigerasi Kompresi Uap BAB II DASAR TEORI 2.1 Sistem Refrigerasi Kompresi Uap Sistem refrigerasi kompresi uap merupakan suatu sistem yang menggunakan kompresor sebagai alat kompresi refrigeran, yang dalam keadaan bertekanan

Lebih terperinci

EFEK PERUBAHAN LAJU ALIRAN MASSA AIR PENDINGIN PADA KONDENSOR TERHADAP KINERJA MESIN REFRIGERASI FOCUS 808

EFEK PERUBAHAN LAJU ALIRAN MASSA AIR PENDINGIN PADA KONDENSOR TERHADAP KINERJA MESIN REFRIGERASI FOCUS 808 ek SIPIL MESIN ARSITEKTUR ELEKTRO EFEK PERUBAHAN LAJU ALIRAN MASSA AIR PENDINGIN PADA KONDENSOR TERHADAP KINERJA MESIN REFRIGERASI FOCUS 808 Muhammad Hasan Basri * Abstract The objectives of study to describe

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. yang memerlukan energi panas untuk menguapkan kandungan air yang

BAB II TINJAUAN PUSTAKA. yang memerlukan energi panas untuk menguapkan kandungan air yang BAB II TINJAUAN PUSTAKA 2.1 Proses Pengeringan Pengeringan adalah proses perpindahan panas dan uap air secara simultan yang memerlukan energi panas untuk menguapkan kandungan air yang dipindahkan dari

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Vaksin

BAB II DASAR TEORI. 2.1 Definisi Vaksin BAB II DASAR TEORI 2.1 Definisi Vaksin Vaksin merupakan bahan antigenik yang digunakan untuk menghasilkan kekebalan aktif terhadap suatu penyakit sehingga dapat mencegah atau mengurangi pengaruh infeksi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Termodinamika 2.1.1 Siklus Termodinamika Siklus termodinamika adalah serangkaian proses termodinamika mentransfer panas dan kerja dalam berbagai keadaan tekanan, temperatur,

Lebih terperinci

ANALISA PERBANDINGAN PERFORMANSI MESIN PENDINGIN KOMPRESI UAP MENGGUNAKAN R22 DAN R134a DENGAN KAPASITAS KOMPRESOR 1 PK

ANALISA PERBANDINGAN PERFORMANSI MESIN PENDINGIN KOMPRESI UAP MENGGUNAKAN R22 DAN R134a DENGAN KAPASITAS KOMPRESOR 1 PK ANALISA PERBANDINGAN PERFORMANSI MESIN PENDINGIN KOMPRESI UAP MENGGUNAKAN R22 DAN R134a DENGAN KAPASITAS KOMPRESOR 1 PK Dwi Bayu Saputro, Suryadimal, S.T.,M.T 1), Ir. Wenny Marthiana., M.T 2) Program Studi

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN 1. Properti Termodinamika Refrigeran Untuk menduga sifat-sifat termofisik masing-masing refrigeran dibutuhkan data-data termodinamik yang diambil dari program REFPROP 6.. Sedangkan

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 1. Waktu dan Tempat Penelitian ini akan dilaksanakan pada bulan Juni 2007 Mei 2008 di Laboratorium Energi dan Elektrifikasi Kampus IPB, Bogor. 2. Bahan dan Alat Bahan-bahan yang digunakan

Lebih terperinci

BAB II DASAR TEORI 2.1 Cooling Tunnel

BAB II DASAR TEORI 2.1 Cooling Tunnel BAB II DASAR TEORI 2.1 Cooling Tunnel Cooling Tunnel atau terowongan pendingin merupakan penerapan sistem refrigerasi yang banyak digunakan di industri, baik industri pengolahan makanan, minuman dan farmasi.

Lebih terperinci

Maka persamaan energi,

Maka persamaan energi, II. DASAR TEORI 2. 1. Hukum termodinamika dan sistem terbuka Termodinamika teknik dikaitkan dengan hal-hal tentang perpindahan energi dalam zat kerja pada suatu sistem. Sistem merupakan susunan seperangkat

Lebih terperinci

PERANCANGAN KONDENSOR MESIN PENGERING PAKAIAN MENGGUNAKAN AIR CONDITIONER ½ PK SIKLUS UDARA TERTUTUP

PERANCANGAN KONDENSOR MESIN PENGERING PAKAIAN MENGGUNAKAN AIR CONDITIONER ½ PK SIKLUS UDARA TERTUTUP PERANCANGAN KONDENSOR MESIN PENGERING PAKAIAN MENGGUNAKAN AIR CONDITIONER ½ PK SIKLUS UDARA TERTUTUP Deni Kurniawan 1, Azridjal Aziz 1 dan Rahmat Iman Mainil 1 1 Laboratorium Rekayasa Termal, Jurusan Teknik

Lebih terperinci

RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1 PK SKRIPSI

RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1 PK SKRIPSI RANCANG BANGUN KOMPRESOR DAN PIPA KAPILER UNTUK MESIN PENGERING PAKAIAN SISTEM POMPA KALOR DENGAN DAYA 1 PK SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ZAKARIA

Lebih terperinci

UJI KINERJA ALAT PENGERING LORONG BERBANTUAN POMPA KALOR UNTUK MENGERINGKAN BIJI KAKAO

UJI KINERJA ALAT PENGERING LORONG BERBANTUAN POMPA KALOR UNTUK MENGERINGKAN BIJI KAKAO UJI KINERJA ALAT PENGERING LORONG BERBANTUAN POMPA KALOR UNTUK MENGERINGKAN BIJI KAKAO Oleh M. Yahya Dosen Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Padang Abstrak Indonesia merupakan

Lebih terperinci

PENGARUH JENIS REFRIGERANT DAN BEBAN PENDINGINAN TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN

PENGARUH JENIS REFRIGERANT DAN BEBAN PENDINGINAN TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN PENGARUH JENIS REFRIGERANT DAN BEBAN PENDINGINAN TERHADAP KEMAMPUAN KERJA MESIN PENDINGIN Edi Purwanto, Kemas Ridhuan Program Studi Teknik Mesin Fakultas Teknik Universitas Muhammadiyan Metro Jl. KH. Dewantara

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 8 BAB I PENDAHULUAN 11 Latar Belakang Energi memiliki peranan penting dalam menunjang kehidupan manusia Seiring dengan perkembangan zaman kebutuhan akan energi pun terus meningkat Untuk dapat memenuhi

Lebih terperinci

KAJI EKSPERIMENTAL UNJUK KERJA PENGERING DEHUMIDIFIKASI TERINTEGRASI DENGAN PEMANAS UDARA SURYA UNTUK MENGERINGKAN TEMULAWAK

KAJI EKSPERIMENTAL UNJUK KERJA PENGERING DEHUMIDIFIKASI TERINTEGRASI DENGAN PEMANAS UDARA SURYA UNTUK MENGERINGKAN TEMULAWAK KAJI EKSPERIMENTAL UNJUK KERJA PENGERING DEHUMIDIFIKASI TERINTEGRASI DENGAN PEMANAS UDARA SURYA UNTUK MENGERINGKAN TEMULAAK Oleh M. Yahya Jurusan Teknik Mesin, Institut Teknologi Padang, Sumatera Barat

Lebih terperinci

BAB 2. TINJAUAN PUSTAKA

BAB 2. TINJAUAN PUSTAKA State of the art penelitian BAB 2. TINJAUAN PUSTAKA Mesin refrigerasi Siklus Kompresi Uap Standar (SKU) pada adalah salah satu jenis mesin konversi energi, dimana sejumlah energi dibutuhkan untuk menghasilkan

Lebih terperinci

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN BAB IV HASIL PENGUJIAN DAN PEMBAHASAN 4.1 Tabel Hasil Pengujian Beban Kalor Setelah dilakukan perhitungan beban kalor didalam ruangan yang meliputi beban kalor sensible dan kalor laten untuk ruangan dapat

Lebih terperinci

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING

PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING Marwan Effendy, Pengaruh Kecepatan Udara Pendingin Kondensor Terhadap Kooefisien Prestasi PENGARUH KECEPATAN UDARA PENDINGIN KONDENSOR TERHADAP KOEFISIEN PRESTASI AIR CONDITIONING Marwan Effendy Jurusan

Lebih terperinci

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk

BAB II LANDASAN TEORI. Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk BAB II LANDASAN TEORI 2.1 Refrigerasi Refrigerasi merupakan suatu media pendingin yang dapat berfungsi untuk menyerap kalor dari lingkungan atau untuk melepaskan kalor ke lingkungan. Sifat-sifat fisik

Lebih terperinci

BAB II DASAR TEORI. BAB II Dasar Teori

BAB II DASAR TEORI. BAB II Dasar Teori BAB II DASAR TEORI 2.1 Florist Cabinet Florist cabinet merupakan suatu alat yang digunakan untuk proses pendinginan bunga. Florist cabinet sangat beragam dalam ukuran dan konstruksi. Biasanya florist cabinet

Lebih terperinci

Heroe Poernomo 1) Jurusan Teknik Permesinan Kapal, Politeknik Perkapalan Negeri Surabaya, Indonesia

Heroe Poernomo 1) Jurusan Teknik Permesinan Kapal, Politeknik Perkapalan Negeri Surabaya, Indonesia ANALISIS KARAKTERISTIK UNJUK KERJA SISTEM PENDINGIN (AIR CONDITIONING) YANG MENGGUNAKAN FREON R-22 BERDASARKAN PADA VARIASI PUTARAN KIPAS PENDINGIN KONDENSOR 1) Heroe Poernomo 1) Jurusan Teknik Permesinan

Lebih terperinci