TRANSFORMASI. Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga.

Ukuran: px
Mulai penontonan dengan halaman:

Download "TRANSFORMASI. Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga."

Transkripsi

1 1 TRANSFORMASI Suatu transfornmasi pada bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Sebuah fungsi yang bijektif adalah sebuah fungsi yang bersifat: 1. Surjektif 2. Injektif Surjektif artinya bahwa tiap titik B є V ada prapeta. Jadi kalau T suatu trasnformasi maka ada B є V sehingga B = T(A). B dinamakan peta dari A olewh T dan A dinamakan prapeta dari B. Injektif artinya kalau A 1 A 2 dan T(A 1 ) = B 1, T(A 2 ) = B 2, maka B 1 B 2 Ungkapan ini setara dengan ungkapan berikut: Kalau T(P 1 ) = Q 1 dan T(P 2 ) = Q 2 sedangkan Q 1 = Q 2 maka P 1 = P 2. Contoh soal: 1. Andaikan A є V, ada perpetaan T dengan daerah asal V dan daerah nilai juga V. Jadi T: V V yang didefinisikan sebagai berikut: 1.) T(A) = A 2.) Apabila P A, maka T(P) = Q titik tengah garis AP. Selidiki apakah T tersebut suatu trasnformasi. Jawab: P T(A)=A R S=T (R) Q=T(P) Jelas Bahwa A memiliki peta yaitu A sendiri.

2 2 Ambil sembarang titik R A pada V. Oleh karena V bidang euclides, maka ada ada satu garis yang melalui A dan R. Jadi ada satu ruas garis AR sehingga ada tepat satu titik S dimana S antara A dan R sehingga AS = SR. Berartti untuk setiap X є V ada satu Y, dengan Y = T(X) yang memenuhi persyaratan (2), jadi daerah asal T adalah V. 1) Apakah T surjektif atau apakah daerah nilai T juga V? Untuk menyelidikinya ini cukuplah dipertanyakan setiap titik V memiliki prapeta. Jadi apabila Y є Vapakah ada X є V yang bersifat bahwa T(X) = Y? Menurut ketentuan pertama kalau Y = A prapetanya adalah A sendiri, sebab T(A) = A. A X Y= T(X) Bila Y A maka oleh karena V suatu bidang Euclides, ada X dengan X є AY sehingga AY = YX. Jadi Y adalah titik tengah AX yang merupakan satu-satunya titik tengah, jadi Y=T(X). Ini berrarti bahwa X adalah prapeta dari titik Y, dengan demikian dapat dikatakan bahwa setiap titik pada V memiliki prapeta, jadi t adalah suatu padanan yang surjektif. 2) Apakah T injektif? Untuk menyelidiki ini ambillah dua titik P A, Q A, dan P Q, P, Q, A tidak segaris (kolinier). Kita akan menyelidiki kedudukan T(P) dan T(Q). A T(P) T(Q) P Q

3 3 Andaikan T(P) = T(Q) Oleh karena T(P) є AP dan T(Q) є AQ maka dalam hal ini AP dan AQ memiliki dua titik sekutu yaitu A dan T(P) = T(Q). Ini berarti bahwa garis AP dan AQ berimpit, sehingga mengakibatkan bahwa Q є AP. Ini berlawanan dengan permisalan bahwa A, P, Q tidak segaris. Jadi pengandaian bahwa T(P) = T(Q) tidak benar sehingga haruslah T(P) T(Q). Bagaimana apabila P, Q, A segaris? Dari uraian di atas tamapk bahwa T itu injektif dan surjektif, sehingga T adalah bijektif. Dengan demikian terbukti T suatu transformasi dari V ke V dan ditulis T : V V. Contoh 2: 2. Pilihlah pada bidang Eiuclides V suatu sistem koordinat ortogonal. T adalah padanan yang mengkaitkan setiap titik P dengan titik P yang letaknya satusatuanya dari P dengan arah sumbu X yang positif. Selidiki apakah T tranformasi? Jawab : Y P P' X 0 Kalau P = (X, Y) maka T(P) P = (X + 1, Y) Jelas daerah asal T adalah seluruh bidang V 1) Apakah T surjektif? 2) Apakah T injektif? Jika A(X, Y) pertanyaan yang harus dijawab ialah apakah A memiliki prapeta oleh T? Andaikan B =(X, Y ).

4 4 1) Kalau B ini prapeta titik A (X, Y) maka haruslah berlaku T(B) = ( X + 1, Y ) Jadi X + 1 = X, Y = Y. atau X = X - 1 Y = Y Jelas T (X-1, Y) = ((X-1) + 1, Y) = (X, Y) Oleh karena X, Y selalu ada untuk segala nilai X., Y maka B selalu ada sehingga T(B) = A. Karena A sebarang maka setiap titik di V memiliki prapeta yang berarti bahwa T surjektif. 2) Andaikan P(X 1, Y 1 ) dan Q(X 2, Y 2 ) dengan P Q. Apakah T(P) T(Q)? Disini T(P) = T(Q) maka (X 1 + 1, Y 1 ) = (X 2 + 1, Y 2 ). Jadi X 1 +1 = X 2 +1 dan Y 1 = Y 2. ini berarti X 1 = X 2 dan Y 1 = Y 2. jadai P=Q. Ini berlawanan dengan yang diketahui P=Q, jadi haruslah T(P) T(Q). Dengan demikian ternyata bahwa T injektif dan T adalah bijektif. Jada T suatu transformasi dari V ke V.

5 5 Contoh soal: 1. Misalkan v bidang euclides dimana A sebuah titik tertentu pada v, ditetapkan T suatu relasi sebagai berikut: a. T(A) jika A=P b. Jika P є v dan P A, T(P) = q dengan q merupakan titik tengah Jawab: v ruas garis AP. Apakah T merupakan suatu transformasi? A = P a. A є v P є v A = P, maka T(P) = A T(A) = P Akibatnya T(A) = A b. v A Q P A є v P є v A P AQ = PQ ( Q titiik tengah AP ) T (A) = Q T (A) = P T (P) = A T (P) = Q (terbukti)

6 6 2. Misal f suatu fungsi yang domainnya bidang datar dan didefinisikan untuk suatu titik P (x,y) dan R (P) = (x + 2, 2y-3) a. Carilah F(a) jika A (1, 6) b. Carilah sebuah prapeta dari B jika B (-2, 4) c. Periksalah apakah F fungsi 1 1 Jawab: a. F (a) = A (1, 6) R (p) = x + 2, 2y-3 = (1+2, 2(6) 3 ) = (3, F (a) = (3, 9) b. B ( -2, 4), F (p) = x + 2, 2y-3 F (B) = (x + 2, 2y-3) (-2, 4) = x + 2, 2y-3 x + 2 = -2 x = - 4 2y-3 = 4 2y = y = 7 2 c. A (1, 6) f (A) = (3, 9) (1, 6) (3, 9) B (-4, 3 ½ ) f (B) = ( -2, 4) (-4, 3 ½ ) ( -2, 4) 3. Pemetaan f dari bidang ke bidang didefinisikan untuk suatu titik p(x,y) oleh f (p) = (l x l, l y l ) a. Tentukan f(a) jika a (-3, 60 b. Tentukan semua prapeta dari B (4, 2)

7 7 c. Tentukan range dari f d. Apakah f suatu transformasi Jawab: a. f(a) = A (-3, 6) f (p) = (l x l, l y l ) = (l -3 l, l 6 l ) f(a) = (3,6) b. B (4, 2), f (p) = (l x l, l y l ) f(b) = l x l, l y l (4, 2) = l 4 l, l 2 l dan l -4 l, l -2 l (4, 2) l 4 l, l 2l (4, 2) l -4 l, l -2l c. untuk A (-3,6) range dari f untuk A (-3,6) range dari f untuk B (4, 2) = (4, 2) dan (-4, 2) = (4, 2) (4, -2) = (4, 2) (-4, -2) =(4, 2) d. jadi ini fungsi onto bukan fungsi 1 1, jadi bukan fungsi transformasi.

8 8 PENCERMINAN Definisi Suatu pencerminan (refleksi) pada sebuah garis s adalah suatu fungsi M s yang didefinisikan untuk setiap titik pada bidang sebagai berikut: (i) (ii) Jika P s maka µ s (P) = P Jika P s maka µ s (P)= P sehingga garis s adalah sumbu PP. Pecerminan pada garis s selanjutnya kita lambangkan sebagai µ s. Garis s dinamakan sumbu refleksi (pencerminan/cermin). Untuk menyelidiki sifat-sifat pencerminan, kita selidiki apakah pencerminan itu suatu transformasi. 1) Dari definisi di atas jelas bahwa daerah asal µ adalah seluruh bidang V. 2) µ s adalah pancaran yang surjektif, sebab ambil X V, kalau X s maka X = X sebab µ s(x) = X= X Andaikan sekarang X s. Dari sifat geometri ada X V sehingga menjadi suatu ruas XX. Ini berarti bahwa µ s (X) = X. 3) Apakah µ s injektif? Andaikan A B A s dan B s maka jelas A = µ s (A) = A dab B = µ s (B) = B, A B. Kalau salah satu, misalnya A s, maka A = µ s (A) = A maka B s, B = µ s dengan B s. Ini pula A B atau µ s (A) µ s (B). Selanjutnya A s, B s

9 9 Misalkan bahwa µ s (A) = µ s (B). Maka A dan B, jadi A A s dan B B s. Ini berarti dari satu A ada dua garis berlainan yang tegak lurus pada s. Ini bisa mungkin. Pengandaian bahwa kalau A B maka µ s (A) = µ s (B) adalah tidak benar, sehingga pengandaian itu salah. Jadi kalau A B maka µ s (A) µ s (B). Jadi µ s adalah injektif, dengan demikian µ s adalah injektif, maka dari sifat-sifat (1), (2), dan (3) µ s adalah transformasi dengan asal V dan daerah nilai V. Dan ditulis µ s : V V. Contoh 3: Kalau A dan B dua titik maka apabila A = µ (A) dan B = µ (B). AB = A B. jadi jarak setiap dua titik sama dengan peta-petanya. Jadi jarak tidak berubah. Dengan demikian yang dimiliki oleh µ itu membuat µ disebut transformasi yang isometrik atau µ adalah suatu isometri. Definisi: Suatu transformasi T adalah suatu isometri jika untuk setiap pasang titik P, Q berlaku P Q = PQ, dengan P =T(P) dan Q = T(Q). Teorema Setiap reflaksi pada garis adalah suatu isometri (lihat gambar) A B A s Jadi kalau A = µ s (A), S = µ s (B) maka AB = A B. B

10 10 Contoh soal: 1. Diketahui garis g adalah { (x, y) l y = x} dimana h = { (x,y) l y = 0} dan a = (1, 3), b = (-2, 1) tentukan : a. A sehingga A = (µh o µg ) (A) b. B sehingga B = (µg o µh ) (B) Jawab: A = (µh o µg ) (A) = µh o ( µg ) (A) = µh ( µg ) (1,3) 5 = µh (1,3) 1 A = (-3, 1) B = (µg o µh ) (B) = µg o ( µh ) (-2,1) = µh (-2, 1) 1 B = (1,2) 2. Diketahui garis g ={ (x, y) l y= -x} dimana h = { (x,y) l y= 3y = x+3}. Tantukan persamaan garis H sehingga h adalah µg (h). Jawab g ={ (x, y) l y= -x} h = { (x,y) l y= 3y = x+3} y = x+3 = 1 x h = µg (h)? misal : Q (x, y) µg (Q) = 3y = x +3.. (1) Q (x 0, y 0 ) maka µg (Q) = -y 0, -x 0 6 Diperoleh hubungan x = -y 0...(2) y = -x 0 Substitusikan 2 ke 1 3(-x 0 ) = -y x 0 = -y x 0 ) = y 0 3

11 11 Maka h = { (x,y) l 3x = y-3} -y = -3x-3 y = 3x +3 maka h = { (x,y) l y = 3x + 3} 3. Diberikan garis g adalah {(x,y) l y = 0}, h = {(x,y) l y = x} dimana k = h {(x,y) l x = -2}. Tentukan persamaan garis? a. µg(h) b. µh(g) c. µg(k) jawab: a. µg(h) misal x 0, y 0 є maka y 0 = x 0 µg (x 0, y 0 ) = - x 0, y 0 = x, y maka diperoleh x = y - x 0 y = x 0 y 0 sehingga didapat hubungan y = h maka µg(h) = h(x,y) l y=h} b. µh(g) misal x 0, y 0 є g maaka y 0 = 0 µh(x 0, y 0 ) = y 0, x 0 = x, y maka diperoleh x = y 0 y = x 0 ( x=0, y= x 0 ) sehingga didapat hubungan x =0 maka µh(g) = {(x,y) l x = 0}

12 12 c. µg(k) misal x 0, y 0 є k maaka x 0 = -2 µg(x 0, y 0 ) = = -x 0, y 0 = x, y maka diperoleh x = -x 0 y = y 0 sehingga didapat hubungan x =-2 maka µg= {(x,y) l x = -2}

13 13 DAFTAR PUSTAKA Rawuh Geometri Trasnformasi. Bandung.

1 P E N D A H U L U A N

1 P E N D A H U L U A N 1 P E N D A H U L U A N Pemetaan (fungsi) f dari himpunan A ke himpunan B adalah suatu hubuungan yang memasangkan setiap unsur di A dengan tepat satu unsur di B. Jika a A dan pasangannya b B, maka ditulis

Lebih terperinci

MAKALAH OLEH KELOMPOK I NAMA : 1. SHINTA JULIANTY 2. SITI HERLIZA 3. FATMALIZA 4. SUPRA ANTONI 5. JUNIANTY

MAKALAH OLEH KELOMPOK I NAMA : 1. SHINTA JULIANTY 2. SITI HERLIZA 3. FATMALIZA 4. SUPRA ANTONI 5. JUNIANTY MAKALAH OLEH KELOMPOK I NAMA : 1. SHINTA JULIANTY 2. SITI HERLIZA 3. FATMALIZA 4. SUPRA ANTONI 5. JUNIANTY PROGRAM STUDI MATA KULIAH DOSEN PENGAMPU : PENDIDIKAN MATEMATIKA : GEOMETRI TRANSFORMASI : FADLI,

Lebih terperinci

TRANSFORMASI. 1) T(A) = A 2) Apabila P A, maka T(P) = Q dengan Q titik tengah garis. Selidiki apakah

TRANSFORMASI. 1) T(A) = A 2) Apabila P A, maka T(P) = Q dengan Q titik tengah garis. Selidiki apakah TRNSFORMSI Suatu transformasi pada suatu bidang V adalah suatu fungsi yang bijektif dengan daerah asalnya V dan daerah nilainya V juga. Fungsi yang bijektif adalah sebuah fungsi yang bersifat : juga V.

Lebih terperinci

R E S U M E TRANSFORMASI

R E S U M E TRANSFORMASI R E S U M E TRNSFORMSI Transformasi pada suatu bidang V adalah suatu fungsi yang bijektif dengan arah asalnya V dan daerah nilainya V juga Fungsi yang bijektif adalah sebuah fungsi yang : 1 Surjektif 2

Lebih terperinci

TRANSFORMASI DAN PENCERMINAN

TRANSFORMASI DAN PENCERMINAN TRANSFORMASI DAN PENCERMINAN DISUSUN OLEH: KELOMPOK 1 (SATU) 1.AISYAH (4007005) 2.WIWIN AGUSTINA (4007018) 3.MARTINI (4007024) 4.TUKIJO (4007009) Dosen Pengampu : Fadli, S.Si, M.Pd. SEKOLAH TINGGI KEGURUAN

Lebih terperinci

TRANSFORMASI. Dosen Pengampu Mata Kuliah. HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1. Hayatun Nupus Rina Ariyani

TRANSFORMASI. Dosen Pengampu Mata Kuliah. HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1. Hayatun Nupus Rina Ariyani TRANSFORMASI Makalah ini disusun sebagai tugas mata kuliah Geometri Transformasi Dosen Pengampu Mata Kuliah HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 1 Hayatun Nupus 08030121 Rina Ariyani 08030057

Lebih terperinci

TRANSFORMASI BALIKAN

TRANSFORMASI BALIKAN TRANSFORMASI BALIKAN Disusun Oleh : Nama : Dodi Sunhaji (4007017) Esty Gustina (4007199) Indah Sri (4007015) Warnitik (4007009) Oryza Sativa Kelas : VIA Prodi : Matematika Mata Kuliah : Geometri Transformasi

Lebih terperinci

Relasi, Fungsi, dan Transformasi

Relasi, Fungsi, dan Transformasi Modul 1 Relasi, Fungsi, dan Transformasi Drs. Ame Rasmedi S. Dr. Darhim, M.Si. M PENDAHULUAN odul ini merupakan modul pertama pada mata kuliah Geometri Transformasi. Modul ini akan membahas pengertian

Lebih terperinci

GEOMETRI TRANSFORMASI SETENGAH PUTARAN

GEOMETRI TRANSFORMASI SETENGAH PUTARAN GEOMETRI TRANSFORMASI SETENGAH PUTARAN Disusun Oleh : Kelompok Empat (V1 A) 1. Purna Irawan (4007178 ) 2. Sudarsono (4007028 p) 3. Mellyza Vemi R. (4007217 ) 4. Kristina Nainggolan (4007013 ) 5. Desi Kartini

Lebih terperinci

ISOMETRI & HASIL KALI TRANSFORMASI

ISOMETRI & HASIL KALI TRANSFORMASI ISOMETRI & HASIL KALI TRANSFORMASI MATA KULIAH : GEOMETRI TRANNSFORMMASI DISUSUN OLEH : 1. ASMERI : 4007118 2. NITA FITRIA.N : 4007501 SEMESTER / KELAS : VI (ENAM). C PRODI : PEND. MATEMATIKA DOSEN PEMBIMBING

Lebih terperinci

GEOMETRI TRANSFORMASI MATERI

GEOMETRI TRANSFORMASI MATERI GEOMETRI TRANSFORMASI MATERI TRANSFORMASI BALIKAN DISUSUN OLEH : KELOMPOK IV 1. Retno Fitria Pratiwi ( 2010 121 179 ) 2. Nanda Wahyuni Pritama ( 2010 121 140 ) 3. Verawati (2010 121 173 ) KELAS : 5 D Dosen

Lebih terperinci

SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP PGRI LUBUKLINGGAU

SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP PGRI LUBUKLINGGAU MATERI : TRANSFORMASI BALIKAN (VI.C) Disusun Oleh: 1. KARMILA 2. NURMALINA 3. DWINDA JANUARTI 4. YUYUN MARNITA 5. ROVELI 6. MIKA MARDASARI 7. IKA NURSINTA 8. LISA MAYANI SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN

Lebih terperinci

TUGAS MATA KULIAH GEOMETRI TRANSFORMASI

TUGAS MATA KULIAH GEOMETRI TRANSFORMASI TUGAS MATA KULIAH GEOMETRI TRANSFORMASI Dosen Pengampu HERDIAN, S.Pd., M.Pd. Disusun Oleh : Kelompok 3 Nama : NPM : 1. Ahmad Muslim 08030007 2. Ivo ayu Septiana 08030159 3. Elsa Fitriana 08030200 SEKOLAH

Lebih terperinci

HASIL KALI TRANSFORMASI

HASIL KALI TRANSFORMASI Definisi : Andaikan F dan G dua transformasi, denan F : V V G : V V HASIL KALI TRANSFORMASI Maka komposisi dari F dan G yan ditulis sebaai Go F didefinisikan sebaai: (Go F) (P) = G[F(P)], P V Teorema :

Lebih terperinci

PROGRAM STUDI : PENDIDIKAN MATEMATIKA

PROGRAM STUDI : PENDIDIKAN MATEMATIKA MAKALAH OLEH KELOMPOK DUA NAMA : GIYATNI ( 40077 ) SEPTI PRATIWI ( 400796 ) 3HARI YADI (400763 ) PROGRAM STUDI : PENDIDIKAN MATEMATIKA MATA KULIAH : GEOMETRI TRANSFORMASI DOSEN PENGAMPU : PADLI MPd SEKOLAH

Lebih terperinci

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah,

II. LANDASAN TEORI. Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, 3 II. LANDASAN TEORI Dalam bab ini akan didiskusikan unsur tak terdefinisi, aksioma-aksioma, istilahistilah, definisi-definisi dan teorema-teorema yang berhubungan dengan penelitian ini. 2.1 Geometri Insidensi

Lebih terperinci

BEBERAPA FUNGSI KHUSUS

BEBERAPA FUNGSI KHUSUS BEBERAPA FUNGSI KHUSUS ). Fungsi Konstan ). Fungsi Identitas 3). Fungsi Modulus 4). Fungsi Genap dan Fungsi Ganjil Fungsi genap jika f(x) = f(x), dan Fungsi ganjil jika f(x) = f(x) 5). Fungsi Tangga dan

Lebih terperinci

France title. Handy of transformation of Geometry. Tangkas Geometri Transformasi

France title. Handy of transformation of Geometry. Tangkas Geometri Transformasi France title Handy of transformation of Geometry Tangkas Geometri Transformasi i TANGKAS GEOMETRI TRANSFORMASI Meyta Dwi Kurniasih Isnaini Handayani Pendidikan Matematika Fakultas Pendidikan dan Ilmu Pendidikan

Lebih terperinci

TUGAS GEOMETRI TRANSFORMASI. Tentang. Isometri dan Sifat-sifat Isometri. Oleh : EVI MEGA PUTRI : I. Dosen Pembimbing :

TUGAS GEOMETRI TRANSFORMASI. Tentang. Isometri dan Sifat-sifat Isometri. Oleh : EVI MEGA PUTRI : I. Dosen Pembimbing : TUGAS GEOMETRI TRANSFORMASI Tentang Isometri dan Sifat-sifat Isometri Oleh : EVI MEGA PUTRI : 412. 35I Dosen Pembimbing : ANDI SUSANTO, S. Si, M.Sc TADRIS MATEMATIKA A FAKULTAS TARBIYAH INSTITUT AGAMA

Lebih terperinci

M A K A L A H GEOMETRI TRANFORMASI ( TRANFORMASI BALIKAN )

M A K A L A H GEOMETRI TRANFORMASI ( TRANFORMASI BALIKAN ) M A K A L A H GEOMETRI TRANFORMASI ( TRANFORMASI BALIKAN ) D I S U S U N O L E H : 1. NOPITA SARI ( 4007213 ) 2. MULYATI ( 4007152 ) 3. ROHIM ( 4007142 ) 4. RUSMINI ( 4007222 ) 5. MARYANA ( ) 6. ARY WIJAYA

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

Hand-Out Geometri Transformasi. Bab I. Pendahuluan

Hand-Out Geometri Transformasi. Bab I. Pendahuluan Hand-Out Geometri Transformasi Bab I. Pendahuluan 1.1 Vektor dalam R 2 Misalkan u = (x 1,y 1 ), v = (x 2,y 2 ) dan w = (x 3,y 3 ) serta k skalar (bilangan real) Definisi 1. : Penjumlahan vektor u + v =

Lebih terperinci

RINGKASAN MATERI PENCERMINAN

RINGKASAN MATERI PENCERMINAN RINGKSN MTERI PENCERMINN Definisi: Suatu encerminan (reflei) ada sebuah garis s adalah suatu fungsi M s ang didefinisikan untuk setia titik ada bidang V sebagai berikut: a. jika P s maka M s (P) = P b.

Lebih terperinci

MAKALAH GEOMETRI TRANSFORMASI TRANSFORMASI

MAKALAH GEOMETRI TRANSFORMASI TRANSFORMASI MAKALAH GEOMETRI TRANSFORMASI TRANSFORMASI DOSEN PENGAMPU MATA KULIAH HERDIAN, S.Pd., M.Pd. DISUSUN OLEH : NAMA NPM 1. UMI SULISTIYOWATI 08 030 089 2. NURSITI LAILA 08 030 092 3. RATNA LISTIAWATI 08 030

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

Aljabar 1. Modul 1 PENDAHULUAN

Aljabar 1. Modul 1 PENDAHULUAN Modul 1 Aljabar 1 Drs. H. Karso, M.Pd. PENDAHULUAN M odul yang sekarang Anda pelajari adalah modul yang pertama dari mata kuliah Materi Kurikuler Matematika SMA. Materi-materi yang disajikan dalam modul

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

Fungsi, Persamaaan, Pertidaksamaan

Fungsi, Persamaaan, Pertidaksamaan Fungsi, Persamaaan, Pertidaksamaan Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 9 Agustus 004 di PPPG Matematika Oleh: Drs. Markaban, M.Si. Widyaiswara PPPG

Lebih terperinci

MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E)

MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E) MATERI : GESERAN (TRANSLASI) KELOMPOK 6 (VI.E) Disusun Oleh: 1. ARI SUKA LESMANA 2. YULAIMA SUPRIHATIN 3. HERVI MARDIANA SEKOLAH TINGGI KEGURUAN DAN ILMUPENDIDIKAN PERSATUAN GURU REPUBLIK INDONESIA STKIP

Lebih terperinci

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi.

BAB 1. PENDAHULUAN. Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi. BAB PENDAHULUAN Bab ini akan membahas sekilas mengenai konsep-konsep yang berkaitan dengan himpunan dan fungsi Himpunan Real Ada beberapa notasi himpunan yang sering digunakan dalam Analisis () merupakan

Lebih terperinci

MAKALAH GEOMETRI TRANSFORMASI

MAKALAH GEOMETRI TRANSFORMASI MAKALAH GEOMETRI TRANSFORMASI MATERI SETENGAH PUTARAN DISUSUN OLEH : Nama : Bing Ahmad (4006071) Budi Sutrisno (4006077) Chandra (4007159) Dessi Alsury (4007131) Melia Sartika (4007146) Rahmawati (4006151)

Lebih terperinci

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair

Bab II TINJAUAN PUSTAKA. Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair Bab II TINJAUAN PUSTAKA 2.1 Konsep Dasar Geometri Affin ( Rawuh, 2009) Aksioma-aksioma yang membentuk geometri Affin disebut dengan aksioma playfair yaitu aksioma yang menyatakan bahwa melalui suatu titik

Lebih terperinci

A. PERSAMAAN GARIS LURUS

A. PERSAMAAN GARIS LURUS A. PERSAMAAN GARIS LURUS Persamaan garis lurus adalah hubungan nilai x dan nilai y yang terletak pada garis lurus serta dapat di tulis px + qy = r dengan p, q, r bilangan real dan p, q 0. Persamaan dalam

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

FUNGSI. range. Dasar Dasar Matematika I 1

FUNGSI. range. Dasar Dasar Matematika I 1 FUNGSI Pada bagian sebelumnya telah dibahas tentang relasi yaitu aturan yang menghubungkan elemen dua himpunan. Pada bagian ini akan dibahas satu jenis relasi yang lebih khusus yang dinamakan fungsi Suatu

Lebih terperinci

MAKALAH HASILKALI TRANSFORMASI

MAKALAH HASILKALI TRANSFORMASI MAKALAH HASILKALI TRANSFORMASI Dosen Pengampu HERDIAN, S.Pd., M.Pd. DI SUSUN OLEH : 1. PITRIYANI : 10030130.P 2. ANGGI FEBRIYANTI : 10030149.P 3. ERIKA HESLIATI : 10030064.P 4. SABIYAH : 06030101 5. PRIYO

Lebih terperinci

FUNGSI KOMPOSISI DAN FUNGSI INVERS

FUNGSI KOMPOSISI DAN FUNGSI INVERS FUNGSI KOMPOSISI DAN FUNGSI INVERS Jika A dan B adalah dua himpunan yang tidak kosong, fungsi f dari A ke B; f : A B atau A f B adalah cara pengawanan anggota A dengan anggota B yang memenuhi aturan setiap

Lebih terperinci

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM

KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA. BY : Drs. Abd. Salam, MM KELAS XI PROGRAM KEAHLIAN : BISNIS DAN MANAJEMEN & PARIWISATA SMK NEGERI 1 SURABAYA BAHAN AJAR FUNGSI LINIER & KUADRAT SMK NEGERI 1 SURABAYA Halaman 1 BAB FUNGSI A. FUNGSI DAN RELASI Topik penting yang

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

BAB 3 FUNGSI. f : x y

BAB 3 FUNGSI. f : x y . Hubungan Relasi dengan Fungsi FUNGSI Relasi dari himpunan P ke himpunan Q disebut fungsi atau pemetaan, jika dan hanya jika tiap unsur pada himpunan P berpasangan tepat hanya dengan sebuah unsur pada

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan

Lebih terperinci

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus

Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Modul 1 Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis Lurus Drs. Sukirman, M.Pd. D alam Modul Pertama ini, kita akan membahas tentang Sistem Koordinat Kartesian Tegak Lurus dan Persamaan Garis

Lebih terperinci

Catatan Kuliah MA1123 Kalkulus Elementer I

Catatan Kuliah MA1123 Kalkulus Elementer I Catatan Kuliah MA1123 Kalkulus Elementer I Oleh Hendra Gunawan, Ph.D. Departemen Matematika ITB Sasaran Belajar Setelah mempelajari materi Kalkulus Elementer I, mahasiswa diharapkan memiliki (terutama):

Lebih terperinci

REFLEKSI TERHADAP LINGKARAN SKRIPSI

REFLEKSI TERHADAP LINGKARAN SKRIPSI REFLEKSI TERHADAP LINGKARAN SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Untuk Memenuhi Sebagian Persyaratan Guna Memperoleh Gelar Sarjana Sains Disusun

Lebih terperinci

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN DEPARTEMEN TEKNIK KIMIA Universitas Indonesia BAB II. FUNGSI, LIMIT, DAN KEKONTINUAN Fungsi dan Operasi pada Fungsi Beberapa Fungsi Khusus Limit dan Limit

Lebih terperinci

Tentang. Isometri dan Refleksi

Tentang. Isometri dan Refleksi TUGS II GEOMETRI TRNSFORMSI Tentang Isometri dan Refleksi Oleh : EVI MEG PUTRI : 42. 35I Dosen Pembimbing : NDI SUSNTO S. Si M.Sc TDRIS MTEMTIK FKULTS TRBIYH INSTITUT GM ISLM NEGERI (IIN) IMM BONJOLPDNG

Lebih terperinci

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili 4.5. RUMUS PERBANDINGAN VEKTOR DAN KOORDINAT A. Pengertian Vektor Posisi dari Suatu Titik Misalnya titik A, B, C Dan D. adalah titik sebarang di bidang atau di ruang. Jika titik O bertindak sebagai titik

Lebih terperinci

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers

Komposisi fungsi dan invers fungsi. Syarat agar suatu fungsi mempunyai invers. Grafik fungsi invers Komposisi fungsi dan invers fungsi mempelajari Fungsi komposisi menentukan Fungsi invers terdiri dari Syarat dan aturan fungsi yang dapat dikomposisikan Nilai fungsi komposisi dan pembentuknya Syarat agar

Lebih terperinci

STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR

STANDAR KOMPETENSI. 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR STANDAR KOMPETENSI 5. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah KOMPETENSI DASAR 5.1 Menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks

Lebih terperinci

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com

NAMA : KELAS : SMA TARAKANITA 1 JAKARTA theresiaveni.wordpress.com 1 NAMA : KELAS : 2 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

FUNGSI MATEMATIKA SISTEM INFORMASI 1

FUNGSI MATEMATIKA SISTEM INFORMASI 1 FUNGSI MATEMATIKA SISTEM INFORMASI 1 PENGERTIAN FUNGSI A disebut daerah asal (domain) dari f dan B disebut daerah hasil (Kodomain) dari f. Nama lain untuk fungsi adalah pemetaan atau transformasi. A Fungsi

Lebih terperinci

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti:

A. Jumlah Sudut dalam Segitiga. Teorema 1 Jumlah dua sudut dalam segitiga kurang dari Bukti: Geometri Netral? Geometri yang dilengkapi dengan sistem aksioma-aksioma insidensi, sistem aksioma-aksioma urutan, sistem aksioma kekongruenan (ruas garis, sudut, segitiga) dan sistem aksioma-aksioma archiemedes

Lebih terperinci

LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN

LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN LINGKARAN. A. PERSAMAAN LINGKARAN B. PERSAMAAN GARIS SINGGUNG LINGKARAN 4 ia nc o3 D.c om Bab r: w be Su m. pa ww ne b Lingkaran Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran

Lebih terperinci

TRANSFORMASI AFFIN PADA BIDANG

TRANSFORMASI AFFIN PADA BIDANG Jurnal Matematika Vol. No. November 03 [ : 8 ] TRANSFORMASI AFFIN PADA BIDANG Gani Gunawan dan Suwanda Program Studi Matematika, Fakultas MIPA, Universitas Islam Bandung Prgram Studi Statistika, Fakultas

Lebih terperinci

JARAK DUA TITIK KEGIATAN BELAJAR 2

JARAK DUA TITIK KEGIATAN BELAJAR 2 1 KEGIATAN BELAJAR 2 JARAK DUA TITIK Setelah mempelajari kegiatan belajar 2 ini, mahasiswa diharapkan mampu: 1. menghitung jarak dua titik di bidang, 2. menghitung jarak dua titik di ruang, 3. menentukan

Lebih terperinci

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta

Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta Oleh: Mega Inayati Rif ah, S.T., M.Sc. Institut Sains dan Teknologi AKPRIND Yogyakarta 1 RELASI Oleh: Mega Inayati Rif ah, S.T., M.Sc. 2 RELASI Relasi adalah suatu aturan yang memasangkan anggota himpunan

Lebih terperinci

MODUL 1 SISTEM KOORDINAT KARTESIUS

MODUL 1 SISTEM KOORDINAT KARTESIUS MODUL 1 SISTEM KOORDINAT KARTESIUS MODUL 1 SISTEM KOORDINAT KARTESIUS Dalam matematika, sistem koordinat kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

erkalian Silang, Garis & Bidang dalam Dimensi 3

erkalian Silang, Garis & Bidang dalam Dimensi 3 erkalian Silang, Garis & Bidang dalam Dimensi 3 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat menghitung perkalian silang dari suatu vektor dan mengetahui

Lebih terperinci

MODUL 1 SISTEM KOORDINAT KARTESIUS

MODUL 1 SISTEM KOORDINAT KARTESIUS 1 MODUL 1 SISTEM KOORDINAT KARTESIUS Dalam matematika, sistem koordinat kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang biasa disebut koordinat x (absis)

Lebih terperinci

MATEMATIKA INFORMATIKA 2 FUNGSI

MATEMATIKA INFORMATIKA 2 FUNGSI MATEMATIKA INFORMATIKA 2 FUNGSI PENGERTIAN FUNGSI Definisi : Misalkan A dan B dua himpunan tak kosong. Fungsi dari A ke B adalah aturan yang mengaitkan setiap anggota A dengan tepat satu anggota B. ATURAN

Lebih terperinci

FUNGSI KOMPLEKS TRANSFORMASI PANGKAT. Makalah Untuk Memenuhi Tugas Mata Kuliah Fungsi Kompleks. yang diampuh Oleh Ibu Indriati N.H.

FUNGSI KOMPLEKS TRANSFORMASI PANGKAT. Makalah Untuk Memenuhi Tugas Mata Kuliah Fungsi Kompleks. yang diampuh Oleh Ibu Indriati N.H. FUNGSI KOMPLEKS TRANSFORMASI PANGKAT Makalah Untuk Memenuhi Tugas Mata Kuliah Fungsi Kompleks yang diampuh Oleh Ibu Indriati N.H Kelompok 6:. Amalia Ananingtyas (309324753) 2. Pratiwi Dwi Warih S (3093247506)

Lebih terperinci

VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain

VEKTOR. 45 O x PENDAHULUAN PETA KONSEP. Vektor di R 2. Vektor di R 3. Perkalian Skalar Dua Vektor. Proyeksi Ortogonal suatu Vektor pada Vektor Lain VEKTOR y PENDAHULUAN PETA KONSEP a Vektor di R 2 Vektor di R 3 Perkalian Skalar Dua Vektor o 45 O x Proyeksi Ortogonal suatu Vektor pada Vektor Lain Soal-Soal PENDAHULUAN Dalam ilmu pengetahuan kita sering

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

Produk Cartesius Relasi Relasi Khusus RELASI

Produk Cartesius Relasi Relasi Khusus RELASI Produk Cartesius Relasi Relasi Khusus RELASI Jika A dan B masing-masing menyatkan himpunan yang tidak kosong, maka produk Cartesius himpunan A dan B adalah himpunan semua pasangan terutut (x,y) dengan

Lebih terperinci

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis.

II. TINJAUAN PUSTAKA. sebuah geometri selain aksioma diperlukan juga unsur-unsur tak terdefinisi. Untuk. 2. Himpunan titik-titik yang dinamakan garis. 5 II. TINJAUAN PUSTAKA 2.1 Geometri Insidensi Suatu geometri dibentuk berdasarkan aksioma yang berlaku dalam geometrigeometri tersebut. Geometri insidensi didasari oleh aksioma insidensi. Di dalam sebuah

Lebih terperinci

GESERAN atau TRANSLASI

GESERAN atau TRANSLASI GESERAN atau TRANSLASI Makalah ini disusun untuk memenuhi Tugas Geometri Transformasi Dosen Pembimbing : Havid Risyanto, S.Si., M.Sc. D I S U S U N O L E H 1. AMILIA 1111050031 2. HAIRUDIN 1111050153 3.

Lebih terperinci

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak

Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak 4 Lingkaran 4.1. Persamaan Lingkaran Bentuk Baku. Lingkaran adalah tempat kedudukan titik-titik pada bidang yang berjarak tetap dari suatu titik tetap. Titik tetap dari lingkaran disebut pusat lingkaran,

Lebih terperinci

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI /

KALKULUS 1. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI / Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 08125218506 / 082334051234 E-mail : sriestits2@gmail.com Bahan Bacaan / Refferensi : 1. Frank Ayres J. R., Calculus, Shcaum s Outline Series, Mc Graw-Hill Book Company.

Lebih terperinci

A. Persamaan-Persamaan Lingkaran

A. Persamaan-Persamaan Lingkaran Peta Konsep Jurnal Materi Umum Peta Konsep Lingkaran Daftar Hadir Materi A LINGKARAN 1 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Persamaan-Persamaan Lingkaran Kedudukan Titik dan

Lebih terperinci

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI

FUNGSI. 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi. Cece Kustiawan, FPMIPA, UPI FUNGSI 1. Definisi Fungsi 2. Jenis-jenis Fungsi 3. Pembatasan dan Perluasan Fungsi 4. Operasi yang Merupakan Fungsi Definisi Fungsi Suatu fungsi f atau pemetaan f dari himpunan A ke himpunan B adalah suatu

Lebih terperinci

PEMBAHASAN TRANSFORMASI KEBALIKAN

PEMBAHASAN TRANSFORMASI KEBALIKAN PEMBAHASAN TRANSFORMASI KEBALIKAN.` Definisi Suatu transformasi yang didasarkan pada fungsi dengan dinamakan transformasi kebalikan. Secara geometric, transformasi akan memetakan titik-titik yang mendekati

Lebih terperinci

Rchmd: rls&fngs-smk2004 1

Rchmd: rls&fngs-smk2004 1 BAB I PENDAHULUAN A. Latar Belakang Apabila kita cermati, hampir semua fenomena ang terjadi di jagad raa ini mengikuti hukum sebab akibat. Adana pergantian siang dan malam adalah sebagai akibat dari perputaran

Lebih terperinci

Materi Kuliah Matematika Komputasi FUNGSI

Materi Kuliah Matematika Komputasi FUNGSI Materi Kuliah Matematika Komputasi FUNGSI Misalkan A dan B himpunan. FUNGSI Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam

Lebih terperinci

FUNGSI. Modul 3. A. Definisi Fungsi

FUNGSI. Modul 3. A. Definisi Fungsi Modul 3 FUNGSI A. Definisi Fungsi Definisi 1. Misalkan A dan B suatu himpunan. Suatu relasi f A x B, dimana setiap a A dipasangkan dengan tepat satu di b B, disebut dengan pemetaan (atau fungsi) dari A

Lebih terperinci

Wahyu Hidayat, S.Pd., M.Pd.

Wahyu Hidayat, S.Pd., M.Pd. Wahyu Hidayat, S.Pd., M.Pd. FUNGSI Definisi Fungsi Diketahui 2 buah himpunan A dan yang tidak kosong. Suatu fungsi dari A ke, ditulis f : A didefinisikan sebagai suatu aturan yang memasangkan setiap anggota

Lebih terperinci

Matematika

Matematika Fungsi dan D3 Analis Kimia FMIPA Universitas Islam Indonesia Fungsi Definisi Suatu fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap objek x dalam satu himpunan, yang disebut domain,

Lebih terperinci

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716

MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 MATEMATIKA DASAR PENDIDIKAN BIOLOGI UPI 0LEH: UPI 0716 N0 TOPIK FUNGSI 2.1 DEFINISI FUNGSI 2.2 DAERAH DEFINISI DAN DAERAH HASIL 2.3 JENIS-JENIS FUNGSI 2.4 OPERASI ALJABAR FUNGSI 2.5 FUNGSI GENAP, GANJIL,

Lebih terperinci

GEOMETRI TRANSFORMASI MATERI

GEOMETRI TRANSFORMASI MATERI GEOMERI RANFORMAI MAERI RANFORMAI BALIKAN Dosen Pengampu HERDIAN,.Pd., M.Pd. DIUUN OLEH : KELOMPOK V. DWI KHOMZAH NINGIH 08 030 40 2. EVI PUPIAARI 08 030 7 KELA V.B EKOLAH INGGI KEGURUAN DAN ILMU PENDIDIKAN

Lebih terperinci

STRUKTUR ALJABAR II. Materi : 1. Ring 2. Sub Ring, Ideal, Ring Faktor 3. Daerah Integral, dan Field.

STRUKTUR ALJABAR II. Materi : 1. Ring 2. Sub Ring, Ideal, Ring Faktor 3. Daerah Integral, dan Field. STRUKTUR ALJABAR II Materi : 1. Ring 2. Sub Ring, Ideal, Ring Faktor 3. Daerah Integral, dan Field RING (GELANGGANG) Ring adalah himpunan G yang tidak kosong dan berlaku dua oprasi biner (penjumlahan dan

Lebih terperinci

asimtot.wordpress.com BAB I PENDAHULUAN

asimtot.wordpress.com BAB I PENDAHULUAN BAB I PENDAHULUAN. Latar Belakang Kalkulus Differensial dan Integral sangat luas penggunaannya dalam berbagai bidang seperti penentuan maksimum dan minimum. Suatu fungsi yang sering digunakan mahasiswa

Lebih terperinci

Pengantar Analisis Real

Pengantar Analisis Real Modul Pengantar Analisis Real Dr Endang Cahya, MA, MSi P PENDAHULUAN ada Modul ini disajikan beberapa topik pengantar mata kuliah Analisis Real, yang terbagi dalam beberapa kegiatan belajar yang harus

Lebih terperinci

3. FUNGSI DAN GRAFIKNYA

3. FUNGSI DAN GRAFIKNYA 3. FUNGSI DAN GRAFIKNYA 3.1 Pengertian Relasi Misalkan A dan B suatu himpunan. anggota A dikaitkan dengan anggota B berdasarkan suatu hubungan tertentu maka diperoleh suatu relasi dari A ke B. : A = {1,

Lebih terperinci

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN

FUNGSI DAN GRAFIKNYA KULIAH-4. Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan PERTIDAKSAMAAN KULIAH-4 Modul Pembelajaran Matematika Kelas X semester 1 Modul Pembelajaran Matematika Kelas X semester 1 FUNGSI DAN GRAFIKNYA PERTIDAKSAMAAN Hadi Hermansyah,S.Si., M.Si. Politeknik Negeri Balikpapan

Lebih terperinci

KOMPOSISI FUNGSI DAN FUNGSI INVERS

KOMPOSISI FUNGSI DAN FUNGSI INVERS 1 KOMPOSISI FUNGSI DAN FUNGSI INVERS Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Komposisi Transformasi

Komposisi Transformasi Komposisi Transformasi Setelah menyaksikan tayangan ini anda dapat Menentukan peta atau bayangan suatu kurva hasil dari suatu komposisi transformasi Transformasi Untuk memindahkan suatu titik atau bangun

Lebih terperinci

Kalkulus II. Diferensial dalam ruang berdimensi n

Kalkulus II. Diferensial dalam ruang berdimensi n Kalkulus II Diferensial dalam ruang berdimensi n Minggu ke-9 DIFERENSIAL DALAM RUANG BERDIMENSI-n 1. Fungsi Dua Peubah atau Lebih 2. Diferensial Parsial 3. Limit dan Kekontinuan 1. Fungsi Dua Peubah atau

Lebih terperinci

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan ANALISIS REAL 1 Perkuliahan ini dimaksudkan memberikan kemampuan pada mahasiswa agar dapat memahami pernyataan-pernyataan matematika secara baik dan benar, berpikir secara logis, kritis dan sistematis,

Lebih terperinci

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT

ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Prosiding Semirata FMIPA Universitas Lampung, 2013 ISOMETRI TERHADAP GEOMETRI INSIDENSI TERURUT Damay Lisdiana, Muslim Ansori, Amanto Jurusan Matematika FMIPA Universitas Lampung Email: peace_ay@yahoo.com

Lebih terperinci

MA5032 ANALISIS REAL

MA5032 ANALISIS REAL (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. August 16, 2011 Pada bab ini anda diasumsikan telah mengenal dengan cukup baik bilangan asli, bilangan bulat, dan bilangan

Lebih terperinci

TRANSLASI BANGUN RUANG BERSISI DATAR PADA RUANG BERDIMENSI TIGA

TRANSLASI BANGUN RUANG BERSISI DATAR PADA RUANG BERDIMENSI TIGA TRANSLASI BANGUN RUANG BERSISI DATAR PADA RUANG BERDIMENSI TIGA Skripsi disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains Program Studi Matematika oleh Mohammad Yusuf Guntari 4111410044

Lebih terperinci

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd IKIP BUDI UTOMO MALANG Analytic Geometry TEXT BOOK Alfiani Athma Putri Rosyadi, M.Pd 2012 DAFTAR ISI 1 VEKTOR 1.1 Vektor Pada Bidang... 4 1.2 Vektor Pada Ruang... 6 1.3 Operasi Vektor.. 8 1.4 Perkalian

Lebih terperinci

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E.

1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6 B. -2 C. -4 Kunci : E Penyelesaian : D. -6 E. 1. Akar-akar persamaan 2x² + px - q² = 0 adalah p dan q, p - q = 6. Nilai pq =... A. 6-2 -4 Kunci : E -6-8 2. Himpunan penyelesaian sistem persamaan Nilai 6x 0.y 0 =... A. 1 Kunci : C 6 36 3. Absis titik

Lebih terperinci

Modul Statistika Kelas XII SMKN 1 Stabat. Lingkaran. Elips

Modul Statistika Kelas XII SMKN 1 Stabat. Lingkaran. Elips IR Lingkaran Elips 1 Smk n 1 stabat IRISAN KERUCUT Disusun Oleh : Dian Septiana 07144110049 Dalam PPL-T Unimed SMK N 1 Stabat SEKOLAH MENENGAH KEJURUAN NEGERI 1 STABAT LANGKAT 010 KATA PENGANTAR Puji syukur

Lebih terperinci

Soal Ulangan Umum Semester 1 Kelas VIII

Soal Ulangan Umum Semester 1 Kelas VIII Soal Ulangan Umum Semester 1 Kelas VIII A. Berilah tanda silang (x) pada huruf a, b, c, d atau e di depan jawaban yang benar! 1. Salah satu factor dari x - xy 4y adalah cm a. (x - 4y)(x + 3y) b. (x + 4y)(x

Lebih terperinci

Geometri Insidensi. Modul 1 PENDAHULUAN

Geometri Insidensi. Modul 1 PENDAHULUAN Modul 1 Geometri Insidensi M PENDAHULUAN Drs. Rawuh odul Geometri Insidensi ini berisi pembahasan tentang pembentukkan sistem aksioma dan sifat-sifat yang mendasari geometri tersebut. Sebelumnya Anda akan

Lebih terperinci

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini

Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini PENDAHULUAN Modul ini adalah modul ke-7 dalam mata kuliah Matematika. Isi modul ini membahas tentang transformasi. Modul ini terdiri dari 2 kegiatan belajar. Pada kegiatan belajar 1 akan dibahas mengenai

Lebih terperinci

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010

TRY OUT MATEMATIKA PAKET 2A TAHUN 2010 TRY OUT MATEMATIKA PAKET A TAHUN 00. Diketahui premis premis () Jika hari hujan terus menerus maka masyarakat kawasan Kaligawe gelisah atau mudah sakit. () Hujan terus menerus. Ingkaran kesimpulan premis

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Non Linear Fungsi non-linier merupakan bagian yang penting dalam matematika untuk ekonomi, karena pada umumnya fungsi-fungsi yang menghubungkan variabel-variabel ekonomi

Lebih terperinci