ANALISIS PERBANDINGAN DESAIN TERMAL PEMBANGKIT UAP PWR 1000 MWE MENGGUNAKAN METODE LMTD, NTU-EFEKTIVITAS DAN DIAGRAM T-H.

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISIS PERBANDINGAN DESAIN TERMAL PEMBANGKIT UAP PWR 1000 MWE MENGGUNAKAN METODE LMTD, NTU-EFEKTIVITAS DAN DIAGRAM T-H."

Transkripsi

1 Suroso ISSN ANALISIS PERBANDINGAN DESAIN TERMAL PEMBANGKIT UAP PWR 1000 MWE MENGGUNAKAN METODE LMTD, NTU-EFEKTIVITAS DAN DIAGRAM T-H. Suroso Pusat Teknologi Reaktor dan Keselamatan Nuklir, BATAN Gd. 80 Kawasan Puspiptek Serpong Tangerang Tlp , Fax ABSTRAK ANALISIS PERBANDINGAN DESAIN TERMAL PEMBANGKIT UAP PWR 1000 Mwe MENGGUNAKAN METODE LMTD, NTU-EFEKTIVITAS DAN DIAGRAMT-H. Telah dilakukan perhitungan dari segi termal terhadap pembangkit uap PLTN tipe PWR produksi KHNP yang menggunakan loop. Perhitungan dilakukan terhadap nilai koefisien perpindahan panas menyeluruh, luas permukaan perpindahan panas menyeluruh, panjang pipa dan nilai turun tekanan. Metode perhitungan menggunakan LMTD, NTU-efektifitas dan daigram T-H, dengan mengacu pada standar TEMA. Hasil perhitungan dengan menggunakan metode LMTD dan NTU-efektivitas, diperoleh nilai koefisien perpindahan panas menyeluruh 5,96 % lebih rendah dari kondisi desain. Sedangkan dengan menggunakan metode diagram T-H diperoleh nilai koefisien perpindahan panas menyeluruh sama dengan kondisi desain. Hasil perhitungan dengan menggunakan metode NTU-efektifitas relatif lebih rendah 9,14 % untuk nilai luas permukaan perpindahan panas menyeluruh, dan 7,56 % untuk panjang pipa, dan dengan menggunakan metode LMTD, relatif lebih besar 5,80 % untuk luas permukaan perpindahan panas menyeluruh dan 7,77 % untuk panjang pipa, masingmasing terhadap kondisi desain. Perhitungan dengan menggunakan metode diagram T-H, dibandingkan dengan kondisi desain, lebih rendah,3 % untuk luas permukaan perpindahan panas dan 6,06 % untuk panjang pipa. Nilai turun tekanan dari ketiga metode yang dipergunakan dalam perhitungan menunjukkan nilai turun tekanan sisi pipa relatif lebih besar dari pada sisi shell. Hal ini sesuai dengan kondisi desain, tetapi dari nilai nominalnya terdapat perbedaan yang signifikan. Dari hasil-hasil perhitungan dengan menggunakan ketiga metode tersebut menunjukkan bahwa, perhitungan dengan menggunakan metode diagram T-H lebih sesuai untuk menganalisis pembangkit uap PWR dari pada metode LMTD dan NTUefektivitas. Kata kunci: Analisis, desain termal, pembangkit uap, PWR, daya 1000 MWe. ABSTRACT COMPARATIVE ANAYISYS OF THERMAL DESIGN 1000 MWe PWR STEAM GENEERATOR USING LMTD, NTU-EFFECTIVENESS AND T-H DIAGRAM METHODS. Thermal aspect have calculated on steam generator of nuclear power plant pressurized water reactor typed of Korea Hydro & Nuclear Power (KHNP) production of two looped. The calculation performed on the value of overall heat transfer coefficient, overall heat transfer surface area, tube length and pressure drop values.the method of calculation using are number transfer of unit (NTU)- effectiveness, logarithmic mean temperature difference (LMTD) and T-H diagram and followed tubular exchanger manufactured assosiation (TEMA) standard. The result using the method of LMTD and NTU-effectiveness, the value of overall heat transfer coefficient obtained 5.96% lower than design condition. While using the T-H diagram obtained overall heat transfer coefficient is equal to the design. The result using the methods NTU-effectiveness are relatively lower than 9.14 % of heat transfer surface area and 7.56 % for the length of the tube, and by using the LMTD method, relatively high 5.80 % for the overall heat transfer surface area and 7.77 % for the length of tube. Calculation using the T-H diagram method, compared to design conditions,.3% lower for the heat transfer surface area and 6.06 % for the length of tube. Pressure drop value of the three methods used in the calculation shows the value of the tube side pressure drop is relatively higher than in the shell. From the calculation by using all three methods shows that, calculation using the T-H diagram method is more suitable for analyzing the PWR steam generator of LMTD and NTU- effectiveness methods. Key word : Analysis, thermal design, steam generator, PWR, 1000 MWe power, PENDAHULUAN P embangkit Listrik Tenaga Nuklir (PLTN) telah berhasil dibuat dan dioperasikan oleh Korea. Salah satu tipe PLTN yang telah berhasil dibuat dan dioperasikan adalah Pressurized Water Reactor (PWR) yang diproduksi oleh Korea Hydro & Nuclear Power (KHNP) dengan daya elektrik 1000 MW menggunakan pembangkit uap. [1] Mengingat

2 186 ISSN Suroso Indonesia kecenderungannya memilih reaktor tipe PWR, maka sangat menarik untuk mengkaji dan meneliti reaktor buatan Korea tersebut. Penelitian untuk mendapatkan verifikasi desain pembangkit uap PWR produksi Westinghouse (USA) dengan daya yang sama (1000 MWe) dengan 4 pembangkit uap telah berhasil dilakukan. Metode yang digunakan untk mengevaluasi adalah diagram T-H. Hasil evaluasi diperoleh perbedaan 0,8 % dan 1,7 % lebih besar dari pada kondisi desain, masing-masing untuk luas permukaan perpindahan panas dan panjang pipa. [] Pada makalah ini akan dibahas desain termal pembangkit uap PWR produksi KHNP dengan menggunakan metode logarithmic mean temperature difference (LMTD), number transfer of unit (NTU)- efektifitas dan diagram temperatur entalpi (diagram T-H). LMTD adalah merupakan metode untuk menghitung dimensi alat penukar kalor dari segi termal jika temperatur masuk dan keluar dari sisi panas maupun dingin diketahui, sedangkan NTUefekifitas adalah metode untuk menghitung dimensi alat penukar kalor jika laju alir fluida sisi dingin dan panas diketahui disamping nilai perbandingan panas terendah dan tertingginya. [3] Adapun metode diagram T-H adalah pengembangan dari metode LMTD dengan membagi rentang panjang alat penukar kalor ke dalam beberapa segmen. Dengan demikian sifat sifat fisika yang dipergunakan adalah sifat-sifat fisika pada temperatur rata-rata pada setiap segmen, sehingga memberikan ketelitian dalam pengambilan harga sifat-sifat fisika. [4] Status penelitian ini merupakan kelanjutan dari penelitian-penelitian mengenai sistem dan komponen-komponen reaktor PWR. [.5] Tujuan dari penelitian adalah menguasai metode perhitungan untuk mendapatkan dimensi pembangkit uap PLTN tipe PWR atau memverifikasi desain, jika Indonesia memutuskan membangun PLTN tipe PWR, sedangkan dari segi teknis tujuan penelitian adalah untuk mendapatkan hasil perhitungan yang meliputi nilai koefisien perpindahan panas, luas permukaan perpindahan panas dan panjang pipa serta nilai turun tekanan (pressure drop). Data yang diperlukan dalam perhitungan meliputi data teknis dan data proses. Data teknis diantaranya adalah jenis fluida yang digunakan teermasuk sifat-sifat fluidanya, laju aliran fluida dan jumlah fluida yang digunakan, temperatur minimum dan maksimum, tekanan operasi, dan besarnya laju perpindahan panas. Data proses diantaranya tube, tata letak susunan tube, temperatur dan tekanan minimum dan maksimum, dan jenisjenis metrial konstruksi. Asumsi-asumsi yang digunakan diantaranya; pembangkit uap adalah penukar kalor tipe shell and tube dengan aliran lawan arah (counter flow) satu lintasan shell dan dua lintasan tube. Perhitungan dilakukan dengan mengacu pada standar Tubular Exchanger Manufactured Associated (TEMA). [6] Diharapkan dari penelitian ini diperoleh suatu informasi ilmiah hasil perhitungan termal pembangkit uap PLTN tipe PWR daya 1000 MWe yang menggunakan pembangkit uap. TEORI Pembangkit Uap PLTN tipe PWR memanfaatkan prinsip desain sistem siklus tertutup. Ini berarti bahwa bahan pendingin dalam siklus reaktor dipisahkan dari siklus turbine generator. Tetapi, air pendingin bertemperatur tinggi dari reaktor, harus mampu membentuk uap untuk menggerakkan turbin dan mengasilkan listrik. Masing-masing siklus sistem pendingin reaktor terdiri dari sebuah pembangkit uap yang terpasang secara vertikal. Pembangkit uap ini dapat bertipe once-through steam generator atau U-tube steam generator. Jenis U tube steam generators, seperti yang ditunjukkan pada Gambar 1 terdiri dari dua bagian yang tergabung dengan satu bagian evaporator dan satu bagian steam drum. Gambar 1. Konstruksi pembangkit uap PLTN tipe PWR. [4] Persamaan-persamaan Pada Alat Penukar Kalor Aliran fluida pada alat penukar kalor tipe pipa dan shell dapat berlangsung secara sejajar (parallel flow) seperti diberikan pada Gambar a dan aliran berlawanan (counter flow) seperti diberikan pada Gambar b. Aliran sejajar adalah aliran di mana fluida panas dan fluida dingin memasuki pipa dari arah yang sama, sedangkan aliran berlawanan adalah aliran fluida panas dan fluida dingin mempunyai arah yang berlawanan. Kelebihan aliran berlawanan dibandingkan dengan aliran sejajar adalah dimungkinkannya temperatur ke luar sisi panas lebih

3 Suroso ISSN rendah daripada temperatur ke luar sisi dingin. Nilai selisih temperatur rata-rata logaritmik (LMTD) pada alat penukar kalor tipe shell and tube dengan aliran fluida sejajar dapat dirumuskan sebagai berikut: [3] ( T1 t1) ( T t) LMTD = Tlm = (1) ( T1 t1) ln ( T t ) Gambar. Aliran sejajar (a), aliran berlawanan (b) Sedangkan harga selisih temperatur rata-rata logaritmik pada aliran berlawanan dirumuskan sebagai berikut: [3] ( T1 t ) ( T t1) LMTD = Tlm = ( ) ( T1 t ) ln ( T t ) dengan, T lm adalah selisih temperatur rata-rata logaritmik ( o C), T 1 adalah temperatur fluida masuk tube ( o C), T adalah temperatur fluida ke luar tube ( o C), t 1 adalah temperatur fluida masuk shell ( o C) dan t adalah temperatur fluida ke luar shell ( o C) Selisih temperatur rata-rata dipengaruhi oleh sifat aliran dan sifat medium. Didalam perencanaan alat penukar kalor harus dicari selisih temperatur rata-rata sebenarnya dengan menggunakan faktor koreksi F, sehingga besarnya selisih temperatur ratarata sebenarnya adalah: [3] 1 Δ T = F Δ (3) m T lm dengan, T m adalah selisih temperatur rata-rata yang sebenarnya ( o C). Metoda LMTD yang dikembangkan dengan diterapkan pada segmen-segmen sepanjang alat penukar kalor merupakan metoda diagram temperatur entalpi (metoda diagram T-H). Dengan demikian sifat sifat fisika yang dipergunakan adalah sifat-sifat fisika pada temperatur rata-rata pada setiap segmen, sehingga memberikan ketelitian dalam pengambilan harga sifat-sifat fisika. Besar kecilnya kesalahan sangat bergantung pada lebar segmen yang diambil pada perhitungan. Bila diasumsikkan bahwa laju aliran massa fluida panas dan dingin masing-masing adalah m 1 dan m serta keempat entalphi jenis H 1,I ; H 1,o ;H,I ;H,o (atau temperatur T 1,i ;T,o ;T,i dan T,o ) telah diketahui maka sketsa lintasan fluida panas dan fluida dingin sebagai fungsi entalpi dan temperatur dapat dilukiskan seperti diberikan pada Gambar 3.. Gambar 3. Sketsa lintasan fluida panas dan dingin sebagai fungsi entalpi dan temperatur.[4] Dari data sifat fisika fluida dingin, dapat digambarkan kurva T = f (H ) sepanjang alat penukar kalor. Jika diasumsikan sebuah alat penukar kalor dengan aliran berlawanan arah seperti Gambar 3 dari kesetimbangan energi termal sepanjang luasan A x diperoleh hubungan : [4] H ( H H ) 1 H1, i =, o (4) m1 Kemampuan alat penukar kalor memindahkan panas (Q) dari fluida panas ke fluida dingin dapat dihitung dengan persamaan : [3] m Q = UA (5) dimana A, adalah luas permukaan perpindahan panas dalam m. Efektifitas (ε) penukar kalor secara umum untuk aliran lawan arah (counter flow) didefinisikan sebagai berikut: [3] ε = 1 T m 1 exp[ ( UA/Cmin )( 1 Cmin/Cmaks )] ( C /C ) exp[ ( UA/C )( 1 C /C )] min maks min min maks (6) dengan C=mc p, adalah laju kapasitas ( W/ o C), dengan m: massa fluida (kg), C p, : panas jenis (W/kg o C ), UA/C min adalah jumlah satuan perpindahan panas yang sering disebut dengan number of transfer unit (NTU) atau N, dan C =C min /C maks. Harga efektivitas untuk penukar panas jenis pipa dan shell adalah sebagai berikut: [3] 1/ [ N( 1+ C ) ] 1/ N( 1+ C ) 1/ 1 ε 1 C ( 1 C ) + = exp[ ] (7) sedangkan harga NTU-nya adalah, NTU = 1/ ( ) ( ) ( ) 1/ /ε 1 C 1+ C 1+ C ln 1/ /ε 1 C + 1+ C 1, C > 0 (8) dan, NTU = ln(1 ε) untuk C=0 (9) Terdapat dua sumber utama pada sisi tube sebuah pembangkit uap jenis shell and tube, yaitu : 1. Rugi tekanan akibat gesekan di dalam tube,. Rugi tekanan karena kontraksi dan ekspansi penampang yang brutal (sudden contraction and sudden-expansion). Turun tekanan di dalam tube dapat dihitung dengan menggunakan persamaan, [7]

4 188 ISSN Suroso L ρ. V Pt = Np 8 j f +,5 ID (10) dimana : ID : Diameter dalam tube ( m ) L : Panjang tube efektif ( m ) V : Kecepatan fluida pada sisi tube ( m/s ) ρ : Massa jenis fluida ( kg/m³ ) Pt : Penurunan tekanan ( N/m² ) Np : Jumlah tube J ƒ : Faktor friksi sedangkan turun tekanan pada sisi shell dapat dihitung dengan persamaan, [7] D s L ρ V s P = s 8. Jfs... (11) Dc Ib dimana : P s : Rugi tekanan disisi shell ( N/m² ) D s : Diameter shell ( m ) D ƒs : Faktor gesekan L : Panjang shell ( m ) I b : Panjang baffle ( m ) d c : Diameter ekivalen ( m ) V s : Kecepatan rata-rata pada sisi shell ( m/s ) ρ : Massa jenis fluida pada sisi shell ( kg/m³ ) TATA KERJA Data Spesifikasi Teknik dan Operasional PLTN PLTN tipe PWR produksi KHNP Korea mempunyai daya termal 884 MW(th) dengan menggunakan pembangkit uap. Data teknis dan operasionalnya diberikan pada Tabel 1. Prosedur Pengolahan Data Pengolahan data untuk mendapatkan nilai koefisien perpindahan panas sisi tube, shell dan menyeluruh dilakukan dengan menggunakan data temperatur masuk dan keluar sisi tube dan shell, daya yang dibangkitkan untuk setiap pembangkit uap, dimensi pembangkit uap yang diketahui dan yang relevan untuk perhitungan dan parameter fisis dari fluida dan material konstruksi pembangkit uap. Hasil perhitungan nilai koefisien perpindahan panas menyeluruh kemudian digunakan untuk mendapatkan dimensi luas permukaan perpindahan panas. Data luas permukaan perpindahan panas kemudian digunakan untuk mendapatkan nilai panjang tube dengan menggunakan metoda LMTD, NTUefektifitas dan diagram T-H. Sedangkan nilai turun tekanan dilakukan untuk sisi tube dan shell dengan menggunakan persamaan-persamaan yang relevan dan data fisis kondisi operasional pembangkit uap serta dimensi pembangkit uap yang diketahui dan yang telah diperoleh dari perhitungan Pengolahan Data Fluida masuk dan ke luar pembangkit uap sisi tube dalam kondisi satu fasa pada temperatur 37,3 C dan 95,8 C pada tekanan 15,5 MPa, sedangkan pada sisi shell masuk pembangkit uap dalam bentuk fasa cair temperatur 3 C dan ke luar fasa uap temperatur 89 C pada tekanan 7,3 MPa. Data parameter fisis fluida pada sisi tube diberikan pada Tabel. Tabel 1. Data teknis dan operasional PWR daya thermal 884 MW(th) derngan pembangkit uap. [1] No Parameter Data teknis dan operasional Sisi pipa (tube) Sisi shell 1 Daya thermal tiap unit (q) 884 MW ( th) 884 MW (th) Daya elektrik 1000 MW(e) 1000 MW(e) 3 Temperatur masuk 37,3 C 3 C 4 Temperatur keluar 95,8 C 89 C 5 Tekanan 15,5 MPa 7,3 MPa 6 Turun tekanan 0,7579 MPa 0,06339 MPa 7 Koefisien perpindaan panas menyeluruh 354 W/m o C 354 W/m o C 8 Jumlah tube Panjang tube 0,8781 m 10 Diameter dalam tube 0,0169 m - 11 Tebal tube 0,00107 m - 1 Diameter luar shell bagian bawah - 5,6701 m 13 Tebal shell - 0,1143 m 14 Konduktivitas material konstruksi tube (K) 35 W/m K dan shell

5 Suroso ISSN Tabel. Data parameter fisis fluida sisi tube [7] Nilai No Parameter Sisi tube Sisi shell 1. Massa jenis (ρ) 687,04 kg/m 3 431,53 kg/m 3. Konduktivitas termal (k) 0,5199 W/m C 0,3511 W/m C 3. Viskositas (µ) 8,669 x 10-5 kg/m.s 67, kg/m.s 4. Panas jenis (Cp) 614,45 J/kg C 5079 J/kg C 5. Bilangan Prandtl (Pr) 1, ,3090 Gambar 4. Efektifitas sebagai NTU ntuk aliran dalam dua tube satu shell. [3] Gambar 5. Faktor koreksi untuk aliran lawan arah satu shell dua tube [3] Pengolahan data dengan menggunakan metoda LMTD dilakukan untuk aliran fluida berlawanan. Massa aliran fluida pada sisi tube dengan daya termal 884 MW yang dibangkitkan oleh pembangkit uap diperoleh sebesar 7, kg/s. Kecepatan aliran pada setiap tube dengan menggunakan 8340 tube adalah 5,731 m/s. Angka Reynold, Nusselt dan nilai koefisien perpindahan panas pada sisi tube dengan menggunakan data yang diberikan pada Tabel 1 dan diperoleh masing-masing 7, , 119,517 dan W/m C. [5] Massa aliran fluida, luas permukaan yang dilalui aliran, kecepatan aliran, angka Reynold, angka Nusselt dan nilai koefisien perpindahan panas pada sisi shell diperoleh masing-masing adalah 4, kg/s, 19,95 m, 0,578 m/s, 5, , 386 dan 3545,11 W/m C. Luas permukaan perpindahan panas menyeluruh dan panjang tube dengan metoda NTU-efektivitas diperoleh masing-masing 9049 m dan 19,3 m. Sedangkan luas permukaan perpindahan panas menyeluruh dan panjang tube dengan menggunakan metoda LMTD diperoleh dengan bantuan grafik seperti diberikan pada Gambar 5 untuk aliran lawan arah satu shell dua tube sebesar 0,89. Luas permukaan perpindahan panas dan panjang tube dengan metoda LMTD diperoleh masing-masing 10589,17 m dan,5 m,. Nilai turun

6 190 ISSN Suroso tekanan (pressure drop) dengan mengguakan HASIL DAN PEMBAHASAN persamaan 10 dan 11 serta Tabel 1 dan diperoleh masing-masing pada sisi tube adalah 4, Pa PLTN di Korea tipe PWR menggunakan dua dan pada sisi shell adalah 1, Pa. daur dengan dua pembangkit uap mempunyai daya Perhitungan yang dilakukan dengan termal 884 MW(th). Analisis desain termal menggunakan metoda diagram T-H adalah membagi pembangkit uap PWR produksi KHNP daya 1000 panjang U tube ke dalam 10 segmen atau 11 titik. MWe dilakukan untuk mendapatkan nilai koefisien Distribusi temperatur sepanjang U tube diperoleh perpindahan panas menyeluruh, luas permukaan untuk sisi hot leg dan cold leg yang dilakukan dengan perpindahan panas menyeluruh dan panjang tube iterasi dan trial and error berdasarkan nilai serta nilai turun tekanan sisi tube dan shell. distribusi entalpi. Distribusi entalpi sepanjang tube Perhitungan dilakukan dengan menggunakan metoda di dapat berdasarkan nilai distribusi entalpi sepanjang NTU-efektivitas, LMTD dan diagram T-H, dengan shell. Distribusi entalpi sepanjang shell diperoleh asumsi pembangkit uap berbentuk shell and tube berdasarkan temperatur fluida masuk dan ke luar sisi aliran lawan arah dengan dua lintasan tube satu shell. shell dari kondisi fluidanya. Dengan menggunakan Hasil perhitungan dengan menggunakan metoda data pada Tabel 1 dan sifat-sifat fisis fluida diagram T-H diperoleh distribusi temperatur diperoleh hasil temperatur pada ujung U tube sebesar sepanjang tube pada setiap segmen yang digunakan 311, 55 o C seperti diberikan pada Gambar 6. untuk menghitung besarnya panas yang dipindahkan, koefisien perpindahan panas, luas permukaan perpindahan panas, panjang tube dan nilai turun tekanan masing-masing untuk setiap segmen. Hasil perhitungan yang diperoleh pada setiap segmen kemudian diakumulasikan untuk mendapatkan nilainilai tersebut sepanjang tube dan shell seperti diberikan pada Tabel 3. Dari hasil perhitungan yang dilakukan dengan menggunakan metoda LMTD, NTU-efektivitas dan diagram T-H, kemudian disusun dalam suatu tabel untuk dibandingkan dengan kondisi desain. Hasil Gambar 6. Sketsa distribusi temperatur pada perbandingan dengan menggunakan ketiga metoda pembangkit uap PWR sepanjang tersebut yang dibandingkan dengan kondisi desain tube pada sisi tube dan shell diberikan pada Tabel 4. Tabel 3. Nilai-nilai parameter hasil perhitungan No. Parameter Nilai 1 Koefisien perpindahan panas sisi tuge (h t ) 3,719 x 10 5 W/m o C. Koefisien perpindahan panas sisi shell (h s ) 3,38 x 10 4 W/m o C 3. Koefisien perpindahan panas menyeluruh (U) 3,54 x 10 3 W/m o C 4 Luas permukaan perpindahan panas total (A) 9777,017 m 5 Panjang tube (L) 19,614 m 6 Tuun tekanan sisi tube ( P t ) 5,988 x 10 5 Pa 7 Turun tekanan sisi shell ( P s ) 3,01 x 10 4 Pa Tabel 4. Hasil perhitungan dan kondisi desain pembangkit uap PWR-KHNP daya 1000 MWe yang menggunakan pembangkit uap. No. Parameter Desain Metode NTU-efektivitas LMTD Diagram T-H 1 Koefisien perpindahan panas menyeluruh ( U ) 354 W/m o C 3060 W/m o C 3060 W/m o C 354 W/m o C Luas permukaan Perpindahan panas 10009,0 m 9094,0 m 10589,7 m 9777,0 m menyeluruh ( A ) 3 Panjang tube ( L ) 0,88 m 19,30 m,50 m 19,6 m 4 Turun tekanan sisi tube ( P t ) 7,579 x 10 5 Pa 4, Pa 4,486 x 10 5 Pa 5, Pa 5 Turun tekanan sisi shell ( P s ) 6,339 x10 4 Pa 7, Pa 7, Pa 3, Pa

7 Suroso ISSN Hasil perhitungan nilai koefisien perpindahan panas menyeluruh dengan menggunakan metode NTU-efektivitas dan LMTD diperoleh sebesar 3060 W/m o C lebih rendah 5,96 % dari kondisi desain, sedangkan dengan mengguanakan metode diagram T-H diperoleh hasil sebesar 3454 W/m o C sama dengan kondisi desain. Nilai koefisien perpindahan panas yang diperoleh dalam perhitungan tersebut kemudian digunakan untuk mendapatkan luas permukaan perpindahan panas menyeluruh dan panjang tube. Hal ini akan berpengaruh terhadap hasil perhitungan dimensi pembangkit uap yang akan diperoleh. Hasil perhitungan luas permukaan perpindahan panas menyeluruh dengan menggunakan metode NTU-efektifitas diperoleh lebih rendah 9,14 % untuk luas dan 7,56 % untuk panjang tube bila dibandingkan dengan kondisi desain. Perhitungan dengan metode LMTD lebih besar 5,80 % untuk luas dan 7,77 % untuk panjang.tube, dan dengan metode diagram T-H diperoleh,3 % untuk luas permukaan pindahan panas dan 6,06 % untuk panjang tube lebih rendah dari kondisi desain. Terlihat dari hasil perhitungan tersebut dengan metode NTU-efektifitas berbeda dengan jika dilakukan dengan metode LMTD. Hasil yang diperoleh dengan metode LMTD lebih besar jika dibandingkan dengan kondisi desain, tetapi dengan metode NTU efektifitas lebih rendah, tetapi perbedaannya masing-masing tidak lebih dari 10 %. Penggunaan metode LMTD untuk perhitungan termal alat penukar kalor biasanya sesuai untuk kondisi dimana temperatur masuk dan keluar sisi dingin dan panas diketahui dan rentang nilai perbedaan temperatur masuk dan keluar tidak terlalu besar. Jika terjadi perubahan fasa seperti pada pengembunan dan penguapan dengan metode LMTD tidak cukup teliti, tetapi karena biasanya untuk kondisi tersebut cukup rumit maka pendekatan perhitungan dengan metode LMTD dapat diterima dengan perbedaan sekitar 10 %, [8,9] Metode NTU-efektifitas biasanya sesuai jika digunakan untuk memilih tipe alat penukar panas. [3] Hasil perhitungan dengan menggunakan metode diagram T-H sepertinya lebih sesuai untuk diterapkan pada pembangkit uap. Hal ini terlihat dari nilai koefisien pepindahan panas menyeluruh yang diperoleh dari hasil perhitungan sama dengan kondisi desain. Sedangkan hasil perhitungan luas permukaan perpindahan panas menyeluruh dan panjang tube dengan menggunakan metode diagram T-H perbedaannya relatif lebih rendah dari pada dengan menggunakan metode LMTD dan NTU efektivitas. Hasil perhitungan nilai turun tekanan dengan menggunakan metode LMTD dan NTU-efektivitas pada sisi tube diperoleh 4, Pa dan pada sisi shell diperoleh 7, Pa. Perhitungan dengan menggunakan metode diagram T-H diperoleh untuk sisi tube 5, Pa dan sisi shell 3, Pa. Nilai-nilai tersebut sesuai dengan kondisi desain yaitu nilai turun tekanan sisi tube relatif lebih besar dibandingkan sisi shell. Perbedaan nilai turun teakanan masih cukup sigifikan dengan mengguanakan metode LMTD dan NTU efektivitas jika dibandingkan dengan konndisi desain seperti terlihat pada Tabel 3. Hal ini terjadi karena pengambilan nilai parameter fisis tidak cukup akurat jika didasarkan pada temperatur curah (bulk) dengan rentang perbedaan yang cukup besar. Hasil perhitungan dengan menggunakan metode diagram T-H relatif lebih mendekati kondisi desain dengan orde yang sama, tetapi masih terdapat perbedaan yang cukup signifikan. Hal ini tergantung pada pembagian segmen pada pembangkit uap, semakin kecil segmen yang dibuat semakin rendah perbedaan yang diperoleh. Karena parameter fisis yang daimbil lebih mendekati kondisi yang sebenarnaya. KESIMPULAN Hasil perbandingan perhitungan termal pembangkit uap dengan menggunakan metode LMTD, NTU-efektifitas dan diagram T-H terhadap PLTN tipe PWR buatan Korea yang menggunakan pembangkit uap relatif seuai dilakukan dengan menggunakan metode diagram T-H. Hal ini terlihat dari hasil perhitungan nilai koefisen perpindahan panas menyeluruh, luas permukaan perpindahan panas menyeluruh, panjang tube dan nilai turun tekanan yang relatif lebih rendah perbedaannya terhadap kondisi desain dari pada dengan metode LMTD dan NTU-efektivitas. Hasil ini juga menunjukkan bahwa evaluasi desain termal terhadap pembangkit uap PWR baik dengan yang menggunakan maupun 4 pembakit uap adalah relevan. DAFTAR PUSTAKA 1. ANONIM, General Design Data of NSSS System and Component on KSNP, Korea Hydro and Nuclear Power Co., Ltd, July SUROSO, Evaluasi Desain Termal Pembangkit Uap PWR dengan Diagram T-H, Prosiding Seminar TKPFN ke -16, PTRKN-BATAN, 8 Juni KERN, D.Q., Process Heat Transfer, International Student Edition, McGraw-Hill Book Co., New York, SADIC CACAC., Boiler Evaporator and Condensor, John Willey & Son Inc, Canada, SUROSO, Studi Awal Desain Termal Pembangkit Uap PLTN Tipe PWR Daya 1000 MWe, Jurnal Epsilon, PTRKN-BATAN, Nopember 009.

8 19 ISSN Suroso 6. ANONIM, The Tubular Exchanger Manufacture Assiciation, 7th edition, KAZIMI, M.S and TODREAS, N.E., Nuclear System I, Hemisphere Publishing Corporation, New York, LEE, H.S., SUH, K.Y., Thermal Design of Steam Generator for Pb-Bi Cooled Reactor PEACER- 300, Seoul National University, San 51 Sillim- Dong, Korea LLEWELLyn, G.H., Design and Analysis of A - 5 MW Vertical Fluted Tube Condenser for Geothermal Applications, ORNL, Oak Ridge, Tennese, March 98. TANYA JAWAB Adang HG Mengapa metoda diagram T-H, lebih mendekati kondisi desain daripada dengan metoda LMTD dan NTV efektifitas. Suroso Metoda desain termal pembangkit uap PWR menggunakan diagram T-H pendekatan penyelesaian/perhitungannya adalah dengan membagi pembangkit uap kedalam beberapa segmen dan mengambil parameter fisis untuk perhitungan setiap segmen ISO, sehingga hasil perhitungan yg di dapat lebih teliti. Aslina B Ginting Suroso Mengapa objek penelitian PLTN produksi KHNP (KSNP)? PWR KSNP menarik sekali diteliti, karena semua Negara asia yan telah berhasil membuktikan kemampuanya dan menguasai teknologi PWR buatan Westinghouse USA dengan menggunakan 4 pembangkit uap menjadi pembangkit uap, yang menghasilkan daya 1000 MWe.

EVALUASI DESAIN TERMAL KONDENSOR PLTN TIPE PWR MENGGUNAKAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN

EVALUASI DESAIN TERMAL KONDENSOR PLTN TIPE PWR MENGGUNAKAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN EVALUASI DESAIN TERMAL KONDENSOR PLTN TIPE PWR MENGGUNAKAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN Saut Mangihut Tua Naibaho 1), Steven Darmawan 1) dan Suroso 2) 1) Program Studi Teknik Mesin Universitas

Lebih terperinci

Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin

Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) B-132 Perancangan Termal Heat Recovery Steam Generator Sistem Tekanan Dua Tingkat Dengan Variasi Beban Gas Turbin Anson Elian dan

Lebih terperinci

PENGGUNAAN FLUENT UNTUK SIMULASI DISTRIBUSI SUHU DAN KECEPATAN PADA ALAT PENUKAR KALOR

PENGGUNAAN FLUENT UNTUK SIMULASI DISTRIBUSI SUHU DAN KECEPATAN PADA ALAT PENUKAR KALOR Penggunaan Fluent untuk Simulasi Distribusi Suhu dan Kecepatan pada Alat Penukar Kalor (Suroso, et al) PENGGUNAAN FLUENT UNTUK SIMULASI DISTRIBUSI SUHU DAN KECEPATAN PADA ALAT PENUKAR KALOR Suroso *, M.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tujuan Dalam proses ini untuk menetukan hasil design oil cooler minyak mentah (Crude Oil) untuk jenis shell and tube. Untuk mendapatkan hasil design yang paling optimal untuk

Lebih terperinci

31 4. Menghitung perkiraan perpindahan panas, U f : a) Koefisien konveksi di dalam tube, hi b) Koefisien konveksi di sisi shell, ho c) Koefisien perpi

31 4. Menghitung perkiraan perpindahan panas, U f : a) Koefisien konveksi di dalam tube, hi b) Koefisien konveksi di sisi shell, ho c) Koefisien perpi BAB III METODE PENELITIAN 3.1 Tujuan Dalam proses ini untuk menetukan hasil design oil cooler minyak mentah (Crude Oil) untuk jenis shell and tube. Untuk mendapatkan hasil design yang paling optimal untuk

Lebih terperinci

VERIFIKASI ULANG ALAT PENUKAR KALOR KAPASITAS 1 kw DENGAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN

VERIFIKASI ULANG ALAT PENUKAR KALOR KAPASITAS 1 kw DENGAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN VERIFIKASI ULANG ALAT PENUKAR KALOR KAPASITAS 1 kw DENGAN PROGRAM SHELL AND TUBE HEAT EXCHANGER DESIGN Harto Tanujaya, Suroso dan Edwin Slamet Gunadarma Jurusan Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

PENYUSUNAN PROGRAM KOMPUTASI PERANCANGAN HEAT EXCHANGER TIPE SHELL & TUBE DENGAN FLUIDA PANAS OLI DAN FLUIDA PENDINGIN AIR

PENYUSUNAN PROGRAM KOMPUTASI PERANCANGAN HEAT EXCHANGER TIPE SHELL & TUBE DENGAN FLUIDA PANAS OLI DAN FLUIDA PENDINGIN AIR PENYUSUNAN PROGRAM KOMPUTASI PERANCANGAN HEAT EXCHANGER TIPE SHELL & TUBE DENGAN FLUIDA PANAS OLI DAN FLUIDA PENDINGIN AIR Afdhal Kurniawan Mainil, Rahmat Syahyadi Putra, Yovan Witanto Program Studi Teknik

Lebih terperinci

PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM ABSTRAK

PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM ABSTRAK PEMODELAN SISTEM KONVERSI ENERGI RGTT200K UNTUK MEMPEROLEH KINERJA YANG OPTIMUM Ign. Djoko Irianto Pusat Teknologi Reaktor dan Keselamatan Nuklir (PTRKN) BATAN ABSTRAK PEMODELAN SISTEM KONVERSI ENERGI

Lebih terperinci

PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR

PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR PENERAPAN PERANGKAT LUNAK KOMPUTER UNTUK PENENTUAN KINERJA PENUKAR KALOR Sugiyanto 1, Cokorda Prapti Mahandari 2, Dita Satyadarma 3. Jurusan Teknik Mesin Universitas Gunadarma Jln Margonda Raya 100 Depok.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip dan Teori Dasar Perpindahan Panas Panas adalah salah satu bentuk energi yang dapat dipindahkan dari suatu tempat ke tempat lain, tetapi tidak dapat diciptakan atau dimusnahkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN MEDIUM AIR SEBAGAI FLUIDA PANAS DAN METHANOL SEBAGAI FLUIDA DINGIN

ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN MEDIUM AIR SEBAGAI FLUIDA PANAS DAN METHANOL SEBAGAI FLUIDA DINGIN ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN MEDIUM AIR SEBAGAI FLUIDA PANAS DAN METHANOL SEBAGAI FLUIDA DINGIN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci

ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA

ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA Oleh Audri Deacy Cappenberg Program Studi Teknik Mesin Universitas 17 Agustus 1945 Jakarta ABSTRAK Pengujian Alat Penukar Panas Jenis Pipa Ganda Dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini akan dijabarkan mengenai penukar panas (heat exchanger), mekanisme perpindahan panas pada heat exchanger, konfigurasi aliran fluida, shell and tube heat exchanger,

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Perhitungan Daya Motor 4.1.1 Torsi pada poros (T 1 ) T3 T2 T1 Torsi pada poros dengan beban teh 10 kg Torsi pada poros tanpa beban - Massa poros; IV-1 Momen inersia pada poros;

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

Pengaruh Pemilihan Jenis Material Terhadap Nilai Koefisien Perpindahan Panas pada Perancangan Heat Exchanger Shell-Tube dengan Solidworks

Pengaruh Pemilihan Jenis Material Terhadap Nilai Koefisien Perpindahan Panas pada Perancangan Heat Exchanger Shell-Tube dengan Solidworks Pengaruh Pemilihan Jenis Material Terhadap Nilai Koefisien Perpindahan Panas pada Perancangan Heat Exchanger Shell-Tube dengan Solidworks Arif Budiman 1,a*, Sri Poernomo Sari 2,b*. 1,2) Jurusan Teknik

Lebih terperinci

Tugas Akhir. Perancangan Hydraulic Oil Cooler. bagi Mesin Injection Stretch Blow Molding

Tugas Akhir. Perancangan Hydraulic Oil Cooler. bagi Mesin Injection Stretch Blow Molding Tugas Akhir Perancangan Hydraulic Oil Cooler bagi Mesin Injection Stretch Blow Molding Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun Oleh:

Lebih terperinci

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR SKRIPSI Skripsi yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1

ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 EKSERGI Jurnal Teknik Energi Vol No. 2 Mei 214; 65-71 ANALISIS PERUBAHAN TEKANAN VAKUM KONDENSOR TERHADAP KINERJA KONDENSOR DI PLTU TANJUNG JATI B UNIT 1 Anggun Sukarno 1) Bono 2), Budhi Prasetyo 2) 1)

Lebih terperinci

EVALUASI DESAIN PRESSURIZER PADA PWR 1000 MWe TIPIKAL, PWR 1000 MWe KSNP DAN AP 1000

EVALUASI DESAIN PRESSURIZER PADA PWR 1000 MWe TIPIKAL, PWR 1000 MWe KSNP DAN AP 1000 EVALUASI DESAIN PRESSURIZER PADA PWR 1000 MWe TIPIKAL, PWR 1000 MWe KSNP DAN AP 1000 Suroso Pusat Teknologi Reaktor dan Keselamatan Nuklir BATAN Kawasan Puspiptek Gedung 80 Serpong Tangsel Email: Suroso@Batan.go.id

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN 56 BAB IV ANALISA DAN PERHITUNGAN 4.1 Analisa Varian Prinsip Solusi Pada Varian Pertama dari cover diikatkan dengan tabung pirolisis menggunakan 3 buah toggle clamp, sehingga mudah dan sederhana dalam

Lebih terperinci

Analisa Unjuk Kerja Secondary Superheater PLTGU Dan Evaluasi Peluang Peningkatan Effectiveness Dengan Cara Variasi Jarak, Jumlah dan Diameter Tube

Analisa Unjuk Kerja Secondary Superheater PLTGU Dan Evaluasi Peluang Peningkatan Effectiveness Dengan Cara Variasi Jarak, Jumlah dan Diameter Tube JURNAL TEKNIK POMITS Vol. 2, No. 3, (2013) ISSN: 2337-3539 (2301-9271 Print) B-388 Analisa Unjuk Kerja Secondary Superheater PLTGU Dan Evaluasi Peluang Peningkatan Effectiveness Dengan Cara Variasi Jarak,

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

SKRIPSI ALAT PENUKAR KALOR

SKRIPSI ALAT PENUKAR KALOR SKRIPSI ALAT PENUKAR KALOR PERANCANGAN HEAT EXCHANGER TYPE SHELL AND TUBE UNTUK AFTERCOOLER KOMPRESSOR DENGAN KAPASITAS 8000 m 3 /hr PADA TEKANAN 26,5 BAR OLEH : FRANKY S SIREGAR NIM : 080421005 PROGRAM

Lebih terperinci

EFEKTIVITAS PENUKAR KALOR TIPE PLATE P41 73TK Di PLTP LAHENDONG UNIT 2

EFEKTIVITAS PENUKAR KALOR TIPE PLATE P41 73TK Di PLTP LAHENDONG UNIT 2 EFEKTIVITAS PENUKAR KALOR TIPE PLATE P41 73TK Di PLTP LAHENDONG UNIT 2 Harlan S. F. Egeten 1), Frans P. Sappu 2), Benny Maluegha 3) Jurusan Teknik Mesin Universitas Sam Ratulangi 2014 ABSTRACT One way

Lebih terperinci

SKRIPSI. Diajukan Untuk Memenuhi Persyaratan. Memperoleh Gelar Sarjana Teknik ALEXANDER SEBAYANG NIM :

SKRIPSI. Diajukan Untuk Memenuhi Persyaratan. Memperoleh Gelar Sarjana Teknik ALEXANDER SEBAYANG NIM : PERANCANGAN KONDENSOR TURBIN UAP (ST.1.0) DENGAN DAYA 65 MW DI PLTGU BLOK I PT.PLN (PERSERO) PEMBANGKITAN SUMATERA BAGIAN UTARA SEKTOR PEMBANGKIT BELAWAN SKRIPSI Diajukan Untuk Memenuhi Persyaratan Memperoleh

Lebih terperinci

BAB lll METODE PENELITIAN

BAB lll METODE PENELITIAN BAB lll METODE PENELITIAN 3.1 Tujuan Proses ini bertujuan untuk menentukan hasil design oil cooler pada mesin diesel penggerak kapal laut untuk jenis Heat Exchager Sheel and Tube. Design ini bertujuan

Lebih terperinci

OPTIMASI KINERJA IHX UNTUK SISTEM KOGENERASI RGTT200K

OPTIMASI KINERJA IHX UNTUK SISTEM KOGENERASI RGTT200K Prosiding Seminar Nasional Teknologi Energi Nuklir 2014 Pontianak, 19 Juni 2014 OPTIMASI KINERJA IHX UNTUK SISTEM KOGENERASI RGTT200K Ign. Djoko Irianto, Sri Sudadiyo, Sukmanto Dibyo Pusat Teknologi dan

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

BAB II DASAR TEORI. Analisis perpindahan panas dapat dilakukan dengan metode Log Mean

BAB II DASAR TEORI. Analisis perpindahan panas dapat dilakukan dengan metode Log Mean BAB II DASAR TEORI Analisis perpindahan panas dapat dilakukan dengan metode Log Mean Temperature Difference (LMTD) atau ΔT lm. Namun metode ini digunakan bila temperatur fluida masuk dan temperatur fluida

Lebih terperinci

PENINGKATAN UNJUK KERJA KETEL TRADISIONAL MELALUI HEAT EXCHANGER

PENINGKATAN UNJUK KERJA KETEL TRADISIONAL MELALUI HEAT EXCHANGER PENINGKATAN UNJUK KERJA KETEL TRADISIONAL MELALUI HEAT EXCHANGER Rianto, W. Program Studi Teknik Mesin Universitas Muria Kudus Gondangmanis PO.Box 53-Bae, Kudus, telp 0291 4438229-443844, fax 0291 437198

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-91

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-91 JURNAL TEKNIK POMITS Vol. 3, No. 1, (214) ISSN: 2337-3539 (231-9271 Print) B-91 Studi Eksperimen Pengaruh Variasi Kecepatan Udara Terhadap Performa Heat Exchanger Jenis Compact Heat Exchanger (Radiator)

Lebih terperinci

Karakteristik Perpindahan Panas pada Double Pipe Heat Exchanger, perbandingan aliran parallel dan counter flow

Karakteristik Perpindahan Panas pada Double Pipe Heat Exchanger, perbandingan aliran parallel dan counter flow Jurnal Teknik Elektro dan Komputer, Vol.I, No.2, Oktober 2013, 161-168 161 Karakteristik Perpindahan Panas pada Double Pipe Heat Exchanger, perbandingan aliran parallel dan counter flow Mustaza Ma a Program

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 HE Shell and tube Penukar panas atau dalam industri populer dengan istilah bahasa inggrisnya, heat exchanger (HE), adalah suatu alat yang memungkinkan perpindahan dan bisa berfungsi

Lebih terperinci

SIDANG HASIL TUGAS AKHIR

SIDANG HASIL TUGAS AKHIR SIDANG HASIL TUGAS AKHIR DESAIN COMPACT HEAT EXCHANGER TIPE FIN AND TUBE SEBAGAI ALAT PENDINGIN MOTOR PADA BOILER FEED PUMP STUDI KASUS PLTU PAITON, PJB Disusun Oleh : LUKI APRILIASARI NRP. 2109100073

Lebih terperinci

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TABUNG SEPUSAT ALIRAN BERLAWANAN DENGAN VARIASI PADA FLUIDA PANAS (AIR) DAN FLUIDA DINGIN (METANOL)

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TABUNG SEPUSAT ALIRAN BERLAWANAN DENGAN VARIASI PADA FLUIDA PANAS (AIR) DAN FLUIDA DINGIN (METANOL) ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TABUNG SEPUSAT ALIRAN BERLAWANAN DENGAN VARIASI PADA FLUIDA PANAS (AIR) DAN FLUIDA DINGIN (METANOL) David Oktavianus 1,Hady Gunawan 2,Hendrico 3,Farel H Napitupulu

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

Cara Kerja Pompa Sentrifugal Komponen Komponen Pompa Sentrifugal Klasifikasi Pompa Sentrifugal Boiler...

Cara Kerja Pompa Sentrifugal Komponen Komponen Pompa Sentrifugal Klasifikasi Pompa Sentrifugal Boiler... DAFTAR ISI HALAMAN JUDUL SKRIPSI... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v KATA PENGANTAR... vi DAFTAR ISI... viii DAFTAR GAMBAR...

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192 JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-192 Studi Numerik Pengaruh Baffle Inclination pada Alat Penukar Kalor Tipe Shell and Tube terhadap Aliran Fluida dan Perpindahan

Lebih terperinci

JURNAL TEKNIK POMITS 1

JURNAL TEKNIK POMITS 1 JURNAL TEKNIK POMITS 1 Recovery Derating Dengan Redesign Kondensor Berdasarkan Analisa Termodinamika Dan Perpindahan Panas Bagus Wahyu Hadi Atmaja dan Atok Setiyawan Jurusan Teknik Mesin, Fakultas Teknologi

Lebih terperinci

DOSEN PEMBIMBING : PROF. Dr. Ir. DJATMKO INCHANI,M.Eng. oleh: GALUH CANDRA PERMANA

DOSEN PEMBIMBING : PROF. Dr. Ir. DJATMKO INCHANI,M.Eng. oleh: GALUH CANDRA PERMANA PERANCANGAN DAN ANALISA PERFORMANSI SISTEM KOMPRESI PENDINGIN ABSORPSI DENGAN MEMANFAATKAN PANAS GAS BUANG MESIN DIESEL PADA KAPAL NELAYAN IKAN MENGGUNAKAN REFRIGERANT AMMONIA-WATER (NH 3 -H 2 O) DOSEN

Lebih terperinci

Re-design dan Modifikasi Generator Cooler Heat Exchanger PLTP Kamojang Untuk Meningkatkan Performasi.

Re-design dan Modifikasi Generator Cooler Heat Exchanger PLTP Kamojang Untuk Meningkatkan Performasi. Re-design dan Modifikasi Generator Cooler Heat Exchanger PLTP Kamojang Untuk Meningkatkan Performasi. Nama : Ria Mahmudah NRP : 2109100703 Dosen pembimbing : Prof.Dr.Ir.Djatmiko Ichsani, M.Eng 1 Latar

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik SUHERI SUSANTO NIM

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik SUHERI SUSANTO NIM ANALISIS ALAT PENUKAR KALOR SHELL AND TUBE SEBAGAI PEMANAS MARINE FUEL OIL ( MFO ) UNTUK BAHAN BAKAR BOILER PLTU UNIT 4 DI PT. PLN (PERSERO) SEKTOR PEMBANGKITAN BELAWAN SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah Mustaza Ma a 1) Ary Bachtiar Krishna Putra 2) 1) Mahasiswa Program Pasca Sarjana Teknik Mesin

Lebih terperinci

ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN

ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN ANALISA DESAIN DAN PERFORMA KONDENSOR PADA SISTEM REFRIGERASI ABSORPSI UNTUK KAPAL PERIKANAN Jurusan Teknik Sistem Perkapalan Fakultas Teknologi Keluatan Institut Teknolgi Sepuluh Nopember Surabaya 2011

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K ABSTRAK ABSTRACT

ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K ABSTRAK ABSTRACT ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K Sri Sudadiyo Pusat Teknologi Reaktor dan Keselamatan Nuklir ABSTRAK ANALISIS SUDU KOMPRESOR AKSIAL UNTUK SISTEM TURBIN HELIUM RGTT200K.

Lebih terperinci

TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE

TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE Diajukan untuk Memenuhi Persyaratan Kurikulum Sarjana Strata Satu (S-1)

Lebih terperinci

Pengaruh Kecepatan Aliran Terhadap Efektivitas Shell-and-Tube Heat Exchanger

Pengaruh Kecepatan Aliran Terhadap Efektivitas Shell-and-Tube Heat Exchanger JURNAL TEKNIK MESIN Vol. 2, No. 2, Oktober 2: 86 9 Pengaruh Kecepatan Aliran Terhadap Shell-and-Tube Heat Exchanger Ekadewi Anggraini Handoyo Dosen Fakultas Teknologi Industri Jurusan Teknik Mesin Universitas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

DOUBLE PIPE HEAT EXCHANGER. ALAT DAN BAHAN - Alat Seperangkat alat Double Pipe Heat Exchanger Heater Termometer - Bahan Air

DOUBLE PIPE HEAT EXCHANGER. ALAT DAN BAHAN - Alat Seperangkat alat Double Pipe Heat Exchanger Heater Termometer - Bahan Air DOUBLE PIPE HEAT EXCHANGER I. TUJUAN - Mengetahui unjuk kerja alat penukar kalor jenis pipa ganda (Double Pipe Heat Exchanger). - Menghitung koefisien perpindahan panas, faktor kekotoran, efektivitas dan

Lebih terperinci

ANALISA HEAT EXCHANGER JENIS SHEEL AND TUBE DENGAN SISTEM SINGLE PASS

ANALISA HEAT EXCHANGER JENIS SHEEL AND TUBE DENGAN SISTEM SINGLE PASS ANALISA HEAT EXHANGER JENIS SHEEL AND TUBE DENGAN SISTEM SINGLE PASS ahya Sutowo Teknik Mesin, Universitas Muhammadiyah Jakarta Abstrak. Proses perpindahan kalor pada dunia industri pada saat ini, merupakan

Lebih terperinci

LAPORAN TUGAS AKHIR ANALISA PERHITUNGAN ALAT PENUKAR PANAS TIPE SHEEL & TUBE PADA INDUSTRI ASAM SULFAT

LAPORAN TUGAS AKHIR ANALISA PERHITUNGAN ALAT PENUKAR PANAS TIPE SHEEL & TUBE PADA INDUSTRI ASAM SULFAT LAPORAN TUGAS AKHIR ANALISA PERHITUNGAN ALAT PENUKAR PANAS TIPE SHEEL & TUBE PADA INDUSTRI ASAM SULFAT DISUSUNOLEH : NAMA : AMRIH WIBOWO NIM : 41310110003 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK JAKARTA

Lebih terperinci

Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger

Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger (Ekadewi Anggraini Handoyo Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger Ekadewi Anggraini Handoyo Dosen Fakultas Teknologi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD)

INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD) INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD) Mirza Quanta Ahady Husainiy 2408100023 Dosen Pembimbing

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas/Kalor Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor adalah ilmu yang mempelajari berpindahnya suatu energi (berupa kalor) dari suatu sistem ke sistem lain karena adanya perbedaan temperatur.

Lebih terperinci

PERHITUNGAN AWAL DESAIN TERMAL PENUKAR PANAS SISTEM PENDINGIN RRI-50

PERHITUNGAN AWAL DESAIN TERMAL PENUKAR PANAS SISTEM PENDINGIN RRI-50 PERHITUNGAN AWAL DESAIN TERMAL PENUKAR PANAS SISTEM PENDINGIN RRI-50 Sukmanto Dibyo, Gregorius Bambang Heru, Pusat Teknologi Keselamatan Reaktor Nuklir sukdibyo@gmail.com ABSTRAK PERHITUNGAN AWAL DESAIN

Lebih terperinci

STUDI PERHITUNGAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE DENGAN PROGRAM HEAT TRANSFER RESEARCH INC. ( HTRI )

STUDI PERHITUNGAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE DENGAN PROGRAM HEAT TRANSFER RESEARCH INC. ( HTRI ) STUDI PERHITUNGAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE DENGAN PROGRAM HEAT TRANSFER RESEARCH INC. ( HTRI ) I. Bizzy ( ¹ ), R. Setiadi ( ² ) (,2) Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sriwijaya

Lebih terperinci

ANALISIS PENGARUH EFEKTIVITAS PERPINDAHAN PANAS DAN TAHANAN TERMAL TERHADAP RANCANGAN TERMAL ALAT PENUKAR KALOR SHELL & TUBE

ANALISIS PENGARUH EFEKTIVITAS PERPINDAHAN PANAS DAN TAHANAN TERMAL TERHADAP RANCANGAN TERMAL ALAT PENUKAR KALOR SHELL & TUBE ISSN: 1410-233 ANALISIS PENGARUH EFEKTIVITAS PERPINDAHAN PANAS DAN TAHANAN TERMAL TERHADAP RANCANGAN TERMAL ALAT PENUKAR KALOR SHELL & TUBE Chandrasa Soekardi Jurusan Teknik Mesin, Fakultas Teknik, Universitas

Lebih terperinci

BAB I PENDAHULUAN. pendinginan untuk mendinginkan mesin-mesin pada sistem. Proses pendinginan

BAB I PENDAHULUAN. pendinginan untuk mendinginkan mesin-mesin pada sistem. Proses pendinginan BAB I PENDAHULUAN 1.1. Latar belakang Salah satu proses dalam sistem pembangkit tenaga adalah proses pendinginan untuk mendinginkan mesin-mesin pada sistem. Proses pendinginan ini memerlukan beberapa kebutuhan

Lebih terperinci

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48 PENGARUH SIRIP CINCIN INNER TUBE TERHADAP KINERJA PERPINDAHAN PANAS PADA HEAT EXCHANGER Sujawi Sholeh Sadiawan 1), Nova Risdiyanto Ismail 2), Agus suyatno 3) ABSTRAK Bagian terpenting dari Heat excanger

Lebih terperinci

Taufik Ramuli ( ) Departemen Teknik Mesin, FT UI, Kampus UI Depok Indonesia.

Taufik Ramuli ( ) Departemen Teknik Mesin, FT UI, Kampus UI Depok Indonesia. Desain Rancang Heat Exchanger Stage III pada Pressure Reduction System pada Daughter Station CNG Granary Global Energy dengan Tekanan Kerja 20 ke 5 Bar Taufik Ramuli (0639866) Departemen Teknik Mesin,

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2016 RANCANG BANGUN GENERATOR PADA MESIN PENDINGIN MENGGUNAKAN SIKLUS ABSORPSI MEMANFAATKAN PANAS BUANG MOTOR BAKAR DENGAN PASANGAN REFRIJERAN - ABSORBEN AMONIA-AIR Skripsi Yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Reaktor nuklir membutuhkan suatu sistem pendingin yang sangat penting dalam aspek keselamatan pada saat pengoperasian reaktor. Pada umumnya suatu reaktor menggunakan

Lebih terperinci

BAB III 1 METODE PENELITIAN

BAB III 1 METODE PENELITIAN 17 BAB III 1 METODE PENELITIAN 1.1 Prosedur Penelitian Prosedur yang dilakukan dalam penelitian ini terdiri dari beberapa langkah. Langkah pertama, yaitu melakukan studi literatur dari berbagi sumber terkait.

Lebih terperinci

ANALISIS PERFORMANSI PADA HEAT EXCHANGER JENIS SHEEL AND TUBE TIPE BEM DENGAN MENGGUNAKAN PERUBAHAN LAJU ALIRAN MASSA FLUIDA PANAS (Mh)

ANALISIS PERFORMANSI PADA HEAT EXCHANGER JENIS SHEEL AND TUBE TIPE BEM DENGAN MENGGUNAKAN PERUBAHAN LAJU ALIRAN MASSA FLUIDA PANAS (Mh) ANALISIS PERFORMANSI PADA HEAT EXCHANGER JENIS SHEEL AND TUBE TIPE BEM DENGAN MENGGUNAKAN PERUBAHAN LAJU ALIRAN MASSA FLUIDA PANAS (Mh) Aznam Barun, Eko Rukmana Universitas Muhammadiyah Jakarta, Jurusan

Lebih terperinci

ANALISIS PERPINDAHAN PANAS PADA GAS TURBINE CLOSED COOLING WATER HEAT EXCHANGER DI SEKTOR PEMBANGKITAN PLTGU CILEGON

ANALISIS PERPINDAHAN PANAS PADA GAS TURBINE CLOSED COOLING WATER HEAT EXCHANGER DI SEKTOR PEMBANGKITAN PLTGU CILEGON EKSERGI Jurnal Teknik Energi Vol 10 No. 3 September 2014; 78-83 ANALISIS PERPINDAHAN PANAS PADA GAS TURBINE CLOSED COOLING WATER HEAT EXCHANGER DI SEKTOR PEMBANGKITAN PLTGU CILEGON F. Gatot Sumarno, Slamet

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 2, No. 3, (2013) ISSN: ( Print) B-409

JURNAL TEKNIK POMITS Vol. 2, No. 3, (2013) ISSN: ( Print) B-409 JURNAL TEKNIK POMITS Vol. 2, No. 3, (2013) ISSN: 2337-3539 (2301-9271 Print) B-409 Abstrak Cooler Generator adalah alat yang berfungsi untuk menjaga temperature udara yang ada di dalam generator akibat

Lebih terperinci

UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN PENGARUH JARAK BAFFLE

UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN PENGARUH JARAK BAFFLE UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN PENGARUH JARAK BAFFLE PADA ALAT PENUKAR KALOR TABUNG CANGKANG DENGAN SUSUNAN TABUNG SEGITIGA SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN Disusun oleh: BENNY ADAM DEKA HERMI AGUSTINA DONSIUS GINANJAR ADY GUNAWAN I8311007 I8311009

Lebih terperinci

ANALISA PERFORMANSI COOLER LUBE OIL DENGAN KAPASITAS 300 TON/JAM PADA UNIT 2 DI PLTU LABUHAN ANGIN LAPORAN TUGAS AKHIR

ANALISA PERFORMANSI COOLER LUBE OIL DENGAN KAPASITAS 300 TON/JAM PADA UNIT 2 DI PLTU LABUHAN ANGIN LAPORAN TUGAS AKHIR ANALISA PERFORMANSI COOLER LUBE OIL DENGAN KAPASITAS 300 TON/JAM PADA UNIT 2 DI PLTU LABUHAN ANGIN LAPORAN TUGAS AKHIR Diajukan untuk Memenuhi Sebagian Persyaratan dalam Menyelesaikan Program Pendidikan

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, hampir semua aktifitas manusia berhubungan dengan energi listrik.

Lebih terperinci

Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika

Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika Perencanaan Mesin Pendingin Absorbsi (Lithium Bromide) memanfaatkan Waste Energy di PT. PJB Paiton dengan tinjauan secara thermodinamika Muhamad dangga A 2108 100 522 Dosen Pembimbing : Ary Bachtiar Krishna

Lebih terperinci

ANALISIS KARAKTERISTIK TERMAL INTERMEDIATE HEAT EXCHANGER PADA RGTT200K

ANALISIS KARAKTERISTIK TERMAL INTERMEDIATE HEAT EXCHANGER PADA RGTT200K ANALISIS KARAKTERISTIK TERMAL INTERMEDIATE HEAT EXCHANGER PADA RGTT200K Ign. Djoko Irianto Pusat Teknologi Reaktor dan Keselamatan Nuklir (PTRKN) - BATAN Kawasan Puspiptek, Serpong, Tangerang 15310 Telp./Fax:

Lebih terperinci

Analisa Unjuk Kerja Heat Recovery Steam Generator (HRSG) dengan Menggunakan Pendekatan Porous Media di PLTGU Jawa Timur

Analisa Unjuk Kerja Heat Recovery Steam Generator (HRSG) dengan Menggunakan Pendekatan Porous Media di PLTGU Jawa Timur Analisa Unjuk Kerja Heat Recovery Steam Generator (HRSG) dengan Menggunakan Pendekatan Porous Media di PLTGU Jawa Timur Nur Rima Samarotul Janah, Harsono Hadi dan Nur Laila Hamidah Departemen Teknik Fisika,

Lebih terperinci

Analisa Teoritis Berat Jenis dan Panas Spesifik Gas Pembakaran Pada Ketel Uap Mini Model Horizontal Di Tinjau Dari Susunan Pipa (Tubes)

Analisa Teoritis Berat Jenis dan Panas Spesifik Gas Pembakaran Pada Ketel Uap Mini Model Horizontal Di Tinjau Dari Susunan Pipa (Tubes) TURBO Vol. 5 No.. 016 p-issn: 301-6663, e-issn: 477-50X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo Analisa Teoritis Berat Jenis dan Panas Spesifik Gas Pembakaran

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iv. DAFTAR ISI... vi. DAFTAR GAMBAR... xi. DAFTAR GRAFIK...xiii. DAFTAR TABEL... xv. NOMENCLATURE... JUDUL LEMBAR PENGESAHAN KATA PENGANTAR... i ABSTRAK... iv... vi DAFTAR GAMBAR... xi DAFTAR GRAFIK...xiii DAFTAR TABEL... xv NOMENCLATURE... xvi BAB 1 PENDAHULUAN 1.1. Latar Belakang... 1 1.2. Perumusan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini akan dijabarkan mengenai penukar kalor, mekanisme perpindahan kalor pada penukar kalor, konfigurasi aliran fluida, shell and tube heat exchanger, bagian-bagian shell

Lebih terperinci

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2015

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2015 UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI ANALISIS SISTEM PENURUNAN TEMPERATUR JUS BUAH DENGAN COIL HEAT EXCHANGER Nama Disusun Oleh : : Alrasyid Muhammad Harun Npm : 20411527 Jurusan : Teknik

Lebih terperinci

ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN AIR SEBAGAI FLUIDA PANAS DAN FLUIDA DINGIN

ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN AIR SEBAGAI FLUIDA PANAS DAN FLUIDA DINGIN ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN AIR SEBAGAI FLUIDA PANAS DAN FLUIDA DINGIN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik Oleh : FELIX

Lebih terperinci

RANCANG BANGUN TEMPORARY AIR CONDITIONER BERBASIS PENYIMPANAN ENERGI TERMAL ES

RANCANG BANGUN TEMPORARY AIR CONDITIONER BERBASIS PENYIMPANAN ENERGI TERMAL ES ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.3 Desember 2017 Page 3837 RANCANG BANGUN TEMPORARY AIR CONDITIONER BERBASIS PENYIMPANAN ENERGI TERMAL ES DESIGN AND CONSTRUCTION OF TEMPORARY AIR

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori 2.1.1 Pengertian Heat Exchanger (HE) Heat Exchanger (HE) adalah alat penukar panas yang memfasilitasi pertukaran panas antara dua cairan pada temperatur yang berbeda

Lebih terperinci

EFEKTIVITAS PENUKAR KALOR TIPE WL 110 MODEL CONSENTRIS TUBE MENGGUNAKAN METODE ELEMEN HINGGA

EFEKTIVITAS PENUKAR KALOR TIPE WL 110 MODEL CONSENTRIS TUBE MENGGUNAKAN METODE ELEMEN HINGGA EFEKTIVITAS PENUKAR KALOR TIPE WL 110 MODEL CONSENTRIS TUBE MENGGUNAKAN METODE ELEMEN HINGGA Budiman Sudia 1, Abd. Kadir 2, Samhuddin 3 Staf Pengajar Jurusan Teknik Mesin Universitas Halu Oleo Kendari

Lebih terperinci

PENGARUH DEBIT ALIRAN AIR TERHADAP PROSES PENDINGINAN PADA MINI CHILLER

PENGARUH DEBIT ALIRAN AIR TERHADAP PROSES PENDINGINAN PADA MINI CHILLER PENGARUH DEBIT ALIRAN AIR TERHADAP PROSES PENDINGINAN PADA MINI CHILLER Senoadi 1,a, A. C. Arya 2,b, Zainulsjah 3,c, Erens 4,d 1, 3, 4) Jurusan Teknik Mesin, Fakultas Teknologi Industri, Universitas Trisakti

Lebih terperinci

JURUSAN TEKNIK MESIN POLITEKNIK NEGERI MEDAN MEDAN 2015

JURUSAN TEKNIK MESIN POLITEKNIK NEGERI MEDAN MEDAN 2015 ANALISA UNJUK KERJA TERMAL ALAT PENUKAR KALOR KONDENSOR DENGAN KAPASITAS SIRKULASI AIR 9.550 M 3 /JAM DI PLTU UNIT 3 PT PLN (PERSERO) SICANANG BELAWAN Diajukan untuk Memenuhi Sebagian Persyaratan dalam

Lebih terperinci

STUDI EKSPERIMENTAL PENGARUH PITCH

STUDI EKSPERIMENTAL PENGARUH PITCH STUDI EKSPERIMENTAL PENGARUH PITCH TERHADAP PENINGKATAN PERPINDAHAN PANAS PADA PENUKAR KALOR PIPA KONSENTRIK DENGAN LOUVERED STRIP INSERT SUSUNAN BACKWARD SKRIPSI Diajukan sebagai salah satu syarat untuk

Lebih terperinci

KATA PENGANTAR Puji dan syukur penulis ucapkan kepada Tuhan Yang Maha Esa, karena berkat rahmat dan karunia-nya, sehingga penulis dapat menyelesaikan skripsi yang berjudul UJI EKSPERIMENTAL OPTIMASI PERPINDAHAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan panas Perpindahan panas adalah perpindahan energi karena adanya perbedaan temperatur. Ada tiga bentuk mekanisme perpindahan panas yang diketahui, yaitu konduksi,

Lebih terperinci

SIMULASI EFEKTIFITAS ALAT KALOR TABUNG SEPUSAT DENGAN VARIASI KAPASITAS ALIRAN FLUIDA PANAS, FLUIDA DINGIN DAN SUHU MASUKAN FLUIDA PANAS DENGAN ALIRAN

SIMULASI EFEKTIFITAS ALAT KALOR TABUNG SEPUSAT DENGAN VARIASI KAPASITAS ALIRAN FLUIDA PANAS, FLUIDA DINGIN DAN SUHU MASUKAN FLUIDA PANAS DENGAN ALIRAN ANALISIS DAN SIMULASI EFEKTIFITAS ALAT PENUKAR KALOR TABUNG SEPUSAT DENGAN VARIASI KAPASITAS ALIRAN FLUIDA PANAS, FLUIDA DINGIN DAN SUHU MASUKAN FLUIDA PANAS DENGAN ALIRAN SEJAJAR SKRIPSI Skripsi Yang

Lebih terperinci

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang

BAB I PENDAHULUAN. Pembangkit Listrik Tenaga Air Panglima Besar Soedirman. mempunyai tiga unit turbin air tipe Francis poros vertikal, yang BAB I PENDAHULUAN 1.1. Latar Belakang Pembangkit Listrik Tenaga Air Panglima Besar Soedirman mempunyai tiga unit turbin air tipe Francis poros vertikal, yang digunakan sebagai penggerak mula dari generator

Lebih terperinci

KAJIAN EKSPERIMENTAL KELAYAKAN DAN PERFORMA ALAT PENUKAR KALOR TIPE SHELL AND TUBE SINGLE PASS DENGAN METODE BELL DELAWARE

KAJIAN EKSPERIMENTAL KELAYAKAN DAN PERFORMA ALAT PENUKAR KALOR TIPE SHELL AND TUBE SINGLE PASS DENGAN METODE BELL DELAWARE B.9. Kajian eksperimental kelayakan dan performa... (Sri U. Handayani, dkk.) KAJIAN EKSPERIMENTAL KELAYAKAN DAN PERFORMA ALAT PENUKAR KALOR TIPE SHELL AND TUBE SINGLE PASS DENGAN METODE BELL DELAWARE Sri

Lebih terperinci

ANALISIS PENGARUH KECEPATAN FLUIDA PANAS ALIRAN SEARAH TERHADAP KARAKTERISTIK HEAT EXCHANGER SHELL AND TUBE. Nicolas Titahelu * ABSTRACT

ANALISIS PENGARUH KECEPATAN FLUIDA PANAS ALIRAN SEARAH TERHADAP KARAKTERISTIK HEAT EXCHANGER SHELL AND TUBE. Nicolas Titahelu * ABSTRACT ANALISIS PENGARUH KECEPATAN FLUIDA PANAS ALIRAN SEARAH TERHADAP KARAKTERISTIK HEAT EXCHANGER SHELL AND TUBE Nicolas Titahelu * ABSTRACT Effect of hot fluid flow velocity direction have been investigated

Lebih terperinci

ANALISIS KINERJA COOLANT PADA RADIATOR

ANALISIS KINERJA COOLANT PADA RADIATOR ANALISIS KINERJA COOLANT PADA RADIATOR Alexander Clifford, Abrar Riza dan Steven Darmawan Program Studi Teknik Mesin, Fakultas Teknik Universitas Tarumanagara e-mail: Alexander.clifford@hotmail.co.id Abstract:

Lebih terperinci

BAB I. PENDAHULUAN...

BAB I. PENDAHULUAN... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGAJUAN... ii HALAMAN PENGESAHAN.... iii PERNYATAAN KEASLIAN PENELITIAN... iv HALAMAN PERSEMBAHAN... v KATA PENGANTAR... vi DAFTAR ISI... viii DAFTAR GAMBAR... x

Lebih terperinci

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara

Tekad Sitepu, Sahala Hadi Putra Silaban Departemen Teknik Mesin, Fakultas Teknik, Universitas Sumatera Utara PERANCANGAN HEAT RECOVERY STEAM GENERATOR (HRSG) YANG MEMANFAATKAN GAS BUANG TURBIN GAS DI PLTG PT. PLN (PERSERO) PEMBANGKITAN DAN PENYALURAN SUMATERA BAGIAN UTARA SEKTOR BELAWAN Tekad Sitepu, Sahala Hadi

Lebih terperinci

RANCANG BANGUN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG EMPAT LALUAN TABUNG

RANCANG BANGUN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG EMPAT LALUAN TABUNG i RANCANG BANGUN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG EMPAT LALUAN TABUNG SKRIPSI Skripsi Yang DiajukanUntukMelengkapi SyaratMemperolehGelarSarjanaTeknik FERRY SIANTURI NIM. 120401033

Lebih terperinci

KAJI EKSPERIMENTAL PENGARUH PANJANG TERHADAP LAJU PERPINDAHAN PANAS ALAT PENUKAR PANAS PIPA KONSENTRIK. Budi Santoso *)

KAJI EKSPERIMENTAL PENGARUH PANJANG TERHADAP LAJU PERPINDAHAN PANAS ALAT PENUKAR PANAS PIPA KONSENTRIK. Budi Santoso *) KAJI EKSPERIMENAL PENGARUH PANJANG ERHADAP LAJU PERPINDAHAN PANAS ALA PENUKAR PANAS PIPA KONSENRIK Budi Santoso *) Abstract: his research analyzed the effect of length to the performance of the concentric

Lebih terperinci