BAB 3 PERANCANGAN TURBIN ANGIN

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 3 PERANCANGAN TURBIN ANGIN"

Transkripsi

1 BAB 3 PERANCANGAN TURBIN ANGIN 3.1 Pendahuluan Dalam pembuatan suatu mesin pada umumnya, terutama mesin turbin, aspek desain memegang peranan yang sangat penting. Sebelum suatu alat dibuat dan diujikan, alat tersebut perlu didesain oleh perancang supaya dapat diketahui gambaran awal mengenai alat tersebut. Dengan desain dapat diketahui bentuk alat, komponenkomponen mesin yang digunakan, letak kelemahan, titik kritis, hubungan dengan mesin lain dan mekanisme penggunaan alat ketika sudah jadi. Desain awal ini dapat menjadi pijakan untuk langkah berikutnya dalam pembuatan alat. Pembuatan prototipe merupakan bagian awal dari pembuatan mesin dalam kapasitas yang lebih besar. Dengan prototipe, gambaran awal mengenai mesin tersebut dapat diketahui, sehingga mempermudah untuk pembuatan mesin selanjutnya. Selain itu, prototipe yang dibuat akan dievaluasi berkaitan dengan desain awal yang digunakan. Kelemahan-kelemahan yang terjadi dalam pembuatan prototipe ini akan menjadi acuan proses berikutnya, sehingga pembuatan mesin berikutnya akan lebih baik lagi. Termasuk dalam pembuatan prototipe turbin angin adalah pembuatan kompenen-komponen yang melingkupinya. Pembuatan komponen merupakan langkah awal dalam pembuatan prototipe. Komponen-komponen yang sudah jadi akan dirakit (assembly) membentuk turbin angin. Turbin angin memiliki beberapa komponen, seperti: sudu rotor, hub, generator, mekanisme yaw (yaw mechanism), nacelle, ekor turbin, dan tiang penyanggah. Komponen-komponen turbin angin dalam penelitian tugas akhir ini dirancang dan dibuatkan barangnya, sedangkan generator yang digunakan sebagai penghasil energi listrik merupakan produk jadi yang berupa permanent magnet generator (PMG) yang mempunyai spesifikasi khusus, sehingga kapasitas listrik dan dayanya sudah tertentu. Untuk mentransmisikan putaran dan torsi dari sudu rotor 25

2 terhadap poros generator, pangkal rotor menempel pada poros generator sehingga ketika sudu rotor berputar maka akan memutar poros generator sehingga akan dihasilkan energi listrik. Tahapan perancangan dan pembuatan turbin angin dapat dilihat pada bagan alir (flowchart) gambar 3.1. Mulai Memilih dan Menyiapkan Generator Listrik Merancang dan Membuat Sudu Rotor Menentukan dan Membuat Landasan Tiang Merancang dan Membuat Mekanisme Yaw Tidak Apakah Komponen Turbin Angin Sudah Siap Merancang dan Membuat Ekor Turbin Angin Ya Merancang dan Membuat Hub dan Nose Merakit dan Memasang Turbin Angin Merancang dan Menyiapkan Tiang Turbin Angin Melakukan Pengujian Selesai Gambar 3.1 Bagan alir tahapan perancangan dan pembuatan turbin angin 26

3 3.2 Perancangan Sudu Rotor Sudu merupakan komponen turbin angin yang sangat signifikan. Sudu berkontak dengan udara yang mengakibatkan sudu bergerak (berputar) karena adanya gaya drag dan lift. Pangkal sudu menempel pada suatu hub yang menghubungkan antara sudu dengan poros. Gerak putar sudu karena efek gaya drag dan lift akan memutar poros generator yang pada akhirnya akan timbul energi listrik. Oleh karena putaran pada sudu merupakan suatu hal yang menentukan dalam pembangkitan daya, maka kontruksi sudu pun harus dibuat sebaik mungkin. Pada pembuatan kontruksi turbin angin ini material yang digunakan untuk membuat sudu berasal dari kayu. Selain karena dari segi ekonomisnya yang handal seperti: harganya yang murah, penggunaannya mudah, dan mudah dicari, juga dari aspek pembuatan yang efisien dimana material kayu mudah dibuat. Dibandingkan dengan material logam yang memerlukan mesin khusus dalam membentuk atau mendeformasi logam menjadi sudu, pengolahan material kayu menjadi sudu memerlukan alat yang lebih efisien yaitu berupa alat potong (cutter) dan alat serut. Secara mekanika, material kayu ini memiliki massa yang relatif ringan sehingga memperkecil beban yang diterima oleh tiang penyangga, memiliki nilai inersia yang rendah, mudah digerakkan oleh energi angin dengan kecepatan yang rendah, dan torsi yang terjadi pada rotor dapat dibuat lebih besar. Pembuatan sudu meliputi beberapa macam tahapan. Karena bentuk penampang sudu berupa airfoil yang memanjang dari pangkal ke ujung sudu dan bentuknya semakin mengecil, maka perlu ketelitian dalam pembuatan sudu. Untuk mempermudah pembuatan airfoil sudu, maka perlu dibuat cetakan (mold) setiap layer atau stasiun. Misalnya panjang sudu 1,5 m dengan jumlah layer 13, maka setiap layer dibuatkan bentuk penampang airfoil beserta ukurannya yang meliputi ketebalan dan lebar sudu dari sisi leading edge. Dengan menggunakan hubungan jari-jari sudu r terhadap jumlah sudu dan lebar sudu, didapatkan nilai lebar sudu (chord) yaitu: 16 π R ( Rr) C = 2 9 λ B 27

4 dimana C adalah ketebalan sudu, r adalah jari-jari sudu, R adalah jari-jari bidang putar turbin, dan B adalah jumlah sudu, maka perhitungan ketebalan dan lebar sudu untuk jumlah sudu 2 buah, dapat diperlihatkan pada tabel 3.1. Tabel 3.1 Ketebalan dan lebar peanampang sudu setiap stasiun penampang r (mm) R (mm) λ Vwd B C (mm) , , , , , , , , , , , , , ,68 Perhitungan di atas berdasarkan data dan asumsi awal sebagai berikut: o Diameter sudu, D = 3,5 m o Tip Speed Ratio, λ = 7 (untuk sudu 2 buah) o Kecepatan angin nominal, Vwd = 5 ms o Jumlah sudu 2 o Tebal sudu merupakan 10% dari lebar sudu o Letak puncak ketebalan adalah 25% dari lebar sudu yang ditandai dari arah leading edge atau bagian depan model airfoil o C pada lambang di atas adalah chord atau lebar sudu 28

5 Sketsa gambar penampang sudu dapat diperlihatkan seperti gambar 3.2. Gambar 3.2 Penampang sudu setiap layer Setelah sketsa gambar sudu dibuat, langkah berikutnya adalah membuat sudu yang berasal dari material dengan menggunakan alat-alat mekanik yang berupa alat potong atau gergaji, alat serut, dan alat penghalus yang memakai amplas. Tahap-tahap pembuatan sudu kayu dapat dijelaskan sebagai berikut: 1. Menyiapkan papan yang berbentuk balok persegi panjang dengan ukuran 250 cm x 30 cm x 3 cm. 2. Menandai pada papan letak setiap stasiun untuk dibuatkan ukuran sudu yang sesuai dengan bentuk airfoil. 3. Memotong papan mengikuti kurva yang dibentuk dari chord setiap stasiun (yang perlu diperhatikan adalah leading edge dibuat lurus, sehingga bagian yang membentuk kurva adalah bagian tailing edge). 29

6 4. Menyerut bagian atas sesuai dengan distribusi ketebalan setiap stasiun. 5. Menandai lokasi dimana ketebalan maksimum berada. 6. Menyerut dan mengamplas hingga setiap stasiun membentuk profil airfoil yang baik. 7. Membuat alur dan lubang baut untuk memasang batang sudu. 8. Tahap penyelesaian, dengan menambahkan pelapis untuk menutup poripori kayu dan melakukan pengecatan. Gambar 3.3 Tahapan pembuatan sudu dari kayu 3.3 Perancangan Yaw Mechanism Yaw Mechanism adalah komponen yang menghubungkan antara tiang penyanggah dan rangka turbin angin. Fungsi yaw mechanism adalah menjaga arah turbin angin sehingga sudu rotor selalu menghadap arah datangnya angin. Prinsip kerja yaw mechanism berupa putaran pada sumbunya dimana ketika sudu menerima angin dari arah samping, yaw mechanism akan berputar sehingga sudu tetap menghadap angin dan dapat berputar. Yaw mechanism menggunakan material dari logam seperti baja karbon atau alumunium paduan. Hal ini dikarenakan beban yang diterima yaw mechanism sangat 30

7 besar yang berasal dari beban komponen turbin selain tiang dan beban dari energi angin itu sendiri. Oleh karena beban yang diterima sangat besar, maka material yang dipilih harus mampu menahan beban-beban tersebut dan baja atau alumunium alloy yang kuat merupakan material yang cocok untuk digunakan. Yaw mechanism terdiri dari beberapa komponen mekanis, seperti poros dalam, poros luar, dan bearing (bantalan). Poros dalam menempel pada tiang penyangga yang terhubung pada sebuah flange, sedangkan poros luar terhubung dengan rangka turbin angin. Sebuah rangka turbin angin terdiri dari generator, sudu, ekor, dan pipa penghubung yang sudah terpasang (assembly) menjadi satu kesatuan. Karena poros dalam menempel pada tiang penyangga melalui sebuah flange dengan cara dilas, maka poros ini bersifat statis dan tidak berputar. Untuk poros luar yang berhubungan dengan rangka cenderung bergerak (berputar) karena adanya gerak angin. Poros ini selalu berputar mengikuti putaran rangka turbin. Pemilihan dan pembuatan poros berkaitan dengan seberapa besar beban yang akan diterima. Poros dalam dengan poros luar dihubungkan dengan menggunakan bearing. Bearing tersebut terdiri dari dua buah dan diletakan pada tiap ujung bawah dan atas mekanisme yaw. Penggunaan bearing harus memperhatikan gerak putar poros dan beban poros sehingga poros luar tidak lepas. Poros luar dapat lepas dalam arah aksial akibat putaran dan beban poros. Dalam hal ini dapat diketahui bahwa bearing atas menerima beban radial, sedangkan bearing bawah menerima beban aksial dan radial sehingga dalam perancangan turbin angin ini dipilih bearing radial untuk bagian atas dan bearing aksial-radial untuk bagian bawah. Pemilihan ukuran bearing sangat berkaitan dengan ukuran poros yang akan digunakan. Pada penelitian turbin angin ini ukuran bearing yang digunakan mengikuti ukuran poros. Untuk poros dalam ukuran dimater luarnya 25 mm dengan ketebalan 5 mm, sedangkan poros luar diameter dalamnya 60 mm dengan ketebalan 10 mm sehingga ukuran bearing tersebut adalah adalah d25 dan D60 (diameter dalam 25 mm dan diameter luar 60 mm) untuk bearing atas dan d30 dan D60 (diamter dalam 30 mm dan diemeter luar 60 mm) untuk bearing bawah. 31

8 Gambar 3.4 Desain yaw mechanism Pembuatan yaw mechanism dilakukan melalui proses pemesinan (machining process). Poros yang yang menggunakan material baja dibubut untuk mendapatkan diameter dan bentuk poros sesuai dengan yang dinginkan. Setelah dibubut, kemudian poros luar dan dalam dipasangkan bearing. Setelah itu, dilakukan proses pengelasan yang mana poros dalam dilas dengan flange yang terdapat pada tiang penyangga, sedangkan poros luar dilas dengan peghubung ekor dan hub sudu. Terakhir, poros dalam dan luar dikunci dengan menggunakan mur M50 sehingga poros dalam dan luar menyatu dan tidak lepas. Gambar sketsa yaw mechanism dapat dilihat pada gambar

9 Gambar 3.5 Yaw Mechanism 3.4 Perancangan Ekor Ekor turbin angin (tail) adalah komponen yang letaknya di bagian belakang turbin angin. Fungsi ekor adalah untuk merespon angin dan menstabilkan gerakan turbin angin sehingga sudu rotor selalu menghadap arah datangnya angin. Selain itu, ekor dapat berfungsi sebagai penyeimbang terhadap berat komponen turbin angin bagian depan seperti generator, hub, dan sudu rotor. Gaya yang terjadi pada ekor berupa gaya drag dan lift akibat energi angin, serta gaya berat dari material ekor tersebut. Pada poros ekor juga terjadi moment lentur (bending) akibat energi angin tersebut. Untuk mampu menahan beban yang diterima ekor, material yang digunakan untuk membuat ekor harus kuat. Dalam tugas akhir ini, material yang digunakan berupa baja karbon rendah. Kekuatan baja karbon rendah dalam menahan beban yang diterima menjadi acuan dalam pemilihan material. 33

10 Selain faktor material, desain dan kontruksi ekor memegang peranan penting. Pada penelitian turbin angin ini ekor yang dibuat berasal dari poros yang panjangnya 1,5 meter. Pada ujung ekor dipasang pelat dengan panjang dan lebar sekitar 30 cm dan 20 cm. Penggunaan pelat ini bertujuan untuk mersepon arah angin. Ekor disambung dengan mekanisme yaw dengan menggunakan baut dan mur Pembuatan ekor dilakukan dengan cara menggabungkan (assembly) poros dengan plat yang berada pada bagian ujung belakang ekor dengan menggunakan mur dan baut. Sedangkan yang bagian depan poros dihubungkan dengan pengait yang yang menempel pada bagian yaw mechanism. Gambar 3.6 Ekor turbin angin 3.5 Perancangan Hub dan Hidung Hub adalah bagian rotor yang berada di pusat rotasi. Hub dibuat dari pelat baja yang melalui proses pemesinan dan pengelasan sehingga memungkinkan untuk dipasangkan pada poros generator. Hub juga harus memungkinkan untuk dipasangi batang sudu dan bila perlu counterbalance. Diameter hub dibuat sama dengan diameter generator yaitu 265 mm. Hidung diletakkan pada hub dengan bentuk hampir menyerupai setengah bola. Hidung memiliki beberapa fungsi diantaranya mengurangi tahanan turbin angin 34

11 terhadap angin, melindungi komponen-komponen yang menempel pada hub, dan memberikan nilai keindahan pada turbin angin. Bentuk hidung yang menyerupai setengah bola menjaga agar aliran udara yang menerpa hub tetap laminar atau setidaknya meminimalisir turbulensi yang terjadi di sekitar hub. Bentuk hidung yang menutupi bagian depan hub juga berfungsi sebagai pelindung komponen-komponen dalam hub dari pengaruh cuaca. Fungsi lain dari hidung adalah menambah nilai estetika pada turbin angin dimana turbin angin akan tampak lebih aerodinamis dengan penambahan hidung pada hub. Gambar 3.7 Hidung turbin angin 3.6 Perancangan Tiang Tiang penyanggah berfungsi untuk menahan beban yang terjadi pada turbin angin. Beban yang terjadi pada turbin angin adalah beban total dari berat komponenkomponen turbin angin dan beban karena adanya gaya yang ditimbulkan oleh angin. Termasuk beban komponen turbin angin adalah beban pada sudu, ekor, generator, dan yaw mechanism. Karena beban yang diterima tiang sangat besar, maka material 35

12 yang digunakan harus kuat. Biasanya bahan yang digunakan untuk tiang berasal dari baja. Selain faktor berat, tiang juga harus mampu menahan beban lentur akibat gaya angin yang mendorong sudu dan komponen turbin angin. Panjang dan besarnya tiang penyanggah bergantung pada sejauh mana beban dan efektivitas turbin angin. Turbin angin yang diletakkan pada tempat yang tinggi bertujuan agar sudu rotor menerima angin dengan kecepatan yang besar dan kondisi kecepatan angin yang stabil. Kecepatan angin yang besar akan menaikkan beban yang diterima turbin. Semakin tinggi penempatan turbin, semakin besar dan panjang tiang yang digunakan. Material yang digunakan untuk membuat tiang juga harus semakin kuat. Pada tiang penyanggah terdapat tali pengait yang menggunakan material baja yang berfungsi untuk memperkuat tiang sehingga tiang mampu berdiri dan menahan beban turbin angin. Ujung tali pengait ini dihubungkan ke tiang penyanggah, sedangkan ujung yang lainnya dihubungkan ke tanah atau permukaan bawah (ground) yang kuat. Panjang tiang penyanggah yang digunakan pada penelitian tugas akhir ini sebesar 3,5 m, sedangkan diameter tiang 10 cm dengan ketebalan pipa 1 cm. Panjang tiang yang dipakai ini berdasarkan tempat uji mesin turbin angin yang mengambil lokasi di atas gedung program studi teknik mesin ITB sehingga letak uji tersebut sudah cukup tinggi dari permukaan tanah dengan kondisi angin yang relatif stabil. Adapun pemilihan diameter 10 cm dengan ketebalan 1 cm cocok dan efektif untuk menerima beban total mesin turbin angin. Pemilihan diameter dan ketebalan yang sangat kecil mengakibatkan tiang tidak cukup kuat menahan beban total sehingga tiang bisa patah dan perangkat turbin angin bisa jatuh ke bawah. Kerusakan dan kegagalan pengujian turbin angin dapat dipengaruhi oleh kondisi pipa tiang penyanggah yang tidak kuat menerima beban. 36

13 Gambar 3.8 Tiang turbin angin 3.7 Pemilihan Generator Generator adalah alat yang mengubah energi mekanik atau gerak menjadi energi listrik. Energi listrik yang dihasilkan berasal dari perubahan medan magnet yang terdapat di dalam generator. Magnet ini dapat berupa kumparan kabel-kabel terlilit yang dialiri arus listrik dengan cara induksi atau suatu magnet yang sifatnya permannen (permanent magnet). Magnet yang berasal dari kumparan kabel-kabel mempunyai sifat kemagnetan sementara. Untuk menghasilkan magnet, kumparan kabel-kabel ini dialiri arus listrik dan dikenal dengan istilah induksi elektromagnetik. Kumparan kabel-kabel tersusun melilit sekitar plat konduktor. Jika lilitan kabel yang dialiri arus listrik dan memiliki sifat elektromagnetik ini bergerak (misalnya berputar) sehingga terjadi fluktuasi medan magnet, maka akan timbul gaya gerak listrik (ggl) dan beda tegangan listrik. 37

14 Selain berasal dari kumparan lilitan kabel yang dialiri arus listrik supaya terjadi kemagnetan yang sifatnya sementara, magnet pada generator juga dapat berupa magnet permanen (permanent magnet). Magnet permanen ini diletakkan di dalam generator dan mengelilingi plat konduktor. Ketika terjadi fluktuasi medan magnet karena adanya putaran dari plat konduktor atau magnet permanen tersebut, maka terjadi gaya gerak listrik (ggl) dan beda tegangan listrik. Kelebihan pemakaian magnet permanen dibandingkan magnet induksi adalah pada permanen magnet beda tegangan yang terjadi lebih besar, putaran plat konduktor atau magnet dapat lebih rendah untuk menghasilkan beda tegangan, dan tidak perlu adanya arus listrik induksi (non induksi elektromagnetik). Generator yang digunakan pada penelitian ini sudah memiliki spesifikasi yang khusus, yang mana daya yang mampu dihasilkan oleh generator sebesar 500 watt dengan putaran optimal 500. Generator yang digunakan merupakan bahan yang sudah jadi dan sudah memepunyai spesifasi tertentu. Generator ini didatangkan dari Ginlong Manufacturer, sebuah perusahaan pembuat generator listrik, termasuk jenis PMG yang digunakan pada penelitian ini. Gambar 3.9 Generator yang digunakan pada penelitian turbin angin 38

15 No Spesifikasi Tabel 3.2 Spesifikasi Generator 500 watt Keterangan 1 Trade mark GINLONG 2 Type GL-PMG-500A (500W) 3 Casing Aluminium alloy with TF/T6 heat treatment 4 Finishing Anodised and anti-corrosion painted 5 Shaft material stainless steel 6 Shaft bearing SKF or NSK bearings 7 Fasteners Stainless steel 8 Lamination stack Cold rolled steel 9 Rated windings temperature 180 C 10 Magnet material NdFeB (Neodynium Iron Boron) 11 Rated magnets temperature 150 C 12 Generator configuration 3 phase star connected AC output 13 Short circuit braking Capable 14 Prevention of electrical shock Class I for electrical safety Tabel 3.3 Fitur-fitur yang diklaim sebagai kelebihan GL-PMG-500A (500W) No Feature 1 Low start up speed due to low cogging and resistive torque design 2 Gearless, direct drive, low rpm generator 3 High standard, quality components for use in hars and extreme environments for wind turbines 4 High efficiency and low mechanical resitance energy loss 5 Excelent heat dissipation due to alluminium alloy outer frame and special internal structure 6 High strength from the specially design structure and fully heat treatment alluminium 7 Generator is treated to resist corrosion and oxidation 8 Reliable and long operational life time under long-term full output 9 Designed for 20 years operation life 39

16 No Feature 10 Patent protected design PMG memiliki kurva karakteristik daya terhadap putaran. Grafik di bawah ini menunjukkan kurva daya output terhadap putaran yang diberikan oleh generator GL- PMG-500 A (500W). Gambar 3.10 Kurva hubungan daya dan putaran yang terdapat pada Generator GL- PMG 500 A (500 watt) (Sumber: Ginlong Manufacturer) 3.8 Perakitan Turbin Angin Setelah semua komponen turbin angin tersedia, langkah berikutnya adalah merakit semua komponen turbin angin. Perakitan dilakukan per bagian dengan memperhatikan aspek keamanan komponen. Kakurangtelitian saat pemasangan dapat menyebabkan kerusakan pada komponen dan data yang dihasilkan saat pengujian kurang optimal. 40

17 Perakitan dilakukan dengan 3 tahapan, yang pertama memasang semua komponen badan turbin angin seperti: yaw mechanism, generator dan hub pada saat turbin angin belum dibawa ke atas dan terpasang dengan tiang. Tahap kedua yaitu memasang badan turbin angin dengan tiang. Selanjutnya, tahap ketiga berupa pemasangan sudu rotor pada hub dan pemasangan ekor turbin pada mekanisme yaw. Pada tahap ketiga ini, kondisi tiang turbin sudah didirikan di atas landasan. Gambar 3.11 Konstruksi turbin angin 3.9 Penentuan Daya Angin Dari persamaan Betz s dapat diketahui tentang persamaan daya yang terjadi pada turbin angin untuk berbagai kecepatan angin, yaitu: 41

18 ρ 3 P = CP vw A 2 Dimana C P adalah koefisien daya rotor, ρ adalah massa jenis udara, v w adalah kecepatan udara, dan A adalah luas bidang putar sudu. Besarnya energi angin yang melalui luas bidang putar rotor dilakukan oleh energi kinetik yang dikandung pada angin yang mengalir dengan kecepatan tertentu. Besar energi kinetik angin yang melalui luas bidang rotor pada setiap satuan waktu dihitung dengan persamaan Betz s di atas. Menurut aturan Betz s, daya yang diserap turbin angin tidak akan melebihi bagian dari daya total udara yang melalui luas area sapuan rotor. Pada kenyataannya nilai energi yang dapat diekstraksi oleh sudu rotor lebih kecil dari nilai tersebut dikarenakan adanya faktor-faktor lain yang merpengaruh seperti adanya losses karena gesekan antar komponen, efek wake yang terjadi, adanya turbulensi aliran udara di sekitar sudu dan faktor-faktor lainnya. Tabel 3.4 Hubungan kecepatan aliran udara terhadap nilai daya angin Kecepatan angin (m/s) Nilai daya (watt) Nilai luaran daya (watt) 1 2,18 1, ,43 15, ,84 52, ,47 125, ,41 245, ,73 423, ,49 672, , , , , , , , , , , , , , ,96 42

19 Kecepatan angin Nilai daya Nilai luaran (m/s) (watt) daya (watt) , ,57 Untuk perhitungan daya yang diekstraksi turbin angin dari udara yaitu dengan melihat nilai koefisien daya atau C P untuk tip speed ratio 7 dan jumlah sudu 2 buah sebesar 0,37, nilai massa jenis udara ρ sebesar 1,225 kg/m 3 untuk daerah di atas pantai, dan luas bidang putar sudu dengan diameter sudu 3,5 m sebesar 9,61625 m 2. Tabel di atas menunjukkan bahwa daya maksimum yang terkandung pada angin dan dapat diekstraksi oleh sudu rotor dengan asumsi: tidak ada losses, tidak terjadi efek wake, tidak ada turbulensi, dan efek perubahan luas area diabaikan. Dari tabel tersebut dapat dilihat bahwa pada kecepatan angin 5 m/s, daya maksimum yang terkandung pada angin dan dapat diekstraksi oleh rotor sebesar 272,41 watt. Jika terjadi efisiensi secara mekanika dan elektrika pada generator sebesar 90%, daya yang dapat dihasilkan oleh generator hanya sebesar 245,17 watt. Namun pada kenyataannya, daya yang diekstraksi oleh rotor dan dihasilkan oleh generator kurang dari angka tersebut karena banyak faktor yang tidak dilibatkan dalam perhitungan. Perhitungan ini hanya sebagai gambaran kasar perkiraan hubungan kecepatan angin dengan daya yang dihasilkan. 43

Bab 3 Perancangan dan Pembuatan Turbin Angin

Bab 3 Perancangan dan Pembuatan Turbin Angin Bab 3 Perancangan dan Pembuatan Turbin Angin 3.1 Perhitungan Daya pada Berbagai Kecepatan Angin 3.1.1 Menentukan Kecepatan Angin Nominal Turbin angin yang akan dibuat dirancang untuk dapat memenuhi kebutuhan

Lebih terperinci

Bab III Perancangan Turbin Angin 3 Sudu

Bab III Perancangan Turbin Angin 3 Sudu Bab III Perancangan Turbin Angin 3 Sudu 3.1 Metode Penelitian Metode yang digunakan pada pengerjaan tugas akhir ini adalah gabungan antara perancangan dan eksperimental. Metode analitik digunakan untuk

Lebih terperinci

BAB 4 PENGUJIAN, DATA DAN ANALISIS

BAB 4 PENGUJIAN, DATA DAN ANALISIS BAB 4 PENGUJIAN, DATA DAN ANALISIS 4.1 Pengujian Turbin Angin Turbin angin yang telah dirancang, dibuat, dan dirakit perlu diuji untuk mengetahui kinerja turbin angin tersebut. Pengujian yang dilakukan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Kebutuhan akan energi, khususnya energi listrik di Indonesia, merupakan bagian tak terpisahkan dari kebutuhan hidup masyarakat sehari-hari seiring dengan pesatnya

Lebih terperinci

BAB 2 DASAR TEORI 2.1 Energi Angin

BAB 2 DASAR TEORI 2.1 Energi Angin BAB DASAR TEORI.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis energi.

Lebih terperinci

= x 125% = 200 x 125 % = 250 Watt

= x 125% = 200 x 125 % = 250 Watt BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1 Perhitungan 4.1.1. Dasar Pemilihan Jenis Kincir Angin Kincir angin merupakan salah satu jenis energi terbarukan yang ramah lingkungan yang dapat dipakai untuk memasok

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Prinsip Kerja Turbin Angin Prinsip kerja dari turbin angin adalah mengubah energi mekanis dari angin menjadi energi putar pada kincir. Lalu putaran kincir digunakan untuk memutar

Lebih terperinci

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse

Lebih terperinci

Bab 2 Dasar Teori Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan (2.1)

Bab 2 Dasar Teori Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan (2.1) Bab Dasar Teori.1. Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan E = 1 mv (.1) dimana: m : massa udara yang bergerak (kg) v : adalah kecepatan angin (m/s).

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN 4.1. Proses Pengambilan dan Pengolahan Data Berdasarkan pembelajaran mengenai pembangkit energi tenaga angin yang telah ada maka berdasar dengan fungsi dan kegunaan maka dapat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Turbin Angin Bila terdapat suatu mesin dengan sudu berputar yang dapat mengonversikan energi kinetik angin menjadi energi mekanik maka disebut juga turbin angin. Jika energi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

BAB III PROSES MANUFAKTUR. yang dilakukan dalam proses manufaktur mesin pembuat tepung ini adalah : Mulai. Pengumpulan data.

BAB III PROSES MANUFAKTUR. yang dilakukan dalam proses manufaktur mesin pembuat tepung ini adalah : Mulai. Pengumpulan data. BAB III PROSES MANUFAKTUR 3.1. Metode Proses Manufaktur Proses yang dilakukan untuk pembuatan mesin pembuat tepung ini berkaitan dengan proses manufaktur dari mesin tersebut. Proses manufaktur merupakan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Flowchart Perencanaan Pembuatan Mesin Pemotong Umbi Proses Perancangan mesin pemotong umbi seperti yang terlihat pada gambar 3.1 berikut ini: Mulai mm Studi Literatur

Lebih terperinci

BAB IV PERHITUNGAN DAN PEMBAHASAN

BAB IV PERHITUNGAN DAN PEMBAHASAN BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1. Perencanaan Tabung Luar Dan Tabung Dalam a. Perencanaan Tabung Dalam Direncanakan tabung bagian dalam memiliki tebal stainles steel 0,6, perencenaan tabung pengupas

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN UJI EKSPERIMENTAL PENGARUH PROFIL DAN JUMLAH SUDU PADA VARIASI KECEPATAN ANGIN TERHADAP DAYA DAN PUTARAN TURBIN ANGIN SAVONIUS MENGGUNAKAN SUDU PENGARAH DENGAN LUAS SAPUAN ROTOR 0,90 M 2 SKRIPSI Skripsi

Lebih terperinci

PERANCANGAN DAN PEMBUATAN TURBIN ANGIN SUMBU HORIZONTAL TIGA SUDU BERDIAMETER 3,5 METER. Adi Andriyanto

PERANCANGAN DAN PEMBUATAN TURBIN ANGIN SUMBU HORIZONTAL TIGA SUDU BERDIAMETER 3,5 METER. Adi Andriyanto PERANCANGAN DAN PEMBUATAN TURBIN ANGIN SUMBU HORIZONTAL TIGA SUDU BERDIAMETER 3,5 METER TUGAS SARJANA Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh Adi Andriyanto 13102131

Lebih terperinci

STUDI EKSPERIMENTAL SISTEM PEMBANGKIT LISTRIK PADA VERTICAL AXIS WIND TURBINE

STUDI EKSPERIMENTAL SISTEM PEMBANGKIT LISTRIK PADA VERTICAL AXIS WIND TURBINE STUDI EKSPERIMENTAL SISTEM PEMBANGKIT LISTRIK PADA VERTICAL AXIS WIND TURBINE (VAWT) SKALA KECIL ( Citra Resmi, Ir.Sarwono, MM, Ridho Hantoro, ST, MT) Jurusan Teknik Fisika FTI ITS Surabaya Kampus ITS

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN digilib.uns.ac.id BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Pengujian Turbin Cross Flow Tanpa Sudu Pengarah Pengujian turbin angin tanpa sudu pengarah dijadikan sebagai dasar untuk membandingkan efisiensi

Lebih terperinci

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL Soebyakto Dosen Fakultas Teknik Universitas Pancasakti Tegal E-mail : soebyakto@gmail.com ABSTRAK Tenaga angin sering disebut sebagai

Lebih terperinci

Desain Turbin Angin Sumbu Horizontal

Desain Turbin Angin Sumbu Horizontal Desain Turbin Angin Sumbu Horizontal A. Pendahuluan Angin merupakan sumberdaya alam yang tidak akan habis.berbeda dengan sumber daya alam yang berasal dari fosil seperti gas dan minyak. Indonesia merupakan

Lebih terperinci

Jurnal Dinamis Vol.II,No.14, Januari 2014 ISSN

Jurnal Dinamis Vol.II,No.14, Januari 2014 ISSN UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0012 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH Farel H. Napitupulu 1, Ekawira K. Napitupulu

Lebih terperinci

Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB)

Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB) Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB) Fithri Muliawati 1, Taufiq Ramadhan 2 1 Dosen Tetap Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun

Lebih terperinci

PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR

PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR Sebagai Salah Satu Syarat untuk Menyelesaikan Program Strata I pada Jurusan Teknik Elektro Fakultas TeknikUniversitas

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perancangan Proses perancangan mesin peniris minyak pada kacang seperti terlihat pada gambar 3.1 berikut ini: Mulai Studi Literatur Gambar Sketsa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk

Lebih terperinci

PERANCANGAN DAN PEMBUATAN TURBIN ANGIN AKSIAL SUMBU HORIZONTAL DUA SUDU DENGAN DIAMETER 3,5 METER SUCIPTO

PERANCANGAN DAN PEMBUATAN TURBIN ANGIN AKSIAL SUMBU HORIZONTAL DUA SUDU DENGAN DIAMETER 3,5 METER SUCIPTO PERANCANGAN DAN PEMBUATAN TURBIN ANGIN AKSIAL SUMBU HORIZONTAL DUA SUDU DENGAN DIAMETER 3,5 METER TUGAS SARJANA Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh SUCIPTO 13102025

Lebih terperinci

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENGARUH VARIASI JUMLAH STAGE TERHADAP KINERJA TURBIN ANGIN SUMBU VERTIKAL SAVONIUS TIPE- L Krisna Slamet Rasyid, Sudarno, Wawan Trisnadi

Lebih terperinci

PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA

PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA TUGAS AKHIR Diajukan Guna Memenuhi Persyaratan Mencapai Derajat Strata-1 Fakultas Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Mesin Pan Granulator Mesin Pan Granulator adalah alat yang digunakan untuk membantu petani membuat pupuk berbentuk butiran butiran. Pupuk organik curah yang akan

Lebih terperinci

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3.

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3. 29 BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN 3.1 Konsep Perancangan Sistem Adapun blok diagram secara keseluruhan dari sistem keseluruhan yang penulis rancang ditunjukkan pada gambar 3.1.

Lebih terperinci

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ALVI SYUKRI 090421064 PROGRAM PENDIDIKAN

Lebih terperinci

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Bambang Arip Dwiyantoro*, Vivien Suphandani dan Rahman Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Kajian Pustaka Conveyor merupakan suatu alat transportasi yang umumnya dipakai dalam proses industri. Conveyor dapat mengangkut bahan produksi setengah jadi maupun hasil produksi

Lebih terperinci

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut: BAB II DASAR TEORI 2.1 Daya Penggerak Secara umum daya diartikan sebagai suatu kemampuan yang dibutuhkan untuk melakukan sebuah kerja, yang dinyatakan dalam satuan Watt ataupun HP. Penentuan besar daya

Lebih terperinci

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT 38 BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT Bab ini membahas rancangan diagram blok alat, rancangan Konstruksi Kumparan Stator dan Kumparan Rotor, rancangan Konstruksi Magnet Permanent pada Rotor

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Dalam melaksanakan pengujian ini penulis menggunakan metode pengujian dan prosedur pengujian. Sehingga langkah-langkah serta tujuan dari pengujian yang dilakukan dapat sesuai

Lebih terperinci

BAB III METODE PROYEK AKHIR. Motor dengan alamat jalan raya Candimas Natar. Waktu terselesainya pembuatan mesin

BAB III METODE PROYEK AKHIR. Motor dengan alamat jalan raya Candimas Natar. Waktu terselesainya pembuatan mesin BAB III METODE PROYEK AKHIR A. Waktu dan Tempat Tempat pembuatan dan perakitan mesin pemotong kerupuk ini di lakukan di Bengkel Kurnia Motor dengan alamat jalan raya Candimas Natar. Waktu terselesainya

Lebih terperinci

c = b - 2x = ,75 = 7,5 mm A = luas penampang v-belt A = b c t = 82 mm 2 = 0, m 2

c = b - 2x = ,75 = 7,5 mm A = luas penampang v-belt A = b c t = 82 mm 2 = 0, m 2 c = b - 2x = 13 2. 2,75 = 7,5 mm A = luas penampang v-belt A = b c t = mm mm = 82 mm 2 = 0,000082 m 2 g) Massa sabuk per meter. Massa belt per meter dihitung dengan rumus. M = area panjang density = 0,000082

Lebih terperinci

BAB III METODOLOGI PENGUKURAN

BAB III METODOLOGI PENGUKURAN BAB III METODOLOGI PENGUKURAN Kincir angin merupakan salah satu mesin konversi energi yang dapat merubah energi kinetic dari gerakan angin menjadi energi listrik. Energi ini dibangkitkan oleh generator

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB III. Metode Rancang Bangun

BAB III. Metode Rancang Bangun BAB III Metode Rancang Bangun 3.1 Diagram Alir Metode Rancang Bangun MULAI PENGUMPULAN DATA : DESAIN PEMILIHAN BAHAN PERHITUNGAN RANCANG BANGUN PROSES PERMESINAN (FABRIKASI) PERAKITAN PENGUJIAN ALAT HASIL

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

ANALISIS EFISIENSI JUMLAH BLADE PADA PROTOTYPE TURBIN ANGIN VENTURI

ANALISIS EFISIENSI JUMLAH BLADE PADA PROTOTYPE TURBIN ANGIN VENTURI ANALISIS EFISIENSI JUMLAH BLADE PADA PROTOTYPE TURBIN ANGIN VENTURI Yosef John Kenedi Silalahi 1, Iwan Kurniawan 2 Laboratorium Perawatan dan Perbaikan, Jurusan Teknik Mesin, Fakultas Teknik Universitas

Lebih terperinci

SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM

SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0012 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

BAB II DASAR TEORI Sistem Transmisi

BAB II DASAR TEORI Sistem Transmisi BAB II DASAR TEORI Dasar teori yang digunakan untuk pembuatan mesin pemotong kerupuk rambak kulit adalah sistem transmisi. Berikut ini adalah pengertian-pengertian dari suatu sistem transmisi dan penjelasannya.

Lebih terperinci

BAB IV PROSES PEMBUATAN DAN PENGUJIAN

BAB IV PROSES PEMBUATAN DAN PENGUJIAN BAB IV PROSES PEMBUATAN DAN PENGUJIAN 4.1 Alat Dan Bahan Alat dan bahan yang digunakan untuk pembuatan bagian rangka, pengaduk adonan bakso dan pengunci pengaduk adonan bakso adalah : 4.1.1 Alat Alat yang

Lebih terperinci

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer BAB II DASAR TEORI 2.1 Konsep Perencanaan Konsep perencanaan komponen yang diperhitungkan sebagai berikut: a. Motor b. Reducer c. Daya d. Puli e. Sabuk V 2.2 Motor Motor adalah komponen dalam sebuah kontruksi

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013 UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 4415 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

BAB III METODOLOGI Diagram Alur Produksi Mesin. Gambar 3.1 Alur Kerja Produksi Mesin

BAB III METODOLOGI Diagram Alur Produksi Mesin. Gambar 3.1 Alur Kerja Produksi Mesin BAB III METODOLOGI 3.1. Diagram Alur Produksi Mesin Gambar 3.1 Alur Kerja Produksi Mesin 3.2. Cara Kerja Mesin Prinsip kerja mesin pencetak bakso secara umum yaitu terletak pada screw penekan adonan dan

Lebih terperinci

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air

Lebih terperinci

BAB IV PERANCANGAN DAN PERHITUNGAN SUDU KINCIR ANGIN VERTIKAL DARRIEUS TIPE-H

BAB IV PERANCANGAN DAN PERHITUNGAN SUDU KINCIR ANGIN VERTIKAL DARRIEUS TIPE-H BAB IV PERANCANGAN DAN PERHITUNGAN SUDU KINCIR ANGIN VERTIKAL DARRIEUS TIPE-H Dalam proses perancangan dan pembuatan kincir angin vertical ini, telah ditentukan poros dan blade yang digunakan sesuai dengan

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

BAB II MOTOR ARUS SEARAH

BAB II MOTOR ARUS SEARAH BAB II MOTOR ARUS SEARAH 2.1 Umum Motor arus searah (motor DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis. Pada prinsip pengoperasiannya, motor arus searah sangat identik

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Pengambilan data Pengambilan data dilakukan pada tanggal 11 Desember 212 di Laboratorium Proses Produksi dengan data sebagai berikut : 1. Kecepatan angin (v) = 3

Lebih terperinci

PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA

PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA Ahmad Sayogo 1, Novi Caroko, S.T. *, M.Eng 2, Wahyudi, S.T., M.T. 3 1,2,3 Jurusan Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. TINJAUAN PUSTAKA Potato peeler atau alat pengupas kulit kentang adalah alat bantu yang digunakan untuk mengupas kulit kentang, alat pengupas kulit kentang yang

Lebih terperinci

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor BAB II DASAR TEORI 2.1 Konsep Perencanaan Sistem Transmisi Pada perancangan suatu kontruksi hendaknya mempunyai suatu konsep perencanaan. Untuk itu konsep perencanaan ini akan membahas dasar-dasar teori

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia merupakan negara yang kaya akan segala potensi sumberdaya alamnya, baik yang berasal dari hasil tambang, minyak bumi, gas, air, sinar matahari dan udara.

Lebih terperinci

III. METODE PEMBUATAN. Tempat pembuatan mesin pengaduk adonan kerupuk ini di bengkel las dan bubut

III. METODE PEMBUATAN. Tempat pembuatan mesin pengaduk adonan kerupuk ini di bengkel las dan bubut 16 III. METODE PEMBUATAN A. Waktu dan Tempat Tempat pembuatan mesin pengaduk adonan kerupuk ini di bengkel las dan bubut Amanah, jalan raya candimas Natar, Lampung Selatan. Pembuatan mesin pengaduk adonan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo

BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo BAB I PENDAHULUAN 1.1. Latar Belakang Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo adalah pulau kecil dengan pesona alam yang mengagumkan. Terletak disebelah utara Kota Probolinggo sekitar

Lebih terperinci

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 Dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0 º, 10 º, 15 º

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 Dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0 º, 10 º, 15 º TUGAS AKHIR Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 Dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0 º, 10 º, 15 º Disusun Sebagai Syarat Untuk Mencapai Gelar Sarjana Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis,

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis, BAB II TINJAUAN PUSTAKA.1 Perancangan Mesin Pemisah Biji Buah Sirsak Proses pembuatan mesin pemisah biji buah sirsak melalui beberapa tahapan perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah,

Lebih terperinci

BAB IV DESIGN DAN ANALISA

BAB IV DESIGN DAN ANALISA BAB IV DESIGN DAN ANALISA Pada bab ini penulis hendak menampilkan desain turbin air secara keseluruhan mulai dari profil sudu, perhitungan dan pengecekan kekuatan bagian-bagian utama dari desain turbin

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Skema Dan Prinsip Kerja Alat Prinsip kerja mesin pemotong krupuk rambak kulit ini adalah sumber tenaga motor listrik ditransmisikan kepulley 2 dan memutar pulley 3 dengan

Lebih terperinci

BAB III PERENCAAN DAN GAMBAR

BAB III PERENCAAN DAN GAMBAR BAB III PERENCAAN DAN GAMBAR 3.1 Diagram Alur Perencanaan Proses perancangan alat pencacah rumput gajah seperti terlihat pada diagram alir berikut ini: Mulai Pengamatan dan Pengumpulan Perencanaan Menggambar

Lebih terperinci

III. METODOLOGI PENELITIAN. Pembuatan alat penelitian ini dilakukan di Bengkel Berkah Jaya, Sidomulyo,

III. METODOLOGI PENELITIAN. Pembuatan alat penelitian ini dilakukan di Bengkel Berkah Jaya, Sidomulyo, 31 III. METODOLOGI PENELITIAN A. Tempat Pembuatan Dan Pengujian Pembuatan alat penelitian ini dilakukan di Bengkel Berkah Jaya, Sidomulyo, Lampung Selatan. Kemudian perakitan dan pengujian dilakukan Lab.

Lebih terperinci

PERAKITAN ALAT PENGAYAK PASIR SEMI OTOMATIK

PERAKITAN ALAT PENGAYAK PASIR SEMI OTOMATIK PERAKITAN ALAT PENGAYAK PASIR SEMI OTOMATIK Nama : Hery Hermawanto NPM : 23411367 Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : Dr. Ridwan, ST., MT Latar Belakang Begitu banyak dan

Lebih terperinci

BAB IV PROSES PEMBUATAN DAN PENGUJIAN

BAB IV PROSES PEMBUATAN DAN PENGUJIAN BAB IV PROSES PEMBUATAN DAN PENGUJIAN 4.1 Alat Dan Bahan Alat dan bahan yang digunakan untuk pembuatan bagian rangka, pengaduk adonan bakso dan pengunci pengaduk adonan bakso adalah : 4.1.1 Alat Alat yang

Lebih terperinci

PENGEMBANGAN METODE PENENTUAN KARAKTERISTIK RANCANGAN AWAL ROTOR TURBIN ANGIN

PENGEMBANGAN METODE PENENTUAN KARAKTERISTIK RANCANGAN AWAL ROTOR TURBIN ANGIN PENGEMBANGAN METODE PENENTUAN KARAKTERISTIK RANCANGAN AWAL ROTOR TURBIN ANGIN Sulistyo Atmadi Ahmad Jamaludln Fltroh Peneliti Pusat Teknologi Dirgantara Terapan, LAPAN ABSTRACT A method for determining

Lebih terperinci

Perancangandanpembuatan Crane KapalIkanUntukDaerah BrondongKab. lamongan

Perancangandanpembuatan Crane KapalIkanUntukDaerah BrondongKab. lamongan Perancangandanpembuatan Crane KapalIkanUntukDaerah BrondongKab. lamongan Latar Belakang Dalam mencapai kemakmuran suatu negara maritim penguasaan terhadap laut merupakan prioritas utama. Dengan perkembangnya

Lebih terperinci

LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H

LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H DISUSUN OLEH : Yos Hefianto Agung Prastyo 41311010005 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Skema Dinamometer (Martyr & Plint, 2007)

BAB II DASAR TEORI. Gambar 2.1 Skema Dinamometer (Martyr & Plint, 2007) 3 BAB II DASAR TEORI 2.1 Pengertian Dinamometer Dinamometer adalah suatu mesin yang digunakan untuk mengukur torsi (torque) dan daya (power) yang diproduksi oleh suatu mesin motor atau penggerak berputar

Lebih terperinci

DESAIN TURBIN ANGIN SUMBU VERTIKAL TIPE H-ROTOR KAPASITAS 1 kw DI PANTAI SUWUK KEBUMEN

DESAIN TURBIN ANGIN SUMBU VERTIKAL TIPE H-ROTOR KAPASITAS 1 kw DI PANTAI SUWUK KEBUMEN DESAIN TURBIN ANGIN SUMBU VERTIKAL TIPE H-ROTOR KAPASITAS 1 kw DI PANTAI SUWUK KEBUMEN SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh : ACHMAD GUSTIANTONO NIM. I0411001

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN A. DESAIN PENGGETAR MOLE PLOW Prototip mole plow mempunyai empat bagian utama, yaitu rangka three hitch point, beam, blade, dan mole. Rangka three hitch point merupakan struktur

Lebih terperinci

BAB IV PROSES PEMBUATAN MESIN

BAB IV PROSES PEMBUATAN MESIN BAB IV PROSES PEMBUATAN MESIN 4.1 Proses Produksi Produksi adalah suatu proses memperbanyak jumlah produk melalui tahapantahapan dari bahan baku untuk diubah dengan cara diproses melalui prosedur kerja

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Pengambilan Data Pengambilan data dilakukan pada tanggal 11 Desember 2012 Januari 2013 di Laboratorium Proses Produksi dengan data sebagai berikut : 1. Kecepatan

Lebih terperinci

BAB IV PROSES, HASIL, DAN PEMBAHASAN. panjang 750x lebar 750x tinggi 800 mm. mempermudah proses perbaikan mesin.

BAB IV PROSES, HASIL, DAN PEMBAHASAN. panjang 750x lebar 750x tinggi 800 mm. mempermudah proses perbaikan mesin. BAB IV PROSES, HASIL, DAN PEMBAHASAN A. Desain Mesin Desain konstruksi Mesin pengaduk reaktor biogas untuk mencampurkan material biogas dengan air sehingga dapat bercampur secara maksimal. Dalam proses

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA digilib.uns.ac.id BAB II TINJAUAN PUSTAKA 2.1 Energi Angin Salah satu energi terbarukan yang berkembang pesat di dunia saat ini adalah energi angin. Angin adalah udara yang bergerak karena adanya perbedaan

Lebih terperinci

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor.

BAB II. 1. Motor arus searah penguatan terpisah, bila arus penguat medan rotor. dan medan stator diperoleh dari luar motor. BAB II MOTOR ARUS SEARAH II.1. Umum (8,9) Motor arus searah adalah suatu mesin yang berfungsi mengubah energi listrik menjadi energi mekanik, dimana energi gerak tersebut berupa putaran dari motor. Ditinjau

Lebih terperinci

RANCANGAN SISTEM ORIENTASI EKOR TURBIN ANGIN 50 kw

RANCANGAN SISTEM ORIENTASI EKOR TURBIN ANGIN 50 kw RANCANGAN SISTEM ORIENTASI EKOR TURBIN ANGIN 50 kw ' Suiistyo Atmadi, Ahmad Jamaludln Fitroh Penelltl Pusat Teknologi Terapan, LAPAN ABSTRACT A fin orientation system for wind turbine with a maximum capacity

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN 5.1. Pembuatan Prototipe 5.1.1. Modifikasi Rangka Utama Untuk mempermudah dan mempercepat waktu pembuatan, rangka pada prototipe-1 tetap digunakan dengan beberapa modifikasi. Rangka

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Proses perancangan suatu alat ataupun mesin yang baik, diperlukan perencanaan yang cermat dalam pendesainan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu

Lebih terperinci

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º NASKAH PUBLIKASI TUGAS AKHIR Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º Disusun Sebagai Syarat Untuk Mencapai Gelar

Lebih terperinci

Bab II Tinjauan Pustaka

Bab II Tinjauan Pustaka Bab II Tinjauan Pustaka.1 Energi Angin Atmosfer yang menyelimuti bumi mengandung berbagai macam molekul gas dan tersusun atas beberapa lapisan. Lapisan atmosfer yang paling rendah adalah troposfer yang

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN A. HASIL RANCANGAN DAN KONSTRUKSI 1. Deskripsi Alat Gambar 16. Mesin Pemangkas Tanaman Jarak Pagar a. Sumber Tenaga Penggerak Sumber tenaga pada mesin pemangkas diklasifikasikan

Lebih terperinci

BAB IV PEMBUATAN DAN PENGUJIAN

BAB IV PEMBUATAN DAN PENGUJIAN BAB IV PEMBUATAN DAN PENGUJIAN 4.1. Proses Pembuatan Proses pembuatan adalah tahap-tahap yang dilakukan untuk mencapai suatu hasil. Dalam proses pembuatan ini dijelaskan bagaimana proses bahanbahan yang

Lebih terperinci

PERANCANGAN TURBIN ANGIN SUMBU HORISONTAL 1000 WATT DI PELABUHAN KARIMUNJAWA KABUPATEN JEPARA

PERANCANGAN TURBIN ANGIN SUMBU HORISONTAL 1000 WATT DI PELABUHAN KARIMUNJAWA KABUPATEN JEPARA PERANCANGAN TURBIN ANGIN SUMBU HORISONTAL 1000 WATT DI PELABUHAN KARIMUNJAWA KABUPATEN JEPARA SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh : ROYAN ROMADHON NIM.

Lebih terperinci

PERANCANGAN DAN PEMBUATAN DINAMOMETER KECIL DENGAN MENGGUNAKAN REM ARUS EDDY

PERANCANGAN DAN PEMBUATAN DINAMOMETER KECIL DENGAN MENGGUNAKAN REM ARUS EDDY PERANCANGAN DAN PEMBUATAN DINAMOMETER KECIL DENGAN MENGGUNAKAN REM ARUS EDDY Sangriyadi Setio 1 dan Antonius Irwan 2 Program Studi Teknik Mesin, FTMD, ITB Jalan Ganesha No. 10, Bandung 40132, Indonesia

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan

Lebih terperinci

Generator arus bolak-balik dibagi menjadi dua jenis, yaitu: a. Generator arus bolak-balik 1 fasa b. Generator arus bolak-balik 3 fasa

Generator arus bolak-balik dibagi menjadi dua jenis, yaitu: a. Generator arus bolak-balik 1 fasa b. Generator arus bolak-balik 3 fasa BAB II TINJAUAN PUSTAKA 2.1 Pembangkit Listrik 2 Pembangkit Listrik adalah bagian dari alat Industri yang dipakai untuk memproduksi dan membangkitkan tenaga listrik dari berbagai sumber tenaga. Bagian

Lebih terperinci

PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK

PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK PERANCANGAN KINCIR TERAPUNG PADA SUNGAI UNTUK PEMBANGKIT LISTRIK Jones Victor Tuapetel 1), Diyan Poerwoko 2) 1, 2) Program Studi Teknik Mesin Institut Teknologi Indonesia E-mail: jvictor_tuapetel@yahoo.com,

Lebih terperinci

BAB IV PEMBUATAN DAN PENGUJIAN

BAB IV PEMBUATAN DAN PENGUJIAN BAB IV PEMBUATAN DAN PENGUJIAN 4.1. Proses Pembuatan Proses pembuatan adalah tahap-tahap yang dilakukan untuk mencapai suatu hasil. Dalam proses pembuatan ini dijelaskan bagaimana proses bahanbahan yang

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian hampir seluruhnya dilakukan di laboratorium Gedung Fisika Material

BAB III METODE PENELITIAN. Penelitian hampir seluruhnya dilakukan di laboratorium Gedung Fisika Material BAB III METODE PENELITIAN Metode yang dilakukan dalam penelitian ini adalah rancang bangun alat. Penelitian hampir seluruhnya dilakukan di laboratorium Gedung Fisika Material Pusat Teknologi Nuklir Bahan

Lebih terperinci

Rancang Bangun Alat Bantu Potong Plat Bentuk Lingkaran Menggunakan Plasma Cutting

Rancang Bangun Alat Bantu Potong Plat Bentuk Lingkaran Menggunakan Plasma Cutting Rancang Bangun Alat Bantu Potong Plat Bentuk Lingkaran Menggunakan Plasma Cutting M. Naufal Falah 1, Budianto 2 dan Mukhlis 3 1 Program Studi Teknik Desain dan Manufaktur, Jurusan Permesinan Kapal, Politeknik

Lebih terperinci