Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir

Ukuran: px
Mulai penontonan dengan halaman:

Download "Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir"

Transkripsi

1 Relasi Rekursi *recurrence rekurens rekursi perulangan. Kata kunci: definisi, relasi rekursi linier berkoefisien konstan, solusi relasi rekurensi, dan solusi homogen & partikelir menuliskan definisi dari relasi rekursi memberikan sebuah contoh bentuk dari relasi rekursi menyebutkan jenis-jenis relasi rekursi menjelaskan barisan Fibonacci sebagai salah satu contoh relasi rekursi. Definisi 1 Suatu relasi rekursi untuk sebuah barisan *a n + merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih suku-suku sebelumnya dari barisan tersebut, untuk suatu bilangan bulat nonnegatif n. Suatu barisan disebut solusi dari sebuah relasi rekursi jika sukusuku pada barisan tersebut memenuhi relasi rekursinya. Contoh 1 Misal *a n + barisan yang memenuhi relasi rekursi a n = a n 1 a n 2 untuk n 2, lalu misalkan a 0 = 3 dan a 1 = 5. Tentukan nilai a 2 dan a 3. Karena a 2 = a 1 a 0, maka a 2 = 2. Karena a 3 = a 2 a 1, maka a 3 = 3. Contoh 2 Untuk bilangan bulat nonnegatif n, apakah barisan a n = 3n, a n = 2 n dan a n = 5 merupakan solusi bagi relasi rekursi a n = 2a n 1 a n 2? (i) Misal a n = 3n, untuk bilangan bulat nonnegatif n. Maka Relasi / 7

2 a n = 2a n 1 a n 2 a n = 2(3(n 1)) 3(n 2) a n = 3n. Maka a n = 3n merupakan solusi bagi relasi rekursi a n = 2a n 1 a n 2. (ii) Misal a n = 2 n, untuk bilangan bulat nonnegatif n. Maka a n = 2a n 1 a n 2 a n = 2(2 (n 1) ) 2 (n 2) a n = 2 n 2 n 2 a n = 2 n (1 1 4 ) = 2n 3 4 2n. Maka a n = 2 n bukan merupakan solusi bagi relasi rekursi a n = 2a n 1 a n 2. (iii) Misal a n = 5, untuk bilangan bulat nonnegatif n. Maka a n = 2a n 1 a n 2 a n = 2(5) 5 a n = 5 Maka a n = 5 merupakan solusi bagi relasi rekursi a n = 2a n 1 a n 2. Catatan: Kondisi awal (a 0 ) akan menentukan suku-suku pada barisan berikutnya. Contoh 3 Tentukan barisan yang merupakan solusi dari relasi rekursi a n = 3a n 1, jika diketahui a 0 = 2. a n = 3a n 1 a n = 3(3a n 2 ) = 3 2 a n 2 Relasi / 7

3 a n = 3(3(3a n 3 )) = 3 3 a n 3 a n = 3 n a n n = 3 n a 0 a n = 2 3 n Sehingga barisan a n = 2 3 n merupakan solusi dari relasi rekursi a n = 3a n 1 dengan nilai awal a 0 = 2. Definisi 2 Jenis-jenis Relasi Rekursi Suatu relasi rekursi linier homogen berderajat k dengan koefisien konstan memiliki bentuk umum: a n = c 1 a n 1 + c 2 a n c k a n k dengan c 1, c 2,, c k adalah bilangan real, dan c k 0. Perhatikan tabel berikut ini: Relasi Rekursi Linier Homogen Koef. Konst. Degree a n = 2a n 1 a n a n = a n 1 + a n 2 2 H n = 2H n b n = nb n 1 1 Relasi / 7

4 Menentukan Relasi Rekursi Linier Homogen dengan Koefisien Konstan Contoh 1 Tentukan solusi dari relasi rekursi a n = a n 1 + 2a n 2, dengan a 0 = 2, dan a 1 = 7. Bentuk persamaan karakteristik dari relasi rekursi a n = a n 1 + 2a n 2. Pindahkan semua suku ke ruas kiri. a n a n 1 2a n 2 = 0 Karena relasi di atas memiliki derajat 2, maka bentuk polinomial derajat 2 yang bersesuaian dengan masing-masing suku dari relasi tersebut, perhatikan setiap koefisien dan tanda tiap suku. a n a n 1 2a n 2 = 0 r 2 r 2r 0 = 0 r 2 r 2 = 0 Persamaan di atas disebut persamaan karakteristik, dan memiliki 2 akar berbeda yaitu r 1 = 2 dan r 2 = 1 yang disebut akar-akar karakteristik. Bentuk solusi umum dari relasi rekursi yang memiliki 2 akar berbeda adalah a n = c 1 r 1 n + c 2 r 2 n Sehingga solusi umum dari relasi rekursi di atas adalah Untuk suatu c 1, c 2 bilangan real. a n = c 1 2 n + c 2 ( 1) n Relasi / 7

5 Untuk mendapatkan solusi khusus, gunakan nilai awal yang diketahui. a 0 = 2 = c c 2 ( 1) 0 2 = c 1 + c 2... (1) a 1 = 7 = c c 2 ( 1) 1 7 = 2c 1 c 2... (2) Persamaan (1) dan (2) dapat diselesaikan dengan metode substitusi/eliminasi untuk mendapatkan c 1 = 3 dan c 2 = 1. Sehingga solusi khusus dari relasi rekursi a n = a n 1 + 2a n 2 adalah a n = 3 2 n ( 1) n. Contoh 2 Tentukan solusi dari relasi rekursi a n = 6a n 1 9a n 2, dengan a 0 = 1, dan a 1 = 6. Bentuk persamaan karakteristik dari relasi rekursi tersebut. a n = 6a n 1 9a n 2 a n 6a n 1 + 9a n 2 = 0 r 2 6r + 9 = 0 Persamaan karakteristik di atas memiliki akar-akar karakteristik kembar yaitu r 1 = r 2 = 3. Bentuk solusi umum dari relasi rekursi yang memiliki 2 akar kembar adalah a n = c 1 r 1 n + c 2 nr 1 n Relasi / 7

6 Sehingga solusi umum dari relasi rekursi di atas adalah Untuk suatu c 1, c 2 bilangan real. a n = c 1 3 n + c 2 n(3) n Untuk mendapatkan solusi khusus, gunakan nilai awal yang diketahui. a 0 = 1 = c c 2 0( 1) 0 1 = c 1... (1) a 1 = 6 = c c 2 1(3) 1 6 = 3c 1 + 3c 2... (2) Persamaan (1) dan (2) dapat diselesaikan dengan metode substitusi/eliminasi untuk mendapatkan c 1 = 1 dan c 2 = 1. Sehingga solusi khusus dari relasi rekursi a n = 6a n 1 9a n 2 adalah a n = 3 n + n 3 n. Contoh 3 Tentukan solusi dari relasi rekursi a n = 6a n 1 11a n 2 + 6a n 3, dengan a 0 = 2, a 1 = 5 dan a 2 = 15. Bentuk persamaan karakteristik dari relasi rekursi tersebut. a n = 6a n 1 11a n 2 + 6a n 3 a n 6a n a n 2 6a n 3 = 0 r 3 6r r 6 = 0 Relasi / 7

7 Persamaan karakteristik di atas memiliki akar-akar karakteristik berbeda yaitu r 1 = 1, r 2 = 2 dan r 3 = 3. Bentuk solusi umum dari relasi rekursi yang memiliki 3 akar berbeda adalah a n = c 1 r 1 n + c 2 r 2 n + c 3 r 3 n Sehingga solusi umum dari relasi rekursi di atas adalah a n = c 1 1 n + c 2 2 n + c 3 3 n Untuk suatu c 1, c 2, c 3 bilangan real. Untuk mendapatkan solusi khusus, gunakan nilai awal yang diketahui. a 0 = 2 = c 1 + c 2 + c 3 a 1 = 5 = c 1 + 2c 2 + 3c 3 a 2 = 15 = c 1 + 4c 2 + 9c 3 3 persamaan di atas dapat diselesaikan dengan metode substitusi/eliminasi untuk mendapatkan c 1 = 1, c 2 = 1 dan c 3 = 2. Sehingga solusi khusus dari relasi rekursi a n = 6a n 1 11a n 2 + 6a n 3 adalah a n = 1 2 n n. Latihan Tentukan solusi khusus dari relasi-relasi rekursi berikut ini. 1. a n = 2a n 1, a 0 = 3 2. a n = 5a n 1 6a n 2, a 0 = 1, a 1 = 0 3. a n = 4a n 1 4a n 2, a 0 = 6, a 1 = 8 4. a n = 4a n 2, a 0 = 0, a 1 = 4 5. a n = 2a n 1 + a n 2 2a n 3, a 0 = 3, a 1 = 6 dan a 2 = 0 6. a n = 2a n 1 + 5a n 2 6a n 3, a 0 = 7, a 1 = 4 dan a 2 = 8 Relasi / 7

Relasi Rekursi. Matematika Informatika 4. Onggo

Relasi Rekursi. Matematika Informatika 4. Onggo Relasi Rekursi Matematika Informatika 4 Onggo Wiryawan @OnggoWr Definisi Definisi 1 Suatu relasi rekursi untuk sebuah barisan {a n } merupakan sebuah rumus untuk menyatakan a n ke dalam satu atau lebih

Lebih terperinci

Karena relasi rekurens menyatakan definisi barisan secara rekursif, maka kondisi awal merupakan langkah basis pada definisi rekursif tersebut.

Karena relasi rekurens menyatakan definisi barisan secara rekursif, maka kondisi awal merupakan langkah basis pada definisi rekursif tersebut. Relasi Rekurens 1 Relasi Rekurens Barisan (sequence) a 0, a 1, a 2,, a n dilambangkan dengan {a n } Elemen barisan ke-n, yaitu a n, dapat ditentukan dari suatu persamaan. Bila persamaan yang mengekspresikan

Lebih terperinci

CHAPTER 8. Advanced Counting Techniques

CHAPTER 8. Advanced Counting Techniques CHAPTER 8 Advanced Counting Techniques Banyak problem counting yang tidak dapat dipecahkan dengan menggunakan hanya aturan dasar, kombinasi, permutasi, dan aturan sarang merpati. Misalnya: Ada berapa banyak

Lebih terperinci

Relasi Rekursi. Definisi Relasi Rekursi

Relasi Rekursi. Definisi Relasi Rekursi Relasi Rekursi Definisi Relasi Rekursi Relasi rekursi adalah sebuah formula rekursif dimana setiap bagian dari suatu barisan dapat ditentukan menggunakan satu atau lebih bagian sebelumnya. Jika ak adalah

Lebih terperinci

Design and Analysis of Algorithms CNH2G3- Week 5 Kompleksitas waktu algoritma rekursif part 2: Metode Karakteristik

Design and Analysis of Algorithms CNH2G3- Week 5 Kompleksitas waktu algoritma rekursif part 2: Metode Karakteristik Design and Analysis of Algorithms CNH2G3- Week 5 Kompleksitas waktu algoritma rekursif part 2: Metode Karakteristik Dr. Putu Harry Gunawan (PHN Review 1. Tentukan kompleksitas waktu Big-Oh untuk relasi

Lebih terperinci

Design and Analysis of Algorithm

Design and Analysis of Algorithm Design and Analysis of Algorithm Week 5: Kompleksitas waktu algoritma rekursif part 2 Dr. Putu Harry Gunawan 1 1 Department of Computational Science School of Computing Telkom University Dr. Putu Harry

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran bertempat di

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran bertempat di III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun ajaran 2011-2012 bertempat di Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA INFORMATIKA JURUSAN TEKNIK KOMPUTER (D3) SEMESTER 3 KODE / SKS : IT014213/2

SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA INFORMATIKA JURUSAN TEKNIK KOMPUTER (D3) SEMESTER 3 KODE / SKS : IT014213/2 Minggu ke 1 Pokok Bahasan dan TIU Himpunan Pengertian Himpun, Diagram Venn, Operasi antar, Himpunan, Aljabar Himpunan, Himpunan hingga dan perhitungan anggota,, Argumen dan Diagram Venn. Sub Pokok Bahasan

Lebih terperinci

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan : BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Bentuk Persamaan Linear Tingkat Tinggi : ( ) Diasumsikan adalah kontinu (menerus) pada interval I. Persamaan linear tingkat tinggi

Lebih terperinci

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id

PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO. Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id PROGRAM STUDI S1 SISTEM KOMPUTER UNIVERSITAS DIPONEGORO Oky Dwi Nurhayati, ST, MT email: okydn@undip.ac.id Kinerja yang perlu ditelaah pada algoritma: beban komputasi efisiensi penggunaan memori Yang perlu

Lebih terperinci

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO

Metode Koefisien Tak Tentu untuk Penyelesaian PD Linier Homogen Tak Homogen orde-2 Matematika Teknik I_SIGIT KUSMARYANTO Metode Koefisien Tak Tentu untuk Penyelesaian Persamaan Diferensial Linier Tak Homogen orde-2 Solusi PD pada PD Linier Tak Homogen ditentukan dari solusi umum PD Linier Homogen dan PD Linier Tak Homogen.

Lebih terperinci

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom

Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom BAB 9 RING POLINOM Tujuan Instruksional Umum : Setelah mengikuti pokok bahasan ini mahasiswa dapat mengenal dan mengaplikasikan sifat-sifat Ring Polinom Tujuan Instruksional Khusus : Setelah diberikan

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

BAB III PERSAMAAN DIFERENSIAL LINIER

BAB III PERSAMAAN DIFERENSIAL LINIER BAB III PERSAMAAN DIFERENSIAL LINIER Bentuk umum PD orde-n adalah PD yang tidak dapat dinyatakan dalam bentuk di atas dikatakan tidak linier. Contoh: Jika F(x) pada persamaan (3.1) sama dengan nol maka

Lebih terperinci

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II

PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE 2 - II PENYELESAIAN PERSAMAAN DIFFERENSIAL ORDE - II.Persamaan Homogen dengan Koefisien Konstan Suatu persamaan linier homogen y + ay + by = 0 (1) mempunyai koefisien a dan b adalah konstan. Persamaan ini mempunyai

Lebih terperinci

Sistem Bilangan Riil

Sistem Bilangan Riil Sistem Bilangan Riil Sistem bilangan N : 1,,,. Z :,-,-1,0,1,,.. N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real Q : q R a b, a, b Z, b Q Irasional Contoh Bil Irasional,, 0

Lebih terperinci

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT

MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT MAKALAH FUNGSI KUADRAT GRAFIK FUNGSI,&SISTEM PERSAMAAN KUADRAT Kelompok 3 : 1.Suci rachmawati (ekonomi akuntansi) 2.Fitri rachmad (ekonomi akuntansi) 3.Elif (ekonomi akuntansi) 4.Dewi shanty (ekonomi management)

Lebih terperinci

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan

II. TINJAUAN PUSTAKA. variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi kebergantungan II. TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Differential Equation Fungsi mendeskripsikan bahwa nilai variabel y ditentukan oleh nilai variabel x, sehingga nilai y bergantung pada nilai x. Adanya relasi

Lebih terperinci

Bilangan Fibonacci dan Lucas dengan Subskrip Riil

Bilangan Fibonacci dan Lucas dengan Subskrip Riil Bilangan Fibonacci dan Lucas dengan Subskrip Riil A 17 Suzyanna Universitas Airlangga Fakultas Sains Dan Teknologi Departemen Matematika e-mail : suzyoetomo@gmail.com Abstrak Dalam makalah ini pengertian

Lebih terperinci

BY : DRS. ABD. SALAM, MM

BY : DRS. ABD. SALAM, MM BY : DRS. ABD. SALAM, MM Page 1 of 26 KOMPETENSI DASAR Pola Barisan dan Deret Bilangan a. Tujuan Setelah mempelajari uraian kompetensi dasar ini, anda dapat: Menunjukkan pola bilangan dari suatu barisan

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak

BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT

matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..

Lebih terperinci

Sistem Bilangan Real. Pendahuluan

Sistem Bilangan Real. Pendahuluan Sistem Bilangan Real Pendahuluan Kalkulus didasarkan pada sistem bilangan real dan sifat-sifatnya. Sistem bilangan real adalah himpunan bilangan real yang disertai operasi penjumlahan dan perkalian sehingga

Lebih terperinci

SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut:

SUKU BANYAK. Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut: SUKU BANYAK A. Pengertian Suku Banyak Secara umum sukubanyak atau polinom dalam berderajat dapat ditulis dalam bentuk berikut: Dinamakan suku banyak (polinom) dalam yang berderajat dengan bilangan cacah

Lebih terperinci

LANDASAN TEORI. Pada Bab ini akan diberikan istilah-istilah, definisi-definisi dan identitas-identitas

LANDASAN TEORI. Pada Bab ini akan diberikan istilah-istilah, definisi-definisi dan identitas-identitas II. LANDASAN TEORI Pada Bab ini akan diberikan istilah-istilah, definisi-definisi dan identitas-identitas dari Bilangan Fibonacci, Bilangan Lucas dan Bilangan Gibonaccci. 2.1 Bilangan Fibonacci dan Beberapa

Lebih terperinci

FUNGSI BESSEL. 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial.

FUNGSI BESSEL. 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial. FUNGSI BESSEL 1. PERSAMAAN DIFERENSIAL BESSEL Fungsi Bessel dibangun sebagai penyelesaian persamaan diferensial. x 2 y ''+xy'+(x 2 - n 2 )y = 0, n ³ 0 (1) yang dinamakan persamaan diferensial Bessel. Penyelesaian

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

Penyelesaian Masalah Josephus Sederhana dalam Bentuk Eksplisit

Penyelesaian Masalah Josephus Sederhana dalam Bentuk Eksplisit Penyelesaian Masalah Josephus Sederhana dalam Bentuk Eksplisit Jehian Norman Saviero - 13515139 Program Sarjana Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

Mencari Solusi Persamaan Rekursif Bilangan Catalan dengan Prinsip-prinsip Kombinatorial

Mencari Solusi Persamaan Rekursif Bilangan Catalan dengan Prinsip-prinsip Kombinatorial Mencari Solusi Persamaan Rekursif Bilangan Catalan dengan Prinsip-prinsip Kombinatorial Ahmad Zaky - 13512076 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah :

Nama Peserta : No Peserta : Asal Sekolah : Asal Daerah : 1. Terdapat sebuah fungsi H yang memetakan dari himpunan bilangan asli ke bilangan asli lainnya dengan ketentuan sebagai berikut. Misalkan akan dicari nilai fungsi H jika x=38. 38 terdiri dari 3 puluhan

Lebih terperinci

ALGORITHM. 3 Rekursif Algorithm. Dahlia Widhyaestoeti, S.Kom dahlia74march.wordpress.com

ALGORITHM. 3 Rekursif Algorithm. Dahlia Widhyaestoeti, S.Kom dahlia74march.wordpress.com ALGORITHM 3 Rekursif Algorithm Dahlia Widhyaestoeti, S.Kom dahlia.widhyaestoeti@gmail.com dahlia74march.wordpress.com Rekursif adalah salah satu metode dalam dunia matematika dimana definisi sebuah fungsi

Lebih terperinci

Solusi Rekursif pada Persoalan Menara Hanoi

Solusi Rekursif pada Persoalan Menara Hanoi Solusi Rekursif pada Persoalan Menara Hanoi Choirunnisa Fatima 1351084 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 4013, Indonesia

Lebih terperinci

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA

matematika PEMINATAN Kelas X PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN K13 A. PERSAMAAN EKSPONEN BERBASIS KONSTANTA K1 Kelas X matematika PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN EKSPONEN TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami bentuk-bentuk persamaan

Lebih terperinci

BARISAN DAN DERET ARITMETIKA

BARISAN DAN DERET ARITMETIKA BARISAN DAN DERET ARITMETIKA Barisan Aritmetika a. Pengertian Barisan Aritmetika Untuk memahami pengertian barisan aritmetika, perhatikan barisan bilangan pada penggaris yang dimiliki Amir berikut ini.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW

PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW PENENTUAN FAKTOR KUADRAT DENGAN METODE BAIRSTOW Susilo Nugroho (M0105068) 1. Latar Belakang Masalah Polinomial real berderajat n 0 adalah fungsi yang mempunyai bentuk p n (x) = n a i x i = a 0 x 0 + a

Lebih terperinci

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden

Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Lecture 3. Function (B) A. Macam-macam Fungsi Menurut jenisnya, fungsi dapat dibedakan menjadi (1) Fungsi aljabar (2) Fungsi transenden Fungsi aljabar dibedakan menjadi (1) Fungsi rasional (a) Fungsi konstan

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR

PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR PERSAMAAN DAN PERTIDAKSAMAAN PERSAMAAN LINEAR Persamaan linear Bentuk umun persamaan linear satu vareabel Ax + b = 0 dengan a,b R ; a 0, x adalah vareabel Contoh: Tentukan penyelesaian dari 4x-8 = 0 Penyelesaian.

Lebih terperinci

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa

03/08/2015. Sistem Bilangan Riil. Simbol-Simbol dalam Matematikaa 0/08/015 Sistem Bilangan Riil Simbol-Simbol dalam Matematikaa 1 0/08/015 Simbol-Simbol dalam Matematikaa Simbol-Simbol dalam Matematikaa 4 0/08/015 Simbol-Simbol dalam Matematikaa 5 Sistem bilangan N :

Lebih terperinci

KARTU SOAL URAIAN. KOMPETENSI DASAR (KD): 4.1 Menentukan suku ke-n barisan dan jumlah n suku deret aritmatika dan geometri

KARTU SOAL URAIAN. KOMPETENSI DASAR (KD): 4.1 Menentukan suku ke-n barisan dan jumlah n suku deret aritmatika dan geometri . Siswa dapat menentukan suku pertama, beda/rasio, rumus suku ke-n dan suku ke-n, jika diberikan barisan bilangannya NO. SOAL: 31 Tentukan suku pertama, beda atau rasio, rumus suku ke-n, dan suku ke-10

Lebih terperinci

BAB II PROSES REKURSI DAN ITERASI

BAB II PROSES REKURSI DAN ITERASI 1 BAB II PROSES REKURSI DAN ITERASI 2.1. Konsep Rekursi dan Iterasi Proses rekursi merupakan suatu fenomena yang menarik dalam pemrograman komputer. Rekursi adalah suatu proses perulangan untuk menyelesaikan

Lebih terperinci

Kebalikan Transformasi Laplace

Kebalikan Transformasi Laplace TKS 4003 Matematika II Kebalikan Transformasi Laplace Fraksi Pecahan (Partial Fraction: Laplace Transform Inverse) Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PENDAHULUAN Dalam penggunaannya,

Lebih terperinci

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal

Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Vol. 9, No.1, 49-56, Juli 2012 Himpunan Ω-Stabil Sebagai Daerah Faktorisasi Tunggal Nur Erawaty 1, Andi Kresna Jaya 1, Nirwana 1 Abstrak Misalkan D adalah daerah integral. Unsur tak nol yang bukan unit

Lebih terperinci

BAB 5 Bilangan Berpangkat dan Bentuk Akar

BAB 5 Bilangan Berpangkat dan Bentuk Akar BAB 5 Bilangan Berpangkat dan Bentuk Akar Untuk materi ini mempunyai 3 Kompetensi Dasar yaitu: Kompetensi Dasar : 1. Mengidentifikasi sifat-sifat bilangan berpangkat dan bentuk akar 2. Melakukan operasi

Lebih terperinci

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga

II. TINJAUAN PUSTAKA. negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga II. TINJAUAN PUSTAKA 2.1 Bilangan Bulat Bilangan Bulat merupakan bilangan yang terdiri dari bilangan cacah dan negatifnya. Yang termasuk dalam bilangan cacah yaitu 0,1,2,3,4, sehingga negatif dari bilangan

Lebih terperinci

Pada barisan bilangan 2, 7, 12, 17,., b = 7 2 = 12 7 = = 5. Pada barisan bilangan 3, 7, 11, 15,., b = 7 3 = 11 7 = = 4

Pada barisan bilangan 2, 7, 12, 17,., b = 7 2 = 12 7 = = 5. Pada barisan bilangan 3, 7, 11, 15,., b = 7 3 = 11 7 = = 4 Materi : Barisan Bilangan Perhatikan urutan bilangan-bilangan berikut ini a. 1, 5, 9, 13,. b. 15, 1, 9, 6,. c., 6, 18, 54,. d. 3, 16, 8, 4,. Tiap-tiap urutan di atas mempunyai aturan/pola tertentu, misalnya

Lebih terperinci

Rangkuman Suku Banyak

Rangkuman Suku Banyak Rangkuman Suku Banyak Oleh: Novi Hartini Pengertian Suku banyak Perhatikan bentuk aljabar dibawah ini i. Suku banyak xx 2 + 4xx + 9 berderajat 2, sebab pangkat tertinggi peubah x adalah 2 ii. Suku banyak

Lebih terperinci

Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1)

Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1) Teknik pengintegralan: Integral fungsi pecah rasional (bagian 1) Kalkulus 2 Nanang Susyanto Departemen Matematika FMIPA UGM 07 Februari 2017 NS (FMIPA UGM) Teknik pengintegralan 07/02/2017 1 / 8 Pemeran-pemeran

Lebih terperinci

Perluasan Teorema Cayley-Hamilton pada Matriks

Perluasan Teorema Cayley-Hamilton pada Matriks Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan

Lebih terperinci

Sistem Bilangan Ri l

Sistem Bilangan Ri l Sistem Bilangan Riil Sistem bilangan N : bilangan asli Z : bilangan bulat Q : bilangan rasional R : bilangan real N : 1,,,. Z :,-,-1,0,1,,.. Q : a q =, a, b Z, b 0 b R = Q Irasional Contoh Bil Irasional,,π

Lebih terperinci

BAB 1. PENDAHULUAN KALKULUS

BAB 1. PENDAHULUAN KALKULUS BAB. PENDAHULUAN KALKULUS (Himpunan,selang, pertaksamaan, dan nilai mutlak) Pembicaraan kalkulus didasarkan pada sistem bilangan nyata. Sebagaimana kita ketahui sistem bilangan nyata dapat diklasifikasikan

Lebih terperinci

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah.

POLINOM (SUKU BANYAK) Menggunakan aturan suku banyak dalam penyelesaian masalah. POLINOM (SUKU BANYAK) Standar Kompetensi: Menggunakan aturan suku banyak dalam penyelesaian masalah. Kompetensi Dasar: 1. Menggunakan algoritma pembagian suku banyak untuk menentukan hasil bagi dan sisa

Lebih terperinci

BILANGAN BERPANGKAT. Jika a bilangan real dan n bilangan bulat positif, maka a n adalah

BILANGAN BERPANGKAT. Jika a bilangan real dan n bilangan bulat positif, maka a n adalah BILANGAN BERPANGKAT Jika a bilangan real dan n bilangan bulat positif, maka a n adalah perkalian a sebanyak n faktor. Bilangan berpangkat, a disebut bilangan pokok dan n disebut pangkat atau eksponen.

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, Lecture 4. Limit B A. Continuity Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada, (2) lim f(x) ada, (3) lim f(x) =

Lebih terperinci

Petunjuk Pengerjaan Soal Semifinal Olimpiade Matematika ITS (OMITS) tingkat SMA/Sederajat tahun 2012

Petunjuk Pengerjaan Soal Semifinal Olimpiade Matematika ITS (OMITS) tingkat SMA/Sederajat tahun 2012 Petunjuk Pengerjaan Soal Semifinal Olimpiade Matematika ITS (OMITS) tingkat SMA/Sederajat tahun 202 Bagian Kedua. Soal Semifinal OMITS 2 tingkat SMA/Sederajat Bagian Kedua terdiri dari 20 Soal Isian Singkat

Lebih terperinci

III. FUNGSI POLINOMIAL

III. FUNGSI POLINOMIAL III. FUNGSI POLINOMIAL 3. Pendahuluan A. Tujuan Setelah mempelajari bagian ini diharapkan mahasiswa dapat:. menuliskan bentuk umum fungsi polinomial;. menghitung nilai fungsi polinomial; 3. menuliskan

Lebih terperinci

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui.

Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. 1 Persamaan diferensial adalah suatu persamaan yang memuat satu atau lebih turunan fungsi yang tidak diketahui. Jika persamaan diferensial memiliki satu peubah tak bebas maka disebut Persamaan Diferensial

Lebih terperinci

Matriks, Barisan (sequence), Deret (summa)ons)

Matriks, Barisan (sequence), Deret (summa)ons) Matriks, Barisan (sequence), Deret (summa)ons) Learning is not child's play, we cannot learn without pain. - Aristotle 1 Matriks 2 Aritme=ka Matriks Penjumlahan Syarat: matriks harus berukuran sama Contoh:!

Lebih terperinci

LECTURE NOTES MATEMATIKA DISKRIT. Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA.

LECTURE NOTES MATEMATIKA DISKRIT. Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA. LECTURE NOTES MATEMATIKA DISKRIT Disusun Oleh : Dra. D. L. CRISPINA PARDEDE, DEA. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA PONDOK CINA, MARET 2004 0 DAFTAR ISI DAFTAR ISI... 1 BAB I STRUKTUR ALJABAR...

Lebih terperinci

PERTIDAKSAMAAN PECAHAN

PERTIDAKSAMAAN PECAHAN PERTIDAKSAMAAN PECAHAN LESSON Pada topik sebelumnya, kalian telah mempelajari topik tentang konsep pertidaksamaan dan nilai mutlak. Dalam topik ini, kalian akan belajar tentang masalah pertidaksamaan pecahan.

Lebih terperinci

BAB III : SISTEM PERSAMAAN LINIER

BAB III : SISTEM PERSAMAAN LINIER 3.1 PENDAHULUAN BAB III : SISTEM PERSAMAAN LINIER Penyelesaian suatu sistem n persamaan dengan n bilangan tak diketahui banyak dijumpai dalam permasalahan teknik. Di dalam Bab ini akan dipelajari sistem

Lebih terperinci

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi

Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan Kuadrat Contoh : Persamaan Derajat Tinggi Materi Matematika Persamaan dan Pertidaksamaan kuadrat Persamaan Linear Persamaan linear dengan n peubah adalah persamaan dengan bentuk : dengan adalah bilangan- bilangan real, dan adalah peubah. Secara

Lebih terperinci

II.TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung

II.TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung II.TINJAUAN PUSTAKA Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung dalam penelitian ini. 2.1. Konsep Dasar Teori Graf Graf G didefinisikan sebagai pasangan himpunan terurut

Lebih terperinci

Modul 05 Persamaan Linear dan Persamaan Linear Simultan

Modul 05 Persamaan Linear dan Persamaan Linear Simultan Modul 05 Persamaan Linear dan Persamaan Linear Simultan 5.1. Persamaan Linear Persamaan adalah pernyataan kesamaan antara dua ekspresi aljabar yang cocok untuk bilangan nilai variable tertentu atau variable

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

FUNGSI PEMBANGKIT. Ismail Sunni

FUNGSI PEMBANGKIT. Ismail Sunni FUNGSI PEMBANGKIT Ismail Sunni 3508064 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha 0, Bandung If8064@students.if.itb.ac.id ismailsunni@yahoo.co.id ABSTRAK Fungsi Pembangkit

Lebih terperinci

LKS I. Jumlah barsel suku yang terbentuk... yaitu barsel suku ke... Nilai salah satu suku konstanta adalah...

LKS I. Jumlah barsel suku yang terbentuk... yaitu barsel suku ke... Nilai salah satu suku konstanta adalah... LKS I 1. Buat enam suku pertama dari masing-masing barisan dengan menggunakan rumus umum suku masing-masing. 2. Amati masing-masing barisan, jika barisan bukan barisan bilangan konstanta buatlah barisan

Lebih terperinci

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q.

1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. Diskusi Kelompok (I) Waktu: 100 menit Selasa, 23 September 2008 Pengajar: Hilda Assiyatun, Djoko Suprijanto 1. Ubahlah pernyataan ke dalam berikut ke dalam bentuk Jika p maka q. (a) Mahasiswa perlu membawakan

Lebih terperinci

( ) ( ) ( ) ( ) ( ) a b c d e. 4030

( ) ( ) ( ) ( ) ( ) a b c d e. 4030 I. Pilihan Ganda 1. What is last three digit non zero of 2015! a. 34 b. 344 c. 444 d. 534 e. 544 2. If, find a. 2012 b. 2015 c. 4020 d. 4025 e. 4030 3. Bagaimanakah pembacaan yang tepat dari simbol ini?

Lebih terperinci

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2

Nurdinintya Athari PERSAMAAN DIFFERENSIAL ORDE 2 Nurdininta Athari PERSAMAAN DIFFERENSIAL ORDE 2 2 PDB ORDE II Bentuk umum : + p() + g() = r() p(), g() disebut koefisien jika r() = 0, maka Persamaan Differensial diatas disebut homogen, sebalikna disebut

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di BAB II TINJAUAN PUSTAKA 2.1 Pemrograman Linier (Linear Programming) Pemrograman linier (linear programming) merupakan salah satu teknik riset operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan

Lebih terperinci

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB   September 26, 2011 (Semester I Tahun 2011-2012) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. September 26, 2011 Diberikan sejumlah terhingga bilangan a 1,..., a N, kita dapat menghitung jumlah a 1 + + a N. Namun,

Lebih terperinci

II. TINJAUAN PUSTAKA. iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui

II. TINJAUAN PUSTAKA. iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui II. TINJAUAN PUSTAKA Untuk menuju ketahap pembahasan mengenai keberadaan dan ketunggalan dari iterasi Picard di dalam persamaan diferensial orde pertama, perlu diketahui beberapa bagian dari persamaaan

Lebih terperinci

SATUAN ACARA PERKULIAHAN STMIK PARNA RAYA MANADO TAHUN 2010

SATUAN ACARA PERKULIAHAN STMIK PARNA RAYA MANADO TAHUN 2010 TAHUN DOSEN : IR. HASANUDDIN SIRAIT PERTEMUAN : 1-2 JUMLAH JAM : 200 MENIT - Himpunan - Himpunan - Diagram Venn - Operasi antar Himpunan - Aljabar Himpunan - Himpunan Hingga - Argumen & Diagram Venn -

Lebih terperinci

BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN)

BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN) PENDAHULUAN BAB VI. INTEGRAL TAK TENTU (ANTI TURUNAN) (Pertemuan ke 11 & 12) Diskripsi singkat Pada bab ini dibahas tentang integral tak tentu, integrasi parsial dan beberapa metode integrasi lainnya yaitu

Lebih terperinci

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSEP DASAR PERSAMAAN DIFERENSIAL KONSEP DASAR PERSAMAAN DIFERENSIAL A. PENGERTIAN PERSAMAAN DIFERENSIAL Dalam pelajaran kalkulus, kita telah berkenalan dan mengkaji berbagai macam metode untuk mendiferensialkan suatu fungsi (dasar). Sebagai

Lebih terperinci

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf

Lebih terperinci

Teori Bilangan. Contoh soal : 1. Buktikan bahwa untuk setiap berlaku. Jawaban : a. Petama, kita uji untuk. Ruas kiri sama dengan.

Teori Bilangan. Contoh soal : 1. Buktikan bahwa untuk setiap berlaku. Jawaban : a. Petama, kita uji untuk. Ruas kiri sama dengan. Contoh soal : Teori Bilangan 1. Buktikan bahwa untuk setiap berlaku a. Petama, kita uji untuk Ruas kiri sama dengan dan ruas kanan Jadi pernyataan benar untuk n=1 b. Langkah kedua, asumsikan bahwa pernyataan

Lebih terperinci

OMITS 12. Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 2012 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA

OMITS 12. Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 2012 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA OMITS 2 Soal Babak Penyisihan Olimpiade Matematika ITS (OMITS) Tahun 202 Tingkat SMA/Sederajat MATEMATIKA ING NGARSA SUNG TULADHA Olimpiade? Ya OMITS Petunjuk Pengerjaan Soal Babak Penyisihan Olimpiade

Lebih terperinci

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT

BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT BAB II PERSAMAAN KUADRAT DAN FUNGSI KUADRAT 1. Menentukan koefisien persamaan kuadrat 2. Jenis-jenis akar persamaan kuadrat 3. Menyusun persamaan kuadrat yang akarnya diketahui 4. Fungsi kuadrat dan grafiknya

Lebih terperinci

BAB IV DERET FOURIER

BAB IV DERET FOURIER BAB IV DERET FOURIER 4.1 Fungsi Periodik Fungsi f(x) dikatakan periodik dengan perioda P, jika untuk semua harga x berlaku: f (x + P) = f (x) ; P adalah konstanta positif. Harga terkecil dari P > 0 disebut

Lebih terperinci

SBMPTN 2015 Matematika Dasar

SBMPTN 2015 Matematika Dasar SBMPTN 2015 Matematika Dasar Doc. Name: SBMPTN2015MATDAS999 Version : 2015-09 halaman 1 46. Jika a dan b adalah bilangan real positif, maka 3 3 a b a b (A) -2 (D) 1 (B) -1 (C) 0 2 2 2 3 ab... 47. Diketahui

Lebih terperinci

TEOREMA VIETA DAN JUMLAH NEWTON. 1. Pengenalan

TEOREMA VIETA DAN JUMLAH NEWTON. 1. Pengenalan TEOREMA VIETA DAN JUMLAH NEWTON TUTUR WIDODO. Pengenalan Sebelum berbicara banyak tentang Teorema Vieta dan Identitas Newton, terlebih dahulu saya beri penjelasan singkat mengenai polinomial. Di sekolah

Lebih terperinci

Keterkaitan Barisan Fibonacci dengan Kecantikan Wajah

Keterkaitan Barisan Fibonacci dengan Kecantikan Wajah Keterkaitan Barisan Fibonacci dengan Kecantikan Wajah Joshua Atmadja, 13514098 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

STANDAR KOMPETENSI KOMPETENSI DASAR. Menggunakan aturan suku banyak dalam penyelesaian masalah

STANDAR KOMPETENSI KOMPETENSI DASAR. Menggunakan aturan suku banyak dalam penyelesaian masalah STANDAR KOMPETENSI Menggunakan aturan suku banyak dalam penyelesaian masalah KOMPETENSI DASAR Menggunakan teorema sisa dan teorema faktor dalam pemecahan masalah INDIKATOR Menentukan faktor, akar-akar

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

RESUME ALGORITMA MERGE SORT DAN REKURENS

RESUME ALGORITMA MERGE SORT DAN REKURENS RESUME ALGORITMA MERGE SORT DAN REKURENS SRY WAHYUNI H12111292 Statistika Unhas ALGORITMA MERGE SORT Merge sort merupakan algoritma pengurutan dalam ilmu komputer yang dirancang untuk memenuhi kebutuhan

Lebih terperinci

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran.

Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika. F (x) = f(x) dx dan f (x) dinamakan integran. 4 INTEGRAL Definisi 4.0. Fungsi F disebut anti turunan (integral tak tentu) dari fungsi f pada himpunan D jika untuk setiap D. F () f() Fungsi integral tak tentu f dinotasikan dengan f ( ) d dan f () dinamakan

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

Rekursif. Rekursif adalah salah satu metode dalam dunia matematika dimana definisi sebuah fungsi mengandung fungsi itu sendiri.

Rekursif. Rekursif adalah salah satu metode dalam dunia matematika dimana definisi sebuah fungsi mengandung fungsi itu sendiri. Rekursif Rekursif adalah salah satu metode dalam dunia matematika dimana definisi sebuah fungsi mengandung fungsi itu sendiri. Dalam dunia pemrograman, rekursi diimplementasikan dalam sebuah fungsi yang

Lebih terperinci

Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal:

Solusi Pengayaan Matematika Edisi 14 April Pekan Ke-2, 2006 Nomor Soal: Solusi Pengayaan Matematika Edisi 4 April Pekan Ke-, 006 Nomor Soal: 3-40 3. Manakah yang paling besar di antara bilangan-bilangan 0 9 b, 5 c, 0 d 5, dan 0 e 4 3? A. e B. d C. c D. b E. a Solusi: [E] 5

Lebih terperinci

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR

ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 05, No. 2 (2016), hal 103-112 ANALISIS METODE DEKOMPOSISI SUMUDU DAN MODIFIKASINYA DALAM MENENTUKAN PENYELESAIAN PERSAMAAN DIFERENSIAL PARSIAL

Lebih terperinci

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen

MATEMATIKA BISNIS DERET. Muhammad Kahfi, MSM. Modul ke: Fakultas Ekonomi Bisnis. Program Studi Manajemen MATEMATIKA BISNIS Modul ke: DERET Fakultas Ekonomi Bisnis Muhammad Kahfi, MSM Program Studi Manajemen http://www.mercubuana.ac.id Konsep Barisan (sequence) adalah suatu susunan bilangan yang dibentuk menurut

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL

BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL BAHAN AJAR MATEMATIKA WAJIB KELAS X MATERI POKOK: PERTIDAKSAMAAN RASIONAL DAN IRASIONAL A. Pertidaksamaan Rasional Pada sistem bilangan, terdapat dua jenis bilangan yaitu bilangan real dan imajiner. Jika

Lebih terperinci

Mendeskripsikan Himpunan

Mendeskripsikan Himpunan BASIC STRUCTURE 2.1 SETS Himpunan Himpunan adalah koleksi tak terurut dari obyek, yang disebut anggota himpunan Notasi. a A : a adalah anggota himpunan A a A : a bukan anggota himpunan A Contoh 1. Himpunan

Lebih terperinci