vektor u 1, u 2,, u n.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "vektor u 1, u 2,, u n."

Transkripsi

1 KOMBINASI LINEAR BEBAS LINEAR BERGANTUNG LINEAR Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta

2 Kombinasi Linear (linear combination) Andaikan ruang vektor V melalui field F, dengan vektor-vektor u, u,, u n V. Sembarang vektor di dalam V (misal v V) yang dapat dinyatakan dlm bentuk : v = a u + a u + + a n u n ; dng a i F dinamakan kombinasi linear dari vektordinamakan kombinasi linear dari vektor vektor u, u,, u n.

3 Contoh : Andaikan s, u, v, w V; dengan 0 u =, v = 0, w =, dan s = 3. 6 Jika mungkin nyatakan v sbg kombinasi linear dari u, s, dan w! Diperoleh persamaan: Solusi : x y + z = - v = xu + ys + zw -x 3y + z = 0 x + 6y z = = x + y + z Diperoleh nilai-nilai x = -, y =, dan z = Jadi v kombinasi linear dri u, s, dan w dengan v = -u + s + w

4 Sistem Pembentuk Himpunan vektor { u, u,, u m } disebut sistem pembentuk dari ruang vektor V; ditulis V = L{u, u,, u m } jika semua vektor v V dapat dinyatakan a sebagai kombinasi linear dari {u, u,, u m }.

5 Contoh : 0 3 Andaikan V = R, dengan u =, u =, u 3 = 0 Dapat ditunjukkan bahwa u, u, dan u 3 tersebut adalah sistem pembentuk bagi R ; sebab semua v V dapat dinyatakan sbg kombinasi linear dari u, u dan u Misalnya v = v = u u 3u 3 Misalnya v = v = -3u +u +u 3 ; dsb.

6 Contoh : Andaikan V = R 3, dengan u = 0, u =, u 3 = 0 Dapat ditunjukkan bahwa u, u, dan u 3 tersebut adalah sistem pembentuk bagi R 3 ; sebab semua v V dapat dinyatakan sbg kombinasi linear dari u, u dan u Misalnya v = v = u u + u Misalnya v = v = 3u +u +u 3 ; dsb.

7 A = Ruang Baris & Ruang Kolom a a... a n a a... an a m am... amn Ruang Baris = R n m = {,,, } a a... a n a a... a n am a... amn = m = n Ruang Kolom R {,,, } a a... a m a a... a m a n a... a mn

8 Latihan

9 Bergantung Linear (linearly dependence) dan Bebas Linear (Linearly Independence). Andaikan ruang vektor V melalui field F. Vektor-vektor u, u, u 3,, u n V disebut bergantung linear atau dependen d jika ada skalar a, a, a 3,, a n F yang tidak semuanya nol sedemikian hingga berlaku : a u +a u + + a n u n =0

10 Dari hubungan a u + a u + + a n u n = 0 jika hanya berlaku untuk semua skalar a i = 0 (a = a = = a n = 0), maka vektor- vektor u, u, u 3,, u n V disebut bebas linear atau independen.

11 Vektor u, v, w R 3, dng : u =, v =, dan w =. Selidiki vektor-vektor tsb dependen atau independen?. Diperoleh nilai i : x = -, y =, dan z = - x u + y v + z w = 0 Jadi : - u + v w = 0 Karena ada skalar yang tidak nol, maka vektor-vektor u, v, dan w adalah dependen atau bergantung linear. Solusi : -x + 3y + 5z = 0 x y 6z = 0 x + y z = 0

12 Solusi : (dng menggunakan matriks) u v = w u3 v+ u = w+ 5u u v +3u = ( w+ 5u) ( v + 3u) Telah menjadi matriks eselon, Baris terakhir dapat dibaca : (w + 5u) (v + 3u) = 0 atau : u v + w = 0 Karena ada skalar yang tidak nol, maka vektor-vektor u, v, dan w adalah dependen atau bergantung linear. Amati bahwa matriks eselon punya baris nol.

13 Vektor u, v, w R 3, dng : u =, v =, dan w =. Selidiki vektor-vektor tsb dependen atau independen?. Hanya diperoleh nilai i : x = 0, y = 0, dan z = 0 x u + y v + z w = 0 Jadi : 0u + 0v + 0w = 0 Karena hanya ada skalar nol, maka vektor-vektor u, v, dan w adalah independen atau bebas linear. Solusi : x + y z = 0 -x x+y+z=0 y + x y z = 0

14 Solusi : (dng menggunakan matriks) Solusi : (dng menggunakan matriks) u = Telah menjadi matriks eselon, w v = Tetapi tidak mempunyai baris nol. Karenanya vektor-vektor v u u = nol. Karenanya vektor vektor u, v, dan w adalah i d d t b b +u w 0 0 independen atau bebas linear. v u u = ) ( 6 ) ( u v u w 0 0 A ti b h t ik l Amati bahwa matriks eselon tidak punya baris nol.

15 Teorema Baris-baris yg tidak nol dari matriks eselon adalah bebas linear (Independen)

16 Teorema Vektor-vektor u, u, u 3,, u n V disebut bergantung linear (dependen) jika salah satu vektor-vektor tersebut dapat dinyatakan sbg kombinasi i linear dari vektor-vektor e yang lainnya.

17 Catatan : jika u = 0, maka u pasti dependen. Jika u 0, maka u pasti independen. d Himpunan vektor yang memuat vektor nol pasti dependen. d Himpunan vektor yang memuat dua vektor yang sama atau dua vektor yang berkelipatan, pasti dependen. Andaikan U V. jika U dependen, d maka V juga dependen. Andaikan W V. Jika V independen, d maka W juga independen. Secara geometris, dua vektor yg dependen d terletak t pd garis (bidang) yang sama.

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta BASIS DAN DIMENSI Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta Basis dan Dimensi Ruang vektor V dikatakan mempunyai dimensi terhingga n (ditulis dim V = n) jika ada vektor-vektor e, e,,

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

Latihan 5: Inner Product Space

Latihan 5: Inner Product Space Latihan 5: Inner Product Space Diketahui vektor u v w ϵ R di mana u = v = Hitunglah : a b c d e f Diketahui vektor u v ϵ R di mana u = dan v = Carilah

Lebih terperinci

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut RUANG VEKTOR REAL Aksioma ruang vektor, dinyatakan dlam definisi beikut, dimana aksiona merupakan aturan permainan dalam ruang vektor. Definisi : Jika V merupakan suatu himpunan tidak kosong dari objek

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN KS96 KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mencari ruang baris, ruang kolom,

Lebih terperinci

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR 7//5 RUANG VEKTOR UMUM Yang dibahas.. Ruang vektor umum. Subruang. Hubungan dependensi linier 4. Basis dan dimensi 5. Ruang baris, ruang kolom, ruang nul, rank dan nulitas AKSIOMA RUANG VEKTOR V disebut

Lebih terperinci

PERTEMUAN 11 RUANG VEKTOR 1

PERTEMUAN 11 RUANG VEKTOR 1 PERTEMUAN 11 RUANG VEKTOR 1 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat mengetahui definisi dan sifat-sifat dari ruang vektor Dapat mengetahui definisi

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity Chapter 5 GENERAL VECTOR SPACE 5.5. Row Space, Column Space, Nullspace 5.6. Rank & Nullity 5.5. Row Space, Column Space, Nullspace Vektor-Vektor Baris & Kolom Vektor baris A (dalam R n ) Vektor kolom A

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Independensi Linear Basis & Dimensi TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Independensi Linear Basis & Dimensi TIM KALIN KS091206 Independensi Linear Basis & Dimensi TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui apakah suatu vektor bebas linier atau tak bebas

Lebih terperinci

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan:

Pertama, daftarkan kedua himpunan vektor: himpunan yang merentang diikuti dengan himpunan yang bergantung linear, perhatikan: Dimensi dari Suatu Ruang Vektor Jika suatu ruang vektor V memiliki suatu himpunan S yang merentang V, maka ukuran dari sembarang himpunan di V yang bebas linier tidak akan melebihi ukuran dari S. Teorema

Lebih terperinci

Ruang Vektor. Adri Priadana. ilkomadri.com

Ruang Vektor. Adri Priadana. ilkomadri.com Ruang Vektor Adri Priadana ilkomadri.com MEDAN SKLAR Misalkan diketahui bahwa K adalah himpunan, dan didefinisikan 2 buah operasi penjumlahan (+) dan perkalian (*). Maka K dikatakan medan skalar jika dipenuhi

Lebih terperinci

BAB II DASAR DASAR TEORI

BAB II DASAR DASAR TEORI BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian

Lebih terperinci

Transformasi Linear dari R n ke R m

Transformasi Linear dari R n ke R m TE0967 Teknik Numerik Sistem Linear Transformasi Linear dari R n ke R m Trihastuti gustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember OUTLINE

Lebih terperinci

Materi 2: Matriks dan Operasi Matriks

Materi 2: Matriks dan Operasi Matriks Materi 2: Matriks dan Operasi Matriks I Nyoman Kusuma Wardana Sistem Komputer STMIK STIKOM Bali Amatilah contoh jumlah jam yang dihabiskan oleh siswa di sekolah dlm satu minggu berikut: Jika kita menghilangkan

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Ruang Vektor TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan sifat-sifat dari ruang vektor

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 5 Ruang Vektor Ruang Vektor Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem Kontrol

Lebih terperinci

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah) Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar:

0. Diperoleh bahwa: Selanjutnya dibuktikan tertutup terhadap perkalian skalar: f g) f g C atau ( f g). Diperoleh bahwa: f g) ( f g) dg f ( f dg g) g dg f g Selanjutnya dibuktikan tertutup terhadap perkalian skalar: Ambil. f ) f C, R. Ditunjukkan bahwa. f C atau (. f ).. f ). diketahui

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta

Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta SIMILARIAS Similaritas Pendiagonalan Matriks Similaritas dari Matriks Simetri Prof.Dr. Budi Murtiyasa Muhammadiyah University of Surakarta Pengantar Cari akar dan vektor karakteristik kt tik dari A = 2

Lebih terperinci

RUANG VEKTOR. Nurdinintya Athari (NDT)

RUANG VEKTOR. Nurdinintya Athari (NDT) 1 RUANG VEKTOR Nurdinintya Athari (NDT) RUANG VEKTOR Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Basis Subruang Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem kontrol

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

untuk setiap x sehingga f g

untuk setiap x sehingga f g Jadi ( f ( f ) bernilai nol untuk setiap x, sehingga ( f ( f ) fungsi nol atau ( f ( f ) Aksioma 5 Ambil f, g F, R, ( f g )( f g ( g( g( ( f g)( Karena ( f g )( ( f g)( untuk setiap x sehingga f g Aksioma

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni 14144100115 2. Emi Suryani 14144100126

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor,

TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep mendasar meliputi ruang vektor, ruang Bernorm dan ruang Banach, ruang barisan, operator linear (transformasi linear) serta teorema-teorema

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS Dosen Pengampu: DARMADI, SSi, MPd Oleh: Kelompok III 1 Andik Dwi S (06411008) 2 Indah Kurniawati (06411090) 3 Mahfuat M (06411104)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Vektor Orthogonal Vektor-vektor yang saling tegak lurus juga sering disebut vektor orthogonal. Dua vektor disebut saling tegak lurus jika dan hanya jika hasil perkalian titik-nya

Lebih terperinci

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Ogin Sugianto sugiantoogin@yahoo.co.id penma2b.wordpress.com Majalengka, 12 November 2016 Sistem Persamaan Linear (SPL) Homogen yang akan dibahas kali

Lebih terperinci

3.6. NILAI SAMPEL DARI KOMBINASI LINEAR DARI VARIABEL

3.6. NILAI SAMPEL DARI KOMBINASI LINEAR DARI VARIABEL 3.6. NILAI SAMPEL DARI KOMBINASI LINEAR DARI VARIABEL Kita sudah memperkenalkan Kombinasi linear p variabel di pasal 2.6. Pada kebanyakan prosedur multivariat, kita pasti dengan sendirinya menganggap kombinasi

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

Lampiran 1 Pembuktian Teorema 2.3

Lampiran 1 Pembuktian Teorema 2.3 LAMPIRAN 16 Lampiran 1 Pembuktian Teorema 2.3 Sebelum membuktikan Teorema 2.3, terlebih dahulu diberikan beberapa definisi yang berhubungan dengan pembuktian Teorema 2.3. Definisi 1 (Matriks Eselon Baris)

Lebih terperinci

Pertemuan 8 Aljabar Linear & Matriks

Pertemuan 8 Aljabar Linear & Matriks Pertemuan 8 Aljabar Linear & Matriks 1 Jika A adl matriks nxn yg invertible, untuk setiap matriks b dgn ukuran nx1, maka sistem persamaan linier Ax = b mempunyai tepat 1 penyelesaian, yaitu x = A -1 b

Lebih terperinci

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ)

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) OBE dan

Lebih terperinci

Pengolahan Dasar Matriks Bagus Sartono

Pengolahan Dasar Matriks Bagus Sartono Pengolahan Dasar Matriks Bagus Sartono bagusco@gmail.com Departemen Statistika FMIPA IPB Notasi Dasar Matriks A mxn, m A n, [a ij ] mxn : matriks berukuran m x n (m baris, n kolom) a ij adalah elemen matriks

Lebih terperinci

MATRIK dan RUANG VEKTOR

MATRIK dan RUANG VEKTOR MATRIK dan RUANG VEKTOR A. Matrik. Pendahuluan Sebuah matrik didefinisikan sebagai susunan persegi panjang dari bilangan bilangan yang diatur dalam baris dan kolom. Matrik ditulis sebagai berikut: a a

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah

Lebih terperinci

Ruang Vektor Euclid R 2 dan R 3

Ruang Vektor Euclid R 2 dan R 3 Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015

Lebih terperinci

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik BAB II LANDASAN TEORI Pada bab ini, akan dijelaskan landasan teori yang akan digunakan dalam bab selanjutnya sebagai bahan acuan yang mendukung dan memperkuat tujuan penelitian. Landasan teori yang dimaksud

Lebih terperinci

BAB II DETERMINAN DAN INVERS MATRIKS

BAB II DETERMINAN DAN INVERS MATRIKS BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks

Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Matriks - 1: Beberapa Definisi Dasar Latihan Aljabar Matriks Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) Matriks -

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 7 Transformasi Linear Sub Pokok Bahasan Definisi Transformasi Linear Matriks Transformasi Kernel dan Jangkauan Aplikasi Transformasi Linear Grafika Komputer Penyederhanaan

Lebih terperinci

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor Bab RUANG VEKTOR. Ruang Vektor DEFINISI.. Suatu ruang vektor (V, +,, F) atas field (F, +), ditulis singkat V(F), adalah suatu himpunan tak kosong V dengan elemenelemennya disebut vektor, yang dilengkapi

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR

MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR MATERI ALJABAR LINEAR LANJUT RUANG VEKTOR Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA

Lebih terperinci

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M.

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M. HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen Pengampu : Darmadi, S,Si, M.Pd Disusun oleh Matematika 5F Kelompok 5: ARLITA ROSYIDA 08411.081

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A = NILAI EIGEN DAN VEKTOR EIGEN >> DEFINISI NILAI EIGEN DAN VEKTOR EIGEN Jika A adalah sebuah matriks n n, maka sebuah vektor taknol x pada R n disebut vektor eigen (vektor karakteristik) dari A jika Ax adalah

Lebih terperinci

Minggu II Lanjutan Matriks

Minggu II Lanjutan Matriks Minggu II Lanjutan Matriks Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum Tujuan Instruksional Khusus Jumlah Pertemuan : Matriks : A. Transformasi Elementer. Transformasi Elementer pada baris

Lebih terperinci

Secara umum persamaan linear untuk n peubah x 1, x 2,, x n dapatdinyatakandalambentuk: dimanaa 1, a 2,, a n danbadalahkonstantakonstanta

Secara umum persamaan linear untuk n peubah x 1, x 2,, x n dapatdinyatakandalambentuk: dimanaa 1, a 2,, a n danbadalahkonstantakonstanta Persamaan linear adalah persamaan dimana peubahnyatidakmemuateksponensial, trigonometri(sepertisin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan linear

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan dapat menghitung perkalian

Lebih terperinci

dimana a 1, a 2,, a n dan b adalah konstantakonstanta

dimana a 1, a 2,, a n dan b adalah konstantakonstanta Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan

Lebih terperinci

RANK MATRIKS ATAS RING KOMUTATIF

RANK MATRIKS ATAS RING KOMUTATIF Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 1 (2013), hal. 63 70. RANK MATRIKS ATAS RING KOMUTATIF Eka Wulan Ramadhani, Nilamsari Kusumastuti, Evi Noviani INTISARI Rank dari matriks

Lebih terperinci

01-Pengenalan Vektor. Dosen: Anny Yuniarti, M.Comp.Sc Gasal Anny2011 1

01-Pengenalan Vektor. Dosen: Anny Yuniarti, M.Comp.Sc Gasal Anny2011 1 01-Pengenalan Vektor Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Vektor dan Kombinasi Linier Bagian 2: Panjang Vektor dan Perkalian Titik (Dot Products) Bagian 3: Matriks

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand

Aljabar Linier. Kuliah 3. 5/9/2014 Yanita FMIPA Matematika Unand Aljabar Linier Kuliah 3 5/9/2014 Yanita FMIPA Matematika Unand 1 Materi Kuliah 3 Jumlah Langsung, Hasilkali Langsung Himpunan Pembangun (Spans) dan Bebas Linier 5/9/2014 Yanita FMIPA Matematika Unand 2

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas

BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd JURUSAN/PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI BANJARMASIN MARET MUQADIMAH Alhamdulillah penyusun ucapkan

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Pendahuluan Ruang vektor tidak hanya terbatas maksimal 3 dimensi saja 4 dimensi, 5 dimensi, dst ruang n-dimensi Jika n adalah bilangan bulat positif, maka sekuens sebanyak n

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat menghitung eigen value dan eigen vector

Lebih terperinci

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan

II. LANDASAN TEORI. Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan II. LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan penelitian ini sehingga dapat dijadikan sebagai landasan berfikir dalam melakukan penelitian dan akan mempermudah

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Nmerik Sistem Linear Trihastti Agstinah Bidang Stdi Teknik Sistem Pengatran Jrsan Teknik Elektro - FTI Institt Teknologi Seplh Nopember O U T L I N E OBJEKTIF TEORI CONTOH 4 SIMPULAN 5 LATIHAN

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

Sistem Persamaan Linier dan Matriks

Sistem Persamaan Linier dan Matriks Sistem Persamaan Linier dan Matriks 1.1 Pendahuluan linier: Sebuah garis pada bidang- dapat dinyatakan secara aljabar dengan sebuah persamaan Sebuah persamaan jenis ini disebut persamaan linier dalam dua

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari BAB 2 LANDASAN TEORI 21 Analisis Komponen Utama 211 Pengantar Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari tulisan Karl Pearson pada tahun 1901 untuk peubah non-stokastik Analisis

Lebih terperinci

Aljabar Linier Ruang vektor dan subruang vektor. 2 Oktober 2014

Aljabar Linier Ruang vektor dan subruang vektor. 2 Oktober 2014 Aljabar Linier Ruang vektor dan subruang vektor 2 Oktober 2014 Pertemuan-2 Pertemuan ke-2 memuat 1. Ruang vektor operasi linier field definisi Contoh Kombinasi linier 1 2. Subruang definisi penentuan subruang

Lebih terperinci

MATRIKS. Slide : Tri Harsono PENS - ITS. 1 Politeknik Elektronika Negeri Surabaya (PENS) - ITS

MATRIKS. Slide : Tri Harsono PENS - ITS. 1 Politeknik Elektronika Negeri Surabaya (PENS) - ITS MATRIKS Slide : Tri Harsono PENS - ITS 1 Sifat Matriks Perkalian dua matriks tidak komutatif Perkalian dua matriks bersifat assosiatif dan distributif tidak komutatif AB BA (AB)C = A(BC) A(B+C) = AB +

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian,

Lebih terperinci

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung Course of Calculus MATRIKS Oleh : Hanung N. Prasetyo Information system Departement Telkom Politechnic Bandung Matriks dan vektor merupakan pengembangan dari sistem persamaan Linier. Matriks dapat digunakan

Lebih terperinci

TRANSFORMASI MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

TRANSFORMASI MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ TRANSFORMAS MATRKS Agustina Pradjaningsih, M.Si. Jurusan Matematika FMPA UNEJ agustina.fmipa@unej.ac.id Definisi : BEBAS LNER Suatu himpunan vektor-vektor v, v, v k dikatakan bebas linier jika persamaan

Lebih terperinci

Aljabar Linier. Kuliah 2 30/8/2014 2

Aljabar Linier. Kuliah 2 30/8/2014 2 30/8/2014 1 Aljabar Linier Kuliah 2 30/8/2014 2 Bab 1 Subpokok Bahasan Ruang Vektor Subruang Subruang Lattice Jumlah Langsung Himpunan Pembangun dan Bebas Linier Dimensi Ruang Vektor Basis Terurut dan

Lebih terperinci

2. Himpunan E yang merupakan himpunan pasangan berurut V V yang tak harus berbeda dari semua titik, elemen dari E disebut arc dari digraf D.

2. Himpunan E yang merupakan himpunan pasangan berurut V V yang tak harus berbeda dari semua titik, elemen dari E disebut arc dari digraf D. BAB 2 DIGRAF DWI-WARNA PRIMITIF Pada Bab ini akan dijelaskan beberapa konsep dasar seperti definisi dan teorema yang dijadikan landasan dalam penelitian ini. konsep dasar yang dimaksud adalah yang berkaitan

Lebih terperinci

MATRIKS A = ; B = ; C = ; D = ( 5 )

MATRIKS A = ; B = ; C = ; D = ( 5 ) MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.

Lebih terperinci

Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Definisi Secara Grafis : Dari gambar di samping, ada sebuah anak panah yang berawal

Lebih terperinci

BAB III MATRIKS HERMITIAN. dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks

BAB III MATRIKS HERMITIAN. dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks BAB III MATRIKS HERMITIAN Pada bab ini, akan dibahas beberapa konsep penting dari matriks Hermitian dan konsep-konsep lainnya yang berkaitan dengan matriks Hermitian. Matriks Hermitian merupakan kelas

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT)

MATRIKS DAN OPERASINYA. Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Nurdinintya Athari (NDT) MATRIKS DAN OPERASINYA Sub Pokok Bahasan Matriks dan Jenisnya Operasi Matriks Operasi Baris Elementer Matriks Invers (Balikan) Beberapa Aplikasi Matriks

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang

Lebih terperinci

II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A,

II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A, II. TINJAUAN PUSTAKA 2.1 Konsep-konsep Matriks Definisi Matriks Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A, B, X, Y. Elemen-elemen di dalamnya disebut skalar yang berasal

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

P2.1 Teori. Secara umum, matriks Amxn = Pada matriks A di atas a23 menyatakan elemen matriks A pada baris ke-2 dan kolom ke Jenis-Jenis Matriks

P2.1 Teori. Secara umum, matriks Amxn = Pada matriks A di atas a23 menyatakan elemen matriks A pada baris ke-2 dan kolom ke Jenis-Jenis Matriks Pertemuan 2 Matriks Objektif: 1. Praktikan memahami konsep matriks. 2. Praktikan dapat mencari penjumlahan matriks, perkalian matriks dari 2 buah matriks. 3. Praktikan dapat membuat program tentang penjumlahan

Lebih terperinci

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2

18/09/2013. Ekonomi Teknik / Sigit Prabawa / 1. Ekonomi Teknik / Sigit Prabawa / 2 PENERAPAN PROGRAM LINIER dalam OPTIMASI PRODUKSI Ekonomi Teknik / Sigit Prabawa / 1 MASALAH yg banyak dihadapi oleh INDUSTRI adalah BAGAIMANA MENGGUNAKAN atau MENENTUKAN ALOKASI PENGGUNAAN SUMBER DAYAYG

Lebih terperinci

II. TINJAUAN PUSATAKA

II. TINJAUAN PUSATAKA 4 II. TINJAUAN PUSATAKA 2.1 Operator Definisi 2.1.1 (Kreyszig, 1989) Suatu pemetaan pada ruang vektor khususnya ruang bernorma disebut operator. Definisi 2.1.2 (Kreyszig, 1989) Diberikan ruang Bernorm

Lebih terperinci

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA

Analisis Fungsional. Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Analisis Fungsional Oleh: Dr. Rizky Rosjanuardi, M.Si Jurusan Pendidikan Matematika UNIVERSITAS PENDIDIKAN INDONESIA Lingkup Materi Ruang Metrik dan Ruang Topologi Kelengkapan Ruang Banach Ruang Hilbert

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Sistem Persamaan Linier Sistem Persamaan dengan m persamaan dan n bilangan tak diketahui ditulis dengan : Dimana x 1, x 2, x n : bilangan tak diketahui a,b : konstanta Jika SPL

Lebih terperinci

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU

SILABUS PENGALAMAN BELAJAR ALOKASI WAKTU SILABUS Mata Pelajaran : Matematika Satuan Pendidikan : SMA Ungguan BPPT Darus Sholah Jember kelas : XII IPA Semester : Ganjil Jumlah Pertemuan : 44 x 35 menit (22 pertemuan) STANDAR 1. Menggunakan konsep

Lebih terperinci

Metode Simpleks Minimum

Metode Simpleks Minimum Metode Simpleks Minimum Perhatian Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan caranya BERBEDA. Perhatian Model matematika dari

Lebih terperinci

Pertemuan 14. persamaan linier NON HOMOGEN

Pertemuan 14. persamaan linier NON HOMOGEN Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat

Lebih terperinci