MAKALAH BASIS RUANG SOLUSI

Ukuran: px
Mulai penontonan dengan halaman:

Download "MAKALAH BASIS RUANG SOLUSI"

Transkripsi

1 MAKALAH BASIS RUANG SOLUSI Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen pengampu : Darmadi,S.Si,M.pd Di susun Oleh : Kelompok 6/ VF 1. Fitria Wahyuningsih ( ) 2. Pradipta Annurwanda ( ) 3. Puput Tri Sarani ( ) 4. Susilo ( ) 5. Yudhi Agung Pranoto ( ) 6. Ririn setianingsih ( ) 7. Sundari ( ) 8. Suwandi ( ) PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM IKIP PGRI MADIUN

2 KATA PENGANTAR Dengan memanjatkan rasa syukur kepada Allah Yang Maha Esa serta limpahan rahmat-nya sehingga penulis dapat menyelesaikan makalah ini dengan judul Basis Ruang Solusi. Penulis menyadari bahwa tanpa adanya bantuan dan bimbingan dari berbagai pihak, belum tentu kami dapat menyelesaikan makalah ini dan kami mengucapkan banyak terima kasih serta penghargaan yang sebesar-besarnya atas segala bantuan yang diberikan kepada penulis. Dan tak lupa penulis selalu mengharapkan kritikan yang bersifat membangun demi kesempurnaan penulisan di kemudian hari dan mudah-mudahan makalah ini dapat membantu meningkatkan mutu pendidikan Madiun, 06 Januari 2011 Penulis 2

3 DAFTAR ISI HALAMAN JUDUL...1 KATA PENGANTAR...2 DAFTAR ISI...3 BAB I. PENDAHULUAN...4 A. Latar Belakang...4 B. Tujuan Penulisan...4 C. Rumusan Masalah...5 D. Tujuan Penulisan...5 BAB II. PEMBAHASAN...6 A. Pengertian basis Ruang Solusi...6 B. Macam macam teorema...6 BAB III. PENUTUP...11 A. Simpulan...11 B. Saran...11 DAFTAR PUSTAKA

4 BAB I PENDAHULUAN A. Latar Belakang Jika kita perhatikan suatu matriks A dan transposnya A T secara bersamaan, maka terdapat enam vektor yang penting, yaitu: Ruang baris dari A Runang kolom dari A Ruang nul dari A ruang baris dari A T ruang kolom dari A T ruang nul dari A T Namun demikian dengan mentranspos suatu matriks, akan mengubah vektor-vektor barisnya menjadi vektor-vektor kolom dan mengubah vektor-vektor kolomnya menjadi vektor-vektor baris dari A. Dengan ini, kita tinggal memiliki 4 ruang vektor yang penting, yaitu; Ruang baris A Ruang nul dari A ruang kolom dari A ruang nul dari A T Keempat ruang vektor ini dikenal sebagai ruang matriks dasar (fundamental matrix space) yang terkait dengan A. Jika A adalah suatu metriks m x n, maka ruang baris dari A adalah sub ruang dari R n dan ruang kolom dari A dan ruang nul dari A T adalah sub ruang dari R m. B. Tujuan Penulisan Tujuan utama kita pada sub bab ini adalah untuk mengembangkan hubungan antara dimernsi-dimensi dari keempat ruang vektor ini. 4

5 C. Rumusan Masalah 1. Apa yang dimaksud dengan ruang baris dan ruang kolom yang memiliki dimensi yang sama dan bagaimana menyelesaikan soal-soal yang berhubungan dengan hal tersebut? 2. Apa yang dimaksud dengan dimensi untuk matriks? 3. Bagaimana mengetahui nilai maksimum untuk rank? 4. Apa yang dimaksud dengan teorema konsisten dan bagaimana pembuktiannya? D. Tujuan Penulisan 1. Untuk mengerti, memahami dan dapat menyelesaikan soal-soal yang berkaitan dengan ruang baris dan kolom yang memiliki dimensi yang sama. 2. Untuk mengerti dan memahami apa yang dimaksud dengan dimensi untuk matriks. 3. Untuk mengetahui nilai maksimum untuk rank A memiliki 4. Untuk mengerti dan memahami teorema konsisten dan pembuktiannya. 5

6 BAB II PEMBAHASAN BASIS RUANG SOLUSI Jika kita perhatikan suatu matriks A dan transposnya A T secara bersamaan, maka terdapat enam ruang vector yang penting, yaitu : Ruang baris dari A Ruang kolom dari A Ruang nul dari A Ruang baris dari A T Ruang kolom dari A T Ruang nul dari A T Namun demikian dengan mentranspos suatu matriks, akan mengubah vector-vektor barisnya menjadi vector-vektor kolom dan mengubah vector-vektor kolomnya menjadi vector-vektor baris. Sehingga kecuali perbedaan notasi, ruang baris dari A T adalah sama dengan ruang kolom dari A, dan ruang kolom dari A T adalah sama dengan ruang baris dari A. Dengan ini, kita tinggal memiliki empat ruang vector yang penting yaitu: Ruang baris dari A Ruang nul dari A Ruang kolom dari A Ruang nul dari A T Keempat ruang vector ini dikenal sebagai ruang matriks dasar yang terkait dengan A. Jika A adalah suatu matriks m x n, maka ruang baris dari A dan ruang nul dari A adalah sub ruang dari R n dan ruang kolom dari A dan ruang nul dari A T adalah sub ruang dari R m. Tujuan utama kita pada sub bab ini adalah untuk mengembangkan hubungan antara dimensi-dimensi dari keempat ruang vector ini 6

7 Teorema Jika A adalah suatu matriks sembarang, maka ruang baris dan ruang kolom dari A memiliki dimensi yang sama. Definisi Dimensi umum dari ruang baris baris dan ruang kolom dari suatu matriks A disebut rank dari A dan dinyatakan sebagai rank(a). Dimensi ruang nul dari A disebut sebagai nulitas (nullity) dari A dan dinyatakan sebagai nulitas(a). Teorema Jika A adalah suatu matriks sembarang, maka rank(a) = rank(a T ) Teorema Dimensi untuk matriks Jika A adalah suatu matriks dengan n kolom, maka rank(a) + nulitas(a) = n Teorema Jika A adalah suatu matriks n x n, maka: a) rank (A) = banyaknya variabel pada solusi dari Ax = 0 b) nulitas (A) = banyaknya parameter pada solusi umum dari Ax = 0 7

8 Banyaknya Rank dan Nulitas Matriks A Memiliki 6 kolom, sehingga: Rank (A) + nulitas (A) = 6 Sehingga kita dapat menyimpulkan dimensi-dimensi dari keempat ruang dasar dari suatu matriks A, m x n dengan rank r, seperti pada table berikut ini: Ruang Dasar Ruang baris dari A Ruang kolom dari A Ruang nul dari A Ruang nul dari A T Dimensi R R n r m r Nilai Maksimum Untuk Rank Jika A adalah suatu matriks m x n, maka vector-vektor barisnya terletak pada R n dan vector-vektor kolomnya terletak pada R m. Ini mengimplikasikan bahwa ruang baris dari A paling banyak berdimensi n, dan ruang kolom dari A paling banyak berdimensi m. Karena ruang baris dan ruang kolom memiliki dimensi yang sama, kita harus menyimpulkan bahwa jika m n, maka rank dari A yang paling banyak adalah nilai yang lebih kecil antara nilai m dan n. Kita menotasikan dengan menulis : Rank (A) min (m, n) 8

9 Dimana min(m,n) menotasikan nilai yang lebih kecil antara nilai m dan nilai n jika m n, atau nilai yang sama jika m = n. Teorema (Teorema Konsistens) Jika Ax = b adalah suatu system linier yang terdiri dari m persamaan dengan n factor yang tidak diketahui, maka pernyataan berikut adalah equivalen. a) Ax = b adalah konsisten b) B berada pada ruang kolom dari A c) Matriks koefisien A, dan matriks yang diperbesar [A b] memiliki rank yang sama. Teorema Jika Ax = b adalah suatu system linier yang terdiri dari m persamaan dengan factor yang tidak diketahui, maka pernyataan-pernyataan berikut adalah equivalent. a) Ax = b adalah konsisten untuk setiap matriks b, m x 1 b) Vektor-vektor kolom dari A merentang R m c) Rank (A) = m Teorema Jika Ax = b adalah suatu system linier konsisten yang terdiri dari m persamaan dengan n factor yang tidak diketahui, dan A memiliki rank r, maka solusi umum dari system tersebut dari n r parameter. Teorema 4.31 Jika A adalah suatu matriks m x n, maka pernyataa-pernyataan berikut adalah equivalent. a) Ax = 0 hanya memiliki satu solusi trivial b) Vektor-vektor kolom A adalah bebas linier c) Ax = b memiliki paling banyak satu solusi untuk setiap matriks b, m x 1. Teorema

10 Pernyataan-pernyataan yang equivalent. Jika A adalah suatu matriks n x n dan TA : R n -R n adalah perkalian dengan A, maka pernyataanpernyataan berikut ini adalah equivalent. a) A dapat dibalik b) Ax = 0 hanya memiliki satu solusi trivial c) Bentuk eselon baris tereduksi dari A adalah In. d) A dapat dinyatakan sebagai suatu hasil kali dari matriks-matriks elementer e) Ax = b konsisten untuk setiap matriks b, n x 1. f) Ax = b memiliki tepat satu solusi untuk setiap matriks b, n x 1 g) Det(a) 0 h) Range dari T a adalah R n i) T A adalah satu ke Satu j) Vektor-vektor kolom dari A adalah bebas linier k) Vektor-vektor baris dari A adalah bebas linier l) Vektor-vektor kolom dari A adalah merentang R n m) Vektor-vektor baris dari A adalah merentang R n n) Vektor-vektor kolom dari A adalah membentuk basis untuk R n o) Vektor-vektor baris dari A adalah membentuk basis untuk R n p) A memiliki rank n q) nulitas 0 10

11 BAB III PENUTUP Kesimpulan Untuk menentukan suatu basis maka kita harus menunjukkan bahwa vektor merentang dan bebas linier. Basis ruang solusi jika dilihat basis dari ruang basis maka memakai operasi baris elementer.dan jika basis dilihat dari ruang kolom maka memakai operasi kolom elementer. Rank A yaitu banyaknya vektor yang membentuk ruang baris dan ruang kolom pada suatu matriks(a). Ruang nul merupakan Ruang solusi dari sistem persamaan homogen pada matriks A (nulitas). Jika A adalah matriks ( m x n ) maka, Nulitas (A) = n r Nulitas ( A T ) m r Nilai maximum jika A adalah matrik m xn maka : Rank(A) m x n (m,n) Persamaan non homogen dikatakan konsisten jika persamaaan linier non homogen tersebut mempunyai solusi/penyelesaian. 11

12 DAFTAR PUSTAKA Departemen Pendidikan dan Kebudayaan,Matematika untuk SMA jilid 10 dan PT..rmasa: jakarta Scott Mathematics Group.Modern Mahtematics for schools 9, Great Britai

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity

Chapter 5 GENERAL VECTOR SPACE Row Space, Column Space, Nullspace 5.6. Rank & Nullity Chapter 5 GENERAL VECTOR SPACE 5.5. Row Space, Column Space, Nullspace 5.6. Rank & Nullity 5.5. Row Space, Column Space, Nullspace Vektor-Vektor Baris & Kolom Vektor baris A (dalam R n ) Vektor kolom A

Lebih terperinci

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M.

HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier. Dosen Pengampu : Darmadi, S,Si, M. HASIL PRESENTASI ALJABAR LINIER ( SUB RUANG VEKTOR ) Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen Pengampu : Darmadi, S,Si, M.Pd Disusun oleh Matematika 5F Kelompok 5: ARLITA ROSYIDA 08411.081

Lebih terperinci

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS Dosen Pengampu: DARMADI, SSi, MPd Oleh: Kelompok III 1 Andik Dwi S (06411008) 2 Indah Kurniawati (06411090) 3 Mahfuat M (06411104)

Lebih terperinci

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR

RUANG VEKTOR UMUM AKSIOMA RUANG VEKTOR 7//5 RUANG VEKTOR UMUM Yang dibahas.. Ruang vektor umum. Subruang. Hubungan dependensi linier 4. Basis dan dimensi 5. Ruang baris, ruang kolom, ruang nul, rank dan nulitas AKSIOMA RUANG VEKTOR V disebut

Lebih terperinci

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank

Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank Aljabar Linier Sistem koordinat, dimensi ruang vektor dan rank khozin mu tamar 9 Oktober 2014 PERTEMUAN-4 : SISTEM KOORDINAT, DIMEN- SI RUANG VEKTOR DAN RANK 1. Sistem koordinat (a) Ketunggalan scalar

Lebih terperinci

Aljabar Linier Elementer. Kuliah 27

Aljabar Linier Elementer. Kuliah 27 Aljabar Linier Elementer Kuliah 27 Materi Kuliah Transformasi Linier Invers Matriks Transformasi Linier Umum //24 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Satu ke satu dan Sifat-sifatnya Definisi

Lebih terperinci

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel)

Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Ruang Baris, Ruang Kolom, dan Ruang Null (Kernel) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U November 2015 MZI (FIF Tel-U) Ruang Baris, Kolom,

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN KS96 KALKULUS DAN ALJABAR LINEAR Ruang Baris Ruang Kolom Ruang Nol TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mencari ruang baris, ruang kolom,

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni 14144100115 2. Emi Suryani 14144100126

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut

Operasi perkalian skalar merupakan suatu aturan yang mengasosiasikan setiap skalar k dan setiap objek u pada v dengan suatu objek ku, yang disebut RUANG VEKTOR REAL Aksioma ruang vektor, dinyatakan dlam definisi beikut, dimana aksiona merupakan aturan permainan dalam ruang vektor. Definisi : Jika V merupakan suatu himpunan tidak kosong dari objek

Lebih terperinci

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =

BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: = BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam

Lebih terperinci

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd

TRANSFORMASI LINEAR. Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear. Dosen Pengampu : Abdul Aziz Saefudin, M.Pd TRANSFORMASI LINEAR Disusun untuk Memenuhi Tugas Mata Kuliah Aljabar Linear Dosen Pengampu : Abdul Aziz Saefudin, M.Pd Disusun oleh : Kelompok 7/ Kelas III A Endar Alviyunita 34400094 Ahmat Sehari ---------------

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUH1G3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 5 Ruang Vektor Ruang Vektor Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem Kontrol

Lebih terperinci

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor

Bab 4 RUANG VEKTOR. 4.1 Ruang Vektor Bab RUANG VEKTOR. Ruang Vektor DEFINISI.. Suatu ruang vektor (V, +,, F) atas field (F, +), ditulis singkat V(F), adalah suatu himpunan tak kosong V dengan elemenelemennya disebut vektor, yang dilengkapi

Lebih terperinci

BAB II DASAR DASAR TEORI

BAB II DASAR DASAR TEORI BAB II DASA DASA TEOI.. uang ruang Vektor.. uang Vektor Umum Defenisi dan sifat sifat sederhana Defenisi : Misalkan V adalah sebarang himpunan benda yang didefenisikan dua operasi, yakni penambahan perkalian

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari

8.1 Transformasi Linier Umum. Bukan lagi transformasi R n R m, tetapi transformasi linier dari 8.1 Transformasi Linier Umum Bukan lagi transformasi R n R m, tetapi transformasi linier dari ruang vektor V vektor W. Definisi Jika T: V W adalah suatu fungsi dari suatu ruang vektor V ke ruang vektor

Lebih terperinci

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks

SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1

Ruang Vektor. Kartika Firdausy UAD blog.uad.ac.id/kartikaf. Ruang Vektor. Syarat agar V disebut sebagai ruang vektor. Aljabar Linear dan Matriks 1 Ruang Vektor Kartika Firdausy UAD blog.uad.ac.id/kartikaf Syarat agar V disebut sebagai ruang vektor 1. Jika vektor vektor u, v V, maka vektor u + v V 2. u + v = v + u 3. u + ( v + w ) = ( u + v ) + w

Lebih terperinci

RUANG VEKTOR. Nurdinintya Athari (NDT)

RUANG VEKTOR. Nurdinintya Athari (NDT) 1 RUANG VEKTOR Nurdinintya Athari (NDT) RUANG VEKTOR Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Basis Subruang Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem kontrol

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

Pertemuan 14. persamaan linier NON HOMOGEN

Pertemuan 14. persamaan linier NON HOMOGEN Pertemuan 14 persamaan linier NON HOMOGEN 10 Metode GAUSS Aljabar Linier Hastha 2016 10.2.2 METODE ELIMINASI GAUSS Apabila [A][X]=[B] maka dengan menyusun matriks baru yaitu matriks [A.B] akan didapat

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR Persamaan Linear Pengertian Persamaan linear adalah persamaan yang mempunyai bentuk umum sebagai berikut. + + + Di mana:,,,, dan adalah konstanta-konstanta riil.,,,, adalah bilangan

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A = NILAI EIGEN DAN VEKTOR EIGEN >> DEFINISI NILAI EIGEN DAN VEKTOR EIGEN Jika A adalah sebuah matriks n n, maka sebuah vektor taknol x pada R n disebut vektor eigen (vektor karakteristik) dari A jika Ax adalah

Lebih terperinci

Sistem Persamaan Linier dan Matriks

Sistem Persamaan Linier dan Matriks Sistem Persamaan Linier dan Matriks 1.1 Pendahuluan linier: Sebuah garis pada bidang- dapat dinyatakan secara aljabar dengan sebuah persamaan Sebuah persamaan jenis ini disebut persamaan linier dalam dua

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

SYARAT PERLU DAN CUKUP SISTEM PERSAMAAN LINEAR BERUKURAN m n MEMPUNYAI SOLUSI ABSTRACT

SYARAT PERLU DAN CUKUP SISTEM PERSAMAAN LINEAR BERUKURAN m n MEMPUNYAI SOLUSI ABSTRACT SYARAT PERLU DAN CUKUP SISTEM PERSAMAAN LINEAR BERUKURAN m n MEMPUNYAI SOLUSI Aryan Zainuri 1, Syamsudhuha 2, Asli Sirait 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika

Lebih terperinci

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2. SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Sebagai acuan penulisan penelitian ini diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam sub bab ini akan diberikan beberapa landasan teori berupa pengertian,

Lebih terperinci

BAB 4 : SISTEM PERSAMAAN LINIER

BAB 4 : SISTEM PERSAMAAN LINIER BAB 4 : SISTEM PERSAMAAN LINIER 4.1 PERSAMAAN LINIER Misalnya x 2 Matematika analitik membicarakan ilmu ukur secara aljabar. Garis lurus pada bidang x 1 dan x 2 dapat dinyatakan sebagai persamaan a 1 x

Lebih terperinci

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks

DIKTAT PERKULIAHAN. EDISI 1 Aljabar Linear dan Matriks DIKTAT PERKULIAHAN EDISI 1 Aljabar Linear dan Matriks Penulis : Ednawati Rainarli, M.Si. Kania Evita Dewi, M.Si. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 011 IF/011 1 DAFTAR ISI

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

Aljabar Linier Elementer. Kuliah 7

Aljabar Linier Elementer. Kuliah 7 Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan

Lebih terperinci

Aljabar Matriks. Aljabar Matriks

Aljabar Matriks. Aljabar Matriks Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi

Lebih terperinci

dimana a 1, a 2,, a n dan b adalah konstantakonstanta

dimana a 1, a 2,, a n dan b adalah konstantakonstanta Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan

Lebih terperinci

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh:

II LANDASAN TEORI. Contoh. Ditinjau dari sistem yang didefinisikan oleh: 5 II LANDASAN TEORI 2.1 Keterkontrolan Untuk mengetahui persoalan sistem kontrol mungkin tidak ada, jika sistem yang ditinjau tidak terkontrol. Walaupun sebagian besar sistem terkontrol ada, akan tetapi

Lebih terperinci

Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain :

Transformasi Linier. Transformasi linier memiliki beberapa fungsi yang perlu dipelajari. Fungsi-fungsi tersebut antara lain : Transformasi Linier Objektif:. definisi transformasi linier umum.. definisi transformasi linier dari R n ke R m. 3. invers transformasi linier. 4. matrix transformasi 5. kernel dan jangkauan 6. keserupaan.definisi

Lebih terperinci

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut: SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau

Lebih terperinci

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung

Course of Calculus MATRIKS. Oleh : Hanung N. Prasetyo. Information system Departement Telkom Politechnic Bandung Course of Calculus MATRIKS Oleh : Hanung N. Prasetyo Information system Departement Telkom Politechnic Bandung Matriks dan vektor merupakan pengembangan dari sistem persamaan Linier. Matriks dapat digunakan

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 7 Transformasi Linear Sub Pokok Bahasan Definisi Transformasi Linear Matriks Transformasi Kernel dan Jangkauan Aplikasi Transformasi Linear Grafika Komputer Penyederhanaan

Lebih terperinci

Perluasan Teorema Cayley-Hamilton pada Matriks

Perluasan Teorema Cayley-Hamilton pada Matriks Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan

Lebih terperinci

Aljabar Linier Elementer. Kuliah 1 dan 2

Aljabar Linier Elementer. Kuliah 1 dan 2 Aljabar Linier Elementer Kuliah 1 dan 2 1.3 Matriks dan Operasi-operasi pada Matriks Definisi: Matriks adalah susunan bilangan dalam empat persegi panjang. Bilangan-bilangan dalam susunan tersebut disebut

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut:

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: Bagian 5. RUANG VEKTOR 5.1 Lapangan (Field) Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: 1. dan 2., 3.,

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN

GARIS-GARIS BESAR PROGRAM PEMBELAJARAN GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor

Lebih terperinci

MODUL IV SISTEM PERSAMAAN LINEAR

MODUL IV SISTEM PERSAMAAN LINEAR MODUL IV SISTEM PERSAMAAN LINEAR 4.. Pendahuluan. Sistem Persamaan Linear merupakan salah satu topik penting dalam Aljabar Linear. Sistem Persamaan Linear sering dijumpai dalam semua bidang penyelidikan

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304

MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 Deskripsi: Perkuliahan ini bertujuan mengembangkan kemampuan mahasiswa memahami konsep-konsep dasar Aljabar Matriks sebagai bekal untuk mengajar matematika

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 9467 Teknik Nmerik Sistem Linear Trihastti Agstinah Bidang Stdi Teknik Sistem Pengatran Jrsan Teknik Elektro - FTI Institt Teknologi Seplh Nopember O U T L I N E OBJEKTIF TEORI CONTOH 4 SIMPULAN 5 LATIHAN

Lebih terperinci

Kumpulan Soal,,,,,!!!

Kumpulan Soal,,,,,!!! Kumpulan Soal,,,,,!!! Materi: Matriks & Ruang Vektor 1. BEBAS LINEAR S 3. BASIS DAN DIMENSI O A L 2. KOMBINASI LINEAR NeXt FITRIYANTI NAKUL Page 1 1. BEBAS LINEAR Cakupan materi ini mengkaji tentang himpunan

Lebih terperinci

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4

Aljabar Linear. & Matriks. Evangs Mailoa. Pert. 4 Aljabar Linear & Matriks Pert. 4 Evangs Mailoa Sistem Persamaan Linier & Matriks 1. Matriks dan Operasi Matriks 2. Pengantar Sistem Persamaan Linier 3. Eliminasi Gaus 4. Invers: Aturan Aritmatika Matriks

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata

1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : MATEMATIKA INFORMATIKA 2 JURUSAN : S1-TEKNIK INFORMATIKA KODE MATA KULIAH : IT-045214 Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk

Lebih terperinci

BAB X SISTEM PERSAMAAN LINIER

BAB X SISTEM PERSAMAAN LINIER BAB X SISTEM PERSAMAAN LINIER 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan

Lebih terperinci

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ)

Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Operasi Baris Elementer (OBE) dan Eliminasi Gauss-Jordan (EGJ) Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Agustus 2015 MZI (FIF Tel-U) OBE dan

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri

Lebih terperinci

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO

PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS VETERAN BANGUN NUSANTARA SUKOHARJO PERANGKAT PEMBELAJARAN MATA KULIAH : ALJABAR LINIER 2 KODE : MKK414515 DOSEN PENGAMPU : Annisa Prima Exacta, M.Pd. PROGRAM STUDI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS

Lebih terperinci

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah) Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Matriks dan Sistem Persamaan Linear

Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Matriks dan Sistem Persamaan Linear Modul 2.2 Matriks dan Sistem Persamaan Linear (Topik 4) A. Pendahuluan Salah satu kajian matematika sekolah menengah yang memiliki banyak aplikasinya dalam menyelesaikan permasalahan yang ada dalam kehidupan

Lebih terperinci

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS

SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan

Lebih terperinci

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd

DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd DIKTAT MATA KULIAH ALJABAR LINEAR ELEMENTER (BAGIAN II) DISUSUN OLEH ABDUL JABAR, M.Pd JURUSAN/PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI BANJARMASIN MARET MUQADIMAH Alhamdulillah penyusun ucapkan

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

Metode Simpleks (Simplex Method) Materi Bahasan

Metode Simpleks (Simplex Method) Materi Bahasan Metode Simpleks (Simplex Method) Kuliah 03 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Rumusan Pemrograman linier dalam bentuk baku 2 Pemecahan sistem persamaan linier 3 Prinsip-prinsip metode simpleks

Lebih terperinci

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam Shalawat serta salam

Lebih terperinci

Minggu II Lanjutan Matriks

Minggu II Lanjutan Matriks Minggu II Lanjutan Matriks Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum Tujuan Instruksional Khusus Jumlah Pertemuan : Matriks : A. Transformasi Elementer. Transformasi Elementer pada baris

Lebih terperinci

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor)

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Outline TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Drs. Antonius Cahya Prihandoko, M.App.Sc PS. Pendidikan Matematika PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline

Lebih terperinci

BASIS DAN DIMENSI. dengan mengurangkan persamaan kedua dengan persamaan menghasilkan

BASIS DAN DIMENSI. dengan mengurangkan persamaan kedua dengan persamaan menghasilkan BASIS DAN DIMENSI Representasi Basis Jika S={v 1,v,...,v n ) adalah suatu basis dari ruang vektor V, maka tiap vektor v pada V dapat dinyatakan dalam bentuk v= c 1 v 1 + c v +... c n v n dengan cepat satu

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR

SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 03, No. 1 (2014), hal 91 98. SOLUSI PENDEKATAN TERBAIK SISTEM PERSAMAAN LINEAR TAK KONSISTEN MENGGUNAKAN DEKOMPOSISI NILAI SINGULAR Febrianti,

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

MAKALAH RUANG VEKTOR UMUM

MAKALAH RUANG VEKTOR UMUM MAKALAH RUANG VEKTOR UMUM Disusun untuk memenuhi tugas mata kuliah Aljabar Linier Dosen Pengampu : Darmadi, S.Si, M.Pd Disusun oleh Kelompok II: Mujiati 08411.192 Puji Astuti 08411.226 Siti Nur Aminah

Lebih terperinci

Metode Simpleks Minimum

Metode Simpleks Minimum Metode Simpleks Minimum Perhatian Untuk menyelesaikan Persoalan Program Linier dengan Metode Simpleks untuk fungsi tujuan memaksimumkan dan meminimumkan caranya BERBEDA. Perhatian Model matematika dari

Lebih terperinci

CHAPTER 6. Ruang Hasil Kali Dalam

CHAPTER 6. Ruang Hasil Kali Dalam CHAPTER 6. Ruang Hasil Kali Dalam Hasil Kali Dalam Sudut dan Ortogonal dalam Ruang Hasil Kali Dalam Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Best Approximation; Least Squares Orthogonal

Lebih terperinci

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR M AT E M AT I K A E K O N O M I MATRIKS DAN SPL TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 1 2 Kesetimbangan Dua Pasar Permintaan kopi bergantung tidak hanya pada harganya tetapi juga pada harga

Lebih terperinci

PM-11 PENINGKATAN KUALITAS PEMBELAJARAN DENGAN MENGOPTIMALKAN MEDIA DAN TEKNOLOGI PADA MATAKULIAH ALJABAR LINEAR ELEMENTER

PM-11 PENINGKATAN KUALITAS PEMBELAJARAN DENGAN MENGOPTIMALKAN MEDIA DAN TEKNOLOGI PADA MATAKULIAH ALJABAR LINEAR ELEMENTER Kode Makalah PM-11 PENINGKATAN KUALITAS PEMBELAJARAN DENGAN MENGOPTIMALKAN MEDIA DAN TEKNOLOGI PADA MATAKULIAH ALJABAR LINEAR ELEMENTER Oleh: R. Sulaiman dan Pradnyo Wijayanti (Jurusan Matematika FMIPA

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Mata : MATEMATIKA TEKNIK 1 Jurusan : TEKNIK ELEKTRO SKS : 2 Sks Kode Mata : KD-041205 MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Minggu Ke Pokok Bahasan dan TIU 1 Vektor tentang pengertian

Lebih terperinci

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI

METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 9 17 ISSN : 233 291 c Jurusan Matematika FMIPA UNAND METODE PSEUDO ARC-LENGTH DAN PENERAPANNYA PADA PENYELESAIAN SISTEM PERSAMAAN NONLINIER TERPARAMETERISASI RAHIMA

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3

II. M A T R I K S ... A... Contoh II.1 : Macam-macam ukuran matriks 2 A. 1 3 Matrik A berukuran 3 x 1. Matriks B berukuran 1 x 3 11 II. M A T R I K S Untuk mencari pemecahan sistem persamaan linier dapat digunakan beberapa cara. Salah satu yang paling mudah adalah dengan menggunakan matriks. Dalam matematika istilah matriks digunakan

Lebih terperinci

PROGRAM STUDI TEKNIK KOMPUTER

PROGRAM STUDI TEKNIK KOMPUTER 12-08-28 Pengesahan Nama Dokumen : SILABUS No Dokumen : FIK/TK-III/S-1 No Diajukan oleh ISO 90:2008/IWA 2 1dari 5 Ir. Hastha Sunardi, MT (Dosen Pengampu) Diperiksa oleh Ir. Dedy Hermanto, MT (GKM) Disetujui

Lebih terperinci

MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR

MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR KOMPETENSI: 1. Memahami penggunaan faktorisasi LU dalam penyelesaian persamaan linear.. Memahami penggunaan partisi matrik dalam penyelesaian persamaan

Lebih terperinci

MAKALAH ALJABAR LINIER

MAKALAH ALJABAR LINIER MAKALAH ALJABAR LINIER Transformasi Linier Makalah Ini Disusun Untuk Memenuhi Tugas Mata Kuliah Aljabar Linier Dosen Pengampu : Abdul Aziz Saefudin, S.Pd.I, M.Pd Disusun Oleh: III A4 Kelompok 12 1. Ria

Lebih terperinci

Praktikum Metode Komputasi (Vector Spaces)

Praktikum Metode Komputasi (Vector Spaces) Praktikum Metode Komputasi (Vector Spaces) Vina Apriliani January 17, 016 Soal Latihan MATLAB Bab 3 Buku Leon Aljabar Linear Berikut 1 Soal Latihan MATLAB Bab 3 Buku Leon Aljabar Linear yang saya ambil

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Independensi Linear Basis & Dimensi TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Independensi Linear Basis & Dimensi TIM KALIN KS091206 Independensi Linear Basis & Dimensi TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui apakah suatu vektor bebas linier atau tak bebas

Lebih terperinci

Solusi Persamaan Linier Simultan

Solusi Persamaan Linier Simultan Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto

S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto 081316373780 S I L A B U S Mata Kuliah : ALJABAR LINIER Kode Mata Kuliah : SKS : 3 Prasyarat : MATEMAA DASAR Dosen Pembimbing : M. Soenarto Prodi / Jenjang : MATEMAA / S1 Buku Sumber : Singapore : Mc-Graw-

Lebih terperinci