1. Review prinsip-prinsip aliran terbuka dan tertutup 1. Persamaan energi bernouli 2. Momentum 3. Persamaan kontinuitas 4. Prinsip aliran tertutup

Ukuran: px
Mulai penontonan dengan halaman:

Download "1. Review prinsip-prinsip aliran terbuka dan tertutup 1. Persamaan energi bernouli 2. Momentum 3. Persamaan kontinuitas 4. Prinsip aliran tertutup"

Transkripsi

1 1. Review prinsip-prinsip aliran terbuka dan tertutup 1. Persamaan energi bernouli. Momentum 3. Persamaan kontinuitas 4. Prinsip aliran tertutup dan penerapan 5. Prinsip aliran terbuka dan penerapannya 6. Perbedaan saluran tertutup dan terbuka 7. Prinsip aliran seragam 8. Persamaan aliran seragam dan tinggi kritis 9. Profil muka air pada aliran seragam. Aliran berubah lambat laun, tiba-tiba, tiba, dan steady non steady 1. Prinsip aliran berubah lambat laundan berubah tiba-tiba.. Pendekatan aliran berubah tiba-tiba (loncata hidrolik) dan aliran diatas spillway. 3. Pengertian dan prinsip aliran steady dan non steady 4. Pendekatan dan penyelesaian aliran steady dan non steady. 3. Penerapan hidrolika dalam infrastruktur 1. Pemodelan hidrolika dalam perencanaan infrastruktur. Model hidrologi (du flow, hec ras, epa net (jaringan pipa)) 3. Pereancanaan jaringan pipa 1

2 Dasar-dasar Aliran Fluida

3 Aliran fluida (dari segi kecepatan) Aliran satu dimensi, adalah aliran pada fluida tak kompresibel, besar dan arah kecepatannya di semua titik sama, kecepatan dan kecepatan tegak lurus dengan garis arus diabaikan, kecepatan dan kecepatan mewakili keseluruhan, penyimpangan penyimpangan kecil diabaikan seperti aliran pada lengkungan. Aliran dua dimensi, terjadi bila partikel fluida bergerak pada bidang dengan garis arus yag sama ditiap bidang. Aliran mantap (tunak, steady), terjadi bila disembarang titik kecepatan fluida yang berurutan sama dalam jangka waktu berurutan. Jadi kecepatan tetap terhadap waktu dv/dt0. tapi bisa berubah pada titiktitik yang berbeda atau jarak berbeda. Aliran tidak mantap (tidak tunak, unsteady), terjadi bila keadaankeadaan disembarang titik dalam fluida berubah bersama waktu, dv/dt 0. Aliran merata, terjadi bila besar dan arah kecapatan tidak berubah dari titik ke titik dalam fluida, dv/ds0. aliran fluida dibawah tekanan dalam suatu pipa besar dan bergaris tengah tetap adalah aliran merata. Aliran tidak merata, terjadi bila kecepatan, kedalaman, tekanan berubah dari titik ke titik dalam aliran, dv/ds 0 3

4 F(s) 4

5 1. Aliran laminar Aliran dengan fluida yang bergerak dalam lapisan lapisan, atau lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar ini kekentalan (viskositas) berfungsi untuk meredam kecendrungan terjadinya gerakan relatif antara lapisan. Sehingga aliran laminar memenuhi hukum viskositas Newton. Aliran turbulen Aliran dimana pergerakan dari partikel partikel fluida sangat tidak menentu karena mengalami percampuran serta putaran partikel antar lapisan, yang mengakibatkan saling tukar momentum dari satu bagian fluida kebagian fluida yang lain dalam skala yang besar. Dalam keadaan aliran turbulen maka turbulensi yang terjadi membangkitkan tegangan geser yang merata diseluruh fluida sehingga menghasilkan kerugian kerugian aliran. 3. Aliran transisi Aliran transisi merupakan aliran peralihan dari aliran laminar ke aliran turbulen. 5

6 Konsep penting dalam aliran fluida Prinsip kekealan massa, sehingga timbul persamaan kontinuitas Prinsip energi kinetik, persamaan persamaan aliran tertentu (bernoulli) Prinsip momentum, persamaan-persamaan gayagaya dinamik pada fluida 6

7 Hukum-hukum fisika dasar dari mekanika fluida 1.Aliran sembarang adalah sebagai perubahan gerak fluida yang didefinisikan sebagai geometri, syarat-syarat syarat, dan hukum mekanika..pendekatan-pendekatan yang sering di gunakan sebagai analisis aliran sembarang adalah volume kendali (integral, skala besar), analisa defferensial (diferensial, skala kecil), analisis eksperimental (analisis dimensional) 7

8 Volume Kendali vs Sistem Volume kendali: daerah batasan yang dipilih dengan hati hati, dengan batas-batas terbuka dimana massa, momentum, dan energi dapat keluar masuk Semua hukum mekanika ditulis untuk suatu sistem yaitu sembarang massa dengan identitas tertentu dan ada batasnya. Ke empat Hukum mekanika menyatakan apa yang terjadi pada sistem 1. Sistem adalah sejumlah massa tertentu (m) kekal tak berubah (khukum kekekalan massa) m sistem dm dt 0 tetap. Bila dalam sistem bekerja gaya, maka sistem akan dipercepat dv d F ma m ( mυ) dt dt 3. Bila dalam sistem bekerja moment terhadap pusat massa maka akan terjadi efek putaran. M ( ω ) 4. Bila kalor dq diberikan pada sistem atau ada perubahan usaha (dw), maka energi sistem berubah dq dq dt dh dt dw dw dt d I dt de de dt 8

9 Keempat hukum tersebut diatas dijabarkan dalam bentuk yang sesuai dengan volume kendali 1. Hukum kekekalan massa. Kekekalan momentum linier 3. Kekekalan momentum sudut 4. Persamaan energi. 9

10 Dengan transformasi Reynolds dapat diterapkan pada semua hukum dasar diatas, dapat dilihat bahwa penurunan besaranbesaran fluida m, V, H, E, diatas dapat dikaitkan terhadap waktu. Gambar dibawah melukiskan tentang volume kendali Permukaan kendali memotong semburan yang meninggalkan mulut nosel, memotong bautbaut dan fluida dalam nosel. Volume kendali mengungkapkan tegangantegangan pada bautbaut Volume kendali yang bergerak sehingga volume kendali tersebut bergerak mengikuti gerakan kapal dengan kecepatan V, volume kendali tetap tapi gerak nisbi(relatif) air dan kapal harus diperhitungkan. 10

11 Volume Kendali Satu Dimensi Volume kendali satu dimensi VV, sistem pada saat t tertentu, pada saat td sistem sudah mulai keluar ( A b V b dt) dan dari ujung sistem 1 (A a V a dt) sudah mulai masuk. B adalah besaran sembarang (energi, momentum, gaya, dsb) dan βdb/dm. maka besar B dalam volume kendali tersebut adalah: Nilai B tergantung massa B VK βρdv VK β db dm 11

12 Kekekalan Massa Transformasi Reynolds (Pengalihan suatu analisis sistem ke analisis volume kendali dengan mengubah matematika agar berlaku bagi suatu daerah tertentu bukan masing masing massa) menghubungkan laju perubahan sistem dengan integral volume dan integral muka volume kendala, tetapi masih dalam kaitannya dengan hukum dasar mekanika. Peubah B berturut turut menjadi massa, momentum linier, momentum sudut, dan energi.. dv volume, da luas, PK permukaan kendali, VK volume kendali, ρ massa jenis, V kecepatan, V.n vektor satuan normal masuk-keluar. Untuk kekekalan massa Bm, dan βdb/dm1, maka: Integral hukum kekekalan massa untuk volume kendali yang berubah dm dt sist d 0 ρdυ ρ( V dt VK PK r. n ) da Integral hukum kekekalan massa untuk volume kendali yang tetap dm dt sist ρ 0 dυ VK ρ( V PK t r. n) da volume kendali dengan sejumlah lubang masuk dan keluar satu dimensi Bila aliran dalam volume kendali tunak (steady) ρ/t0 VK ρ dυ Σ t i ( ρ AV ) Σ( ρ AV ) 0 i i i PK kel i i i i mas ρ( V. n) da 0 1

13 Dalam aliran tunak, aliran massa yang memasuki dan meningalkan sistem harus setimbang Aliran massa yang melalui penampang satu demensi, dengan satuan kilogram per-sekon Σ( ρ A V ) Σ( ρ AV ) i i i i i i masuk m& ρav Σ( m & ) Σ( m& ) masuk i i i i i i keluar keluar 13

14 Persamaan Kontinuitas Satu dimensi Persamaan kontinuitas lahir dari prinsip-prinsip kekekalan massa. Untuk aliran tunak (steady), massa fluida yang melalui semua bagian dalam arus fluida persatuan waktu adalah sama. ρ 1 A V ρ A V 1 1 tetap ρ g AV ρ g A V tetap, satuan berat Untuk fluida-fluida tak kompresibel ρ 1 ρ, persamaan menjadi Q AV 1 1 AV tetap, m 3 / det Dimana A1 dan V1 adalah masing masing luas penampang dan kecepatan rata-rata 14

15 Dua dimensi Persamaan aliran mantap tak kompresibel untuk dua dimensi adalah: An 1V1 An V An 3V 3 tetap Dimana An adalah luas yang tegak lurus dengan vektor kecepatan y vy Uy 15

16 Tiga Dimensi Persamaan aliran mantap (steady) Komponen kecepatan arah,y,z adalah u,v,w Dimensi d,dy,dz z Aliran masuk ρu( dy dz) dy d Aliran keluar ρ u( dy dz) ( ρu dy dz) )d dz y 16

17 ρ/ t adalah merupakan laju perubahan kerapatan didalam volume terhadap waktu, karena aliran masuk sama dengan laju perubahan massa. ρu ρv ρw d dy dz y z.. ρ t ( ddydz) Jadi persamaan kontinuitas untuk tiga dimensi, tak mantap dari suatu fluida kompresibel ρu ρv y ρ ρw z t Untuk aliran mantap (steady), mempunyai sifat fluida yang tidak berubah terhadap waktu. Atau ρ/t0. dan persamaan kontinuitas untuk aliran matap kompresibel: ρu ρv ρw 0 y z Untuk aliran mantap tidak kompresibel (ρ tetap) aliran tiga dimensinya menjadi u v y w z 0 17

18 Bila w/z0 aliran mantapnya menjadi dua dimensi 0 y v u Bila w/z0 dan v/z0 aliran mantapnya menjadi satu dimensi u 18 0 u

19 Soal : Apakah persamaan untuk aliran mantap, tak kompresibel dipenuhi bila komponen kecepatan berikut ini dilibatkan, 4, y yz y w y y v z y u y yz y y y y y y y ) (, 4 ) 4 (, 4 ) ( 19 y z y yz y ) ( 0 ) ( ) 4 ( ) 4 ( y y y 0 z w y v u Aliran mantap, tak kompresibel dipenuhi.

20 Soal : Apakah persamaan untuk aliran mantap, tak kompresibel dipenuhi bila komponen kecepatan berikut ini dilibatkan 0, ) (, ) 3 ( w t y v t y u, ) (, ) 3 ( t y v t y v t u t y u 0 0, 0 z w w 0, 0 0 t t z w y v u Aliran mantap, tak kompresibel dipenuhi.

21 Soal : Apakah persamaan untuk aliran mantap, tak kompresibel dipenuhi bila komponen kecepatan berikut ini dilibatkan a. u 4y y, v 6y 3 b. u y, v 4y u a. u (4y y, 4y v v 6 y 3, 6 y u v 4y 6 0 y u b u ( y, 4 v v 4y, 4 y u v 4 4 y 0 Aliran mantap, tak kompresibel tak dipenuhi. Aliran mantap, tak kompresibel dipenuhi. 1

22 Persamaan Energi Persamaan Gerak Aliran fluida Mantap (steady) M. a M. dv / dt W ρg. da. dl Di integral sebalik dfshambatan gesek air dan dinding ρmassa jenis W ρ gberat ptekanan Vkecepatan da penampang

23 Aliran fluida Mantap (steady) Tak Kompresibel Untuk fluida tak kompresibel integrasinya sebagai berikut H L adalah head total 3

24 Aliran fluida Mantap (steady) Kompresibel 4

25 5

26 A V a a A V b b p tekanan N kg. m / det N / m ρ massajenis kg / m 3 6

27 Perbandingan air;air raksa 1:13.6 7

28 A 0.05*0, v. vma n n no n 0 8

29 9

30 30

31 SALURAN TERBUKA 31

32 1 Karakteristik aliran air pada saluran terbuka Jenis-jenis aliran air menurut waktu dan ruang Persamaan umum aliran air dalam saluran terbuka Karakteristik penampang saluran Distribusi kecepatan Distribusi tekanan dan tinggi energi aliran 3

33 Saluran terbuka dapat klasifikasikan dalam Saluran buatan (artificial). Saluran alami (natural) sungai dan muara adalah contoh saluran alami, sedangkan pembuangan air dan saluran irigasi adalah termasuk dalam kategori saluran buatan. Saluran prismatis (prismatic channel) adalah saluran yang mempunyai penampang dan kemiringan tetap. Non prismatis (non prismatic), apabila penampang atau kemiringan berubah-ubah sepanjang saluran. Saluran bertepi kukuh (rigid boundary channel) saluran dengan dasar dan sisinya tidak bergerak, misalnya saluran beton. Saluran batas bergerak (mobile boundary channel), batas saluran terdiri dari partikel sedimen lepas yang bergerak pengaruh air yang bergerak. Saluran aluvial (alluvial channel), adalah saluran batas bergerak yang mengangkut jenis material yang sama, batas saluran terdiri dari material yang sama.

34 Karakteristik aliran air pada saluran terbuka Karakter, gambaran dan kompleksitas dari geometri aliran saluran terbuka sangat beragam. Tujuan mengkaji konsep-konsep aliran pada saluran terbuka, karena banyak variasi bahan yang ada. Aliran yang kompek: Seragam bila dy/d0, kedalaman saluran tidak bervariasi sepanjang saluran. Tidak seragam bila dy/d 0, terdapat variasi kedalaman aliran pada sepanjang saluran. Aliran tidak seragam bervariasi cepat, kedalaman berubah secara cepat dalam jarak pendek, dy/d 1. Aliran tidak seragam bervariasi secara bertahap, kedalaman aliran berubah secara bertahap, dy/d<<1. 34

35 35

36 Aliran pada saluran terbuka kemungkinan berbentuk laminar, transisi, dan turbulen, tergantung pada berbagai kondisi yang terlibat. Namun jenis aliran tergantung pada bilangan Reynold, yaitu nisbah antara kekentalan dan inersia. Kalau viskositas dominan maka aliran laminar, namun bila inersia dominan maka aliran turbulen Re ρvr h µ atau VR v h ρ massa jenis, kg/m3 V kecepatan rata-rata fluida, m/det. R h jari-jari hidrolik dari saluran, m. µ kekentalan dinamis, Pa det v kekentalan kinematik, m/det Laminar Re<500, dan turbulen Re>

37 1. Aliran laminar Aliran dengan fluida yang bergerak dalam lapisan lapisan, atau lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar ini kekentalan (viskositas) berfungsi untuk meredam kecendrungan terjadinya gerakan relatif antara lapisan. Sehingga aliran laminar memenuhi hukum viskositas Newton. Aliran turbulen Aliran dimana pergerakan dari partikel partikel fluida sangat tidak menentu karena mengalami percampuran serta putaran partikel antar lapisan, yang mengakibatkan saling tukar momentum dari satu bagian fluida kebagian fluida yang lain dalam skala yang besar. Dalam keadaan aliran turbulen maka turbulensi yang terjadi membangkitkan tegangan geser yang merata diseluruh fluida sehingga menghasilkan kerugian kerugian aliran. 3. Aliran transisi Aliran transisi merupakan aliran peralihan dari aliran laminar ke aliran turbulen. 37

38 Jenis-jenis Aliran Air Menurut Waktu Dan Ruang Aliran fluida (dari segi kecepatan) Aliran satu dimensi, adalah aliran pada fluida tak kompresibel, besar dan arah kecepatannya di semua titik sama, kecepatan dan kecepatan tegak lurus dengan garis arus diabaikan, kecepatan dan kecepatan mewakili keseluruhan, penyimpangan penyimpangan kecil diabaikan seperti aliran pada lengkungan. Aliran dua dimensi, terjadi bila partikel fluida bergerak pada bidang dengan garis arus yag sama ditiap bidang. Aliran mantap (tunak, steady), terjadi bila disembarang titik kecepatan fluida yang berurutan sama dalam jangka waktu berurutan. Jadi kecepatan tetap terhadap waktu dv/dt0. tapi bisa berubah pada titik-titik yang berbeda atau jarak berbeda. Aliran tidak mantap (tidak tunak, unsteady), terjadi bila keadaan-keadaan disembarang titik dalam fluida berubah bersama waktu, dv/dt 0. Aliran merata, terjadi bila besar dan arah kecapatan tidak berubah dari titik ke titik dalam fluida, dv/ds0. aliran fluida dibawah tekanan dalam suatu pipa besar dan bergaris tengah tetap adalah aliran merata. Aliran tidak merata, terjadi bila kecepatan, kedalaman, tekanan berubah dari titik ke titik dalam aliran, dv/ds 0 38

39 Aliran (Flow) Steady (permanen) Unsteady (tidak permanen) F(t) Seragam (Uniform) Berubah (varied) Seragam (uniform) berubah (varied) F(s) Lambat laun Tiba-tiba Lambat laun Tiba-tiba 39

40 Kalsifikasi aliran Aliran laminar, turbulen dan transisi perbandingan dari gaya inersia terhadap kekentalan persatuan volume dikenal sebagai bilangan Reynold U kecepatan karakteristik L panjang karakteristik V kekentalan kinematis Laminar Re<500 Turbulen Re<1500. Re UL v Aliran subkritis dan superkritis Perbandingan gaya-gaya inersia dengan gaya-gaya grafitasi per satuan volume disebut sebagai bilangan Froude G kecepatan grafitasi m/det. D kedalaman hidrolik Aliran disebut kritis apabila F1. Aliran disebut Sub kritis apabila F<1. Aliran disebut Superkritis apabila F>1 F U gd

41 Berdasarkan bilangan Reynold dan Froude aliran digolongkan menjadi Laminar subkritis F < 1, Re < 500. Laminar superkritis F>1, Re < 500. Turbulen subkritis F<1, Re > 000. Turbulen superkritis F>1, Re > 000 Aliran kritis bila F1 dan aliran dalam keadaan peralihan apabila 500 < Re < 000

42

43 Konsep penting dalam aliran fluida Prinsip kekekalan massa, sehingga timbul persamaan kontinuitas Prinsip energi kinetik, persamaan persamaan aliran tertentu (bernoulli) Prinsip momentum, persamaan-persamaan gaya-gaya dinamik pada fluida

44 Hukum-hukum fisika dasar dari mekanika fluida 1. Aliran sembarang adalah sebagai perubahan gerak fluida yang didefinisikan sebagai geometri, syaratsyarat, dan hukum mekanika.. Pendekatan-pendekatan yang sering di gunakan sebagai analisis aliran sembarang adalah volume kendali (integral, skala besar), analisa defferensial (diferensial, skala kecil), analisis eksperimental (analisis dimensional) 44

45 Persamaan Umum Aliran Air Dalam Saluran Terbuka Definisi Cannal : saluran panjang dengan kemiringan sedang dibuat dengan menggali tanah Flume : Saluran yang disangga diatas permukaan tanah terbuat dari batu, beton, atau logam. Clute : saluran yang sangat curam dengan dinding hampir vertikal Tunnel : terowongan saluran yang digali melalui bukit. 45

46 SALURAN TERBUKA adalah saluran dimana cairan mengalir dengan permukaan bebaas yang terbuka terhadap tekanan atmosfir. Aliran tersebut disebabkan oleh kemiringan saluran dan permukaan cairannya h b Ab.h Pbh R A P A luas fluida Rjari-jari hidrolik Ppanjang permukaan basah

47 PERSAMAAN DASAR Kontinuitas, Energi dan Momentum Hukum kekekalan massa, kekekalan enenrgi, hubungan antara momentum dan impuls

48 Persamaan Kontinuitas t Q t Q Q Q Q )] ( ) [( 0 ). ( A Q t A t 0 ) ( 0 t A AU t A Q, 0 t h u h h U Bh A Bila aliran tetap QA1U1AUA3U3

49 Persamaan Energi Hukum bernoulli menyatakan bahwa enenrgi air dari setiap aliran yang melalui suatu penampang saluran dapat dinyatakan sebagai jumlah fungsi air p ρg h 1 z U1 g v g h E E ( z z ) 1 z 1 kons tan ( 1 U g E L z E L P adalah tekanan pada setiap titik. Z ketinggian diatas datum EL adalah kehilangan tinggi tekan E adalah enenrgi spesifik sama dengan hu/g

50 Persamaan Momentum ) ( sin. 1 1 U Q U F P P P W U Q P a f ρ θ ρ P1, p, adalah muatan hidrostatis 1-4 dan -3, W adalah berat volume kontrol , θ adalah kemiringan, Ft gesekan batas, Fa tahanan udara pada permukaan bebas diabaikan,

51

52

53

54

55

56

57 DISTRIBUSI KECEPATAN

58 υ distribusi kecepatan V kecepatan rata-rata y m kedalaman rata-rata ν kerapatan kinematic S kemiringan saluran τ o tegangan geser µ kekentalan fluida 1 v ρ µ

59 Distribusi Kecepatan Kecepatan rata-rata

60 Distribusi kecepatan

61

62

Dasar-dasar Aliran Fluida

Dasar-dasar Aliran Fluida Dasar-dasar Alran Fluda Konsep pentng dalam alran fluda Prnsp kekealan massa, sehngga tmbul persamaan kontnutas Prnsp energ knetk, persamaan persamaan alran tertentu Prnsp momentum, persamaan-persamaan

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

Bab III HIDROLIKA. Sub Kompetensi. Memberikan pengetahuan tentang hubungan analisis hidrolika dalam perencanaan drainase

Bab III HIDROLIKA. Sub Kompetensi. Memberikan pengetahuan tentang hubungan analisis hidrolika dalam perencanaan drainase Bab III HIDROLIKA Sub Kompetensi Memberikan pengetahuan tentang hubungan analisis hidrolika dalam perencanaan drainase 1 Analisis Hidraulika Perencanaan Hidraulika pada drainase perkotaan adalah untuk

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

Aliran Fluida. Konsep Dasar

Aliran Fluida. Konsep Dasar Aliran Fluida Aliran fluida dapat diaktegorikan:. Aliran laminar Aliran dengan fluida yang bergerak dalam lapisan lapisan, atau lamina lamina dengan satu lapisan meluncur secara lancar. Dalam aliran laminar

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

(2) Dimana : = berat jenis ( N/m 3 ) g = percepatan gravitasi (m/dt 2 ) Rapat relatif (s) adalah perbandingan antara rapat massa suatu zat ( ) dan

(2) Dimana : = berat jenis ( N/m 3 ) g = percepatan gravitasi (m/dt 2 ) Rapat relatif (s) adalah perbandingan antara rapat massa suatu zat ( ) dan 1. Sifat-Sifat Fluida Semua fluida nyata (gas dan zat cair) memiliki sifat-sifat khusus yang dapat diketahui, antara lain: rapat massa (density), kekentalan (viscosity), kemampatan (compressibility), tegangan

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida. Karena jarak antara dua partikel di dalam fluida tidaklah tetap.

Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida. Karena jarak antara dua partikel di dalam fluida tidaklah tetap. Fluida Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida. Karena jarak antara dua partikel di dalam fluida tidaklah tetap. Molekul-moleku1di dalam fluida mempunyai kebebasan

Lebih terperinci

Mempelajari grafik gerak partikel zat cair tanpa meninjau gaya penyebab gerak tersebut.

Mempelajari grafik gerak partikel zat cair tanpa meninjau gaya penyebab gerak tersebut. KINEMATIKA ZAT CAIR Mempelajari grafik gerak partikel zat cair tanpa meninjau gaya penyebab gerak tersebut. Jenis aliran. Aliran inisid dan iskos Aliran inisid aliran dengan kekentalan zat cair μ 0 (zat

Lebih terperinci

Aliran Turbulen (Turbulent Flow)

Aliran Turbulen (Turbulent Flow) Aliran Turbulen (Turbulent Flow) A. Laminer dan Turbulen Laminer adalah aliran fluida yang ditunjukkan dengan gerak partikelpartikel fluidanya sejajar dan garis-garis arusnya halus. Dalam aliran laminer,

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

Sub Kompetensi. Bab III HIDROLIKA. Analisis Hidraulika. Saluran. Aliran Permukaan Bebas. Aliran Permukaan Tertekan

Sub Kompetensi. Bab III HIDROLIKA. Analisis Hidraulika. Saluran. Aliran Permukaan Bebas. Aliran Permukaan Tertekan Bab III HIDROLIKA Sub Kompetensi Memberikan pengetauan tentang ubungan analisis idrolika dalam perencanaan drainase Analisis Hidraulika Perencanaan Hidrolika pada drainase perkotaan adala untuk menentukan

Lebih terperinci

PRINSIP DASAR HIDROLIKA

PRINSIP DASAR HIDROLIKA PRINSIP DASAR HIDROLIKA 1.1.PENDAHULUAN Hidrolika adalah bagian dari hidromekanika (hydro mechanics) yang berhubungan dengan gerak air. Untuk mempelajari aliran saluran terbuka mahasiswa harus menempuh

Lebih terperinci

Minggu 1 Tekanan Hidrolika (Hydraulic Pressure)

Minggu 1 Tekanan Hidrolika (Hydraulic Pressure) Minggu 1 Tekanan Hidrolika (Hydraulic Pressure) Disiapkan oleh: Bimastyaji Surya Ramadan ST MT Team Teaching: Ir. Chandra Hassan Dip.HE, M.Sc Pengantar Fluida Hidrolika Hidraulika merupakan satu topik

Lebih terperinci

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Konsep Aliran Fluida Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

Klasifikasi Aliran Fluida (Fluids Flow Classification)

Klasifikasi Aliran Fluida (Fluids Flow Classification) Klasifikasi Aliran Fluida (Fluids Flow Classification) Didasarkan pada tinjauan tertentu, aliran fluida dapat diklasifikasikan dalam beberapa golongan. Dalam ulasan ini, fluida yang lebih banyak dibahas

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP FENOMENA PERPINDAHAN LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum Perpindahan Energy (Panas) Neraca

Lebih terperinci

FENOMENA PERPINDAHAN LANJUT

FENOMENA PERPINDAHAN LANJUT FENOMENA PERPINDAHAN LANJUT LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com DR. M. DJAENI, ST, MEng JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

MEKANIKA FLUIDA BAB I. SIFAT-SIFAT FLUIDA

MEKANIKA FLUIDA BAB I. SIFAT-SIFAT FLUIDA MEKANIKA FLUIDA BAB I. SIFAT-SIFAT FLUIDA Mekanika Fluida dan Hidrolika adalah merupakan cabang mekanika terapan yng berkenaan dengan tingkah laku fluida dalam keadaan diam dan keadaan bergerak. Dalam

Lebih terperinci

Mekanika Fluida II. Karakteristik Saluran dan Hukum Dasar Hidrolika

Mekanika Fluida II. Karakteristik Saluran dan Hukum Dasar Hidrolika Mekanika Fluida II Karakteristik Saluran dan Hukum Dasar Hidrolika 1 Geometri Saluran 1.Kedalaman (y) - depth 2.Ketinggian di atas datum (z) - stage 3.Luas penampang A (area cross section area) 4.Keliling

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika

Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika OLEH : ENUNG, ST.,M.Eng JURUSAN TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG 2011 1 SILABUS PERTEMUAN MATERI METODE I -PENDAHULUAN -DEFINISI FLUIDA

Lebih terperinci

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013 Edy Sriyono Jurusan Teknik Sipil Universitas Janabadra 2013 Aliran Pipa vs Aliran Saluran Terbuka Aliran Pipa: Aliran Saluran Terbuka: Pipa terisi penuh dengan zat cair Perbedaan tekanan mengakibatkan

Lebih terperinci

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA. BAB II LANDASAN TEORI 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro Pembangkit Listrik Tenaga Mikrohydro atau biasa disebut PLTMH adalah pembangkit listrik tenaga air sama halnya dengan PLTA, hanya

Lebih terperinci

MEKANIKA FLUIDA A. Statika Fluida

MEKANIKA FLUIDA A. Statika Fluida MEKANIKA FLUIDA Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida, jelas bahwa bukan benda tegar, sebab jarak antara dua partikel di dalam fluida tidaklah tetap. Molekul-molekul

Lebih terperinci

FLUIDA DINAMIS. 1. PERSAMAAN KONTINUITAS Q = A 1.V 1 = A 2.V 2 = konstanta

FLUIDA DINAMIS. 1. PERSAMAAN KONTINUITAS Q = A 1.V 1 = A 2.V 2 = konstanta FLUIDA DINAMIS Ada tiga persamaan dasar dalam hidraulika, yaitu persamaan kontinuitas energi dan momentum. Untuk aliran mantap dan satu dimensi persamaan energi dapat disederhanakan menjadi persamaan Bernoulli

Lebih terperinci

PERTEMUAN III HIDROSTATISTIKA

PERTEMUAN III HIDROSTATISTIKA PERTEMUAN III HIDROSTATISTIKA Pengenalan Statika Fluida (Hidrostatik) Hidrostatika adalah ilmu yang mempelajari perilaku zat cair dalam keadaan diam. Konsep Tekanan Tekanan : jumlah gaya tiap satuan luas

Lebih terperinci

Klasisifikasi Aliran:

Klasisifikasi Aliran: Klasisifikasi Aliran: 1) Aliran Invisid dan Viskos 2) Aliran kompresibel dan tak kompresible 3) Aliran laminer dan turbulen 4) Aliran steady dan unsteady 5) Aliran seragam dan tak seragam 6) Aliran satu,

Lebih terperinci

Rumus Minimal. Debit Q = V/t Q = Av

Rumus Minimal. Debit Q = V/t Q = Av Contoh Soal dan tentang Fluida Dinamis, Materi Fisika kelas 2 SMA. Mencakup debit, persamaan kontinuitas, Hukum Bernoulli dan Toricelli dan gaya angkat pada sayap pesawat. Rumus Minimal Debit Q = V/t Q

Lebih terperinci

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak BAB II DASAR TEORI Ada beberapa teori yang berkaitan dengan konsep-konsep umum mengenai aliran fluida. Beberapa akan dibahas pada bab ini. Diantaranya adalah hukum kekekalan massa dan hukum kekekalan momentum.

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi. tanah dalam rangkaian proses siklus hidrologi.

BAB II TINJAUAN PUSTAKA. 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi. tanah dalam rangkaian proses siklus hidrologi. BAB II TINJAUAN PUSTAKA 2.1 Pengaruh Elemen Meteorologi Untuk Irigasi Sosrodarsono, (1978) dalam perencanaan saluran irigasi harus memperhatikan beberapa aspek yang mempengaruhi proses irigasi diantaranya

Lebih terperinci

I Putu Gustave Suryantara Pariartha

I Putu Gustave Suryantara Pariartha I Putu Gustave Suryantara Pariartha Open Channel Saluran terbuka Aliran dengan permukaan bebas Mengalir dibawah gaya gravitasi, dibawah tekanan udara atmosfir. - Mengalir karena adanya slope dasar saluran

Lebih terperinci

Hidraulika Saluran Terbuka. Pendahuluan Djoko Luknanto Jurusan Teknik Sipil dan Lingkungan FT UGM

Hidraulika Saluran Terbuka. Pendahuluan Djoko Luknanto Jurusan Teknik Sipil dan Lingkungan FT UGM Hidraulika Saluran Terbuka Pendahuluan Djoko Luknanto Jurusan Teknik Sipil dan Lingkungan FT UGM Pendahuluan Pengaliran saluran terbuka: pengaliran tak bertekanan pengaliran yang muka airnya berhubungan

Lebih terperinci

JUDUL TUGAS AKHIR ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI

JUDUL TUGAS AKHIR  ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI JUDUL TUGAS AKHIR http://www.gunadarma.ac.id/ ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI ABSTRAKSI Alat uji kehilangan tekanan didalam sistem perpipaan dibuat dengan menggunakan

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

BAB IV PRINSIP-PRINSIP KONVEKSI

BAB IV PRINSIP-PRINSIP KONVEKSI BAB IV PRINSIP-PRINSIP KONVEKSI Aliran Viscous Berdasarkan gambar 1 dan, aitu aliran fluida pada pelat rata, gaa viscous dijelaskan dengan tegangan geser τ diantara lapisan fluida dengan rumus: du τ µ

Lebih terperinci

YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A

YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A Jl. Merdeka No. 24 Bandung 022. 4214714 Fax. 022. 4222587 http//: www.smasantaangela.sch.id, e-mail : smaangela@yahoo.co.id MODUL

Lebih terperinci

FLUIDA BERGERAK. Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline.

FLUIDA BERGERAK. Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline. FLUIDA BERGERAK ALIRAN FLUIDA Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline. Aliran turbulen Suatu aliran dikatakan laminar / stasioner / streamline

Lebih terperinci

DINAMIKA FLUIDA. nurhidayah.staff.unja.ac.id

DINAMIKA FLUIDA. nurhidayah.staff.unja.ac.id DINAMIKA FLUIDA nurhidayah@unja.ac.id nurhidayah.staff.unja.ac.id Fluida adalah zat alir, sehingga memiliki kemampuan untuk mengalir. Ada dua jenis aliran fluida : laminar dan turbulensi Aliran laminar

Lebih terperinci

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis

BAB FLUIDA. 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis 1 BAB FLUIDA 7.1 Massa Jenis, Tekanan, dan Tekanan Hidrostatis Massa Jenis Fluida adalah zat yang dapat mengalir dan memberikan sedikit hambatan terhadap perubahan bentuk ketika ditekan. Yang termasuk

Lebih terperinci

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT  JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP FENOMENA PERPINDAHAN LUQMAN BUCHORI, ST, MT luqman_buchori@yahoo.com luqmanbuchori@undip.ac.id JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP Peristiwa Perpindahan : Perpindahan Momentum Neraca momentum Perpindahan

Lebih terperinci

BUKU AJAR HIDRAULIKA

BUKU AJAR HIDRAULIKA BUKU AJAR HIDRAULIKA Mata Kuliah SKS Semester Jurusan : Hidraulika : (dua) SKS : III (tiga) : Teknik Sipil Disusun Oleh : Dr. Ir. Suripin, M.Eng. Ir. Sri Sangkawati, MS Editor : Dyah Ari Wulandari, ST.,

Lebih terperinci

HIDRODINAMIKA BAB I PENDAHULUAN

HIDRODINAMIKA BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Kinematika adalah tinjauan gerak partikel zat cair tanpa memperhatikan gaya yang menyebabkan gerak tersebut. Kinematika mempelajari kecepatan disetiap titik dalam medan

Lebih terperinci

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut.

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut. HUKUM STOKES I. Pendahuluan Viskositas dan Hukum Stokes - Viskositas (kekentalan) fluida menyatakan besarnya gesekan yang dialami oleh suatu fluida saat mengalir. Makin besar viskositas suatu fluida, makin

Lebih terperinci

ALIRAN PADA PIPA. Oleh: Enung, ST.,M.Eng

ALIRAN PADA PIPA. Oleh: Enung, ST.,M.Eng ALIRAN PADA PIPA Oleh: Enung, ST.,M.Eng Konsep Aliran Fluida Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa Jenis dan Viskositas. Masalah aliran fluida dalam PIPA : Sistem Terbuka

Lebih terperinci

Macam Aliran : Berdasarkan Cara Bergerak Partikel zat cair :

Macam Aliran : Berdasarkan Cara Bergerak Partikel zat cair : Mempelajari gerak partikel zat cair pada setiap titik medan aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak tersebut.

Lebih terperinci

MEKANIKA TANAH (CIV -205)

MEKANIKA TANAH (CIV -205) MEKANIKA TANAH (CIV -205) OUTLINE Klasifikasi tanah metode USDA Klasifikasi tanah metode AASHTO Klasifikasi tanah metode USCS Siklus HIDROLOGI AIR TANAH DEFINISI : air yang terdapat di bawah permukaan

Lebih terperinci

beberapa parameter yang berdasarkan pada perubahan kedalaman aliran dengan

beberapa parameter yang berdasarkan pada perubahan kedalaman aliran dengan BAB III LANDASAN TEORI 3.1. Pendahuluan Aliran air di dalam saluran terbuka mempunyai sifat khusus, bila dibandingkan dengan aliran air di dalam pipa, yaitu antara lain : a. aliran air pada saluranterbuka

Lebih terperinci

1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta 1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id Pendahuluan Dalam bagian ini kita mengkhususkan diri pada materi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1. KLASIFIKASI FLUIDA Fluida dapat diklasifikasikan menjadi beberapa bagian, tetapi secara garis besar fluida dapat diklasifikasikan menjadi dua bagian yaitu :.1.1 Fluida Newtonian

Lebih terperinci

Gaya yang ditimbulkan oleh fluida yang mengalir diperlukan dalam: M = m.v.1

Gaya yang ditimbulkan oleh fluida yang mengalir diperlukan dalam: M = m.v.1 Persamaan Momentum Fluida yang bergerak dapat menimbulkan gaya Pancaran air dari curat dinding turbin Gaya yang ditimbulkan oleh fluida yang mengalir diperlukan dalam: - Perencanaan turbin - Mesin-mesin

Lebih terperinci

HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN. Heri Suprapto

HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN. Heri Suprapto HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN Heri Suprapto Dasar-Dasar Aliran Fluida Konsep penting dalam aliran fluida 1. Prinsip kekekalan massa (persamaan kontinuitas) 2. Prinsip Energi Kinetik (persamaanpersamaan

Lebih terperinci

Fisika Dasar I (FI-321) Mekanika Zat Padat dan Fluida

Fisika Dasar I (FI-321) Mekanika Zat Padat dan Fluida Fisika Dasar I (FI-321) Topik hari ini (minggu 11) Mekanika Zat Padat dan Fluida Keadaan Zat/Bahan Padat Cair Gas Plasma Kita akan membahas: Sifat mekanis zat padat dan fluida (diam dan bergerak) Kerapatan

Lebih terperinci

BAB V KINEMATIKA FLUIDA

BAB V KINEMATIKA FLUIDA BAB V KINEMATIKA FLUIDA Tujuan Intruksional Umum (TIU) Mahasiswa diharapkan dapat merencanakan suatu bangunan air berdasarkan konsep mekanika fluida, teori hidrostatika dan hidrodinamika. Tujuan Intruksional

Lebih terperinci

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN Page 1 BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan efflux time dalam dunia industri banyak dijumpai pada pemindahan fluida dari suatu tempat ke tempat yang lain dengan pipa tertutup serta tangki sebagai

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 11) Statika dan Dinamika Fluida Pertanyaan Apakah fluida itu? 1. Cairan 2. Gas 3. Sesuatu yang dapat mengalir 4. Sesuatu yang dapat berubah mengikuti bentuk

Lebih terperinci

PERTEMUAN VII KINEMATIKA ZAT CAIR

PERTEMUAN VII KINEMATIKA ZAT CAIR PERTEMUAN VII KINEMATIKA ZAT CAIR PENGERTIAN Kinematika aliran mempelajari gerak partikel zat cair tanpa meninjau gaya yang menyebabkan gerak tersebut. Macam Aliran 1. Invisid dan viskos 2. Kompresibel

Lebih terperinci

FISIKA XI SMA 3

FISIKA XI SMA 3 FISIKA XI SMA 3 Magelang @iammovic Standar Kompetensi: Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar: Merumuskan hubungan antara konsep torsi,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. Tekanan Atmosfer Tekanan atmosfer adalah tekanan yang ditimbulkan oleh bobot udara di atas suatu titik di permukaan bumi. Pada permukaan laut, atmosfer akan menyangga kolom air

Lebih terperinci

Hidrolika Saluran. Kuliah 6

Hidrolika Saluran. Kuliah 6 Hidrolika Saluran Kuliah 6 Analisa Hidrolika Terapan untuk Perencanaan Drainase Perkotaan dan Sistem Polder Seperti yang perlu diketahui, air mengalir dari hulu ke hilir (kecuali ada gaya yang menyebabkan

Lebih terperinci

Fisika Umum (MA101) Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida

Fisika Umum (MA101) Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida Fisika Umum (MA101) Topik hari ini: Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida Zat Padat dan Fluida Pertanyaan Apa itu fluida? 1. Cairan 2. Gas 3. Sesuatu yang

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI

BAB II KAJIAN PUSTAKA DAN DASAR TEORI BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Ristiyanto (2003) menyelidiki tentang visualisasi aliran dan penurunan tekanan setiap pola aliran dalam perbedaan variasi kecepatan cairan dan kecepatan

Lebih terperinci

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2

FLUIDA DINAMIS. GARIS ALIR ( Fluida yang mengalir) ada 2 DINAMIKA FLUIDA FLUIDA DINAMIS SIFAT UMUM GAS IDEAL Aliran fluida dapat merupakan aliran tunak (STEADY ) dan tak tunak (non STEADY) Aliran fluida dapat termanpatkan (compressibel) dan tak termanfatkan

Lebih terperinci

Pengantar Oseanografi V

Pengantar Oseanografi V Pengantar Oseanografi V Hidro : cairan Dinamik : gerakan Hidrodinamika : studi tentang mekanika fluida yang secara teoritis berdasarkan konsep massa elemen fluida or ilmu yg berhubungan dengan gerak liquid

Lebih terperinci

HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN

HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN Dasar-Dasar Aliran Fluida Konsep penting dalam aliran fluida 1. Prinsip kekekalan massa (persamaan kontinuitas) 2. Prinsip Energi Kinetik (persamaanpersamaan aliran

Lebih terperinci

Soal No. 2 Seorang anak hendak menaikkan batu bermassa 1 ton dengan alat seperti gambar berikut!

Soal No. 2 Seorang anak hendak menaikkan batu bermassa 1 ton dengan alat seperti gambar berikut! Fluida Statis Fisikastudycenter.com- Contoh Soal dan tentang Fluida Statis, Materi Fisika kelas 2 SMA. Cakupan : tekanan hidrostatis, tekanan total, penggunaan hukum Pascal, bejana berhubungan, viskositas,

Lebih terperinci

Pertemuan 1. PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika. OLEH : ENUNG, ST.,M.Eng TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG 2012

Pertemuan 1. PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika. OLEH : ENUNG, ST.,M.Eng TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG 2012 Pertemuan 1 PENDAHULUAN Konsep Mekanika Fluida dan Hidrolika OLEH : ENUNG, ST.,M.Eng TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG 2012 1 SILABUS PERTEMUAN MATERI METODE I -PENDAHULUAN -DEFINISI FLUIDA -SIFAT-SIFAT

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

Prinsip ketetapan energi dan ketetapan t momentum merupakan dasar penurunan persamaan aliran saluran. momentum. Dengan persamaan energi

Prinsip ketetapan energi dan ketetapan t momentum merupakan dasar penurunan persamaan aliran saluran. momentum. Dengan persamaan energi Prinsip ketetapan energi dan ketetapan t momentum merupakan dasar penurunan persamaan aliran saluran terbuka disamping ketetapan momentum. Dengan persamaan energi dan persamaan momentum dapat dibedakan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. TINJAUAN UMUM Hidrolika adalah bagian dari ilmu yang mempelajari perilaku air baik dalam keadaan diam atau yang disebut hidrostatika maupun dalam keadaan bergerak atau disebut

Lebih terperinci

FISIKA FLUIDA YUSRON SUGIARTO, STP, MP, MSc yusronsugiarto.lecture.ub.ac.id. Didit kelas D: Arga kelas G:

FISIKA FLUIDA YUSRON SUGIARTO, STP, MP, MSc yusronsugiarto.lecture.ub.ac.id. Didit kelas D: Arga kelas G: FISIKA FLUIDA YUSRON SUGIARTO, STP, MP, MSc yusronsugiarto.lecture.ub.ac.id Didit kelas D: 08574577471 Arga kelas G: 085694788741 Fluida Mengalir MENU HARI INI Kontinuitas Persamaan Bernouli Viskositas

Lebih terperinci

FLUIDA DINAMIS. Ciri-ciri umum dari aliran fluida :

FLUIDA DINAMIS. Ciri-ciri umum dari aliran fluida : FLUIDA DINAMIS Dalam fluida dinamis, kita menganalisis fluida ketika fluida tersebut bergerak. Aliran fluida secara umum bisa kita bedakan menjadi dua macam, yakni aliran lurus alias laminar dan aliran

Lebih terperinci

Mekanika Fluida II. Hidrolika saluran terbuka & Fluida terkompresi

Mekanika Fluida II. Hidrolika saluran terbuka & Fluida terkompresi Mekanika Fluida II Hidrolika saluran terbuka & Fluida terkompresi Objectives Mahasiswa dapat mengerti property dan fenomena dasar aliran air di saluran terbuka Mahasiswa dapat mengerti jenis dan penggunaan

Lebih terperinci

B. FLUIDA DINAMIS. Fluida 149

B. FLUIDA DINAMIS. Fluida 149 B. FLUIDA DINAMIS Fluida dinamis adalah fluida yang mengalami perpindahan bagianbagiannya. Pokok-pokok bahasan yang berkaitan dengan fluida bergerak, antara lain, viskositas, persamaan kontinuitas, hukum

Lebih terperinci

BAB II ALIRAN FLUIDA DALAM PIPA. beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada

BAB II ALIRAN FLUIDA DALAM PIPA. beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada BAB II ALIRAN FLUIDA DALAM PIPA.1 Sifat-Sifat Fluida Fluida merupakan suatu zat yang berupa cairan dan gas. Fluida memiliki beberapa sifat yang dapat digunakan untuk mengetahui berbagai parameter pada

Lebih terperinci

ALIRAN FLUIDA DALAM PIPA TERTUTUP

ALIRAN FLUIDA DALAM PIPA TERTUTUP MAKALAH MEKANIKA FLUIDA ALIRAN FLUIDA DALAM PIPA TERTUTUP Disusun Oleh: Nama : Juventus Victor HS NPM : 3331090796 Jurusan Dosen : Teknik Mesin-Reguler B : Yusvardi Yusuf, ST.,MT JURUSAN TEKNIK MESIN FAKULTAS

Lebih terperinci

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya

8. FLUIDA. Materi Kuliah. Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya 8. FLUIDA Staf Pengajar Fisika Fakultas Teknologi Pertanian Universitas Brawijaya Tegangan Permukaan Viskositas Fluida Mengalir Kontinuitas Persamaan Bernouli Materi Kuliah 1 Tegangan Permukaan Gaya tarik

Lebih terperinci

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI

FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI FISIKA STATIKA FLUIDA SMK PERGURUAN CIKINI MASSA JENIS Massa jenis atau kerapatan suatu zat didefinisikan sebagai perbandingan massa dengan olum zat tersebut m V ρ = massa jenis zat (kg/m 3 ) m = massa

Lebih terperinci

Oleh: STAVINI BELIA

Oleh: STAVINI BELIA FLUIDA DINAMIS Oleh: STAVINI BELIA 14175034 TUJUAN PEMBELAJARAN 1. Siswa dapat menjelaskan prinsip kontinuitas dan prinsip bernaulli pada fluida dinamik dalam kehidupan seharihari. 2. Siswa dapat menganalisis

Lebih terperinci

II. TINJAUAN PUSTAKA. Hidrologi berasal dari Bahasa Yunani yaitu terdiri dari kata hydros yang

II. TINJAUAN PUSTAKA. Hidrologi berasal dari Bahasa Yunani yaitu terdiri dari kata hydros yang 7 II. TINJAUAN PUSTAKA A. Hidrologi Hidrologi berasal dari Bahasa Yunani yaitu terdiri dari kata hydros yang berarti air dan kata logos yang berarti ilmu, dengan demikian secara umum hidrologi adalah ilmu

Lebih terperinci

MODUL- 2. HIDRODINAMIKA Kode : IKK.365 Materi Belajar -2

MODUL- 2. HIDRODINAMIKA Kode : IKK.365 Materi Belajar -2 MODUL- 2. HIDRODINAMIKA Kode : IKK.365 Materi Belajar -2 Pendidikan S1 Pemintan Keselamatan dan Kesehatan Kerja Industri Program Studi Imu Kesehatan Masyarakat Fakultas Ilmu Ilmu Kesehatan Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

Aliran Seragam Pada Saluran Terbuka Teori & Penyelesaian Soal-Soal

Aliran Seragam Pada Saluran Terbuka Teori & Penyelesaian Soal-Soal Aliran Seragam Pada Saluran Terbuka Teori & Penyelesaian Soal-Soal Ichwan Ridwan Nasution Fakultas Teknik Jurusan Teknik Sipil Universitas Sumatera Utara I. DASAR-DASAR ALIRAN DALAM SALURAN TERBUKA Aliran

Lebih terperinci

Aliran pada Saluran Tertutup (Pipa)

Aliran pada Saluran Tertutup (Pipa) Aliran pada Saluran Tertutup (Pipa) Pipa adalah saluran tertutup yang biasanya berpenampang lingkaran yang digunakan untuk mengalirkan fluida dengan tampang aliran penuh (Triatmojo 1996 : 25). Fluida yang

Lebih terperinci

ANALISIS TINGGI DAN PANJANG LONCAT AIR PADA BANGUNAN UKUR BERBENTUK SETENGAH LINGKARAN

ANALISIS TINGGI DAN PANJANG LONCAT AIR PADA BANGUNAN UKUR BERBENTUK SETENGAH LINGKARAN ANALISIS TINGGI DAN PANJANG LONCAT AIR PADA BANGUNAN UKUR BERBENTUK SETENGAH LINGKARAN R.A Dita Nurjanah Jurusan TeknikSipil, UniversitasSriwijaya (Jl. Raya Prabumulih KM 32 Indralaya, Sumatera Selatan)

Lebih terperinci

Fisika Umum (MA-301) Sifat-sifat Zat Padat Gas Cair Plasma

Fisika Umum (MA-301) Sifat-sifat Zat Padat Gas Cair Plasma Fisika Umum (MA-301) Topik hari ini (minggu 4) Sifat-sifat Zat Padat Gas Cair Plasma Sifat Atomik Zat Molekul Atom Inti Atom Proton dan neutron Quarks: up, down, strange, charmed, bottom, and top Antimateri

Lebih terperinci

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR Oleh : DEKY PUTRA 04 04 22 013 3 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

PERTEMUAN X PERSAMAAN MOMENTUM

PERTEMUAN X PERSAMAAN MOMENTUM PERTEMUAN X PERSAMAAN MOMENTUM Zat cair yang bergerak dapat menimbulkan gaya. Gaya yang ditimbulkan oleh zat cair dapat dimanfaatkan untuk : - analisis perencanaan turbin - mesin-mesin hidraulis - saluran

Lebih terperinci

Persamaan Chezy. Pada aliran turbulen gaya gesek sebanding dengan kuadrat kecepatan. Persamaan Chezy, dengan C dikenal sebagai C Chezy

Persamaan Chezy. Pada aliran turbulen gaya gesek sebanding dengan kuadrat kecepatan. Persamaan Chezy, dengan C dikenal sebagai C Chezy Saluran Terbuka Persamaan Manning Persamaan yang paling umum digunakan untuk menganalisis aliran air dalam saluran terbuka. Persamaan empiris untuk mensimulasikan aliran air dalam saluran dimana air terbuka

Lebih terperinci

Principles of thermo-fluid In fluid system. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia

Principles of thermo-fluid In fluid system. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia Principles of thermo-fluid In fluid system Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia Sifat-sifat Fluida Fluida : tidak mampu menahan gaya

Lebih terperinci

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari VARIASI JARAK NOZEL TERHADAP PERUAHAN PUTARAN TURIN PELTON Rizki Hario Wicaksono, ST Jurusan Teknik Mesin Universitas Gunadarma ASTRAK Efek jarak nozel terhadap sudu turbin dapat menghasilkan energi terbaik.

Lebih terperinci

3. PRINSIP ENERGI DAN MOMENTUM DALAM ALIRAN SALURAN TERBUKA

3. PRINSIP ENERGI DAN MOMENTUM DALAM ALIRAN SALURAN TERBUKA . PRINSIP ENERGI DAN MOMENTUM DALAM ALIRAN SALURAN TERBUKA ENERGI DALAM ALIRAN SALURAN TERBUKA Gambar.1. Aliran Dalam Saluran Terbuka Garis energi : garis yang menyatakan ketinggian dari jumlah tinggi

Lebih terperinci