Prediksi UAN Matematika SMP 2010

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Prediksi UAN Matematika SMP 2010"

Transkripsi

1 Prediksi UAN Matematika SMP 2010 Lengkap dengan Standar Kompetensi aidianet

2 STANDAR KOMPETENSI LULUSAN 1 Menggunakan konsep operasi hitung dan sifat-sifat bilangan, perbandingan, aritmatika sosial, barisan bilangan, serta penggunaannya dalam pemecahan masalah Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat 1. Pada suatu ujian ditetapkan aturan berikut: Benar diberi nilai 4, Salah diberi nilai 3, dan Tidak Dijawab diberi nilai 1. Dari 40 soal, Kalisa menjawab benar 28 soal dan menjawab salah 8 soal. Nilai yang diperoleh Kalisa adalah a. 96 b. 91 c. 88 d. 84 Nilai = (28 x 4) + (8 x 3) + (( ) x 1) = = Seorang peneliti mencatat perubahan suhu dari pagi hari sampai malam hari di puncak suatu gunung dengan hasil seperti pada tabel berikut: Pukul Suhu ( C) Pada pukul berapakah terjadi penurunan suhu tertinggi, dan berapakah besar penurunannya? a. Pukul dan 09.00, penurunan suhu 1 C b. Pukul dan 18.00, penurunan suhu 7 C c. Pukul dan 09.00, penurunan suhu 7 C d. Pukul dan 18.00, penurunan suhu 3 C Penurunan suhu tertinggi adalah antara pukul = 7 C 3. Suhu udara di puncak gunung 1 C. Karena hari hujan, suhunya turun 4 C. Suhu udara di puncak gunung tersebut sekarang adalah a. 5 C b. 3 C c. 3 C d. 5 C Suhu saat ini = 1 C 4 C = 5 C Menyelesaikan masalah yang berkaitan dengan bilangan pecahan 1. Hasil dari adalah a. 7 b. 8 c. 11 d = = 7 Aidia Propitious 2

3 2. Hasil dari x 2 adalah a. b. c. 1 d. x 2 = x = = 1 3. Hasil dari 8 : 4 adalah a. 2 b. 2 c. 1 d. 1 8 : 4 = x = = 1 4. Perhatikan pecahan berikut:,,,. Urutan pecahan dari yang terkecil hingga yang terbesar adalah a.,,, b.,,, c.,,, d.,,, = 0,42 ; = 0,67 ; = 0,83 ; = 0,84 Menyelesaikan masalah berkaitan dengan skala dan perbandingan 1. Skala suatu gambar rencana 1 : 200. Jika tinggi gedung pada gambar rencana 12,5 cm, maka tinggi gedung sebenarnya a. 16 m b. 25 m c. 260 m d. 250 m Tinggi gedung sebenarnya = 200 x 12,5 = 2500 cm = 25 m 2. Jarak dari kota X ke kota Y adalah 450 km. Jarak pada peta 18 cm. Skala yang digunakan pada peta tersebut adalah a. 1 : b. 1 : c. 1 : d. 1 : Perbandingan jarak sesungguhnya dengan peta = = Skala = 1 : Sebuah kapal terbang panjang badannya 24 m dan panjang sayapnya 32 m. Bila panjang badan model pesawat tersebut 12 cm, maka panjang badan modelnya adalah a. 9 cm b. 12 cm c. 16 cm d. 18 cm Aidia Propitious 3

4 Panjang badan = 24 m 12 cm ; Panjang sayap = 32 m x cm x = = 16 cm 4. Sebuah tiang bendera setinggi 6 m berdiri di samping menara. Panjang bayangan tiang bendera 1,5 m dan panjang bayangan menara 18 m. Tinggi menara tersebut adalah a. 4,5 m b. 36 m c. 72 m d. 108 m Tinggi tiang = 6 m Bayangan tiang = 1,5 m Tinggi menara = x m Bayangan menara = 18 m x = = 72 cm 5. Suatu pekerjaan dapat diselesaikan oleh 25 orang dalam waktu 18 hari. Setelah bekerja selama 6 hari, pekerjaan berhenti selama 2 hari. Supaya pekerjaan selesai tepat waktu, banyak pekerja yang harus ditambah adalah a. 12 orang b. 10 orang c. 7 orang d. 5 orang Pekerja = 25 orang Pekerja = x orang Waktu kerja = 18 hari Waktu kerja = (18 6) = 12 hari x = = 300 orang Pekerja = 300 orang Pekerja = y orang Waktu kerja = 12 hari Waktu kerja = (12 2) = 10 hari y = 25 = 5 orang 6. Dalam suatu perjalanan diperlukan waktu 6 jam 40 menit dengan kecepatan rata-rata 60 km/jam. Jika harus tiba lebih awal 1 jam 20 menit, maka kecepatan rata-rata yang diperlukan adalah a. 70 km/jam b. 75 km/jam c. 80 km/jam d. 85 km/jam 6 jam 40 menit t = 6 jam ; v = 60 km/jam 5 jam 20 menit t = 5 jam ; v = x km/jam x = = 75 km/jam Aidia Propitious 4

5 Menyelesaikan masalah yang berkaitan dengan jual beli 1. Budi membeli motor seharga Rp ,00 dan dijual dengan untung 30%. Harga jual motor tersebut adalah a. Rp ,00 b. Rp ,00 c. Rp ,00 d. Rp ,00 %Jual = %Beli + %Untung = 100% + 30% = 130% Harga = Rp ,00 Persen = 100% ; Harga = x Persen = 130% x = = Rp ,00 2. Harga pembelian 1 lusin baju Rp ,00. Bila baju itu dijual dengan Harga Rp ,00 per potong, maka persentase untung adalah a. 20% b. 25% c. 35% d. 40% Harga beli 1 lusin = Rp ,00 Harga beli 1 potong = Rp ,00 Harga Jual = Rp ,00 Untung = Harga Jual Harga Beli = Rp ,00 Rp ,00 = Rp ,00 %Untung = x 100% = 25% Menyelesaikan masalah yang berkaitan dengan perbankan dan koperasi 1. Rangga mendepositokan uang sebesar Rp ,00 di bank dengan bunga 15% setahun. Jumlah uang Rangga setelah 10 bulan adalah a. Rp ,00 b. Rp ,00 c. Rp ,00 d. Rp ,00 (100% + x 10) x Rp ,00 = Rp ,00 2. Seorang pedagang menyimpan uangnya di bank sebesar Rp ,00. Setelah setahun uangnya menjadi Rp ,00. Persentase bunga yang diterima selama setahun adalah a. 8,33% b. 16,67% c. 20,00% d. 83,33% %Bunga = x 100% = 20% Aidia Propitious 5

6 3. Seorang pedagang membeli 2 karung beras yang masing-masing beratnya 1 kuintal dengan tara 2,5%. Harga pembelian tiap karung beras Rp ,00. Jika beras itu dijual dengan harga Rp 2.400,00 per kg, maka besar keuntungan pedagang tersebut adalah a. Rp ,00 b. Rp ,00 c. Rp ,00 d. Rp ,00 Bruto = 2 x 100 kg = 200 kg Harga Beli = 2 x Rp = Rp Tara = 2,5% x 200 kg = 5 kg Netto = Bruto Tara = = 195 kg Harga Jual = 195 x Rp = Rp Untung = Harga Jual Harga Beli = Rp ,00 Rp ,00 = Rp ,00 Menyelesaikan masalah yang berkaitan dengan barisan bilangan 1. Rumus suku ke n dari barisan bilangan 1, 4, 9, 16, 25, adalah a. Un = n 2 b. Un = 2n + 1 c. Un = n + 2 d. Un = n + 5 U 2 U 1 = 4 1 = 3 ; U 3 U 2 = 9 4 = 5 ; U 4 U 3 = 16 9 = 7 ; U 5 U 4 = = 9 Beda tingkat 1: 3, 5, 7, 9, Beda tingkat 2 = U 2 U 1 = U 3 U 2 = U 4 U 3 = 2 Maka gunakan rumus: Un = an 2 + bn + c U 1 = a(1) 2 + b(1) + c a + b + c = 1 U 2 = a(2) 2 + b(2) + c 4a + 2b + c = 4 U 3 = a(3) 2 + b(3) + c 9a + 3b + c = 9 Eliminasi ke 1: Eliminasi ke 2: Eliminasi ke 3: 4a + 2b + c = 4 9a + 3b + c = 9 5a + b = 5 a + b + c = 1 4a + 2b + c = 4 3a + b = 3 3a + b = 3 5a + b = 5 2a = 2 a = 1 Sehingga didapatkan: a = 1 ; b = 0 ; c = 0 Rumus: Un = n 2 2. Rumus suku ke n dari barisan bilangan: 3, 5, 7, 9, 11, adalah a. 5n 2 b. 4n 1 c. n + 2 d. 2n +1 a = 3 ; b = 5 3 = 7 5 = 2 Baris aritmatika: Un = a + (n 1) b Un = 3 + (n 1) 2 = 3 + 2n 2 = 2n + 1 Aidia Propitious 6

7 3. Dalam aula suatu sekolah terdapat 11 kursi pada barisan pertama dan setiap baris berikutnya memuat dua kursi lebih banyak dari kursi di depannya. Jika terdapat 8 baris kursi, maka banyak kursi dalam aula adalah a. 144 b. 136 c. 132 d. 120 a = 11 ; b = 2 Deret artimatika: Sn = (2a + (n 1) b) S 8 = 4 ( ) = Diketahui U 3 = 8 dan U 6 = 64 adalah suku-suku deret geometri. Suku pertama deret tersebut adalah a. 1 b. 2 c. 3 d. 4 U 3 = a. r 2 = 8 a = ; U 6 = a. r 5 = 64. r 5 = r 3 = 64 r 3 = 8 r = 2 a = = 2 STANDAR KOMPETENSI LULUSAN 2 Memahami operasi bentuk aljabar, konsep persamaan dan petidaksamaan linier, persamaan garis, himpunan, relasi, fungsi, sistem persamaan linier, serta menggunakannya dalam pemecahan masalah Mengalikan bentuk aljabar 1. Jika (ax 5y)(3x + by) = cx 2 11xy 10y 2, maka nilai c adalah a. 5 b. 6 c. 8 d. 12 (ax 5y)(3x + by) = 3ax 2 + abxy 15xy 5by 2 = 3ax 2 + (ab 15)xy 5by 2 cx 2 11xy 10y 2 = 3ax 2 + (ab 15)xy 5by 2 5b = 10 ; b = 2 a(2) 15 = 11 ; a = 2 c = 3(2) ; c = 6 2. Hasil dari (2x + y)(x 3y) adalah a. 2x 2 + xy 3y 2 c. 2x 2 + 5xy 3y 2 b. 2x 2 xy + 3y 2 d. 2x 2 5xy 3y 2 (2x + y)(x 3y) = 2x 2 6xy + xy 3y 2 = 2x 2 5xy 3y 2 Aidia Propitious 7

8 Menghitung operasi tambah, kurang, kali, bagi atau kuadrat bentuk aljabar 1. Bentuk sederhana dari 3x 2 + 4x 2xy 2x 2 x + 2xy adalah a. x 2 + 3x b. x 2 3x c. 5x 2 5x d. 5x 2 + 5x 3x 2 2x 2 + 4x x 2xy + 2xy = x 2 + 3x 2. Bentuk sederhana dari 3(x 2) 2(x + 3) adalah a. x + 12 b. x 12 c. x + 1 d. x 1 Jawab: 3(x 2) 2(x + 3) = 3x 6 2x 6 = x Hasil dari (2x 5) 2 adalah a. 4x 2 10x + 25 b. 4x 2 20x + 25 c. 4x 2 20x 25 d. 4x 2 10x 25 (2x 5) 2 = (2x) 2 + (2x)(5)(2) + (5) 2 = 4x 2 20x Hasil dari + adalah a. c. b. d. + = + = = 5. Hasil dari adalah a. c. b. d. = = Aidia Propitious 8

9 Menyederhanakan bentuk aljabar dengan memfaktorkan 1. Bentuk dapat disederhanakan menjadi a. c. b. d. = = 2. Hasil pemfaktoran dari 16x 4 81y 4 adalah a. (4x 2 + 9y 2 ) (4x 2 9y 2 ) b. (4x 2 + 9y 2 ) (2x + 3y) (2x 3y) c. (4x 2 9y 2 ) (2x + 3y) (2x 3y) d. (4x 2 9y 2 ) (2x 3y) (2x 3y) 16x 4 81y 4 = (4x 2 + 9y 2 ) (4x 2 9y 2 ) = (4x 2 + 9y 2 ) (2x + 3y) (2x 3y) 3. Faktor dari 6x 2 + 7x 20 adalah a. (3x + 4) (2x 5) b. (3x 4) (2x + 5) c. (6x 10) (x + 2) d. (6x + 10) (x 2) Jawab: 6x 2 + 7x 20 = (3x 4) (2x + 5) Menentukan penyelesaian persamaan linier satu variabel 1. Jika 3 (x + 2) + 5 = 2 (x + 15), maka nilai x + 2 = a. 42 b. 21 c. 19 d (x + 2) + 5 = 2 (x + 15) 3x = 2x + 30 x = Diketahui fungsi f : x 3x 5 dengan x {3, 2, 1, 0, 1, 2}. Daerah hasil fungsi f adalah a. {4, 1, 2, 5} b. {14, 11, 8, 5, 2, 1} c. {9, 6, 3, 0, 3, 6} d. {24, 21, 8, 5} y = 3x 5 y = 3(3) 5 = 14 ; y = 3(2) 5 = 11 Sehingga didapat daerah hasil = {14, 11, 8, 5, 2, 1} Aidia Propitious 9

10 3. Jika f(x) = 3x 2 dan f(a) = 7, maka nilai a adalah a. 3 b. 5 c. 9 d. 19 f(x) = 3x 2 f(a) = 3a 2 = 7 3a = 9 a = 3 4. Fungsi f didefinisikan dengan rumus f(x) = 2x 2 x + 1. Bayangan 3 oleh fungsi tersebut adalah a. 20 b. 14 c. 16 d. 22 f(x) = 2x 2 x + 1 f(3) = 2(3) 2 (3) + 1 = = 22 Menentukan irisan atau gabungan dua himpunan dan menyelesaikan masalah yang berkaitan dengan irisan atau gabungan dua himpunan 1. Jika P = {x 2 x < 7, x himpunan bilangan bulat} dan Q = {5, 6, 7, 8, 9}, maka P Q adalah a. {2, 3, 4, 5, 6, 7} b. {2, 3, 4, 5, 6} c. {5, 6, 7} d. {5, 6} Jawab: P = {2, 3, 4, 5, 6} ; Q = {5, 6, 7, 8, 9} P Q = {5, 6} 2. Jika A = {bilangan asli kurang dari 6} dan B = {bilangan prima kurang atau sama dengan 8}, maka A B adalah a. {2, 3, 5, 7} b. {1, 2, 3, 4, 5, 7} c. {1, 2, 3, 4, 5, 6, 7} d. {1, 2, 3, 4, 5, 6, 7, 8} A = {1, 2, 3, 4, 5} ; B = {2, 3, 5, 7} A B = {1, 2, 3, 4, 5, 7} 3. Dari 40 anak, 16 orang memelihara burung, 21 orang memelihara kucing, dan 12 orang memelihara burung dan kucing. Anak yang tidak memelihara burung atau kucing adalah a. 12 orang b. 15 orang c. 19 orang d. 28 orang (16 12) (21 12) + x = 40 x = = 15 orang 4. Dari sekelompok anak terdapat 15 anak gemar bulu tangkis, 20 anak gemar tenis meja, dan 12 anak gemar keduanya. Jumlah anak dalam kelompok tersebut adalah a. 17 orang b. 23 orang c. 35 orang d. 47 orang (15 12) (20 12) = = 23 orang Aidia Propitious 10

11 5. Dalam suatu kelas terdapat 47 siswa, 38 anak senang berolah raga, 36 anak senang membaca, dan 5 anak tidak senang berolah raga maupun membaca. Banyak anak yang senang berolah raga dan senang membaca adalah a. 28 anak b. 32 anak c. 36 anak d. 38 anak (38 x) + x + (36 x) + 5 = x = 47 x = = 32 anak 6. Dari 25 anak, ternyata 17 gemar minum kopi, 8 anak gemar minum kopi dan teh, dan 3 anak tidak gemar minum kopi maupun teh. Banyak anak yang hanya gemar minum teh adalah a. 5 anak b. 8 anak c. 9 anak d. 13 anak (17 8) (x 8) + 3 = x = 25 x = = 13 anak Menyelesaikan masalah yang berkaitan dengan relasi dan fungsi 1. Diketahui: A = {(1, 1), (2, 3), (3, 5), (3, 7)} B = {(2, 1), (3, 3), (3, 5), (5, 5)} C = {(1, 2), (2, 3), (4, 6), (5, 8)} D = {(1, 1), (3, 2), (5, 3), (7, 4)} Dari himpunan pasangan berurutan di atas, yang merupakan pemetaan adalah a. A dan B b. A dan C c. B dan C d. C dan D Syarat pemetaan, daerah asal (x) tidak boleh berulang C dan D 2. Diantara pasangan-pasangan himpunan di bawah ini yang dapat berkorespondensi satu-satu adalah a. A = {huruf vokal} dan P = {nama jari tangan} b. P = {x 2 < x < 9, x bilangan prima} dan Q = {bilangan prima < 10} c. C = {nama-nama hari} dan D = {nama-nama bulan} d. R = {1, 3, 5, 7} dan S = {2, 3, 5, 7, 11} Syarat korespondensi satu-satu yaitu jumlah anggotanya sama A = {a, i, u, e, o} dan P = {Ibu Jari, Telunjuk, Jari Tengah, Jari Manis, Kelingking} 3. Diketahui A = {1, 3, 5} dan B = {2, 4, 6}, maka relasi dari A ke B adalah a. Lebih dari b. Kurang dari c. Faktor dari d. Kurang satu dari Jawab: 2 1 = 1 ; 4 3 = 1 ; 6 5 = 1 Relasi = Kurang satu dari Aidia Propitious 11

12 Menentukan gradien, persamaan garis dan grafiknya 1. Gradien dari garis 3x + 5y 6 = 0 adalah a. b. c. d. Persamaan garis ax + by + c = 0 ; Gradien = = 2. Gradien garis yang melalui titik A (3, 2) dan B (4, 2) adalah a. b. c. d. Gradien = Gradien = = 3. Persamaan garis lurus yang melalui titik (2, 1) dan titik (2, 7) adalah a. y = 2x + 5 b. y = 2x 3 c. y = 3x 5 d. y = 3x + 7 = = 4 (y 1) = 8 (x + 2) y = 2x 3 4. Persamaan garis lurus dengan gradien 2 dan melalui titik ((0, 3) adalah a. 2x y 3 = 0 b. 2x y + 3 = 0 c. x 2y 3 = 0 d. x 2y + 3 = 0 y y 1 = m (x x 1 ) y + 3 = 2 (x 0) 2x y 3 = 0 5. Garis k tegak lurus dengan garis 2x + 3y + 7 = 0. Gradien garis k adalah a. b. c. d. Garis 2x + 3y + 7 = 0 Gradien = = Gradien garis k ( ) = 6. Garis m sejajar dengan garis yang menghubungkan titik (7, 4) dan (3, 2). Di antara persamaan garis berikut ini: (i) 3x 5y + 20 = 0 (ii) x + 2y + 7 = 0 (iii) 2x 3y 11 = 0 (iv) x + 5y 10 = 0 Aidia Propitious 12

13 Yang merupakan persamaan garis m adalah a. (i) b. (ii) c. (iii) d. (iv) Gradien = Gradien = = Gradien garis m ( ) = (i): m = ; (ii): m = ; (iii): m = ; (iv): m = 7. Persamaan garis yang melalui titik (2, 3) dan sejajar garis 3x + 5y = 15 adalah a. 3x 5y = 9 b. 5x + 3y = 19 c. 3x + 5y = 21 d. 5x 3y = 1 Gradien = ; Gradien garis m ( ) = y 3 = (x 2) 5y 15 = 3x + 6 3x + 5y = Persamaan garis yang melalui titik (6, 2) dan tegak lurus garis 3x y + 2 = 0 adalah a. x + 3y + 4 = 0 b. x y + 4 = 0 c. x + 3y = 0 d. 3x + y 4 = 0 Gradien = 3 ; Gradien garis m ( 3) = y 2 = (x + 6) 3y 6 = x 6 x + 3y = 0 9. Perhatikan gambar! Persamaan garis pada gambar di bawah ini adalah a. x + 3y = 7 b. x + 3y = 7 c. x 3y = 7 d. x 3y = 7 Gradien = = y 3 = (x 2) ; 3y 9 = x 2 ; x 3y = 7 Catatan: Titik (x1, y1) bebas memilih dari grafik, asalkan titik yang dilalui garis tersebut Aidia Propitious 13

14 10. Perhatikan gambar! Gradien dari grafik tersebut adalah a. c. b. d. Gradien = = Menentukan penyelesaian sistem persamaan linier dua variabel 1. Fungsi f ditentukan oleh f(x) = ax + b. Jika f(1) = 1 dan f(3) = 5, maka nilai a dan b berturut-turut adalah a. 3 dan 2 b. 3 dan 4 c. 3 dan 2 d. 3 dan 4 f(1) = a(1) + b = 1 a + b = 1 ; f(3) = a(3) + b = 5 3a + b = 5 3a + b = 5 a + b = 1 a + b = b = 1 2a = 6 b = 4 a = 3 2. Harga 3 buku dan 4 pensil Rp ,00. Harga 2 buku dan 3 pensil Rp 9.250,00. Harga 2 buku dan 5 pensil adalah a. Rp ,00 b. Rp ,00 c. Rp ,00 d. Rp ,00 3b + 4p = x 2 6b + 8p = b + 4(750) = b + 3p = x 3 6b + 9p = b = p = 750 3b = p = 750 b = Sehingga harga 2 buku dan 5 pensil = (2 x Rp 3.500,00) + (5 x Rp 750,00) = Rp ,00 3. Jika 2x + 5y = 11 dan 4x 3y = 17, maka 2x y = a. 7 b. 5 c. 5 d. 7 2x + 5y = 11 x 2 4x + 10y = 22 2x + 5(3) = 11 4x 3y = 17 x 1 4x 03y = 17 2x + 15 = 11 13y = 39 2x = 4 y = 3 x = 2 Sehingga 2x y = 2(2) 3 = 4 3 = 7 Aidia Propitious 14

15 STANDAR KOMPETENSI LULUSAN 3 Memahami bangun datar, bangun ruang, garis sejajar, dan sudut, serta menggunakannya dalam pemecahan masalah Menyelesaikan soal dengan menggunakan teorema Pythagoras 1. Sebuah PQR siku-siku di Q, PQ = 8 cm dan PR = 17 cm. Panjang QR = a. 9 cm b. 15 cm c. 25 cm d. 68 cm c 2 = a 2 + b = b 2 ; b 2 = = 225 ; b = 15 cm 2. Perhatikan gambar! Jika luas STR = 24 cm 2, maka luas PQRS adalah cm 2. a. 208 b. 180 c. 164 d. 140 Luas STR = 24 cm t = 24 ; t = 6 cm SR 2 = TR 2 + TS 2 SR2 = = 100 ; SR = 10 Luas PQRS = Luas Trapesium RTPQ Luas Segitiga RTS = (8 + 18). (6 + 10) 24s = 208 cm 2 3. Luas jajaran genjang ABCD adalah cm 2. Keliling jajaran genjang ABCD adalah cm. a. 219 b. 190 c. 178 d. 179 Luas jajaran genjang = a x t = 60. t ; t = 21 cm BC 2 = BE 2 + EC 2 BC 2 = = = 841 ; BC = 29 Keliling jajaran genjang = AD + DC + CB + BA = 2( ) = 178 cm Aidia Propitious 15

16 4. Keliling belah ketupat ABCD = 104 cm. Jika panjang AC = 48 cm, maka luas ABCD adalah cm 2. a. 68 b. 200 c. 480 d. 960 Jawab: Sisi belah ketupat = 104 : 4 = 26 cm AO = OC = 48 : 2 = 24cm BO = OD BO 2 = ; BO = 10 cm Luas ABCD =. d 1. d 2 = = 480 cm 2 5. Luas ABCD adalah 168 cm 2. Jika panjang BD = 16 cm dan BC = 10 cm, maka kelilingnya adalah cm. a. 54 b. 37 c. 21 d. 17 Jawab: Luas ABCD =. d 1. d =. 16. d 2 ; d 2 = 21 cm CO 2 = ; CO = 6 cm OA = 21 6 = 15 cm AB 2 = ; AB = DA = 17 cm Keliling ABCD = 2(10) + 2(17) = 54 cm Menghitung luas bangun datar 1. Perhatikan gambar! Gambar tersebut menunjukkan tampak samping dinding kamar yang akan dicat. Luas dinding yang akan dicat adalah m 2. a. 6 b. 6,25 c. 8,25 d. 9 Luas trapesium = (Jumlah Sisi Sejajar) x tinggi = (2,5 + 3,5) x 2 = 6 m 2. Perhatikan gambar! Gambar tersebut adalah persegi panjang ABCD dengan AB = 40 cm dan BC = 36 cm. Luas daerah yang diarsir adalah 987,84 cm 2 dengan = 3,14. Jari-jari lingkaran pada gambar adalah cm. a. 6 b. 8 c. 12 d. 14 Aidia Propitious 16

17 Luas arsir = Luas persegi panjang Luas lingkaran 987,84 = (40. 36) Luas lingkaran Luas lingkaran = ,84 = 452,16 Luas lingkaran =. r 2 452,16 = 3,14. r 2 ; r 2 = 144 ; r = 12 cm Menghitung keliling bangun datar dan penggunaan konsep keliling dalam kehidupan sehari-hari 1. Perhatikan gambar! Jika panjang sisi persegi adalah 42 cm, maka keliling daerah yang diarsir adalah cm. a. 33 b. 66 c. 99 d. 132 Keliling daerah diarsir = keliling lingkaran =. D =. 42 = 132 cm 2. Perhatikan gambar! Jika keliling persegi panjang PQRS = 2 kali keliling persegi ABCD, maka panjang sisi CD adalah cm. a. 5,10 b. 5,25 c. 10,20 d. 10,50 Keliling persegi panjang = 2 x keliling persegi 2 (p + l) = 2 (4s) p + l = 4s ; = 4s ; s = 5,25 cm 3. Banyak pohon yang dapat ditanam di sekeliling taman yang berbentuk lingkaran dengan diameter 49 m dan jarak antara pohon 1,4 m adalah pohon a. 110 b. 115 c. 154 d. 157 Keliling lingkaran =. D =. 49 = 154 m Banyak pohon yang ditanam = = 110 pohon Aidia Propitious 17

18 Menghitung besar sudut pada bidang datar 1. Perhatikan gambar! Besar PRS pada gambar tersebut adalah a. 14 b. 28 c. 54 d. 100 QRP = = 80 PRS = = Perhatikan gambar! Nilai x pada gambar tersebut adalah a. 24 b. 35 c. 45 d (180 x 45) + (180 2x 35) = 180 ; 345 3x = 180 ; 3x = 165 ; x = 55 Menghitung besar sudut yang terbentuk jika dua garis berpotongan atau dua garis sejajar berpotongan dengan garis lain 1. Perhatikan gambar! Jika 1 = 110, maka jumlah 2 dan 8 = a. 110 b. 140 c. 160 d = = 8 = = 70 Sehingga = = Perhatikan gambar! Besar x + y + z = a. 40 b. 50 c. 60 d x = 180 ; 7x = 140 ; x = y = 140 ; 2y = 60 ; y = 30 dan = 4z ; 4z = 80 ; z = 20 Sehingga x + y + z = = 70 Aidia Propitious 18

19 Menghitung besar sudut pusat dan sudut keliling pada kesebangunan 1. Perhatikan gambar! Bila pada gambar tersebut KML = 40,1, maka besar KOL adalah a. 80,20 b. 60,15 c. 20,05 d. 10,25 KML = sudut keliling = 40,1 KOL = sudut pusat = 2. sudut keliling = 2. 40,1 = 80,2 2. Perhatikan gambar! P adalah pusat lingkaran tersebut dan besar APB = 120. Besar ACB adalah a. 40 b. 60 c. 90 d. 120 Jawab: APB = sudut pusat = 120 ACB = sudut keliling =. 120 = 60 Menyelesaikan masalah dengan menggunakan konsep kesebangunan 1. Perhatikan gambar! Panjang EF adalah cm. a. 6,75 b. 9 c. 10,5 d. 10,8 x 12 Buat garis sejajar dengan AD pada titik C menuju AB (ditunjukkan garis putus-putus warna merah) = x = = 4,5 cm EF = 6 + 4,5 = 10,5 cm 2. Perhatikan gambar! Jika kedua segitiga sebangun, maka panjang PR adalah cm. a. 4,5 b. 5 c. 6 d. 7,5 Aidia Propitious 19

20 PQ sebanding dengan BC ; RQ sebanding dengan AB ; PR sebanding dengan AC = PR = = 6 cm Menyelesaikan masalah dengan menggunakan konsep kongruensi 1. Perhatikan gambar! Panjang AB = 12 cm dan EG = 16 cm. Panjang BF adalah cm. a. 12 b. 16 c. 20 d. 28 AB BF GH = 12 cm ; AC FE EG = 16 cm ; BC BE EH = 20 cm Menentukan unsur-unsur bangun ruang sisi datar 1. Pernyataan berikut ini benar tentang balok, kecuali a. Merupakan prisma tegak segi empat b. Mempunyai 4 buah bidang diagonal c. Mempunyai 3 pasang sisi berhadapan yang kongruen d. Mempunyai 4 buah diagonal ruang Balok hanya mempunyai 2 bidang diagonal Menentukan jaring-jaring bangun ruang 1. Perhatikan gambar! Berdasarkan gambar di samping ini, jika persegi nomor 3 adalah alas kubus, maka yang merupakan tutupnya adalah nomor a. 1 b. 2 c. 5 d. 6 Aidia Propitious 20

21 Menghitung volume bangun ruang sisi datar dan sisi lengkung 1. Agen membeli 3 buah drum berisi penuh minyak tanah yang bentuknya silinder dengan tinggi 1,2 m dan diameter 70 cm, seharga Rp ,00. Jika minyak tanah tersebut dijual dengan harag Rp 2.000,00 tiap Liter, maka keuntungan yang diperoleh agen adalah a. Rp ,00 b. Rp ,00 c. Rp ,00 d. Rp ,00 V tabung =. r 2. t = (0,35) 2 (1,2) = 0,462 m 3 = 462 L Harga Jual = Rp 2.000,00 x 462 x 3 = Rp ,00 Untung = Harga Jual Harga Beli = Rp ,00 Rp ,00 = Rp ,00 2. Keliling alas suatu kerucut 44 cm. Jika tingginya 9 cm dan = maka volumenya adalah cm 3. a. 132 b. 231 c. 264 d. 462 Keliling kerucut = Keliling lingkaran = 2.. r 44 = 2.. r ; r = 7 cm Volume kerucut =. r 2. t =. (7) 2 (9) = 462 cm 3 Menghitung luas permukaan bangun ruang sisi datar dan sisi lengkung 1. Seorang tukang kayu mendapat pesanan membuat kotak penyimpanan es dengan ukuran panjang 1,5 m, lebar 0,8 m, dan tinggi 1 m. Jika seluruh permukaan kotak ditutupi alumunium, maka luas alumunium yang diperlukan untuk menutup kotak tersebut adalah m 2. a. 7 b. 12 c. 22 d. 24 Luas permukaan balok = 2 (p. l + p. t + l. t) = 2 (1,5. 0,8 + 1, ,8. 1) = 7 m 2 2. Sebuah kaleng susu dengan diameter 14 cm dan tinggi 20 cm akan ditempeli label pada sisi lengkungnya. Luas kertas untuk label susu adalah cm 2. a. 140 b. 280 c. 440 d. 880 Jawab: Luas selimut tabung = 2.. r. t = = 880 cm 2 Aidia Propitious 21

22 STANDAR KOMPETENSI LULUSAN 4 Memahami konsep dalam statistika, serta menerapkannya dalam pemecahan masalah Menentukan ukuran pemusatan dan menggunakan dalam menyelesaikan masalah sehari-hari 1. Tinggi rata-rata sekelompok anak yang terdiri dari 5 orang adalah 152 cm. Ketika seorang anak meninggalkan kelompok tersebut, tinggi rata-rata anak yang masih tertinggal adalah 153 cm. Tinggi anak yang meninggalkan kelompok adalah cm. a. 145 b. 146 c. 148 d. 150 f = 5 orang ; = 152 cm x 5 orang = (5) (152) = 760 cm f = 4 orang ; = 153 cm x 4 orang = (4) (153) = 612 cm Tinggi anak yang meninggalkan kelompok = = 148 cm 2. Nilai rata-rata dari 40 orang siswa adalah 6,5. Jika nilai seorang siswa ditambahkan lagi, nilai rata-rata menjadi 6,55. Nilai siswa yang ditambahkan tersebut adalah a. 7,60 b. 8,00 c. 8,55 d. 9,00 f = 40 orang ; = 6,5 x 40 orang = (40) (6,5) = 260 cm f = 41 orang ; = 6,55 cm x 41 orang = (41) (6,55) = 268,55 cm Tinggi anak yang meninggalkan kelompok = 268, = 8,55 Menyajikan dan menafsirkan data 1. Perhatikan gambar! Diagram di samping menunjukkan data nilai ulangan matematika dari siswa kelas IXA dan IXB. Selisih rata-rata nilai siswa kelas IXA dan IXB adalah a. 0,25 b. 0,30 c. 0,35 d. 0,40 Rata-rata kelas IXA = = 6,05 Rata-rata kelas IXB = = 5,75 Selisihh rata-rata kelas IXA dan IXB = 6,05 5,75 = 0,30 *** Aidia Propitious 22

TRY OUT MATEMATIKA SMP - 01

TRY OUT MATEMATIKA SMP - 01 1. Suhu udara di puncak gunung 1 C, karena hari hujan suhunya turun lagi 4 C, maka suhu udara di puncak gunung tersebut sekarang adalah a. 5 C b. 3 C c. 3 C d. 5 C 2. Dari 42 siswa kelas IA, 24 siswa mengikuti

Lebih terperinci

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009

SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009 SOAL-SOAL dan PEMBAHASAN UN MATEMATIKA SMP/MTs TAHUN PELAJARAN 2008/2009 1. Hasil dari ( 18 + 30): ( 3 1) adalah. A. -12 B. -3 C. 3 D.12 BAB I BILANGAN BULAT dan BILANGAN PECAHAN ( 18 + 30): ( 3 1) = 12

Lebih terperinci

1. Hasi dari ( ) : ( 3 1) adalah... A. 12 B. 3 C. 3 D. 12 Jawab : ( ) : ( 3 1) = 12 : 4 = 3 Jadi jawabannya : B

1. Hasi dari ( ) : ( 3 1) adalah... A. 12 B. 3 C. 3 D. 12 Jawab : ( ) : ( 3 1) = 12 : 4 = 3 Jadi jawabannya : B C-P1-008/009 1. Hasi dari ( 18 + 0) : ( 1) adalah... A. 1 B. C. D. 1 ( 18 + 0) : ( 1) = 1 : =. Pada lomba Matematika ditentukan untuk jawaban yang benar mendapat skor, jawaban salah mendapat skor 1, sedangkan

Lebih terperinci

dibangun rumah, 3. Urutan naik dari pecahan 15%, 0,3, dan 4 a. 0,3 ; 15% ; 4

dibangun rumah, 3. Urutan naik dari pecahan 15%, 0,3, dan 4 a. 0,3 ; 15% ; 4 PEMNTPN UJIN NSIONL 0 No. Indikator Prediksi Soal. Menghitung hasil operasi tambah, kurang, kali, dan bagi pada bilangan bulat (). Hasil dari 9 (-0 : ) + (-3 x ) adalah. a. -8 c. 8 b. -8 d. 8. Menyelesaikan

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2007/2008

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2007/2008 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2007/2008 1. Hasil dari 1.764 + 3.375 adalah... A. 53 B. 57 C.63 D. 67 BAB VIII BILANGAN BERPANGKAT 4 2 15 1.764 3.375 4 x 4 16 1 3 1 1 64

Lebih terperinci

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Kemampuan yang diuji. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat.

Lebih terperinci

01. Hasil dari ( ) : (-3-1) adalah. (A) -12 (B) -3 (C) 3 (D) 12

01. Hasil dari ( ) : (-3-1) adalah. (A) -12 (B) -3 (C) 3 (D) 12 0. Hasil dari (-8 + 30) : (-3 - ) (A) - (B) -3 (C) 3 (D) 0. Pada lomba matematika ditentukan untuk jawaban yang benar mendapatkan skor, jawaban salah mendapatkan skor, sedangkan bila tidak menjawab mendapat

Lebih terperinci

PREDIKSI UN 2012 MATEMATIKA SMP

PREDIKSI UN 2012 MATEMATIKA SMP Dibuat untuk persiapan menghadapi UN 2012 PREDIKSI UN 2012 MATEMATIKA SMP Lengkap dengan kisi-kisi dan pembahasan Mungkin (tidak) JITU 12 1. Menghitung hasil operasi tambah, kurang, kali dan bagi pada

Lebih terperinci

PREDIKSI SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs DAN PEMBAHASAN

PREDIKSI SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs DAN PEMBAHASAN PREDIKSI SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs DAN PEMBAHASAN. * Indikator SKL : Menyelesaikan masalah yang berkaitan dengan operasi tambah, kurang, kali, atau bagi pada bilangan. * Indikator Soal : Menentukan

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2010/2011

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2010/2011 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2010/2011 1. Diketahui A = 7x + 5 dan B = 2x 3. Nilai A B adalah A. -9x +2 B. -9x +8 C. -5x + 2 D. -5x +8 BAB II BENTUK ALJABAR A B = -7x

Lebih terperinci

UJIAN NASIONAL SMP/MTs

UJIAN NASIONAL SMP/MTs UJIAN NASIONAL SMP/MTs Tahun Pelajaran 2007/2008 Mata Pelajaran Jenjang : Matematika : SMP/MTs MATA PELAJARAN Hari/Tanggal : Selasa, 6 Mei 2008 Jam : 08.00-10.00 WAKTU PELAKSANAAN PETUNJUK UMUM 1. Isikan

Lebih terperinci

PEMBAHASAN DAN JAWABAN PREDIKSI UJIAN SEKOLAH SMP/MTS TAHUN 2008/2009 MATEMATIKA

PEMBAHASAN DAN JAWABAN PREDIKSI UJIAN SEKOLAH SMP/MTS TAHUN 2008/2009 MATEMATIKA Prediksi Soal Bahasa Indonesia UN SMP 009 PEMBAHASAN DAN JAWABAN PREDIKSI UJIAN SEKOLAH SMP/MTS TAHUN 008/009 MATEMATIKA. Dik : Pada ketinggian 3500 m dpl suhu -8C. Setiap turun 00 m, suhu bertambah C.

Lebih terperinci

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 2 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Kemampuan yang diuji. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat.

Lebih terperinci

P2 KODE : 01. SMP / MTs Mata Pelajaran : Matematika Pembahasan Latihan Soal Ujian Nasional 2010

P2 KODE : 01. SMP / MTs Mata Pelajaran : Matematika  Pembahasan Latihan Soal Ujian Nasional 2010 Pembahasan Latihan Soal Ujian Nasional 00 Sekolah Menengah Pertama / Madrasah Tsanawiyah SMP / MTs Mata Pelajaran : Matematika P KODE : 0. Jawab: b Operasi dalam tanda kurung dikerjakan terlebih dahulu.

Lebih terperinci

UJI COBA UJIAN NASIONAL BERDASARKAN KISI-KISI TAHUN PELAJARAN 2011/ : Hasil dari - 4 A. 6 B. 3

UJI COBA UJIAN NASIONAL BERDASARKAN KISI-KISI TAHUN PELAJARAN 2011/ : Hasil dari - 4 A. 6 B. 3 UJI O UJIN NSIONL ERDSRKN KISI-KISI THUN PELJRN 20/202 No. INDIKTOR PREDIKSI SOL. Menyelesaikan masalah yang berkaitan dengan operasi tambah, kurang, kali, atau bagi pada bilangan.. Suhu di dalam kulkas

Lebih terperinci

PAKET 3 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 3 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET 3 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs. * Kemampuan yang diuji. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat.

Lebih terperinci

SOAL MATEMATIKA SIAP UN 2012

SOAL MATEMATIKA SIAP UN 2012 SOL MTMTIK SIP UN 1 1. Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Hasil dari 8 ( ) 5 Hasil dari ( 16 ) ( 4 : 4). Menghitung hasil operasi tambah, kurang, kali dan bagi pada

Lebih terperinci

BIMBINGAN TEKNIS UJIAN NASIONAL TAHUN 2010 PENGEMBANGAN SOAL-SOAL TERSTANDAR. Oleh: R. Rosnawati

BIMBINGAN TEKNIS UJIAN NASIONAL TAHUN 2010 PENGEMBANGAN SOAL-SOAL TERSTANDAR. Oleh: R. Rosnawati BIMBINGAN TEKNIS UJIAN NASIONAL TAHUN 010 PENGEMBANGAN SOAL-SOAL TERSTANDAR A. Pendahuluan Oleh: R. Rosnawati Yang menjadi landasan atau dasar pelaksanaan Ujian Nasional (UN) adalah sebagai berikut: a)

Lebih terperinci

SMP / MTs Mata Pelajaran : Matematika

SMP / MTs Mata Pelajaran : Matematika Kunci Jawaban Latihan Soal Ujian Nasional 010 Sekolah Menengah Pertama / Madrasah Tsanawiyah SMP / MTs Mata Pelajaran : Matematika 1. Jawab: b Untuk menentukan hasil dari suatu akar telebih dahulu cari

Lebih terperinci

UAN MATEMATIKA SMP 2007/2008 C3 P13

UAN MATEMATIKA SMP 2007/2008 C3 P13 1. Hasil dari adalah a. 47 b. 52 c. 57 d. 63 2. Suhu di dalam kulkas sebelum dihidupkan 29 C. Setelah dihidupkan, suhunya turun 3 C setiap 5 menit. Setelah 10 menit suhu di dalam kulkas adalah a. 23 C

Lebih terperinci

Copyright Hak Cipta dilindungi undang-undang

Copyright  Hak Cipta dilindungi undang-undang Latihan Soal UN SMP/MTs Mata Pelajaran : Matematika Jumlah Soal : 0. Hasil dari.7 +.75 adalah. 5 c. 57 d 7. Suhu di dalam kulkas - 0 C. Pada saat mati lampu suhu di dalam kulkas naik 0 C setiap menit.

Lebih terperinci

C. 9 orang B. 7 orang

C. 9 orang B. 7 orang 1. Dari 42 siswa kelas IA, 24 siswa mengikuti ekstra kurikuler pramuka, 17 siswa mengikuti ekstrakurikuler PMR, dan 8 siswa tidak mengikuti kedua ekstrakurikuler tersebut. Banyak siswa yang mengikuti kedua

Lebih terperinci

PENELAAHAN SOAL MATEMATIKA PREDIKSI UN 2012

PENELAAHAN SOAL MATEMATIKA PREDIKSI UN 2012 PENELHN SOL MTEMTIK PREDIKSI UN 2012 1. INDIKTOR SOL: Peserta didik dapat menghitung hasil operasi campuran bilangan bulat. SOL: Hasil dari 6 5 7 : 8 4. -18 B. -6 C. 6 D. 18 Kunci jawaban : adalah. 2.

Lebih terperinci

JAWABAN PREDIKSI 2 UJIAN NASIONAL SMP/MTs Tahun Pelajaran 2011/2012

JAWABAN PREDIKSI 2 UJIAN NASIONAL SMP/MTs Tahun Pelajaran 2011/2012 JAWABAN PREDIKSI 2 UJIAN NASIONAL SMP/MTs Tahun Pelajaran 2011/2012 1. Hasil dari 10 + ( 3) : ( 7) x 5 = 7 : ( 7) x 5 = 1 x 5 = 5 2. Urutan ; 65%; 0,35; dari terkecil ke terbesar = 0,71 65% = 0,65 0,35

Lebih terperinci

SOAL-SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2009/2010

SOAL-SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2009/2010 SOAL-SOAL UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2009/2010 1. Hasil dari 8 + ( 3 x 4) ( 6 : 3) adalah... A. 6 B. 2 C. -2 D. -6 BAB I BILANGAN BULAT dan BILANGAN PECAHAN 8 + ( 3 x 4) ( 6 : 3)

Lebih terperinci

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. Indikator, menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Indikator Soal, menentukan hasil operasi campuran bilangan

Lebih terperinci

SOAL dan Pembahasan UN Matematika SMP Tahun 2013

SOAL dan Pembahasan UN Matematika SMP Tahun 2013 SOAL dan Pembahasan UN Matematika SMP Tahun 2013 Jawab : Bilangan Bulat dan Pecahan 2 + 1 : 2 = 2 + ( 1 : 2 ) = + ( x ) = + = Jawabannya adalah A = = 3 = 3 Perbandingan Jumlah kelereng Bimo = x 70 = 28

Lebih terperinci

B. 26 September 1996 D. 28 September 1996

B. 26 September 1996 D. 28 September 1996 1. Ditentukan A = {2, 3, 5, 7, 8, 11} Himpunan semesta yang mungkin adalah... A.{bilangan ganjil yang kurang dari 12} B.{bilangan asli yang kurang dari 12} C.{bilangan prima yang kurang dari 12} D.{bilangan

Lebih terperinci

UN SMP Matematika (A) 53 (B) 57 (C) 63 (D) 67

UN SMP Matematika (A) 53 (B) 57 (C) 63 (D) 67 UN SMP Matematika Doc Name: UNSMP2008MAT999 Version : 202-0 halaman 0. Hasil dari 3.764 3. 37 (A) 3 (B) 7 (C) 63 (D) 67 02. Suhu di dalam kulkas -2 0 C. Pada saat mati lampu suhu di dalam kulkas naik 3

Lebih terperinci

Kumpulan Soal Matematika VII ( BSE Dewi Nurhariyani)

Kumpulan Soal Matematika VII ( BSE Dewi Nurhariyani) Bilangan Bulat 1. Suhu sebongkah es mula-mula 5 o C. Dua jam kemudian suhunya turun 7 o C. Suhu es itu sekarang a. 12 o C c. 2 o C b. 2 o C d. 12 o C 2. Jika x lebih besar dari 1 dan kurang dari 4 maka

Lebih terperinci

MATEMATIKA (Paket 1) Waktu : 120 Menit

MATEMATIKA (Paket 1) Waktu : 120 Menit MATEMATIKA (Paket ) Waktu : 0 Menit (0) 77 0 Website : Pilihlah jawaban yang paling tepat!. Hasil dari 0 : 7 + ( ) adalah.... 0 0. Agus mempunyai sejumlah kelereng, diberikan kepada Rahmat, bagian diberikan

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2011/2012 1. Hasil dari 17 - ( 3 x (-8) ) adalah... A. 49 B. 41 C. 7 D. -41 BAB II Bentuk Aljabar - perkalian/pembagian mempunyai tingkat

Lebih terperinci

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1 1. Diketahui : A = { m, a, d, i, u, n } dan B = { m, e, n, a, d, o } Diagram Venn dari kedua himpunan di atas adalah... D. A B = {m, n, a, d} 2. Jika P = bilangan prima yang kurang dari Q = bilangan ganjil

Lebih terperinci

Latihan Ujian 2012 Matematika

Latihan Ujian 2012 Matematika Latihan Ujian 2012 Matematika Hari/Tanggal : Minggu, 19 Februari 2012 Waktu : 120 menit Jumlah Soal : 60 soal Petunjuk Tulis nomor peserta dan nama Anda di tempat yang disediakan pada Lembar Jawaban. Materi

Lebih terperinci

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs

PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs PAKET 1 CONTOH SOAL DAN PEMBAHASAN MATEMATIKA SMP/MTs 1. * Kemampuan yang Diuji Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilangan bulat Menentukan hasil operasi campuran bilangan bulat

Lebih terperinci

Copyright Hak Cipta dilindungi undang-undang

Copyright  Hak Cipta dilindungi undang-undang Pembahasan Latihan Soal UN SMP/MTs Mata Pelajaran : Matematika Jumlah Soal : 0 Jawab: b Untuk menentukan hasil dari suatu akar telebih dahulu cari bentuk faktorisasi prima dari bilangan dalam tanda akar.

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Selasa, 11 Maret 2014 : 120 menit : 40 Soal 2B Petunjuk : 1. Isikan

Lebih terperinci

1. Hasil dari (3 + (-4)) (5 + 3) adalah... A. 8 B. -7 C. -8 D. -15 PREDIKSI MATEMATIKA SMP : Tahun 2013 2. Hasil dari adalah... A. B. C. D. 1 3. Ibu membeli 24 permen yang akan dibagikan kepada 4 orang

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 1. Perhatikan himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = { 1 < 11, bilangan ganjil} C = {semua faktor dari 12}

Lebih terperinci

PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari ( ) : (-8 + 6) adalah. a. -6 b. -5 c.

PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari ( ) : (-8 + 6) adalah. a. -6 b. -5 c. PAKET 1 Berilah tanda silang (x) pada huruf A, B, C atau D di depan jawaban yang benar! 1. Hasil dari (- + 11) : (-8 + 6) adalah. a. -6 b. -5 c. 5 d. 6. Pak Budi pada awal bulan menabung uang di koperasi

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A SMP N Kalibagor Hasil dari 5 + [6 : ( )] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. Pangkat ; Akar D.

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Selasa, 11 Maret 2014 : 120 menit : 40 Soal 2A Petunjuk : 1. Isikan

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2005/2006

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2005/2006 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2005/2006 1. Pada acara bakti sosial, Ani mendapat tugas membagikan 30 kg gula pasir secara merata kepada kelompok masyarakat yang tertimpa

Lebih terperinci

MATEMATIKA SMP PEMBAHASAN SOAL TRY OUT UJIAN NASIONAL KE-3 TAHUN PELAJARAN 2016/2017 PAKET 01 FULL DOKUMEN. SMPN 2 LOSARI 2017 Created by Irawan

MATEMATIKA SMP PEMBAHASAN SOAL TRY OUT UJIAN NASIONAL KE-3 TAHUN PELAJARAN 2016/2017 PAKET 01 FULL DOKUMEN. SMPN 2 LOSARI 2017 Created by Irawan PEMBAHASAN SOAL TRY OUT UJIAN NASIONAL KE-3 TAHUN PELAJARAN 06/07 PAKET 0 DOKUMEN SANGAT RAHASIA MATEMATIKA SMP FULL SMPN LOSARI 07 Created by Irawan DINAS PENDIDIKAN KABUPATEN CIREBON Jika operasi " *

Lebih terperinci

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12

Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Pembahasan Soal UN Matematika SMP Tahun Ajaran 2010/2011 Paket 12 Tim Pembahas : Th. Widyantini Untung Trisna Suwaji Wiworo Choirul Listiani Estina Ekawati Nur Amini Mustajab PPPPTK Matematika Yogyakarta

Lebih terperinci

PREDIKSI UN MATEMATIKA SMP

PREDIKSI UN MATEMATIKA SMP MGMP MATEMATIKA SMPN SATU ATAP KAB. MALANG PREDIKSI UN MATEMATIKA SMP Sesuai kisi-kisi UN 2012 plus Pembahasan Marsudi Prahoro 2012 M G M P M A T S A T A P M A L A N G. W O R D P R E S S. C O M 1. Menyelesaikan

Lebih terperinci

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM

MATA PELAJARAN WAKTU PELAKSANAAN PETUNJUK UMUM Mata Pelajaran Jenjang : Matematika : SMP / MTs MATA PELAJARAN Hari / Tanggal : Rabu, 9 April 009 Jam : 08.00 0.00 WAKTU PELAKSANAAN PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional

Lebih terperinci

PREDIKSI UJIAN AKHIR SEKOLAH SMP/MTS MATEMATIKA TAHUN PELAJARAN 2008/2009 WAKTU : 120 MENIT Pilihlah salah satu jawaban yang paling benar, dengan cara

PREDIKSI UJIAN AKHIR SEKOLAH SMP/MTS MATEMATIKA TAHUN PELAJARAN 2008/2009 WAKTU : 120 MENIT Pilihlah salah satu jawaban yang paling benar, dengan cara MATEMATIKA Prediksi UN SMP PREDIKSI UJIAN AKHIR SEKOLAH SMP/MTS MATEMATIKA TAHUN PELAJARAN 2008/2009 WAKTU : 120 MENIT Pilihlah salah satu jawaban yang paling benar, dengan cara menghitamkan pada salah

Lebih terperinci

PREDIKSI SOAL UJIAN NASIONAL 2009 MMC 252. Hasbas Hakim. Math Club 252 Jakarta Timur

PREDIKSI SOAL UJIAN NASIONAL 2009 MMC 252. Hasbas Hakim. Math Club 252 Jakarta Timur PREDIKSI SOAL UJIAN NASIONAL 2009 MMC 252 Hasbas Hakim Math Club 252 Jakarta Timur STANDAR KOMPETENSI LULUSAN (SKL) 1. Siswa mampu menggunakan konsep operasi hitung dan sifat-sifat bilangan, perbandingan,

Lebih terperinci

PENJABARAN KISI-KISI UJIAN NASIONAL BERDASARKAN PERMENDIKNAS NOMOR 75 TAHUN SKL Kemampuan yang diuji Alternatif Indikator SKL

PENJABARAN KISI-KISI UJIAN NASIONAL BERDASARKAN PERMENDIKNAS NOMOR 75 TAHUN SKL Kemampuan yang diuji Alternatif Indikator SKL PENJABARAN KISI-KISI UJIAN NASIONAL BERDASARKAN PERMENDIKNAS NOMOR 75 TAHUN 2009 Mata Pelajaran : Matematika No. 1. Menggunakan konsep operasi 1. Menghitung operasi tambah, kurang, kali dan 1.1. Menentukan

Lebih terperinci

UJIAN NASIONAL SMP/MTs

UJIAN NASIONAL SMP/MTs UJIAN NASINAL SMP/MTs Tahun Pelajaran 2008/2009 Mata Pelajaran Jenjang : Matematika : SMP/MTs MATA PELAJARAN Hari/Tanggal : Rabu, 29 April 2010 Jam : 08.00-10.00 WAKTU PELAKSANAAN PETUNJUK UMUM 1. Isikan

Lebih terperinci

TRY OUT 2 TAHUN PELAJARAN 2015/2016

TRY OUT 2 TAHUN PELAJARAN 2015/2016 1 TRY OUT TAHUN PELAJARAN 015/016 SMP/MTs MATEMATIKA Musyawarah Guru Mata Pelajaran MGMP MATEMATIKA SMP/MTs DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA KABUPATEN LEMBATA Mata Pelajaran Jenjang Hari/Tanggal Jam

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : A13 NO SOAL PEMBAHASAN 1 Pembahasan UN 0 A3 by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : A3 Hasil dari 5 + [6 : ( 3)] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung

Lebih terperinci

MATEMATIKA EBTANAS TAHUN 2002

MATEMATIKA EBTANAS TAHUN 2002 MATEMATIKA EBTANAS TAHUN UAN-SMP-- Notasi pembentukan himpunan dari B = {, 4, 9} adalah A. B = { kuadrat tiga bilangan asli yang pertama} B = { bilangan tersusun yang kurang dari } C. B = { kelipatan bilangan

Lebih terperinci

Hak Cipta 2014 Penerbit Erlangga

Hak Cipta 2014 Penerbit Erlangga 003-300-011-0 Hak Cipta 2014 Penerbit Erlangga Berilah tanda silang (X) pada huruf A, B, C, atau D pada jawaban yang benar! 1. Nilai dari 20 + 10 ( 5) ( 20) : 10 adalah.... A. 7 C. 68 B. 5 D. 72 2. Dea

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : B25 NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : B5 SMP N Kalibagor Hasil dari 7 ( ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 4 Dalam kurung C. 7 Pangkat ; Akar D.

Lebih terperinci

Pembahasan Matematika SMP IX

Pembahasan Matematika SMP IX Pembahasan Matematika SMP IX Matematika SMP Kelas IX Bab Pembahasan dan Kunci Jawaban Ulangan Harian Pokok Bahasan : Kesebangunan Kelas/Semester : IX/ A. Pembahasan soal pilihan ganda. Bangun yang tidak

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP P.0 TRYOUT UN 201 Mata Pelajaran Matematika Hari/Tanggal Waktu 120 menit 1. Hasil dari -1 + (-12 : ) adalah... a -19 b -11 c -9 d 9 2. Hasil

Lebih terperinci

Pola (1) (2) (3) Banyak segilima pada pola ke-15 adalah. A. 235 C. 255 B. 250 D Yang merupakan bilangan terbesar adalah. A. C. B. D.

Pola (1) (2) (3) Banyak segilima pada pola ke-15 adalah. A. 235 C. 255 B. 250 D Yang merupakan bilangan terbesar adalah. A. C. B. D. SOAL SELEKSI AWAL 1. Suhu dalam sebuah lemari es adalah 15 o C di bawah nol. Pada saat mati listrik suhu dalam lemari es meningkat 2 o C setiap 120 detik. Jika listrik mati selama 210 detik, suhu dalam

Lebih terperinci

Latihan Soal Ujian Nasional Sekolah Menengah Pertama / Madrasah Tsanawiyah. SMP / MTs Mata Pelajaran : Matematika

Latihan Soal Ujian Nasional Sekolah Menengah Pertama / Madrasah Tsanawiyah. SMP / MTs Mata Pelajaran : Matematika Latihan Soal Ujian Nasional 00 Sekolah Menengah Pertama / Madrasah Tsanawiyah SMP / MTs Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar Jawaban

Lebih terperinci

Evaluasi Belajar Tahap Akhir Nasional Tahun 1986 Matematika

Evaluasi Belajar Tahap Akhir Nasional Tahun 1986 Matematika Evaluasi Belajar Tahap Akhir Nasional Tahun 986 Matematika EBTANAS-SMP-86-0 Himpunan faktor persekutuan dari dan 0 {,,, 6} {,, 6} {, } {6} EBTANAS-SMP-86-0 Bilangan 0,0000 jika ditulis dalam bentuk baku.0

Lebih terperinci

TRY OUT 1 UJIAN NASIONAL SEKOLAH MENENGAH PERTAMA Tahun Pelajaran 2011/2012

TRY OUT 1 UJIAN NASIONAL SEKOLAH MENENGAH PERTAMA Tahun Pelajaran 2011/2012 TRY OUT 1 UJIAN NASIONAL SEKOLAH MENENGAH PERTAMA Tahun Pelajaran 2011/2012 Mata Pelajaran : Matematika Jenjang : SMP/MTs Hari/Tanggal : - Waktu : 120 menit Jam : 08.00 10.00 PETUNJUK UMUM 1. Isikan identitas

Lebih terperinci

UN SMP 2012 MATEMATIKA

UN SMP 2012 MATEMATIKA UN SMP 01 MATEMATIKA Kode Soal Doc. Name: UNSMP01MAT999A17 Doc. Version : 01-11 halaman 1 3 01. Hasil dari 64 (A) 8 16 3 56 0. Hasil dari 8x 3 (A) 3 4 6 8 6 6 03. Hasil dari -15 + (-1 : 3) (A) -19-11 -9

Lebih terperinci

NO SOAL PEMBAHASAN 1

NO SOAL PEMBAHASAN 1 PEMBAHASAN SOAL-SOAL UN TAHUN 01 KODE : B5 1 Hasil dari 17 (3 ( 8)) adalah... Urutan pengerjaan operasi hitung A. 49 Operasi hitung Urutan pengerjaan B. 41 Dalam kurung 1 C. 7 Pangkat ; Akar D. 41 Kali

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : D45 NO SOAL PEMBAHASAN. Ingat! a = a a a a a A. 10. Ingat! PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : D45 NO SOAL PEMBAHASAN 5 Hasil dari 8 adalah... 5. a = a a a a a A. 0 B. 5. = C.. = D. 64 Hasil dari 8 adalah... A. 6 B. 8 C. 6 D. 4 6 4 Hasil dari 7 ( ( 8)) adalah...

Lebih terperinci

PAKET I SOAL PENGAYAAN UJIAN NASIONAL MATA PELAJARAN

PAKET I SOAL PENGAYAAN UJIAN NASIONAL MATA PELAJARAN PAKET I SOAL PENGAYAAN UJIAN NASIONAL MATA PELAJARAN MATEMATIKA TAHUN 2014/2015 13 Pengayaan Ujian Nasional PAKET I SOAL PENGAYAAN UJIAN NASIONAL SMP/ MTs MATA PELAJARAN MATEMATIKA TAHUN PELAJARAN 2014/2015

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP P.08 TRYOUT UN 2013 Mata Pelajaran Matematika Hari/Tanggal Waktu 120 menit 1. Hasil dari 5 + [(-2) 4] adalah... a. -13 b. -3 c. 3 d. 13 2. Hasil

Lebih terperinci

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2006/2007

Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2006/2007 Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2006/2007 1. Dari ramalan cuaca kota-kota besar di dunia, tercatat suhu tertinggi dan terendah adalah sebagai berikut: Moskow: terendah -5

Lebih terperinci

PREDIKSI UN MATEMATIKA SMP

PREDIKSI UN MATEMATIKA SMP [Type text] MGMP MATEMATIKA SMPN SATU ATAP KAB. MALANG PREDIKSI UN MATEMATIKA SMP Sesuai kisi-kisi UN 2012 plus Marsudi Prahoro 2012 [Type text] Page 1 M G M P M A T S A T A P M A L A N G. W O R D P R

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP P.18 TRYOUT UN 2013 Mata Pelajaran Matematika Hari/Tanggal Waktu 120 menit 1. Hasil dari 5 + [(-2) 4] adalah... a. -13 b. -3 c. 3 d. 13 2. Hasil

Lebih terperinci

85 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA 2009

85 SOAL PREDIKSI UJIAN NASIONAL MATEMATIKA 2009 85 SOL PREIKSI UJIN NSIONL MTEMTIK 009 : Menghitung hasil operasi tambah, kurang, kali dan bagi pada bilngan bulat. ab + cd ad + d 1. Jika diketahui a= -5; b=; c= -4 dan d= 3 nilai dari adalah bc. Untuk

Lebih terperinci

Hindayani.com Mengerjakan Soal Ujian Nasional Matematika SMP/MTs TP 2014/2015. Bank Soal Ujian Nasional Matematika SMP/MTs 2014/2015

Hindayani.com Mengerjakan Soal Ujian Nasional Matematika SMP/MTs TP 2014/2015. Bank Soal Ujian Nasional Matematika SMP/MTs 2014/2015 1 Bank Soal Ujian Nasional Matematika SMP/MTs 2014/2015 Latihan Soal Ujian Nasional SMP/MTs Bidang Studi Matematika Hindayani.com 1. Hasil dari 17 (3x(-8)) ialah 49-41 -7 41 2. Uang Rina berbanding uang

Lebih terperinci

SMP / MTs Mata Pelajaran : Matematika

SMP / MTs Mata Pelajaran : Matematika Latihan Soal Ujian Nasional 200 Sekolah Menengah Pertama / Madrasah Tsanawiyah SMP / MTs Mata Pelajaran : Matematika Dalam UN berlaku Petunjuk Umum seperti ini :. Isikan identitas Anda ke dalam Lembar

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C32 NO SOAL PEMBAHASAN. Ingat!

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C32 NO SOAL PEMBAHASAN. Ingat! Pembahasan UN 0 C by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : C NO SOAL PEMBAHASAN Hasil dari 6 adalah... A. 48. a = a a a B. 7. = C. 08. = D. 6 6 = 6 = 6 = 6 = 6 Hasil dari 8 adalah... A.

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007

UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 UJIAN NASIONAL TAHUN PELAJARAN 2006/2007 PANDUAN MATERI SMP DAN MTs M A T E M A T I K A PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS Hak Cipta pada Pusat Penilaian Pendidikan BALITBANG DEPDIKNAS i KATA

Lebih terperinci

MATEMATIKA. Pertemuan 2 N.A

MATEMATIKA. Pertemuan 2 N.A MATEMATIKA Pertemuan 2 N.A smile.akbar@yahoo.co.id Awali setiap aktivitas dengan membaca Basmallah Soal 1 (Operasi Bentuk Aljabar) Bentuk Sederhana dari adalah a. b. c. d. Pembahasan ( A ) Soal 2 (Pola

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN SMP / MTs Mata Pelajaran : Matematika Jumlah Soal :. Hasil dari (-8 + ) : (- ) - -. Pada lomba matematika ditentukan jawaban yang benar mendapat skor, jawaban salah mendapat skor -, sedangkan

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP P.04 TRYOUT UN 01 Mata Pelajaran Matematika Hari/Tanggal Waktu 10 menit 1. Hasil dari -15 + (-1 : ) adalah... a -19 b -11 c -9 d 9. Hasil dari

Lebih terperinci

C. B dan C B. A dan D

C. B dan C B. A dan D 1. Perhatikan Himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = {x < x 11, x bilangan ganjil} C = {semua faktor dari 12} D = {bilangan genap antara 2 dan 14} Himpunan di atas yang ekuivalen

Lebih terperinci

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian : 1. Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm C. 26 cm B. 52 cm D. 13 cm 2. Gambar disamping adalah persegi panjang. Salah satu sifat persegi panjang adalah

Lebih terperinci

PERSIAPAN UN MATEMATIKA SMP 2014

PERSIAPAN UN MATEMATIKA SMP 2014 PERSIAPAN UN MATEMATIKA SMP 014 Berilah tanda silang (x) pada huruf a, b, c, atau d di depan jawaban yang benar! 1. Di suatu daerah yang berada pada ketinggian.500 meter di atas permukaan laut suhunya

Lebih terperinci

MATEMATIKA (Paket 2) Waktu : 120 Menit

MATEMATIKA (Paket 2) Waktu : 120 Menit MATEMATIKA (Paket 2) Waktu : 20 Menit (025) 77 2606 Website : Pilihlah jawaban yang paling tepat!. Hasil dari A. B. D. 8 5 8 2 2 8 2 adalah. 2. Hasil dari A. B. D. 8 adalah.. Bentuk sederhana dari A. 2

Lebih terperinci

LATIHAN UJIAN NASIONAL 2008/2009

LATIHAN UJIAN NASIONAL 2008/2009 1. Haasil dari 9 18 3 + 36 : (-3) adalah. a. 57 b. 33 c. -3 d. 39 LTIHN UJIN NSIONL 2008/2009 2. Suhu udara di Mekkah pada siang hari 38 o. jika pada malam hari suhu udara turun 43 o, maka suhu udara di

Lebih terperinci

TRY OUT UJIAN NASIONAL. MATEMATIKA (C-19) SMP/MTs (UTAMA) P19 DINAS PENDIDIKAN PROPINSI KALIMANTAN SELATAN

TRY OUT UJIAN NASIONAL. MATEMATIKA (C-19) SMP/MTs (UTAMA) P19 DINAS PENDIDIKAN PROPINSI KALIMANTAN SELATAN TRY OUT UJIAN NASIONAL P19 MATEMATIKA (C-19) SMP/MTs (UTAMA) DINAS PENDIDIKAN PROPINSI KALIMANTAN SELATAN DOKUMEN NEGARA SANGAT RAHASIA Mata Pelajaran Jenjang : Matematika : SMP/MTs MATA PELAJARAN Hari

Lebih terperinci

KISI-KISI UJIAN SEKOLAH

KISI-KISI UJIAN SEKOLAH KISI-KISI UJIAN SEKOLAH Matematika SEKOLAH MENENGAH PERTAMA DAERAH KHUSUS IBUKOTA (DKI) JAKARTA TAHUN PELAJARAN 2012-2013 KISI KISI PENULISAN SOAL UJIAN SEKOLAH TAHUN PELAJARAN 2012-2013 Jenjang : SMP

Lebih terperinci

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati!

PEMANTAPAN UJIAN NASIONAL Kerjakan dengan sungguh-sungguh dengan kejujuran hati! PEMANTAPAN UJIAN NASIONAL 203 Kerjakan dengan sungguh-sungguh dengan kejujuran hati!. Hasil dari (-5 7) : 4 x (-5) + 8 adalah. A. -26 B. -23 C. 23 D. 26 2. Perbandingan banyak kelereng Taris dan Fauzan

Lebih terperinci

UN SMP 2013 MATEMATIKA

UN SMP 2013 MATEMATIKA UN SMP 01 MATEMATIKA Kode Soal Doc. Name: UNSMP01MAT999 Doc. Version : 01-10 halaman 1 1 1 01. Hasil dari 5 :1 5 (A) 8 (B) 16 (C) (D) 56 0. Perbandingan kelereng Adi dan Ida : 4, sedangkan jumlah kelereng

Lebih terperinci

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : E52 NO SOAL PEMBAHASAN 1

PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : E52 NO SOAL PEMBAHASAN 1 SMP N Kalibagor Pembahasan UN 0 E5 by Alfa Kristanti PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : E5 Hasil dari 5 + [6 : ( )] adalah... Urutan pengerjaan operasi hitung A. 7 Operasi hitung Urutan pengerjaan

Lebih terperinci

SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2014/2015-TANGGAL 5 Mei 2015

SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 2014/2015-TANGGAL 5 Mei 2015 SOAL DAN PEMBAHASAN UJIAN NASIONAL MATEMATIKA SMP/MTs TAHUN PELAJARAN 04/05-TANGGAL 5 Mei 05. Dalam kompetisi matematika, setiap jawaban benar diberi nilai 4, salah dan tidak dijawab. Dari 40 soal yang

Lebih terperinci

TRY OUT MATEMATIKA SMP - 02

TRY OUT MATEMATIKA SMP - 02 1. Dalam suatu kelas terdapat 25 anak gemar melukis, 21 anak gemar menyanyi, serta 14 anak gemar melukis dan menyanyi, maka jumlah siswa dalam kelas tersebut adalah a. 60 anak b. 46 anak c. 32 anak d.

Lebih terperinci

UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 2004/2005

UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 2004/2005 UJIAN NASIONAL SMP/MTs TAHUN PELAJARAN 004/005 Mata Pelajaran : MATEMATIKA Hari/Tanggal : RABU, 8 JUNI 005 Waktu : 0 MENIT PETUNJUK UMUM. Periksa dan bacalah soal-soal sebelum kamu menjawab. Tulis nomor

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP P.06 TRYOUT UN 2013 Mata Pelajaran Matematika Hari/Tanggal Waktu 120 menit 1. Hasil dari 5 + [6 : (-3)] adalah... a 7 b 4 c 3 d -2 2. Hasil

Lebih terperinci

Copyright Website Sukses Snmptn 2011

Copyright  Website Sukses Snmptn 2011 Website Sukses Snmptn 0 Pembahasan Latihan Soal UN SMP/MTs Mata Pelajaran : Matematika Jumlah Soal : 0. Jawab: d Perhatikan tabel berikut! Kota Moskow Mexico Paris Tokyo Perubahan suhu o 8 - (-5) o - 7

Lebih terperinci

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah

INFORMASI PENTING. No 1 Bilangan Bulat. 2 Pecahan Bentuk pecahan campuran p dapat diubah menjadi pecahan biasa Invers perkalian pecahan adalah No RUMUS 1 Bilangan Bulat Sifat penjumlahan bilangan bulat a. Sifat tertutup a + b = c; c juga bilangan bulat b. Sifat komutatif a + b = b + a c. Sifat asosiatif (a + b) + c = a + (b + c) d. Mempunyai

Lebih terperinci

adalah. 7. Barisan aritmatika dengan suku ke-7 = 35 dan suku ke-13 = 53. Jumlah 27 suku pertama

adalah. 7. Barisan aritmatika dengan suku ke-7 = 35 dan suku ke-13 = 53. Jumlah 27 suku pertama MATEMATIKA (Paket ) Waktu : 20 Menit (025) 477 20 Website : Pilihlah jawaban yang paling tepat!. Ibu Aminah mempunyai untuk membuat gorengan diperlukan 7 2 kg tepung terigu. Untuk membuat roti diperlukan

Lebih terperinci

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 203/204 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal : MATEMATIKA : Selasa, Maret 204 : 20 menit : 40 Soal 2C Petunjuk :. Isikan identitas

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP P.20 TRYOUT UN 2013 Mata Pelajaran Matematika Hari/Tanggal Waktu 120 menit 1. Hasil dari -15 + (-12 : 3) adalah... a -19 b -11 c -9 d 9 2. Hasil

Lebih terperinci

A. LATIHAN SOAL UNTUK KELAS 9A

A. LATIHAN SOAL UNTUK KELAS 9A A. LATIHAN SOAL UNTUK KELAS 9A. Hasil dari 5 ( 6) + 24 : 2 ( 3) =... A. -5 B. -6. 0 D. 6 2. Hasil dari 2 : 75% + 8,75 =... A. 4 B. 5. 6 D. 7 3. Uang Irna sama dengan 2 3 uang Tuti. Jika jumlah uang mereka

Lebih terperinci

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP P.14 TRYOUT UN 2013 Mata Pelajaran Matematika Hari/Tanggal Waktu 120 menit 1. Hasil dari -15 + (-12 : 3) adalah... a -19 b -11 c -9 d 9 2. Hasil

Lebih terperinci

PREDIKSI UN MATEMATIKA SMP

PREDIKSI UN MATEMATIKA SMP [Type text] MGMP MATEMATIKA SMPN SATU ATAP KAB. MALANG PREDIKSI UN MATEMATIKA SMP Sesuai kisi-kisi UN 0 plus Marsudi Prahoro 0 [Type text] Page M G M P M A T S A T A P M A L A N G. W O R D P R E S S. C

Lebih terperinci