FUNGSI GELOMBANG. Persamaan Schrödinger

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "FUNGSI GELOMBANG. Persamaan Schrödinger"

Transkripsi

1 Persamaan Schrödinger FUNGSI GELOMBANG Kuantitas yang diperlukan dalam mekanika kuantum adalah fungsi gelombang partikel Ψ. Jika Ψ diketahui maka informasi mengenai kedudukan, momentum, momentum sudut, dan energi dari partikel dapat diperoleh. Hal ini ditegaskan oleh postulat pertama mekanika kuantum, yang berbunyi: Setiap keadaan suatu sistem yang dapat diamati secara fisika di dalam mekanika kuantum dapat dijelaskan oleh suatu fungsi keadaan yang berisi sejumlah informasi yang dapat diperoleh secara fisika mengenai keadaan sistem tersebut Fungsi gelombang Ψ, diperoleh dengan memecahkan persamaan Schrödinger. Persamaan Schrödinger merupakan persamaan pokok dalam mekanika kuantum. Untuk mendapatkan persamaan Schrödinger, kita mulai dari persamaan gelombang paket yang telah diperoleh sebelumnya. Ψ, = 1 Dari postulat de Broglie, = dan =, maka diperoleh =. Dari teori ħ kuantum Einstein bahwa =h! dan " = 2$!, diperoleh " = % maka persamaan ħ (1) menjadi Ψ, = & '( %/ħ ( 2 dengan & adalah konstanta normalisasi. Persamaan ini memberikan deskripsi matematis yang ekivalen dari partikel bebas yang berenergi total E dan momentum p. Mendiferensialkan persamaan (2) terhadap t diperoleh Ψ, =, ħ & '( ( %/ħ ( 3 Oleh karena partikel bebas berenergi =. / maka Ψ, =, 20ħ & '(( %/ħ ( 4

2 Mendiferensialkan persamaan (2) dua kali terhadap x, diperoleh Ψ, =, ħ & '(( %/ħ ( Ψ, = 1 ħ & '(( %/ħ ( 5 6 Dari persamaan (4) dan (6), kemudian diperoleh,ħ Ψx,t = ħ Ψx,t 20 7 Ini adalah persamaan Schrödinger satu dimensi untuk partikel bebas, bentuk tiga dimensinya adalah,ħ Ψx,y,x,t,ħ Ψx,y,x,t,ħ Ψx,y,x,t = ħ 20 8 Ψx,y,z,t + Ψx,y,z,t ; + Ψx,y,z,t < = = ħ ; < =Ψx,y,z,t = ħ 20 Ψx,y,z,t 8 dengan adalah operator Perhatikan kembali persamaan (3)! Ψ, =, ħ & '( ( %/ħ ( 3,ħ Ψ, = & '( ( %/ħ ( Tampak bahwa untuk memperoleh energi partikel yaitu terhadap Ψ,. Lalu perhatikan persamaan (5)! Ψ, =, ħ & '(( %/ħ ( 5

3 ,ħ Ψ, =& '(( %/ħ ( Tampak pula bahwa untuk memperoleh momentum partikel adalah terhadap Ψ,. Dengan demikian, terdapat korespondensi antara energi E, momentum p, dan operator diferensial, yaitu,ħ (,ħ Jika partikel bergerak dalam potensial D maka energinya = ( 20 +D dan persamaan Schrödinger dalam satu dimensinya menjadi,ħ Ψx,t = ħ Ψx,t 20 +DΨx,t 9 dan dalam tiga dimensinya menjadi,ħ Ψx,y,z,t = ħ 20 Ψx,y,z,t+D,;,<,Ψx,y,z,t 10 Persamaan (9) dapat dituliskan sebagai,ħ Ψx,t = GΨx,t 11 dengan H adalah Hamiltonian G = ħ 20 +Vx 12 Energi Potensial D atau disebut Potensial saja, dapat berupa fungsi dalam ruang dan waktu, D,;,<,. Begitu fungsi dari D diketahui maka persamaan

4 Schrödinger dapat dipecahkan untuk memperoleh fungsi gelombang partikel Ψ. Persamaan Shcrödinger yang diperoleh ini, didasarkan pada dua asumsi, yaitu: 1. Gejala-gejala kreasi atau pembentukan serta destruksi bagi partikel-partikel materi diabaikan, artinya jumlah partikelnya tetap. 2. Kecepatan gerak partikelnya dianggap cukup kecil sehingga tidak memerlukan teori relativitas (non relativistik). Arti Fisis dari Fungsi Gelombang Pada gelombang mekanik, misalnya gelombang pada tali, persamaan gelombang dinyatakan dengan y (x,t) dengan y menyatakan pergeseran suatu titik pada tali terhadap sumbu x sedangkan x menyatakan posisinya terhadap sumbu y. t menyatakan waktu. Dalam mekanika kuantum, fungsi gelombang suatu partikel dinyakan dengan: Ψ = Ψ, Fungsi gelombang Ψ bersesuaian dengan y untuk persamaan gelombang pada tali. Namun, Ψ bukanlah kuantitas yang dapat diukur seperti y. Fungsi gelombang Ψ, dapat berupa fungsi kompleks. Pertanyaannya, apa arti fisis fungsi gelombang tersebut? Jawaban dari pertanyaan ini diberikan oleh Max Born yang menginterpretasikan bahwa Ψ, sendiri tidak memiliki arti fisis. Namun, kuadrat dari harga mutlaknya, Ψ, berharga real, dan memiliki interpretasi probabilitas. Secara lengkap, interpretasi Max Born dinyatakan sebagai Postulat kedua mekanika kuantum, yang berbunyi: Jika suatu sistem kuantum direpresentasikan oleh fungsi gelombang maka J K = Ψ K merupakan probabilitas bahwa pengukuran kedudukan suatu partikel pada saat t, akan ditemukan pada elemen volume K Ψ, =Ψ, Ψ, J, Ψ, rapat probabilitas menemukan partikel pada titik, pada waktu t Dengan demikian, jika di dalam ruang terdapat partikel maka rapat probabilitas menemukannya dalam seluruh ruang adalah satu. J, =1 13

5 Fungsi gelombang yang memenuhi persamaan (13) dikatakan ternormalisasi. Ψ, =1 Ψ, Ψ, =1 14 Contoh 1 Partikel bergerak sepanjang sumbu x pada suatu waktu tertentu dinyatakan dengan fungsi gelombang Ψ=N sinr Tentukan fungsi gelombang ternormalisasinya! Solusi Fungsi gelombang partikel diberikan oleh Ψ=S N sinr, untuk < 0 N sinr,untuk > 0 X Maka kuadrat dari fungsi gelombangnya Ψ Ψ= Ψ =S N sin R, untuk < 0 N sin R,untuk > 0 X Tampak bahwa Ψ adalah fungsi genap, karena Ψ = Ψ Syarat normalisasi Ψ =1 N sin R 2N sin R + N sin R =1 2N 8 Z Z = 2, =1 = 1

6 N 2 N 2 [ Z + Z 2\ = 1 [ Z + Z 2 \ N ]Z 2 2,R 2 + Z 2 2,R+2 2 ] = 1 N 2 ]Z 2,R 2 Z 2,R+2 + ] N 2 ^ 1 2,R 2 1 2,R+2 +1_=1 N 2 ^ 4 4R +4 +1_ = 1 N 8 R R +1 ==2 N =`2R +2 R = 1 Fungsi gelombang ternormalisasinya adalah = 1 Ψ=`2R +2 R sinr Nilai Ekspektasi Sekali lagi, jika fungsi gelombang Ψ sudah diperoleh maka semua informasi tentang partikel itu yang diijinkan oleh prinsip ketidakpastian, dapat diperoleh. Lalu informasi yang seperti apa? dan bagaimana cara memperolehnya? Informasi yang diperoleh adalah berupa nilai ekspektasi dari suatu kuantitas yang hendak diukur, misalnya dimana partikel itu sering berada atau berapa momentum rata-ratanya. Nilai rata-rata dari suatu variabel dinamis, didefinisikan sebagai nilai ekspektasi, yaitu: =c Ψ, d Ψ, 15

7 dengan d adalah operator yang merepresentasikan variabel dinamis, dalam mekanika kuantum. Tampak bahwa untuk memperoleh informasi tentang partikel mengenai suatu variabel dinamis, kita harus mengetahui operator yang merepresentasikan variabel tersebut. Jika fungsi gelombang Ψ, tidak ternormalisasi maka persamaan (15) menjadi: = c Ψ, d Ψ, c Ψ, Ψ, 16 Ketidakpastian hasil pengukuran dinyatakan dengan standar deviasi, yang didefinisikan sebagai berikut. = dengan = Ψ, d Ψ, Sebagai contoh, misalnya kita ingin mengetahui posisi partikel pada suatu waktu tertentu maka nilai ekspektasi posisinya adalah: =c Ψ, d Ψ, =c Ψ, Ψ, d adalah operator yang merepresentasikan posisi dimana d =. Ketidakpastian posisi, adalah: = dengan = Ψ, Ψ, Berikut ini adalah operator dari beberapa variabel dinamis dalam mekanika kuantum: Operator posisi: d =

8 Operator momentum: ( Operator Energi Kinetik: f d =. = ħ. / / Operator Hamiltonian: G d = Contoh 2 Fungsi gelombang ternormalisasi suatu partikel dengan potensial harmonik sederhana diberikan oleh Ψ, = g R $ h i/j Z. / %/ħ Tentukan nilai ekspektasi,dan, serta ketidakpastian posisi! Solusi Nilai ekspektasi partikelnya adalah = Ψ, Ψ, = g R i/j $ h Z. / %/ħ g R i/j $ h Z. / %/ħ =g R $ h i/ =g R $ h i/ Z. Z. =0 Nilai ekspektasi partikelnya adalah = Ψ, Ψ,

9 = g R i/j $ h Z. / %/ħ g R i/j $ h Z. / %/ħ =g R $ h i/ =g R $ h i/ Z. Z. fungsi genap =2 g R $ h i/ Z. =2 g R $ h i/ = 1 2R q 1 4R g$ R h i/ r Ketidakpastian posisi, yaitu = =s =`1 2R Syarat Fungsi Gelombang t Fungsi Gelombang Ψ yang memenuhi persamaan Schrödinger adalah fungsi gelombang yang memenuhi kriteria-kriteria berikut ini. 1. Kuadrat dari fungsi gelombang Ψ harus dapat diintegralkan dan bernilai berhingga. Ψ < Oleh karena integral dilakukan untuk seluruh ruang, konsekuensinya: Ψ, 0 untuk x 2. Fungsi gelombang Ψ, dan turunannya vw,, harus bernilai berhingga vx

10 3. Fungsi gelombang Ψ, dan turunannya vw,, harus bernilai tunggal vx 4. Ψ, dan turunan kontinue di semua

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Atom Pion Atom pion sama seperti atom hidrogen hanya elektron nya diganti menjadi sebuah pion negatif. Partikel ini telah diteliti sekitar empat puluh tahun yang lalu, tetapi

Lebih terperinci

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3)

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3) 2. Osilator Harmonik Pada mekanika klasik, salah satu bentuk osilator harmonik adalah sistem pegas massa, yaitu suatu beban bermassa m yang terikat pada salah satu ujung pegas dengan konstanta pegas k.

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON Rif ati Dina Handayani 1 ) Abstract: Suatu partikel yang bergerak dengan momentum p, menurut hipotesa

Lebih terperinci

Silabus dan Rencana Perkuliahan

Silabus dan Rencana Perkuliahan Silabus dan Rencana Perkuliahan Mata kuliah : PEND.FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Team Dosen Pend fisika Kuantum Yuyu R.T, Parlindungan S. dan Asep S Standar Kompetensi : Setelah mengikuti

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Persamaan Schrödinger Persamaan Schrödinger merupakan fungsi gelombang yang digunakan untuk memberikan informasi tentang perilaku gelombang dari partikel. Suatu persamaan differensial

Lebih terperinci

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya 1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku

Lebih terperinci

III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S

III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S Standar : Setelah mengikuti perkuliahan ini mahasiswa diharapkan memiliki

Lebih terperinci

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM POKOK-POKOK MATERI FISIKA KUANTUM PENDAHULUAN Dalam Kurikulum Program S-1 Pendidikan Fisika dan S-1 Fisika, hampir sebagian besar digunakan untuk menelaah alam mikro (= alam lelembutan micro-world): Fisika

Lebih terperinci

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( )

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( ) PENDAHULUAN FISIKA KUANTUM FI363 / 3 sks Asep Sutiadi (1974)/(0008097002) TUJUAN PERKULIAHAN Selesai mengikuti mata kuliah ini mahasiswa diharapkan mampu menjelaskan pada kondisi seperti apa suatu permasalahan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein BAB II DASAR TEORI Sebagaimana telah diketahui dalam kinematika relativistik, persamaanpersamaannya diturunkan dari dua postulat relativitas. Dua kerangka inersia yang bergerak relatif satu dengan yang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Potensial Coulomb untuk Partikel yang Bergerak Dalam bab ini, akan dikemukakan teori-teori yang mendukung penyelesaian pembahasan pengaruh koreksi relativistik potensial Coulomb

Lebih terperinci

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder:

LAMPIRAN. Hubungan antara koordinat kartesian dengan koordinat silinder: LAMPIRAN A.TRANSFORMASI KOORDINAT 1. Koordinat silinder Hubungan antara koordinat kartesian dengan koordinat silinder: Vector kedudukan adalah Jadi, kuadrat elemen panjang busur adalah: Maka: Misalkan

Lebih terperinci

MEKANIKA KUANTUM DALAM TIGA DIMENSI

MEKANIKA KUANTUM DALAM TIGA DIMENSI MEKANIKA KUANTUM DALAM TIGA DIMENSI Sebelumnya telah dibahas mengenai penerapan Persamaan Schrödinger dalam meninjau sistem kuantum satu dimensi untuk memperoleh fungsi gelombang serta energi dari sistem.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Metode Beda Hingga Metode perbedaan beda hingga adalah metode yang sangat popular. Pada intinya metode ini mengubah masalah Persamaan Differensial Biasa (PDB) nilai batas dari

Lebih terperinci

2. Deskripsi Statistik Sistem Partikel

2. Deskripsi Statistik Sistem Partikel . Deskripsi Statistik Sistem Partikel Formulasi statistik Interaksi antara sistem makroskopis.1. Formulasi Statistik Dalam menganalisis suatu sistem, kombinasikan: ide tentang statistik pengetahuan hukum-hukum

Lebih terperinci

FISIKA SET 9 RELATIVITAS EINSTEIN DAN INTI ATOM DAN LATIHAN SOAL SBMPTN TOP LEVEL - XII SMA A. RELATIVITAS KHUSUS. a. Relativitas kecepatan

FISIKA SET 9 RELATIVITAS EINSTEIN DAN INTI ATOM DAN LATIHAN SOAL SBMPTN TOP LEVEL - XII SMA A. RELATIVITAS KHUSUS. a. Relativitas kecepatan 9 MATERI DAN LATIHAN SOAL SBMPTN TOP LEVEL - XII SMA FISIKA SET 9 RELATIVITAS EINSTEIN DAN INTI ATOM A. RELATIVITAS KHUSUS Teori relatiitas khusus didasarkan pada postulat Einstein, yakni:. Pertama, hukum

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron PENDAHUUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5 Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani Program Studi Pendidikan Fisika FKIP Universitas Jember email: schrodinger_risma@yahoo.com

Lebih terperinci

BAB IV OSILATOR HARMONIS

BAB IV OSILATOR HARMONIS Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 1.4. Hipotesis 1. Model penampang hamburan Galster dan Miller memiliki perbedaan mulai kisaran energi 0.3 sampai 1.0. 2. Model penampang hamburan Galster dan Miller memiliki kesamaan pada kisaran energi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Atom Bohr Pada tahun 1913, Niels Bohr, fisikawan berkebangsaan Swedia, mengikuti jejak Einstein menerapkan teori kuantum untuk menerangkan hasil studinya mengenai spektrum

Lebih terperinci

HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI

HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI Disusun untuk memenuhi tugas mata kuliah Fisika Kuantum Dosen Pengampu: Drs. Ngurah Made Darma Putra, M.Si., PhD Disusun oleh kelompok 8:.

Lebih terperinci

Keunggulan Pendekatan Penyelesaian Masalah Fisika melalui Lagrangian dan atau Hamiltonian dibanding Melalui Pengkajian Newton

Keunggulan Pendekatan Penyelesaian Masalah Fisika melalui Lagrangian dan atau Hamiltonian dibanding Melalui Pengkajian Newton Keunggulan Pendekatan Penyelesaian Masalah Fisika melalui Lagrangian dan atau Hamiltonian dibanding Melalui Pengkajian Newton Nugroho Adi P January 19, 2010 1 Pendekatan Penyelesaian Masalah Fisika 1.1

Lebih terperinci

BAB I PENDAHULUAN (1-1)

BAB I PENDAHULUAN (1-1) BAB I PENDAHULUAN Penelitian tentang analisis system fisis vibrasi molekuler yang berada dalam pengaruh medan potensial Lenard-Jones atau dikenal pula dengan potensial 6-2 sudah dilakukan. Kajian tentang

Lebih terperinci

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford.

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford. 1 BAB FISIKA ATOM Perkembangan teori atom Model Atom Dalton 1. Atom adalah bagian terkecil dari suatu unsur yang tidak dapat dibagi-bagi 2. Atom-atom suatu unsur semuanya serupa dan tidak dapat berubah

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Persamaan Diferensial Parsial (PDP) digunakan oleh Newton dan para ilmuwan pada abad ketujuhbelas untuk mendeskripsikan tentang hukum-hukum dasar pada fisika.

Lebih terperinci

Apa itu Atom? Miftachul Hadi. Applied Mathematics for Biophysics Group. Physics Research Centre, Indonesian Institute of Sciences (LIPI)

Apa itu Atom? Miftachul Hadi. Applied Mathematics for Biophysics Group. Physics Research Centre, Indonesian Institute of Sciences (LIPI) Apa itu Atom? Miftachul Hadi Applied Mathematics for Biophysics Group Physics Research Centre, Indonesian Institute of Sciences (LIPI) Kompleks Puspiptek, Serpong, Tangerang 15314, Banten, Indonesia E-mail:

Lebih terperinci

PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay" + b Y' + cy = 0

PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay + b Y' + cy = 0 1 PARTIKEL DALAM BOX Elektron dalam atom dan molekul dapat dibayangkan mirip partikel dalam box. daerah di dalam box tempat partikel tersebut bergerak berpotensial nol, sedang daerah diluar box berpotensial

Lebih terperinci

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan.

BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. BAB V MOMENTUM ANGULAR Pengukuran Simultan Beberapa Properti Dalam keadaan stasioner, momentum angular untuk elektron hidrogen adalah konstan. Kriteria apa saa yang dapat digunakan untuk menentukan properti

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Struktur atom Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran

Lebih terperinci

Pendahuluan. Setelah mempelajari bab 1 ini, mahasiswa diharapkan

Pendahuluan. Setelah mempelajari bab 1 ini, mahasiswa diharapkan 1 Pendahuluan Tujuan perkuliahan Setelah mempelajari bab 1 ini, mahasiswa diharapkan 1. Mengetahui gambaran perkuliahan. Mengerti konsep dari satuan alamiah dan satuan-satuan dalam fisika partikel 1.1.

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

FISIKA MODERN. Staf Pengajar Fisika Departemen Fisika,, FMIPA, IPB

FISIKA MODERN. Staf Pengajar Fisika Departemen Fisika,, FMIPA, IPB FISIKA MODERN Staf Pengajar Fisika Departemen Fisika,, FMIPA, IPB 1 MANFAAT KULIAH Memberikan pemahaman tentang fenomena alam yang tidak dapat dijelaskan melalui fisika klasik Fenomena alam yang berkaitan

Lebih terperinci

model atom mekanika kuantum

model atom mekanika kuantum 06/05/014 FISIKA MODERN Pertemuan ke-11 NURUN NAYIROH, M.Si Werner heinsberg (1901-1976), Louis de Broglie (189-1987), dan Erwin Schrödinger (1887-1961) merupakan para ilmuwan yang menyumbang berkembangnya

Lebih terperinci

SILABUS. Kegiatan Pembelajaran Penilaian Alokasi Waktu. Sumber Belajar. Penilaian kinerja sikap, tugas dan tes tertulis

SILABUS. Kegiatan Pembelajaran Penilaian Alokasi Waktu. Sumber Belajar. Penilaian kinerja sikap, tugas dan tes tertulis Nama Sekolah : SMA Negeri 78 Jakarta Mata Pelajaran : Fisika 4 Beban : 4 sks Standar Kompetensi : 1. Menerapkan konsep termodinamika dalam mesin kalor Kompetensi Dasar Indikator Materi SILABUS 1.1 Mendeskripsikan

Lebih terperinci

Teori Atom Mekanika Klasik

Teori Atom Mekanika Klasik Teori Atom Mekanika Klasik -Thomson -Rutherford -Bohr -Bohr-Rutherford -Bohr-Sommerfeld Kelemahan Teori Atom Bohr: -Bohr hanya dapat menjelaskan spektrum gas hidrogen, tidak dapat menjelaskan spektrum

Lebih terperinci

PERSAMAAN SCHRODINGER YANG BERGANTUNG WAKTU

PERSAMAAN SCHRODINGER YANG BERGANTUNG WAKTU PERSAMAAN SCHRODINGER YANG BERGANTUNG WAKTU Perbeaan pokok antara mekanika newton an mekanika kuantum aalah cara menggambarkannya. Dalam mekanika newton, masa epan partikel telah itentukan oleh keuukan

Lebih terperinci

KONTRAK PERKULIAHAN. Kode Mata Kuliah/SKS : FI 3412/3 (tiga) Semester/Tahun Akademi : Genap/2016/2017 : Telah mengikuti kuliah Fisika Modern

KONTRAK PERKULIAHAN. Kode Mata Kuliah/SKS : FI 3412/3 (tiga) Semester/Tahun Akademi : Genap/2016/2017 : Telah mengikuti kuliah Fisika Modern KONTRAK PERKULIAHAN Mata Kuliah : Fisika Kuantum Kode Mata Kuliah/SKS : FI 3412/3 (tiga) Semester/Tahun Akademi : Genap/2016/2017 Prasyarat : Telah mengikuti kuliah Fisika Modern Kelas : A Jumlah Pertemuan

Lebih terperinci

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK Disusun oleh : Muhammad Nur Farizky M0212053 SKRIPSI PROGRAM STUDI

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

FISIKA MODERN UNIT. Radiasi Benda Hitam. Hamburan Compton & Efek Fotolistrik. Kumpulan Soal Latihan UN

FISIKA MODERN UNIT. Radiasi Benda Hitam. Hamburan Compton & Efek Fotolistrik. Kumpulan Soal Latihan UN Kumpulan Soal Latihan UN UNIT FISIKA MODERN Radiasi Benda Hitam 1. Suatu benda hitam pada suhu 27 0 C memancarkan energi sekitar 100 J/s. Benda hitam tersebut dipanasi sehingga suhunya menjadi 327 0 C.

Lebih terperinci

Relativitas Khusus Prinsip Relativitas (Kelajuan Cahaya) Eksperimen Michelson & Morley Postulat Relativitas Khusus Konsekuensi Relativitas Khusus

Relativitas Khusus Prinsip Relativitas (Kelajuan Cahaya) Eksperimen Michelson & Morley Postulat Relativitas Khusus Konsekuensi Relativitas Khusus RELATIVITAS Relativitas Khusus Prinsip Relativitas (Kelajuan Cahaya) Eksperimen Michelson & Morley Postulat Relativitas Khusus Konsekuensi Relativitas Khusus Transformasi Galileo Transformasi Lorentz Momentum

Lebih terperinci

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi)

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi) Gerak Rotasi Momen Inersia Terdapat perbedaan yang penting antara masa inersia dan momen inersia Massa inersia adalah ukuran kemalasan suatu benda untuk mengubah keadaan gerak translasi nya (karena pengaruh

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah : SMA... Kelas / Semester : XII / II Mata Pelajaran : FISIKA Standar : 3. Menganalisis berbagai besaran fisis pada gejala kuantum dan batas-batas berlakunya relativitas Einstein

Lebih terperinci

3. Menganalisis berbagai besaran fisis pada gejala kuantum dan batas-batas berlakunya

3. Menganalisis berbagai besaran fisis pada gejala kuantum dan batas-batas berlakunya RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah Mata Pelajaran Kelas/Semester : SMA : Fisika : XII/I (Satu) Alokasi Waktu : 8 x 45 Menit ( 4 Pertemuan ) Topik : Fisika Kuantum Standar Kompetensi 3.

Lebih terperinci

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator ISSN:2089 0133 Indonesian Journal of Applied Physics (2012) Vol.2 No.1 halaman 6 April 2012 Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator Fuzi Marati Sholihah

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah : SMA NEGERI 3 DUMAI Kelas / Semester : XII / II Mata Pelajaran : FISIKA Standar : 3. Menganalisis berbagai besaran fisis pada gejala kuantum dan batas-batas berlakunya relativitas

Lebih terperinci

LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 12-6)

LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 12-6) LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 1-6) Oleh : Warsono, M.Si Supahar, M.Si Supardi, M.Si FAKULTAS MATEMATIKA

Lebih terperinci

Achmad Subeqan( ) Matematika FMIPA-ITS. Dosen Pembimbing: 1. Dra.Sri Suprapti H, MSi

Achmad Subeqan( ) Matematika FMIPA-ITS. Dosen Pembimbing: 1. Dra.Sri Suprapti H, MSi ABSTRAK SOLUSI GELOMBANG BERJALAN UNTUK PERSAMAAN SCHRÖDINGER DENGAN PENUNDAAN TERDISTRIBUSI Achmad Subeqan( 1206 100 062) Matematika FMIPA-ITS Dosen Pembimbing: 1. Dra.Sri Suprapti H, MSi 2. Drs.IGN Rai

Lebih terperinci

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10 ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 1 Syahrul Humaidi 1,a), Tua Raja Simbolon 1,b), Russell Ong 1,c), Widya Nazri Afrida

Lebih terperinci

Simulasi Struktur Energi Elektronik Atom, Molekul, dan Nanomaterial dengan Metode Ikatan Terkuat

Simulasi Struktur Energi Elektronik Atom, Molekul, dan Nanomaterial dengan Metode Ikatan Terkuat Simulasi Struktur Energi Elektronik Atom, Molekul, dan Nanomaterial dengan Metode Ikatan Terkuat Ahmad Ridwan Tresna Nugraha (NIM: 10204001), Pembimbing: Sukirno, Ph.D KK FisMatEl, Institut Teknologi Bandung

Lebih terperinci

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT.

ILMU FISIKA. Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. ILMU FISIKA Fisika Dasar / Fisika Terapan Program Studi Teknik Sipil Salmani, ST., MS., MT. DEFINISI ILMU FISIKA? Ilmu Fisika dalam Bahasa Yunani: (physikos), yang artinya alamiah, atau (physis), Alam

Lebih terperinci

Batasan KIMIA FISIKA DALTON BOHR M. KUANTUM

Batasan KIMIA FISIKA DALTON BOHR M. KUANTUM Batasan KIMIA FISIKA DATN BHR M. KUANTUM TUJUAN SMA KESE YA 2013 Perkembangan Teori Atom Stabilitas Hamburan α Fe Cu Bentuk atom + + - - + - - + Proust Teori atom avoiser Definisi atom Dalton Definisi

Lebih terperinci

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator

Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator ISSN:089 033 Indonesian Journal of Applied Physics (0) Vol. No. halaman 6 April 0 Analisis Energi Osilator Harmonik Menggunakan Metode Path Integral Hypergeometry dan Operator Fuzi Marati Sholihah, Suparmi,

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Sekolah RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Mata Pelajaran Kelas / Semester : SMA Negeri 16 Surabaya : Fisika : XII IA / (Dua) Alokasi Waktu : 4 x 45 Menit ( 4 Jam Pelajaran ) Standar Kompetensi: 9.

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

a. Lattice Constant = a 4r = 2a 2 a = 4 R = 2 2 R = 2,8284 x 0,143 nm = 0,4045 nm 2

a. Lattice Constant = a 4r = 2a 2 a = 4 R = 2 2 R = 2,8284 x 0,143 nm = 0,4045 nm 2 SOUSI UJIAN TENGAH SEMESTER E-32 MATERIA TEKNIK EEKTRO Semester I 23/24, Selasa 2 Nopember 22 Waktu : 7: 9: (2menit)- Closed Book SEKOAH TEKNIK EEKTRO DAN INFORMATIKA - INSTITUT TEKNOOGI BANDUNG Dosen

Lebih terperinci

DAFTAR SIMBOL. : permeabilitas magnetik. : suseptibilitas magnetik. : kecepatan cahaya dalam ruang hampa (m/s) : kecepatan cahaya dalam medium (m/s)

DAFTAR SIMBOL. : permeabilitas magnetik. : suseptibilitas magnetik. : kecepatan cahaya dalam ruang hampa (m/s) : kecepatan cahaya dalam medium (m/s) DAFTAR SIMBOL n κ α R μ m χ m c v F L q E B v F Ω ħ ω p K s k f α, β s-s V χ (0) : indeks bias : koefisien ekstinsi : koefisien absorpsi : reflektivitas : permeabilitas magnetik : suseptibilitas magnetik

Lebih terperinci

PENENTUAN PROBABILITAS DAN ENERGI PARTIKEL DALAM KOTAK 3 DIMENSI DENGAN TEORI PERTURBASI PADA BILANGAN KUANTUM n 5

PENENTUAN PROBABILITAS DAN ENERGI PARTIKEL DALAM KOTAK 3 DIMENSI DENGAN TEORI PERTURBASI PADA BILANGAN KUANTUM n 5 PENENTUAN PROBABILITAS DAN ENERGI PARTIKEL DALAM KOTAK 3 DIMENSI DENGAN TEORI PERTURBASI PADA BILANGAN KUANTUM n 5 SKRIPSI Oleh Indah Kharismawati Nim. 070210102106 PROGAM STUDI PENDIDIKAN FISIKA JURUSAN

Lebih terperinci

FISIKA MODERN. Pertemuan Ke-7. Nurun Nayiroh, M.Si.

FISIKA MODERN. Pertemuan Ke-7. Nurun Nayiroh, M.Si. FISIKA MODERN Pertemuan Ke-7 Nurun Nayiroh, M.Si. Efek Zeeman Gerakan orbital elektron Percobaan Stern-Gerlach Spin elektron Pieter Zeeman (1896) melakukan suatu percobaan untuk mengukur interaksi antara

Lebih terperinci

Perumusan Ensembel Mekanika Statistik Kuantum. Part-1

Perumusan Ensembel Mekanika Statistik Kuantum. Part-1 Perumusan Ensembel Mekanika Statistik Kuantum Part-1 Latar Belakang Untuk system yang distinguishable maka teori ensemble mekanika statistic klasik dapat dipergunakan. Tetapi bilamana system partikel bersifat

Lebih terperinci

D. 85 N E. 100 N. Kunci : E Penyelesaian : Kita jabarkan ketiga Vektor ke sumbu X dan dan sumbu Y, lihat gambar di bawah ini :

D. 85 N E. 100 N. Kunci : E Penyelesaian : Kita jabarkan ketiga Vektor ke sumbu X dan dan sumbu Y, lihat gambar di bawah ini : 1. Tiga buah vektor gaya masing-masing F 1 = 30 N, F 2 = 70 N, dan F 3 = 30 N, disusun seperti pada gambar di atas. Besar resultan ketiga vektor tersebut adalah... A. 0 N B. 70 N C. 85 N D. 85 N E. 100

Lebih terperinci

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi JURNAL FISIKA DAN APLIKASINYA VOLUME 6, NOMOR 1 JANUARI,010 Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi Yohanes Dwi Saputra dan Agus Purwanto Laboratorium Fisika

Lebih terperinci

D. 15 cm E. 10 cm. D. +5 dioptri E. +2 dioptri

D. 15 cm E. 10 cm. D. +5 dioptri E. +2 dioptri 1. Jika bayangan yang terbentuk oleh cermin cekung dengan jari-jari lengkungan 20 cm adalah nyata dan diperbesar dua kali, maka bendanya terletak di muka cermin sejauh : A. 60 cm B. 30 cm C. 20 cm Kunci

Lebih terperinci

Jawaban Soal OSK FISIKA 2014

Jawaban Soal OSK FISIKA 2014 Jawaban Soal OSK FISIKA 4. Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi dari waktu dapat dinyatakan dengan kurva seperti terlihat pada gambar samping (x dalam meter dan t dalam

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Nama/Kode mata kuliah : Mekanika/FI342 Jumlah SKS/Semester : 4 / 4 Program : S1 (Pendidikan Fisika, Fisika murni) Nama Dosen : 1. Drs. I Made Padri, M.Pd 2. Selly Feranie, S.Pd,

Lebih terperinci

RAPAT PROBABILITAS DAN TINGKAT ENERGI PADA ION MOLEKUL HIDROGEN SKRIPSI. Oleh. Habib Mustofa NIM

RAPAT PROBABILITAS DAN TINGKAT ENERGI PADA ION MOLEKUL HIDROGEN SKRIPSI. Oleh. Habib Mustofa NIM RAPAT PROBABILITAS DAN TINGKAT ENERGI PADA ION MOLEKUL HIDROGEN SKRIPSI Oleh Habib Mustofa NIM 070210102109 PROGRAM STUDI PENDIDIKAN FISIKA JURUSAN PENDIDIKAN MIPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

Lebih terperinci

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA PROJEK PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA A. PENDAHULUAN Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi terikat (bonding

Lebih terperinci

Schrodinger s Wave Function

Schrodinger s Wave Function SPEKTRA RADIASI ELEKTROMAGNET SPEKTRUM KONTINYU TEORI MAX PLANK TEORI ATOM BOHR SIFAT GELOMBANG Schrodinger s Wave Function MODEL ATOM MEKANIKA KUANTUM Persamaan gelombang Schrodinger TEORI MEKANIKA KUANTUM

Lebih terperinci

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara

BAB I PENDAHULUAN. keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara BAB I PENDAHULUAN Latar Belakang Masalah Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi (energy state) dari sebuah sistem potensial sumur berhingga. Diantara metode-metode

Lebih terperinci

Teori Ensambel. Bab Rapat Ruang Fase

Teori Ensambel. Bab Rapat Ruang Fase Bab 2 Teori Ensambel 2.1 Rapat Ruang Fase Dalam bagian sebelumnya, kita telah menghitung sifat makroskopis dari suatu sistem terisolasi dengan nilai E, V dan N tertentu. Sekarang kita akan membangun suatu

Lebih terperinci

I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat

I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat 1 I. Nama Mata Kuliah : MEKANIKA II. Kode / SKS : MFF 1402 / 2 sks III. Prasarat : Tidak Ada IV. Status Matakuliah : Wajib V. Deskripsi Mata Kuliah Mata kuliah ini merupakan mata kuliah wajib Program Studi

Lebih terperinci

VI. Teori Kinetika Gas

VI. Teori Kinetika Gas VI. Teori Kinetika Gas 6.1. Pendahuluan dan Asumsi Dasar Subyek termodinamika berkaitan dengan kesimpulan yang dapat ditarik dari hukum-hukum eksperimen tertentu, dan memanfaatkan kesimpulan ini untuk

Lebih terperinci

BAB I PENDAHULUAN. (konsep-konsep fisika) klasik memerlukan revisi atau penyempurnaan. Hal ini

BAB I PENDAHULUAN. (konsep-konsep fisika) klasik memerlukan revisi atau penyempurnaan. Hal ini 1 BAB I PENDAHULUAN A. Latar Belakang Pada akhir abad ke -19 dan awal abad ke -20, semakin jelas bahwa fisika (konsep-konsep fisika) klasik memerlukan revisi atau penyempurnaan. Hal ini disebabkan semakin

Lebih terperinci

10. Mata Pelajaran Fisika Untuk Paket C Program IPA

10. Mata Pelajaran Fisika Untuk Paket C Program IPA 10. Mata Pelajaran Fisika Untuk Paket C Program IPA A. Latar Belakang Ilmu Pengetahuan Alam (IPA) bukan hanya kumpulan pengetahuan yang berupa fakta-fakta, konsep-konsep, atau prinsip-prinsip saja tetapi

Lebih terperinci

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teoriteori yang mendukung karya tulis ini. Teoriteori tersebut meliputi persamaan diferensial penurunan persamaan KdV yang disarikan dari (Ihsanudin, 2008;

Lebih terperinci

Fungsi Gelombang Radial dan Tingkat Energi Atom Hidrogen

Fungsi Gelombang Radial dan Tingkat Energi Atom Hidrogen Fungsi Gelombang adial dan Tingkat Energi Atom Hidrogen z -e (r, Bilangan kuantum r atom hidrogenik Ze y x Fungsi gelombang atom hidrogenik bergantung pada tiga bilangan kuantum: nlm nl Principal quantum

Lebih terperinci

XV. PENDAHULUAN FISIKA MODERN

XV. PENDAHULUAN FISIKA MODERN XV - 1 XV. PENDAHULUAN FISIKA MODERN 15.1 Pendahuluan. Pada akhir abad ke-xix dan awal abad ke-xx semakin jelas bahwa fisika (konsepkonsep fisika) memerlukan revisi atau perubahan/penyempurnaan. Hal ini

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

UM UGM 2017 Fisika. Soal

UM UGM 2017 Fisika. Soal UM UGM 07 Fisika Soal Doc. Name: UMUGM07FIS999 Version: 07- Halaman 0. Pada planet A yang berbentuk bola dibuat terowongan lurus dari permukaan planet A yang menembus pusat planet dan berujung di permukaan

Lebih terperinci

KB 2. Nilai Energi Celah. Model ini menjelaskan tingkah laku elektron dalam sebuah energi potensial yang

KB 2. Nilai Energi Celah. Model ini menjelaskan tingkah laku elektron dalam sebuah energi potensial yang KB. Nilai Energi Celah 1. Model Kronig-Penney Model ini menjelaskan tingkah laku elektron dalam sebuah energi potensial yang periodik, dengan menganggap energi potensial periodik itu merupakan deretan

Lebih terperinci

FISIKA MODERN DAN FISIKA ATOM

FISIKA MODERN DAN FISIKA ATOM MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-1 : Dr. Budi Mulyanti, MSi Pertemuan ke-14 CAKUPAN MATERI 1. TEORI RELATIVITAS KHUSUS. EFEK FOTOLISTRIK 3. GELOMBANG DE BROGLIE 4. ATOM HIDROGEN 5. DIAGRAM

Lebih terperinci

Bunyi Teori Atom Dalton:

Bunyi Teori Atom Dalton: Bunyi Teori Atom Dalton: Pada 1808, ilmuwan berkebangsaan Inggris, John Dalton, mengemuka- kan teorinya tentang materi atom yang dipublikasikan dalam A New System of Chemical Philosophy. Berdasarkan penelitian

Lebih terperinci

PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA

PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA PILLAR OF PHYSICS, Vol. 1. April 2014, 17-24 PERHITUNGAN TINGKAT ENERGI SUMUR POTENSIAL KEADAAN TERIKAT MELALUI PERSAMAAN SCHRODINGER MENGGUNAKAN METODE BEDA HINGGA Hanifah Rahmayani *), Hidayati **) dan

Lebih terperinci

Simetri dan Kekekalan

Simetri dan Kekekalan Simetri dan Kekekalan Miftachul Hadi Disupervisi oleh: Unggul Pundjung Juswono, M.Sc Abdurrouf, S.Si Departemen Fisika FMIPA Universitas Brawijaya E-mail: itpm.id@gmail.com 9 Juni 2014 1 Supervisor I:

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF BAB II PROSES-PROSES PELURUHAN RADIOAKTIF 1. PROSES PROSES PELURUHAN RADIASI ALPHA Nuklida yang tidak stabil (kelebihan proton atau neutron) dapat memancarkan nukleon untuk mengurangi energinya dengan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Defenisi Medan Bila bicara tentang partikel-partikel, maka akan selalu terkait dengan apa yang disebut dengan medan. Medan adalah sesuatu yang muncul merambah ruang waktu, tidak

Lebih terperinci

PETA MATERI FISIKA SMA UN 2015

PETA MATERI FISIKA SMA UN 2015 PETA MATERI FISIKA SMA UN 2015 Drs. Setyo Warjanto setyowarjanto@yahoo.co.id 081218074405 SK 1 Ind 1 Memahami prinsip-prinsip pengukuran dan melakukan pengukuran besaran fisika secara langsung dan tidak

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Fisika Kuantum - Latihan Soal Doc. Name: AR12FIS0799 Version: 2012-09 halaman 1 01. Daya radiasi benda hitam pada suhu T 1 besarnya 4 kali daya radiasi pada suhu To, maka T 1

Lebih terperinci

PENDAHULUAN Anda harus dapat

PENDAHULUAN Anda harus dapat PENDAHULUAN Di dalam modul ini Anda akan mempelajari Teori Pita Energi yang mencakup : asal mula celah energi, model elektron hampir bebas, model Kronig-Penney, dan persamaan sentral. Oleh karena itu,

Lebih terperinci

POSITRON, Vol. VI, No. 2 (2016), Hal ISSN :

POSITRON, Vol. VI, No. 2 (2016), Hal ISSN : Penentuan Energi Keadaan Dasar Osilator Kuantum Anharmonik Menggunakan Metode Kuantum Difusi Monte Carlo Nurul Wahdah a, Yudha Arman a *,Boni Pahlanop Lapanporo a a JurusanFisika FMIPA Universitas Tanjungpura,

Lebih terperinci

Agus Suroso. Pekan Kuliah. Mekanika. Semester 1,

Agus Suroso. Pekan Kuliah. Mekanika. Semester 1, Agus Suroso 14 Pekan Kuliah B Mekanika ( C a t a t a n K u l i a h F I 2 1 0 4 M e k a n i k a B ) Semester 1, 2017-2018 Sistem Partikel (2) 10 10 1 Gerak relatif pada sistem dua partikel 10 2 Tumbukan

Lebih terperinci

Wacana, Salatiga, Jawa Tengah. Salatiga, Jawa Tengah Abstrak

Wacana, Salatiga, Jawa Tengah. Salatiga, Jawa Tengah   Abstrak Kajian Metode Analisa Data Goal Seek (Microsoft Excel) untuk Penyelesaian Persamaan Schrödinger Dalam Menentukan Kuantisasi ergi Dibawah Pengaruh Potensial Lennard-Jones Wahyu Kurniawan 1,, Suryasatriya

Lebih terperinci

PROGRAM SEMESTER GASAL 2011 / 2012 MATA PELAJARAN FISIKA KELAS X

PROGRAM SEMESTER GASAL 2011 / 2012 MATA PELAJARAN FISIKA KELAS X PROGRAM SEMESTER GASAL 2011 / 2012 MATA PELAJARAN FISIKA KELAS X 1 1.1 1.2 2 2.1 2.2 Materi / Sub Materi 1. Pengertian dan definisi besaran pokok dan besaran turunan 2. Jenis-jenis besaran pokok dan besaran

Lebih terperinci

Jurnal MIPA 39 (1)(2016): Jurnal MIPA.

Jurnal MIPA 39 (1)(2016): Jurnal MIPA. Jurnal MIPA 39 (1)(16): 34-39 Jurnal MIPA http://journal.unnes.ac.id/nju/index.php/jm KAJIAN METODE ANALISA DATA GOAL SEEK (MICROSOFT EXCEL) UNTUK PENYELESAIAN PERSAMAAN SCHRÖDINGER DALAM MENENTUKAN KUANTISASI

Lebih terperinci

Gelombang sferis (bola) dan Radiasi suara

Gelombang sferis (bola) dan Radiasi suara Chapter 5 Gelombang sferis (bola) dan Radiasi suara Gelombang dasar lain datang jika jarak dari beberapa titik dari titik tertentu dianggap sebagai koordinat relevan yang bergantung pada variabel akustik.

Lebih terperinci