BAB 4 Implementasi. Kasus 1. Diberikan suatu persamaan

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 4 Implementasi. Kasus 1. Diberikan suatu persamaan"

Transkripsi

1 BAB 4 Implementasi Pada bab ini akan diperlihatkan bagaimana proses penyelesaian ekplisit persamaan transenden dengan menyelesaikan beberapa kasus yang sering ditemukan dalam kehidupan sehari-hari, dengan cara yaitu : metode yang penulis kerjakan dan dibandingkan dengan metode secant atau Newton-Raphson. Kasus. Diberikan suatu persamaan tan B. Persamaan ini muncul dari penyelesaian deret takhingga masalah konduksi panas transien (transient heat conduction) berdimensi satu. Carilah akar positif dari persamaan tersebut. Penyelesaian : Persamaan tersebut dapat ditulis sebagai : tan B atau B tan atau sin B cos (4.) karena (4.) tak memiliki titik singular, maka dicari dari kebalikannya. Maka f ( ) sin B cos f () memiliki titik singular di, dimana tergantung nilai B, dan f () analitik di suatu titik di, karena memiliki turunan terhadap B Karena f () mempunyai titik singular di, maka rumus ekplisit pada (3.6) berlaku. h + R θ ) e ρ θ ) e iθ iθ dθ dθ

2 dengan ( iθ ω θ ) f ( h + R e ) iθ iθ i ( h + R e )sin( h + R e ) B cos( h + R e θ ) Lakukan diskritisasi dengan metode kuadratur Gauss, maka diperoleh : ω N iθ iθn ( θ ) e dθ θ ). e, n, ±, ±,... n n Dari anggapan bahwa adalah real sehingga penulis gambarkan B tan dan, di R, seperti pada gambar 4. di bawah ini, maka terlihat bahwa pilihan yang cocok untuk lintasan tertutup C adalah lingkaran dengan jari-jari R / 4 dan pusat h n 3 n ytan y/ y/ 4 y() Gambar 4.. Grafik Persamaan tan B/, dengan B dan B Dengan mengambil B, R / 4, h / 4(n), dan N3 titik diperoleh akarnya,769

3 Sedangkan untuk n atau 5 h, R / 4, B diperoleh akarnya 3,6436, 4 dan seterusnya tergantung pada pengambilan n atau pusatnya h. Program matlabnya dibawah ini. function kasus clear clc x[pi/6:pi/6:*pi] hpi/4 rpi/4 %r3.*pi/6 %h5*pi/4 h+r*exp((j*x)) f./(.*sin()-*cos()) gexp(j.*x) af.*g tempfft(a)./fft(f) format h+r.*temp akar(3) Apabila kita bandingkan dengan metode secant dengan nilai awal complex(.3) dan complex(.), maka diperoleh setelah 8 iterasi akarnya,769. Tabel 4. Hasil perhitungan dengan metode Secant untuk persamaan tan B Iterasi(k) Akar() Galat Relatif, e e e Program secantnya sebagai berikut : function secan format clc clear complex(.3); complex(.); f*sin()-*cos(); f*sin()-*cos(); deltae-; epsilone-; 3

4 for k: -(f*(-)/(f-f)) galatabs((-)/) ; ; ff; f*sin()-*cos(); if(galat<delta), break, end end k Kasus Persamaan di bawah ini adalah persamaan panjang gelombang maksimum tenaga emisi untuk radiasi Black-body: ( 5 ) e 5 (4.) akan dicari akar dari persamaan tersebut. Penyelesaian: Persamaan (4.) dapat ditulis sebagai ( 5 ) e 5 Karena (4.) tidak mempunyai titik singular maka diubah ke bentuk kebalikannya menjadi f ( ) sehingga dapat ditentukan titik singularnya yaitu (5 ) e 5 pada. Tetapi jika penulis gambarkan pada gambar 4.3 antara 5 (5 ) dan e akan saling beririsan pada lokasi, yaitu pada, solusi trivial, sedangkan solusi yang lain berada sangat dekat sebelah kiri dari 5, maka diperoleh singularitas yaitu pada dan. Singularitas dapat dihapuskan dengan mengalikan f () dengan ) sehingga teorema integral Cauchy berlaku ( dan rumus (3.7) atau (3.8). dapat digunakan untuk mencari akar persamaan di atas, dengan rumus di bawah ini. 4

5 R θ ) e θ ) e 3iθ iθ dθ dθ Ambil h dan R5, diperoleh akarnya dan programnya berikut: function kasus clear clc x[pi/6:pi/6:*pi] h r5 h+r*exp((j*x)) fexp(j.*x)./((5-).*exp()-5) gexp(j.*x) af.*g tempfft(a)./fft(f) r.*temp format akar(3) 4 3 y5/(5-) yexp y() Gambar 4. Grafik Persamaan 5 5 e 5

6 Jika diselesaikan dengan metode Secant dengan mengambil nilai awal complex(5) dan complex(3) diperoleh akar setelah iterasi adalah selengkapnya dapat dilihat dalam tabel berikut : Tabel 4.. Hasil Perhitungan Metode Secant Untuk Persamaan ( 5 ) e 5 Iterasi(k) Akar() Galat(error) 4,75,3686 8,478, ,7567, ,76, 5 5,98,53 6 4,953,35 7 4,9645,3 8 4,965,348 e-4 9 4,965,6586 e-6 4,965,59 e-9 4,965 9,3 e-5 Kasus 3. Diberikan persamaan e erf ( ) S (4.3) Persamaan ini dijumpai dalam masalah proses pembekuan suatu cairan murni, akan dicari kapan titik beku terjadi. Secara matematika ini sama dengan mencari akar real positif dari persamaan 6

7 Penyelesaian : Persamaan (4.3) dapat ditulis sebagai e erf ( ) S, tetapi tidak memiliki titik singular, maka kita ubah menjadi kebalikannya f ( ) (4.4) e erf ( ) S Bentuk(4.4) memiliki titik singular pada titik yang tergantung pada nilai S Ruas kiri persamaan (4.3) merupakan fungsi genap. Oleh karena itu, maka akan mempunyai penyelesaian yang berlawanan tanda tetapi besarnya sama. Tanpa mengurangi keumuman kita fokus pada sumbu real positif. Pada sumbu real untuk, maka erf ( ) e t dt, misalkan x t, dt dx x e. dx. x e. dx. x e [ N( ) / ] erf ( ). dimana N() standar.. x e dx Untuk, nilai N ( ), maka erf ( ), untuk e x dx dx merupakan fungsi momutatif distribusi normal Untuk membantu dalam pemilihan pusat dan jari-jari yang penulis berikan, maka gambarkan persamaan tersebut dalam bentuk eksplisitnya yaitu e erf ( ) S.dengan berbagai nilai S. seperti pada gambar

8 Ruas kiri persamaan (4.3) akan memdekati untuk. Oleh karena itu untuk S, pilih h dan R, misalkan S akan diperoleh akarnya,9864, untuk S 75, maka,84,dan untuk S 5, maka,685. dan seterusnya yexp( ).erf() y 75/ y/ y5/ y5/ 3 y() Gambar 4.3 Grafik Persamaan : e erf ( ) Nilai-nilai tersebut diperoleh dengan pemograman matlab berikut : function kasus3 clear format %clc x[+pi/6:(pi/6):*pi]; h; r; S*sqrt(pi); real(h+r*exp((j.*x))); (h+r*exp((j.*x))); %(h+r*exp((j.*x))); f./(.*exp(.^).*erf()*(sqrt(pi))-s); gexp(j.*x); af.*g; qq[fft(a);fft(f)]; tempfft(a)./fft(f); S 8

9 h+r.*temp; akar(3) dan jika menggunakan metode secant untuk S dengan nilai awal complex() dan complex(), dengan 8 iterasi diperoleh akarnya,985 Hasil selengkapnya dapat di lihat pada tabel 4.3 Tabel 4.3. Hasil Perhitungan Metode Secant S Untuk Persamaan e erf ( ) Iterasi(k) Akar() Galat Relatif,984,46,9786,34 3,98,7 4,985,3788e-4 5,985,675 e-6 6,985,963 e-9 7,985,5464e-4 Untuk S yang besar, penyelesaiannya dapat diperoleh dengan pemisalan erf ( ), sehingga persamaan (4.3) menjadi : e S S S ln, dengan syarat > S > ln S ln ln + ln ln S ln Karena S besar, maka pun membesar, akibatnya >> ln, sehingga + ln artinya ln diabaikan terhadap. S maka ln (4.5) 9

10 S Jika h dimisalkan sebagai h ln,499 dari S 5 dan R,, maka akarnya diperoleh,383. lihat gambar 4.3 Kasus 4 Pencarian nilai volatilitas dari persamaan Black-Scholes dalam rumus mencari nilai opsi call Eropa : dengan ln d ( T t) C( S, t) S. N( d) K. e r N( d ) (4.6) S K + r + v ( T t) v ( T t) S + r ln v ( T t) K d d v v ( T t) N( x) dimana x e η dη S harga saham (Stock Price), K Strike Price, r suku bunga(interes rate), T maturity time, t waktu awal, dan v volatilitas. Penyelesaian : Karena yang dicari adalah nilai volatilitas, maka C ( S, t) C( v) dan C* adalah nilai opsi call Eropa yang diberikan atau diketahui dari pasar opsi, Sehingga persamaan (4.6) menjadi C ( v) C * atau C ( v) C* (4.7) Untuk mencari akar persamaan (4.7) harus dibentuk kebalikan nya, yaitu f ( v) C( v) C * 3

11 Penyelesaian selanjutnya, karena f () mempunyai titik singular yang dapat dihapuskan pada v yang tergantung pada nilai C*, maka Penyelesaian eksplisit rumus berlaku yaitu : v h + R θ ). e iθ θ ) f ( h + R e ) θ ). e iθ iθ dθ dθ C( h + R e iθ ) C * Bentuk dalam kurung besar adalah perbandingan dari koefisien kedua dan kesatu deret Fourier eksponensial sehingga dapat dicari dengan bantuan algoritma FFT. pada Matlab. Jika masalah di atas digambarkan secara eksplisit yaitu C(v) C* seperti pada gambar 4.4 berikut.8.7 CStar c(v).6.5 y(v) v Gambar 4.4 Grafik C(v) C*, dengan C*, S, K, r.3, T 3

12 Dan program matlabnya function kasus4a clear clc r.3;s;k;t; %r.3;s3;k;t3; H.5; R.4; x[pi/6:pi/6:*pi]; vreal(h+r*exp(j*x)) d(log(s/k)+(r+.5*v.^)*(t))/(sqrt(t)) dd-v*sqrt(t); N.5*(+erf(d/sqrt())); N.5*(+erf(d/sqrt())); f./(s*n-k*exp(-r*(t))*n-.); greal(exp(j.*x)) af.*g tempreal(fft(a)./fft(f)) H+R.*temp akarnya(3) Dengan memasukan nilai S, K, r.3,t, C*., h, dan R.5 dengan banyak titik N3, maka diperoleh nilai volatilitasnya,45 Dengan merubah-rubah pusat dan jari-jari, akan tetap mendekati nilai tersebut asalkan masih berada dalam batas kesingularan, seperti dapat dilihat dalam tabel di bawah ini. Tabel 4.4 Nilai Volatilitas dengan metode eksplisit Dengan nilai awal C*, dan 449 Pusat(h) Jari-jari (R) Volatilitas(v)

13 Jika dibandingkan dengan menggunakan metode Newton dan nilai awal volatilitas v, 4 maka setelah iterasi ke-4 nilai volatilitasnya,5. o Nilai selengkapnya yangdiperoleh ditullis dalam tabel 4.5. Tabel 4.5. Hasil Perhitungan dengan Metode Newton-Raphson r( T t) Untuk Persamaan C( S, t) S. N( d) K. e N( d ) Iterasi(k) Volatilitas(v) Galat Relatif,4,858,5, 3,5,8853e-8 4,5,58 e-6 Perhitungannya menggunakan pemograman matlab berikut : function vnewton() clc; r.3;s;k;t; %simulasi dan uji model % %v.; %[CTrue,Cdelta,P,Pdelta]ch8(S,K,r,v,T); %disp('nilai Eropean Call Option adalah'),disp(ctrue); %CTrueCTrue; %dalam hal CTrue CStar % CStar. v.4 %vhat sqrt(*abs(log(s/k)+r*t)/t); disp('nilai volatility awal adalah'),disp(v); %akan dicari sigma* %metode Newton %t; %if max(s-k*exp(-r*(t-t)),) < Cst < S tol e-; % v vhat vdiff ; k; while (vdiff > tol & k < ) k k+ %Cvega S*sqrt(T-t)*/sqrt(*pi)*exp((/)*d^); [C,Cdelta,Cvega,P,Pdelta,Pvega]ch(S,K,r,v,T); 33

14 increment (C-CStar)/Cvega; v v - increment; %Fsigma increment-cst vdiff abs(increment) disp('nilai volatility baru adalah '),disp(v); end %end %disp('nilai volatility baru adalah '),disp(v); %plot(fsigma,k); Program Newton-Raphson ini menggunakan program fungsi Ch8(S,K,r,v,T) sebagai berikut function[c,cdelta,p,pdelta]ch8(s,k,r,v,t) %algoritma black scholes untuk European Option if T > d(log(s/k)+(r+.5*v^)*(t))/(v*sqrt(t)); dd-v*sqrt(t); N.5*(+erf(d/sqrt())); N.5*(+erf(d/sqrt())); CS*N-K*exp(-r*(T))*N; CdeltaN; else Cmax(S-K,); Cdelta.5*(sign(S-K)+); end dan program ch(s,k,r,v,t) berikut function[c,cdelta,cvega,p,pdelta,pvega]ch(s,k,r,v,t) %algoritma black scholes untuk European Option if T > d(log(s/k)+(r+.5*v^)*(t))/(v*sqrt(t)) dd-v*sqrt(t); N.5*(+erf(d/sqrt())); N.5*(+erf(d/sqrt())); CS*N-K*exp(-r*(T))*N; CdeltaN; CvegaS*sqrt(T)*exp(-.5*d^)/sqrt(*pi); else Cmax(S-K,); Cdelta.5*(sign(S-K)+); Cvega; end 34

BAB I PENDAHULUAN. hanya ditunjukkan oleh meningkatnya jumlah modal yang diinvestasikan ataupun

BAB I PENDAHULUAN. hanya ditunjukkan oleh meningkatnya jumlah modal yang diinvestasikan ataupun BAB I PENDAHULUAN 1.1 Latar Belakang Dunia investasi tampaknya tengah mengalami perkembangan, hal ini tidak hanya ditunjukkan oleh meningkatnya jumlah modal yang diinvestasikan ataupun semakin bertambahnya

Lebih terperinci

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR ISI LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK... i KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR TABEL... vii DAFTAR GAMBAR... viii DAFTAR LAMPIRAN... x BAB I PENDAHULUAN...

Lebih terperinci

7. RESIDU DAN PENGGUNAAN. Contoh 1 Carilah titik singular dan tentukan jenisnya dari fungsi berikut a. f(z) = 1/z

7. RESIDU DAN PENGGUNAAN. Contoh 1 Carilah titik singular dan tentukan jenisnya dari fungsi berikut a. f(z) = 1/z MATEMATIKA 6 TEKNIK Residu dan Penggunaan 6 7. RESIDU DAN PENGGUNAAN 7.. RESIDU DAN KUTUB disebut titik singular dari f() bila f() gagal analitik di tetapi analitik pada suatu titik dari setiap lingkungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan

BAB II TINJAUAN PUSTAKA. pembeli opsi untuk menjual atau membeli suatu sekuritas tertentu pada waktu dan BAB II TINJAUAN PUSTAKA 2.1 Kontrak Opsi Kontrak opsi merupakan suatu perjanjian atau kontrak antara penjual opsi dengan pembeli opsi, penjual opsi memberikan hak dan bukan kewajiban kepada pembeli opsi

Lebih terperinci

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR ISI LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK... i KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR TABEL... vii DAFTAR GAMBAR... viii DAFTAR LAMPIRAN... xi BAB I PENDAHULUAN...

Lebih terperinci

BAB I PENDAHULUAN. yang berkembang sangat pesat. Banyak perusahaan maupun individu yang

BAB I PENDAHULUAN. yang berkembang sangat pesat. Banyak perusahaan maupun individu yang BAB I PENDAHULUAN 1.1. Latar Belakang Dalam era sekarang ini keuangan merupakan salah satu bidang yang berkembang sangat pesat. Banyak perusahaan maupun individu yang menghadapi masalah ini, sehingga tidak

Lebih terperinci

Jurnal Teknologi Informasi-Aiti, Vol. 4. No. 1, Februari 2007: 1-100

Jurnal Teknologi Informasi-Aiti, Vol. 4. No. 1, Februari 2007: 1-100 Metode Newton-Raphson dan Bagi Dua untuk Menghitung Implied Volatility dari Suatu Aset (Studi Kasus: Opsi Call dan Put pada ERIC B yang Expiry Tahun 2007) Didit Budi Nugroho Program Studi Matematika Universitas

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Black dan Scholes (1973) mempublikasikan jurnal yang berjudul Pricing of Option and Corporate Liabilities yang berisi tentang perhitungan rumus harga

Lebih terperinci

HASIL EMPIRIS. Tabel 4.1 Hasil Penilaian Numerik

HASIL EMPIRIS. Tabel 4.1 Hasil Penilaian Numerik 31 IV HASIL EMPIRIS 4.1 Penilaian Numerik Untuk melihat bagaimana model bekerja, dapat disimulasikan harga saham dan membandingkan beberapa hasil numerik dari beberapa model yang dibangun sebelumnya. Di

Lebih terperinci

PENYELESAIAN EKSPLISIT PERSAMAAN TRANSENDEN

PENYELESAIAN EKSPLISIT PERSAMAAN TRANSENDEN PENYELESAIAN EKSPLISIT PERSAMAAN TRANSENDEN TESIS Karya tulis sebagai salah satu syarat memperoleh gelar Magister dari Institut Teknologi Bandung: 0leh: Betty Subartini NIM : 20105004 Program Studi Matematika

Lebih terperinci

BAB I ARTI PENTING ANALISIS NUMERIK

BAB I ARTI PENTING ANALISIS NUMERIK BAB I ARTI PENTING ANALISIS NUMERIK Pendahuluan Di dalam proses penyelesaian masalah yang berhubungan dengan bidang sains, teknik, ekonomi dan bidang lainnya, sebuah gejala fisis pertama-tama harus digambarkan

Lebih terperinci

BAB III METODE UNTUK MENAKSIR VOLATILITAS. harga saham, waktu jatuh tempo, waktu sekarang, suku bunga,

BAB III METODE UNTUK MENAKSIR VOLATILITAS. harga saham, waktu jatuh tempo, waktu sekarang, suku bunga, BAB III METODE UNTUK MENAKSIR VOLATILITAS 3.1. Pendahuluan Dalam menentukan harga opsi call dan opsi put dibutuhkan parameter harga saham, waktu jatuh tempo, waktu sekarang, suku bunga, strike price, dan

Lebih terperinci

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI Perbandingan Beberapa Metode Numerik dalam Menghitung Nilai Pi Aditya Agung Putra (13510010)1 Program Studi Teknik Informatika Sekolah Teknik

Lebih terperinci

Pemodelan Matematika dan Metode Numerik

Pemodelan Matematika dan Metode Numerik Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi JURNAL FOURIER Oktober 2013, Vol. 2, No. 2, 113-123 ISSN 2252-763X Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi Annisa Eki Mulyati dan Sugiyanto Program Studi Matematika Fakultas

Lebih terperinci

MATEMATIKA TEKNIK II BILANGAN KOMPLEKS

MATEMATIKA TEKNIK II BILANGAN KOMPLEKS MATEMATIKA TEKNIK II BILANGAN KOMPLEKS 2 PENDAHULUAN SISTEM BILANGAN KOMPLEKS REAL IMAJINER RASIONAL IRASIONAL BULAT PECAHAN BULAT NEGATIF CACAH ASLI 0 3 ILUSTRASI Carilah akar-akar persamaan x 2 + 4x

Lebih terperinci

PENENTUAN NILAI OPSI LOOKBACK DENGAN MENGGUNAKAN METODE TRINOMIAL Intan Pelangi Astridnindya 1 dan J. Dharma Lesmono 2 1 Mahasiswa Jurusan Matematika Universitas Katolik Parahyangan Bandung e-mail: intan_pelangi4@yahoo.com

Lebih terperinci

PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM

PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM E-Jurnal Matematika Vol. 5 (1), Januari 2016, pp. 1-6 ISSN: 2303-1751 PERBANDINGAN KEEFISIENAN METODE NEWTON-RAPHSON, METODE SECANT, DAN METODE BISECTION DALAM MENGESTIMASI IMPLIED VOLATILITIES SAHAM Ida

Lebih terperinci

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2.

MOTIVASI. Secara umum permasalahan dalam sains dan teknologi digambarkan dalam persamaan matematika Solusi persamaan : 1. analitis 2. KOMPUTASI NUMERIS Teknik dan cara menyelesaikan masalah matematika dengan pengoperasian hitungan Mencakup sejumlah besar perhitungan aritmatika yang sangat banyak dan menjemukan Diperlukan komputer MOTIVASI

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi

POKOK BAHASAN. Matematika Lanjut 2 Sistem Informasi Matematika Lanjut 2 Sistem Informasi POKOK BAHASAN Pendahuluan Metode Numerik Solusi Persamaan Non Linier o Metode Bisection o Metode False Position o Metode Newton Raphson o Metode Secant o Metode Fixed

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

BAB VI. KONDUKSI TRANSIENT

BAB VI. KONDUKSI TRANSIENT BAB VI. KONDUKSI TRANSIENT Perpindahan Panas I Prepared by: Himsar AMBARITA Bab VI Konduksi Transient Analisi temperatur suatu titik yang berubah setiap waktu adalah tanggung jawab transient analysis

Lebih terperinci

BILANGAN KOMPLEKS. 1. Bilangan-Bilangan Real. 2. Bilangan-Bilangan Imajiner. 3. Bilangan-Bilangan Kompleks

BILANGAN KOMPLEKS. 1. Bilangan-Bilangan Real. 2. Bilangan-Bilangan Imajiner. 3. Bilangan-Bilangan Kompleks BILANGAN KOMPLEKS 1. Bilangan-Bilangan Real Sekumpulan bilangan-bilangan real yang dapat menempati seluruh titik pada garis lurus, hal ini dinamakan garis bilangan real seperti pada Gambar 1. Operasi penjumlahan,

Lebih terperinci

4. Deret Fourier pada Interval Sebarang dan Aplikasi

4. Deret Fourier pada Interval Sebarang dan Aplikasi 4. Deret Fourier pada Interval Sebarang dan Aplikasi Kita telah mempelajari bagaimana menguraikan fungsi periodik dengan periode 2 yang terdefinisi pada R sebagai deret Fourier. Deret trigonometri tersebut

Lebih terperinci

Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010

Program Studi Pendidikan Matematika UNTIRTA. 10 Maret 2010 Metode Program Studi Pendidikan Matematika UNTIRTA 10 Maret 2010 (Program Studi Pendidikan Matematika UNTIRTA) Metode 10 Maret 2010 1 / 16 Ekspansi Taylor Misalkan f 2 C [a, b] dan x 0 2 [a, b], maka untuk

Lebih terperinci

ABSTRAK SIMULASI MONTE CARLO DALAM PENENTUAN HARGA OPSI BARRIER

ABSTRAK SIMULASI MONTE CARLO DALAM PENENTUAN HARGA OPSI BARRIER ABSTRAK SIMULASI MONTE CARLO DALAM PENENTUAN HARGA OPSI BARRIER Djaffar Lessy, Dosen Pendidikan Matematika Fakultas Tarbiyah dan Keguruan, IAIN Ambon 081343357498, E-mail: Djefles79@yahoo.com Opsi yang

Lebih terperinci

MODUL 1. Command History Window ini berfungsi untuk menyimpan perintah-perintah apa saja yang sebelumnya dilakukan oleh pengguna terhadap matlab.

MODUL 1. Command History Window ini berfungsi untuk menyimpan perintah-perintah apa saja yang sebelumnya dilakukan oleh pengguna terhadap matlab. MODUL 1 1. Pahuluan Matlab merupakan bahasa pemrograman yang hadir dengan fungsi dan karakteristik yang berbeda dengan bahasa pemrograman lain yang sudah ada lebih dahulu seperti Delphi, Basic maupun C++.

Lebih terperinci

BAGIAN 1 SINTAK DASAR MATLAB

BAGIAN 1 SINTAK DASAR MATLAB BAGIAN 1 SINTAK DASAR MATLAB Pada bagian 1 ini, akan diuraikan tentang bagaimana mendefinisikan data, operasi data dan teknik mengakses data pada Matlab. Untuk lebih memahami, pembaca sebaiknya mecobanya

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi

FT UNIVERSITAS SURABAYA VARIABEL KOMPLEKS SUGATA PIKATAN. Bab V Aplikasi Bab V Aplikasi Selain aplikasi yang sudah diperkenalkan di bab I, teori variabel kompleks masih memiliki banyak ragam aplikasi lainnya. Beberapa di antaranya akan dibahas di dalam bab ini. Perhitungan

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) PERBANDINGAN METODE NEWTON-RAPHSON DAN ALGORITMA GENETIK PADA PENENTUAN IMPLIED VOLATILITY SAHAM

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) PERBANDINGAN METODE NEWTON-RAPHSON DAN ALGORITMA GENETIK PADA PENENTUAN IMPLIED VOLATILITY SAHAM Jurnal Ilmiah Komputer dan Informatika (KOMA) Volume. I Nomor. 2, Bulan Oktober 212 - ISSN :289-933 9 PERBANDINGAN METODE NEWTON-RAPHSON DAN ALGORITMA GENETIK PADA PENENTUAN IMPLIED VOLATILITY SAHAM Kania

Lebih terperinci

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari BAB III HASIL DAN PEMBAHASAN Pada bab ini akan dibahas penurunan model persamaan panas dimensi satu. Setelah itu akan ditentukan penyelesaian persamaan panas dimensi satu secara analitik dengan metode

Lebih terperinci

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK UJI KONVERGENSI Januari 208 Tim Dosen Kalkulus 2 TPB ITK Uji Integral Teorema 3 Jika + k= u k adalah deret dengan suku-suku tak negatif, dan jika ada suatu konstanta M sedemikian hingga s n = u + u 2 +

Lebih terperinci

PENENTUAN HARGA OPSI BELI EROPA DENGAN DUA PROSES VOLATILITAS STOKASTIK

PENENTUAN HARGA OPSI BELI EROPA DENGAN DUA PROSES VOLATILITAS STOKASTIK PENENTUAN HARGA OPSI BELI EROPA DENGAN DUA PROSES VOLATILITAS STOKASTIK Muhammad Faizal 1, Irma Palupi 2, Rian Febrian Umbara 3 1,2,3 Fakultas Informatika Prodi Ilmu Komputasi Telkom University, Bandung

Lebih terperinci

BAB 4 Metode Crank-Nicolson Untuk European Barrier Option

BAB 4 Metode Crank-Nicolson Untuk European Barrier Option BAB 4. METODE CRANK-NICOLSON UNTUK EUROPEAN BARRIER OPTION 5 BAB 4 Metode Crank-Nicolson Untuk European Barrier Option 4. Persamaan Diferensial Parsial European Barrier Option Seperti yang telah dinyatakan

Lebih terperinci

Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November

Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 329 PENENTUAN HARGA OPSI PADA MODEL BLACK-SCHOLES MENGGUNAKAN METODE BEDA HINGGA DUFORT-FRANKEL (Determining Option Value of

Lebih terperinci

PENENTUAN HARGA OPSI BELI EROPA DENGAN DUA PROSES VOLATILITAS STOKASTIK

PENENTUAN HARGA OPSI BELI EROPA DENGAN DUA PROSES VOLATILITAS STOKASTIK e-proceeding of Engineering : Vol.2, No.2 Agustus 2015 Page 6751 PENENTUAN HARGA OPSI BELI EROPA DENGAN DUA PROSES VOLATILITAS STOKASTIK Muhammad Faizal1, Irma Palupi2, Rian Febrian Umbara3 1,2,3 Fakultas

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Didunia nyata banyak soal matematika yang harus dimodelkan terlebih dahulu untuk mempermudah mencari solusinya. Di antara model-model tersebut dapat berbentuk sistem

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

2015 ACADEMY QU IDMATHCIREBON

2015 ACADEMY QU IDMATHCIREBON 2015 ACADEMY QU IDMATHCIREBON NASKAH UJIAN NASIONAL TAHUN PELAJARAN 2014/2015 Jenjang Sekolah : SMA/MA Hari/Tanggal : Selasa/04 April 2015 Program Studi : IPA Waktu : 07.30 09.30 Petunjuk: Pilihlah satu

Lebih terperinci

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018

Kalkulus 2. Teknik Pengintegralan ke - 1. Tim Pengajar Kalkulus ITK. Institut Teknologi Kalimantan. Januari 2018 Kalkulus 2 Teknik Pengintegralan ke - 1 Tim Pengajar Kalkulus ITK Institut Teknologi Kalimantan Januari 2018 Tim Pengajar Kalkulus ITK (Institut Teknologi Kalimantan) Kalkulus 2 Januari 2018 1 / 36 Daftar

Lebih terperinci

4. Deret Fourier pada Interval Sebarang dan Aplikasi

4. Deret Fourier pada Interval Sebarang dan Aplikasi 8 Hendra Gunawan 4. Deret Fourier pada Interval Sebarang dan Aplikasi Kita telah mempelajari bagaimana menguraikan fungsi periodik dengan periode 2 yang terdefinisi pada R sebagai deret Fourier. Deret

Lebih terperinci

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN

LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK KATA PENGANTAR UCAPAN TERIMA KASIH DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR ISI LEMBAR PENGESAHAN LEMBAR PERNYATAAN ABSTRAK... i KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... vi DAFTAR TABEL... viii DAFTAR GAMBAR... ix DAFTAR LAMPIRAN... x BAB I PENDAHULUAN...

Lebih terperinci

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA

PROJEK 2 PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA PROJEK PENCARIAN ENERGI TERIKAT SISTEM DI BAWAH PENGARUH POTENSIAL SUMUR BERHINGGA A. PENDAHULUAN Ada beberapa metode numerik yang dapat diimplementasikan untuk mengkaji keadaan energi terikat (bonding

Lebih terperinci

Rencana Pembelajaran

Rencana Pembelajaran Learning Outcome Rencana Pembelajaran Setelah mengikuti proses pembelajaran ini, diharapkan mahasiswa dapat ) Menentukan nilai turunan suatu fungsi di suatu titik ) Menentukan nilai koefisien fungsi sehingga

Lebih terperinci

1 Penyelesaian Persamaan Nonlinear

1 Penyelesaian Persamaan Nonlinear 1 Penyelesaian Persamaan Nonlinear Diberikan fungsi kontinu f (x). Setiap bilangan c pada domain f yang memenuhi f (c) = 0 disebut akar persamaan f (x) = 0, atau disebut juga pembuat nol fungsi f. Dalam

Lebih terperinci

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi

BAB IV. Pencarian Akar Persamaan Tak Linier. FTI-Universitas Yarsi BAB IV Pencarian Akar Persamaan Tak Linier i 1 Pendahuluan Salah satu masalah dalam matematika & teknik Akar dari f() adalah sehingga f() = 0. Secara geometris, ajar dari f() adalah nilai sehingga kurva

Lebih terperinci

PENENTUAN HARGA OPSI CALL EROPA DENGAN MENGGUNAKAN TRANSFORMASI FAST FOURIER (STUDI KASUS SAHAM FIREEYE.INC)

PENENTUAN HARGA OPSI CALL EROPA DENGAN MENGGUNAKAN TRANSFORMASI FAST FOURIER (STUDI KASUS SAHAM FIREEYE.INC) PEETUA HARGA OPSI CALL EROPA DEGA MEGGUAKA TRASFORMASI FAST FOURIER (STUDI KASUS SAHAM FIREEYE.IC) Andri Saputra 1, Rian Febrian Umbara, Irma Palupi 3 1,,3 Program Studi Ilmu Komputasi Universitas Telkom,

Lebih terperinci

METODE BEDA HINGGA UNTUK MENENTUKAN HARGA OPSI SAHAM TIPE EROPA DENGAN PEMBAGIAN DIVIDEN. Lidya Krisna Andani ABSTRACT

METODE BEDA HINGGA UNTUK MENENTUKAN HARGA OPSI SAHAM TIPE EROPA DENGAN PEMBAGIAN DIVIDEN. Lidya Krisna Andani ABSTRACT METODE BEDA HINGGA UNTUK MENENTUKAN HARGA OPSI SAHAM TIPE EROPA DENGAN PEMBAGIAN DIVIDEN Lidya Krisna Andani Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I

KED INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Materi : 7.1 Anti Turunan. 7.2 Sifat-sifat Integral Tak Tentu KALKULUS I 7 INTEGRAL JUMLAH PERTEMUAN : 2 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS: Memahami konsep dasar integral, teorema-teorema, sifat-sifat, notasi jumlah, fungsi transenden dan teknik-teknik pengintegralan. Materi

Lebih terperinci

BAB 1 PENDAHULUAN. menghasilkan uang dengan jumlah yang terus bertambah setiap waktunya. Salah

BAB 1 PENDAHULUAN. menghasilkan uang dengan jumlah yang terus bertambah setiap waktunya. Salah BAB 1 PENDAHULUAN 1.1 Latar Belakang Pada zaman modern ini, banyak orang selalu memikirkan cara untuk menghasilkan uang dengan jumlah yang terus bertambah setiap waktunya. Salah satu caranya adalah dengan

Lebih terperinci

TEKNIK PENGOLAHAN CITRA. Kuliah 8 Transformasi Fourier. Indah Susilawati, S.T., M.Eng.

TEKNIK PENGOLAHAN CITRA. Kuliah 8 Transformasi Fourier. Indah Susilawati, S.T., M.Eng. TEKNIK PENGOLAHAN CITRA Kuliah 8 Transformasi Fourier Indah Susilawati, S.T., M.Eng. Program Studi Teknik Informatika/Sistem Informasi Fakultas Teknologi Informasi Universitas Mercu Buana Yogyakarta 2015

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA. Pendahuluan Uji perbandingan dua distribusi merupakan suatu tekhnik analisis ang dilakukan untuk mencari nilai parameter ang baik diantara dua distribusi. Tekhnik uji perbandingan

Lebih terperinci

PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN

PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN IRMA ISLAMIYAH 1105 100 056 FISIKA FMIPA INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2010 PENDAHULUAN LATAR BELAKANG

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Salah satu instrumen derivatif yang mempunyai potensi untuk dikembangkan adalah opsi. Opsi adalah suatu kontrak antara dua pihak, salah satu pihak (sebagai pembeli) mempunyai hak

Lebih terperinci

BAB V IMPLEMENTASI SIMULASI MONTE CARLO UNTUK PENILAIAN OPSI PUT AMERIKA

BAB V IMPLEMENTASI SIMULASI MONTE CARLO UNTUK PENILAIAN OPSI PUT AMERIKA BAB V IMPLEMENTASI SIMULASI MONTE CARLO UNTUK PENILAIAN OPSI PUT AMERIKA 5.1 Harga Saham ( ( )) Seperti yang telah diketahui sebelumnya bahwa opsi Amerika dapat dieksekusi kapan saja saat dimulainya kontrak

Lebih terperinci

MASALAH SYARAT BATAS (MSB)

MASALAH SYARAT BATAS (MSB) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo PENDAHULUAN MODEL KABEL MENGGANTUNG DEFINISI MSB Persamaan diferensial (PD) dikatakan berdimensi 1 jika domainnya berupa himpunan bagian pada R 1.

Lebih terperinci

BAB I PENDAHULUAN. seperti; saham, obligasi, mata uang dan lain-lain. Seiring dengan

BAB I PENDAHULUAN. seperti; saham, obligasi, mata uang dan lain-lain. Seiring dengan 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam dunia pasar modal, terdapat berbagai macam aset yang diperjualbelikan seperti; saham, obligasi, mata uang dan lain-lain. Seiring dengan perkembangan

Lebih terperinci

FUNGSI KHUSUS DALAM BENTUK INTEGRAL

FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI KHUSUS DALAM BENTUK INTEGRAL FUNGSI FAKTORIAL Definisi n e d n! Buktikan bahwa :!! e d e d e ( ) Terbukti FUNGSI Gamma Definisi ( ) p p e d ; p > Hubungan fungsi Gamma dengan fungsi Faktorial (

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Analisis Real Hendra Gunawan* *http://hgunawan82.wordpress.com Analysis and Geometry Group Bandung Institute of Technology Bandung, INDONESIA Program Studi S1 Matematika ITB, Semester II 2016/2017

Lebih terperinci

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar

Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Perbandingan Kecepatan Komputasi Beberapa Algoritma Solusi Persamaan Nirlanjar Bernardino Madaharsa Dito Adiwidya - 13507089 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik

BAB 2 Solusi Persamaan Fungsi Polinomial Denition (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik BAB 1 Konsep Dasar 1 BAB 2 Solusi Persamaan Fungsi Polinomial Denition 2.0.1 (Metoda numeris) Metoda numeris adalah suatu model pendekatan dengan menggunakan teknik-teknik kalkulasi berulang (teknik iterasi)

Lebih terperinci

PENENTUAN HARGA OPSI CALL EROPA DENGAN MENGGUNAKAN TRANSFORMASI FAST FOURIER (STUDI KASUS SAHAM FIREEYE.INC)

PENENTUAN HARGA OPSI CALL EROPA DENGAN MENGGUNAKAN TRANSFORMASI FAST FOURIER (STUDI KASUS SAHAM FIREEYE.INC) ISS : 355-9365 e-proceeding of Engineering : Vol., o. Agustus 05 Page 685 PEETUA HARGA OPSI CALL EROPA DEGA MEGGUAKA TRASFORMASI FAST FOURIER (STUDI KASUS SAHAM FIREEYE.IC) Andri Saputra, Rian Febrian

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR

BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR BAB 2 PENYELESAIAN PERSAMAAN NON LINEAR METODE GRAFIK DAN TABULASI A. Tujuan a. Memahami Metode Grafik dan Tabulasi b. Mampu Menentukan nilai akar persamaan dengan Metode Grafik dan Tabulasi c. Mampu membuat

Lebih terperinci

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1

METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104. KULIAH KE-3 SOLUSI PERSAMAAN NONLINIER 1 METODE NUMERIK TKM4104 Kuliah ke-3 SOLUSI PERSAMAAN NONLINIER 1 SOLUSI PERSAMAAN NONLINIER Metode pengurung (Bracketing Method) Metode Konvergen

Lebih terperinci

Bab I. Bilangan Kompleks

Bab I. Bilangan Kompleks Bab I Bilangan Kompleks Himpunan bilangan yang terbesar di dalam matematika adalah himpunan bilangan kompleks. Himpunan bilangan real yang kita pakai sehari-hari merupakan himpunan bagian dari himpunan

Lebih terperinci

PENENTUAN HARGA OPSI AMERIKA MELALUI MODIFIKASI MODEL BLACK- SCHOLES PRICING AMERICAN OPTION USING BLACK-SCHOLES MODIFICATION MODEL

PENENTUAN HARGA OPSI AMERIKA MELALUI MODIFIKASI MODEL BLACK- SCHOLES PRICING AMERICAN OPTION USING BLACK-SCHOLES MODIFICATION MODEL PENENTUAN HARGA OPSI AMERIKA MELALUI MODIFIKASI MODEL BLACK- SCHOLES PRICING AMERICAN OPTION USING BLACK-SCHOLES MODIFICATION MODEL Hesekiel Maranatha Gultom 1 Irma Palupi 2 Rian Febrian Umbara 3 1,2,3

Lebih terperinci

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jl. K.H. Syahdan No. 9,

Lebih terperinci

2 Akar Persamaan NonLinear

2 Akar Persamaan NonLinear 2 Akar Persamaan NonLinear Beberapa metoda untuk mencari akar ang telah dikenal adalah dengan memfaktorkan atau dengan cara Horner Sebagai contoh, untuk mencari akar dari persamaan 2 6 = 0 ruas kiri difaktorkan

Lebih terperinci

ABSTRAK PENENTUAN HARGA OPSI EROPA DENGAN MODEL BINOMIAL

ABSTRAK PENENTUAN HARGA OPSI EROPA DENGAN MODEL BINOMIAL ABSTRAK PENENTUAN HARGA OPSI EROPA DENGAN MODEL BINOMIAL Djaffar Lessy, Dosen Pendidikan Matematika Fakultas Tarbiyah dan Keguruan, IAIN Ambon 081343357498, E-mail: Djefles79@yahoo.om Banyak model telah

Lebih terperinci

BAB III METODE MONTE CARLO

BAB III METODE MONTE CARLO BAB III ETODE ONTE CARLO 3.1 etode onte Carlo etode onte Carlo pertama kali ditemukan oleh Enrico Fermi pada tahun 1930-an. etode ini diawali dengan adanya penelitian mengenai pemeriksaan radiasi dan jarak

Lebih terperinci

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL

Modul 5. METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL Modul 5 METODE BIDANG-PARUH (BISECTION) untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Persamaan Aljabar Non-Linier Tunggal atau PANLT merupakan sembarang fungsi atau persamaan aljabar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Kalor Kalor adalah energi yang diterima oleh benda sehingga suhu benda atau wujudnya berubah. Ukuran jumlah kalor dinyatakan dalam satuan joule (J). Kalor disebut

Lebih terperinci

PENENTUAN NILAI VOLATILITIES MELALUI MODEL BLACK SCHOLES DENGAN METODE NEWTON RAPHSON DAN STEEPEST DESCENT

PENENTUAN NILAI VOLATILITIES MELALUI MODEL BLACK SCHOLES DENGAN METODE NEWTON RAPHSON DAN STEEPEST DESCENT ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.1 April 2017 Page 1360 PENENTUAN NILAI VOLATILITIES MELALUI MODEL BLACK SCHOLES DENGAN METODE NEWTON RAPHSON DAN STEEPEST DESCENT, D.., a P,.,.,,

Lebih terperinci

PDP linear orde 2 Agus Yodi Gunawan

PDP linear orde 2 Agus Yodi Gunawan PDP linear orde 2 Agus Yodi Gunawan Pada bagian ini akan dipelajari tiga jenis persamaan diferensial parsial (PDP) linear orde dua yang biasa dijumpai pada masalah-masalah dunia nyata, yaitu persamaan

Lebih terperinci

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON

ITERASI 1 TITIK SEDERHANA METODE NEWTON RAPHSON ITERASI TITIK SEDERHANA METODE NEWTON RAPHSON Metode iterasi sederhana adalah metode yang memisahkan dengan sebagian yang lain sehingga diperoleh : g(. dikenal juga sebagai metode g( Bentuk iterasi satu

Lebih terperinci

Bab III. Integral Fungsi Kompleks

Bab III. Integral Fungsi Kompleks Bab III Integral Fungsi ompleks Integrasi suatu fungsi kompleks f() = u + iv dilakukan pada bidang Argand, sehingga integrasinya menyerupai integral garis pada integral vektor. Hal ini terjadi mengingat

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

ANALISIS AKIBAT INTEGRAL CAUCHY Ricky Antonius, Helmi, Yudhi INTISARI

ANALISIS AKIBAT INTEGRAL CAUCHY Ricky Antonius, Helmi, Yudhi INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 07, No. 1 (2018), hal 41-46. ANALISIS AKIBAT INTEGRAL CAUCHY Ricky Antonius, Helmi, Yudhi INTISARI Analisis kompleks salah satu cabang matematika

Lebih terperinci

Pengantar Metode Numerik

Pengantar Metode Numerik Pengantar Metode Numerik Metode numerik adalah teknik dimana masalah matematika diformulasikan sedemikian rupa sehingga dapat diselesaikan oleh pengoperasian matematika. Metode numerik menggunakan perhitungan

Lebih terperinci

Persamaan Diferensial Biasa

Persamaan Diferensial Biasa Persamaan Diferensial Biasa Titik Tetap dan Sistem Linear Toni Bakhtiar Departemen Matematika IPB Oktober 2012 Toni Bakhtiar (m@thipb) PDB Oktober 2012 1 / 31 Titik Tetap SPD Mandiri dan Titik Tetap Tinjau

Lebih terperinci

BAB IV DERET FOURIER

BAB IV DERET FOURIER BAB IV DERET FOURIER 4.1 Fungsi Periodik Fungsi f(x) dikatakan periodik dengan perioda P, jika untuk semua harga x berlaku: f (x + P) = f (x) ; P adalah konstanta positif. Harga terkecil dari P > 0 disebut

Lebih terperinci

digunakan untuk menyelesaikan integral seperti 3

digunakan untuk menyelesaikan integral seperti 3 Bab Teknik Pengintegralan BAB TEKNIK PENGINTEGRALAN Rumus-rumus dasar integral tak tertentu yang diberikan pada bab hanya dapat digunakan untuk mengevaluasi integral dari fungsi sederhana dan tidak dapat

Lebih terperinci

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER

BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER BAB 2 PENYELESAIAN PERSAMAAN TAKLINIER Persamaan taklinier sudah diperkenalkan sejak di sekolah menengah, diataranya persamaan kuadrat, persamaan trigonometri dan persamaan yang memuat logaritma atau eksponen.

Lebih terperinci

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan

Modul 8. METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL. A. Pendahuluan Modul 8 METODE SECANT untuk Solusi Akar PERSAMAAN ALJABAR NON-LINIER TUNGGAL A. Pendahuluan Pada modul 7 terdahulu, telah dijelaskan tentang keunggulan komparatif Metode Newton-Raphson dibanding metode-metode

Lebih terperinci

Jurusan Matematika FMIPA-IPB

Jurusan Matematika FMIPA-IPB Jurusan Matematika FMIPA-IPB Ujian Kedua Semester Pendek T.A 4/5 KALKULUS/KALKULUS Jum at, Agustus 4 (Waktu : jam) SETIAP SOAL BERNILAI. Tentukan (a) + (b) p 4 + 5. Periksa apakah Teorema Nilai Rata-rata

Lebih terperinci

DIKTAT KULIAH (3 sks) MX 211: Metode Numerik

DIKTAT KULIAH (3 sks) MX 211: Metode Numerik DIKTAT KULIAH (3 sks) MX : Metode Numerik (Revisi Terakhir: Juni 009 ) Oleh: Didit Budi Nugroho, M.Si. Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana KATA PENGANTAR

Lebih terperinci

LAPORAN AKHIR MATA KULIAH FISIKA KOMPUTASI

LAPORAN AKHIR MATA KULIAH FISIKA KOMPUTASI LAPORAN AKHIR MATA KULIAH FISIKA KOMPUTASI PRAKTIKUM UJIAN AKHIR TAKE HOME RATRI BERLIANA 1112100114 Dosen : Sungkono, M.Si. JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI

Lebih terperinci

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1

METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS. Metode Numerik 1 METODE NUMERIK SEMESTER 3 2 JAM / 2 SKS Metode Numerik 1 Materi yang diajarkan : 1. Pendahuluan - latar belakang - mengapa dan kapan menggunakan metode numerik - prinsip penyelesaian persamaan 2. Sistim

Lebih terperinci

BAB V HASIL SIMULASI

BAB V HASIL SIMULASI 46 BAB V HASIL SIMULASI Pada bab ini akan disajikan beberapa hasil pendekatan numerik harga opsi put Amerika menggunakan metode beda hingga. Algoritma yang disusun di bawah ini untuk menentukan harga opsi

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

Soal Babak Penyisihan OMITS 2008

Soal Babak Penyisihan OMITS 2008 Soal Babak Penyisihan OMITS 008. Banyak pembagi positif dari.50.000 adalah..... a. 05 b. 0 c. 75 d. 0 e.5. Jari-jari masing-masing lingkaran adalah 5 cm. Tentukan panjang busur ketiga lingkaran tersebut.....

Lebih terperinci

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR

MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK

RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK RENCANA PEMBELAJARAN SEMESTER (RPS) METODE NUMERIK Mata Kuliah: Metode Numerik Semester: 7, Kode: KMM 090 Program Studi: Pendidikan Matematika Dosen: Khairul Umam, S.Si, M.Sc.Ed Capaian Pembelajaran: SKS:

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Opsi adalah suatu hak (bukan kewajiban) untuk pembeli opsi untuk membeli

BAB II TINJAUAN PUSTAKA. Opsi adalah suatu hak (bukan kewajiban) untuk pembeli opsi untuk membeli BAB II TINJAUAN PUSTAKA 2.1 Opsi Opsi adalah suatu hak (bukan kewajiban) untuk pembeli opsi untuk membeli atau menjual aset kepada penjual opsi pada harga tertentu dan dalam jangka waktu yang telah ditentukan

Lebih terperinci

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( ) II. TINJAUAN PUSTAKA 2.1 Definisi Turunan Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada sebarang bilangan c adalah asalkan limit ini ada. Jika limit ini memang ada, maka dikatakan

Lebih terperinci