BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2.1 Rangkaian Listrik Rangkaian listrik adalah suatu kumpulan elemen atau komponen listrik yang saling dihubungkan dengan cara-cara tertentu dan paling sedikit mempunyai satu lintasan tertutup. Berbicara mengenai Rangkaian Listrik, tentu tidak dapat dilepaskan dari pengertian dari rangkaian itu sendiri, dimana rangkaian adalah interkoneksi dari sekumpulan elemen atau komponen penyusunnya ditambah dengan rangkaian penghubungnya dimana disusun dengan cara-cara tertentu dan minimal memiliki satu lintasan tertutup. Dengan kata lain hanya dengan satu lintasan tertutup saja kita dapat menganalisis suatu rangkaian. Yang dimaksud dengan satu lintasan tertutup adalah satu lintasan saat kita mulai dari titik yang dimaksud akan kembali lagi ketitik tersebut tanpa terputus dan tidak memandang seberapa jauh atau dekat lintasan yang kita tempuh. Rangkaian listrik merupakan dasar dari teori rangkaian pada teknik elektro yang menjadi dasar atas fundamental bagi ilmu-ilmu lainnya seperti elektronika, sistem daya, sistem komputer, putaran mesin, dan teori control. Rangkaian Listrik tidak dapat dipisahkan dari penyusunnya sendiri, yaitu berupa elemen atau komponen Elemen Aktif Elemen aktif adalah elemen yang menghasilkan energi, pada mata kuliah Rangkaian Listrik yang akan dibahas pada elemen aktif adalah sumber tegangan 7

2 8 dan sumber arus. Pada pembahasan selanjutnya kita akan membicarakan semua yang berkaitan dengan elemen atau komponen ideal. Yang dimaksud dengan kondisi ideal disini adalah bahwa sesuatunya berdasarkan dari sifat karakteristik dari elemen atau komponen tersebut dan tidak terpengaruh oleh lingkungan luar. Jadi untuk elemen listrik seperti sumber tegangan, sumber arus, kompone R, L, dan C pada mata kuliah ini diasumsikan semuanya dalam kondisi ideal. 1. Sumber Tegangan (Voltage Source) Sumber tegangan ideal adalah suatu sumber yang menghasilkan tegangan yang tetap, tidak tergantung pada arus yang mengalir pada sumber tersebut, meskipun tegangan tersebut merupakan fungsi dari t. Sifat lain : Mempunyai nilai resistansi dalam Rd= 0 (sumber tegangan ideal) a. Sumber Tegangan Bebas / Independent Voltage Source Sumber yang menghasilkan tegangan tetap tetapi mempunyai sifat khusus yaitu harga tegangannya tidak bergantung pada harga tegangan atau arus lainnya, artinya nilai tersebut berasal dari sumbet tegangan dia sendiri. Simbol : Gambar 2.1 Sumber Tegangan Bebas/Independent Voltage Source

3 9 b. Sumber Tegangan Tidak Bebas / Dependent Voltage Source Mempunyai sifat khusus yaitu harga tegangan bergantung pada harga tegangan atau arus lainnya. Simbol : Gambar 2.2 Sumber Tegangan Tidak Bebas/Dependent Voltage Source 2. Sumber Arus (Current Source) Sumber arus ideal adalah sumber yang menghasilkan arus yang tetap, tidak bergantung pada tegangan dari sumber arus tersebut. Sifat lain : Mempunyai nilai resistansi dalam Rd= (sumber arus ideal) a. Sumber Arus Bebas / Independent Current Source Mempunyai sifat khusus yaitu harga arus tidak bergantung pada harga tegangan atau arus lainnya. Simbol : Gambar 2.3 Sumber Arus Bebas/Independent Current Source

4 10 b. Sumber Arus Tidak Bebas / Dependent Current Source Mempunyai sifat khusus yaitu harga arus bergantung pada harga tegangan atau arus lainnya. Simbol : Gambar 2.4 Sumber Arus Tidak Bebas/Dependent Current Source Elemen Pasif 1. Resistor (R) Sering juga disebut dengan tahanan, hambatan, penghantar, atau resistansi dimana resistor mempunyai fungsi sebagai penghambat arus, pembagi arus dan pembagi tegangan. Nilai resistor tergantung dari hambatan jenis bahan resistor itu sendiri (tergantung dari bahan pembuatnya), panjang dari resistor itu sendiri dan luas penampang dari resistor itu sendiri. Secara matematis : = dimana : ρ = hambatan jenis l = panjang dari resistor A = luas penampang Satuan dari resistor : Ohm (Ω)

5 11 2. Kapasitor (C) Sering juga disebut dengan kondensator atau kapasitansi. Mempunyai fungsi untuk membatasi arus DC yang mengalir pada kapasitor tersebut, dan dapat menyimpan energi dalam bentuk medan listrik. Nilai suatu kapasitor tergantung dari nilai permitivitas bahan pembuat kapasitor, luas penampang dari kapsitor tersebut dan jarak antara dua keping penyusun dari kapasitor tersebut. Secara matematis : = Dimana : ε = permitivitas bahan A = luas penampang bahan d = jarak dua keping Satuan dari kapasitor : Farad (F) kapasitor mengijinkan arus untuk melewatinya berbanding lurus dengan laju perubahan tegangan. Hubungan tersebut dinyatakan sebagai: = Ket : i = Arus mengalir pada kapasitor C = Kapasitas kapasitor dv = Laju perubahan tegangan dt = Perubahan waktu Arus yang melalui kapasitor merupakan reaksi dari perubahan tegangan pada kapasitor tersebut. Karena kapasitor menghantarkan arus berbanding lurus

6 12 dengan laju perubahan tegangan maka juga berbanding lurus dengan frekwensi. Oleh karena itu reaktansinya akan berbanding terbalik dengan frekwensi alternating current. Formulanya adalah : = Rangkaian RLC Pada rangkaian RLC, hukum Ohm tetap memenuhi untuk digunakan dalam perhitungan. Akan tetapi operasi aritmatiknya tetap mengikuti kaidah dalam perhitungan vektor kompleks. Dan berikut ini adalah jenis rangkaiannya : 1. Rangkaian Resistansi Murni Karena tegangan dan arus pada satu fase (selalu sama tanda) sehingga daya sesaat yang dihasilkan adalah selalu positif. Hal ini berarti resistansi R mengkonsumsi energi. Gambar 2.5 Resistansi Murni

7 13 2. Rangkaian Induktansi Murni Karena tegangan dan arus pada fase yang berbeda sehingga daya sesaat yang dihasilkan adalah bernilai positif dan negatif secara bergantian. Daya yang bernilai negatif menunjukkan bahwa daya dilepas kembali oleh induktor ke rangkaian. Karena perbedaan positip dan negatip besarnya sama dan dalam waktu yang sama maka resultannya adalah nol. Oleh karena itu kalau sumbernya adalah generator maka daya akan dikembalikan ke sumber sehingga tidak perlu energi mekanis untuk menggerakkan generator dan induktor tidak menjadi panas (sebagaimana yang terjadi pada beban resistif). Gambar 2.6 Induktansi Murni 3. Induktor/ Induktansi/ Lilitan/ Kumparan (L) Seringkali disebut sebagai induktansi, lilitan, kumparan, atau belitan. Pada induktor mempunyai sifat dapat menyimpan energi dalam bentuk medan magnet. Induktor melawan arus yang melaluinya dengan cara menurunkan tegangan

8 14 berbanding lurus dengan laju perubahan arus. Menurut hukum Lenz tegangan terinduksi akan selalu dalam polaritas yang sedemikian rupa menjaga nilai arus seperti pada sebelumnya. Dengan demikian ketika arus meningkat, tegangan terinduksi akan melawan aliran elektron, sedangkan ketika arus menurun polaritas akan berbalik dan mendorong aliran elektron. Oposisi terhadap aliran ini disebut sebagai reaktansi. Hubungan antara tegangan yang diturunkan dengan laju perubahan arus melalui induktor, satuan dari induktor : Henry (H) Jadi tegangan yang diturunkan pada induktor merupakan reaksi terhadap perubahan arus yang melaluinya. Karena sebuah induktor menurunkan tegangan berbanding lurus dengan laju perubahan arus maka reaktansinya juga akan bergantung pada frekwensi alternating current. Formulanya adalah: = 2 ( ) = 2.2 Daya Listrik Daya listrik adalah energi yang dibutuhkan peralatan listrik untuk bekerja secara normal. Daya listrik ada 3 macam yaitu daya aktif, daya reaktif dan daya nyata. Daya Aktif Satuan daya aktif dinyatakan dalam Watt (W). Daya aktif ini adalah daya yang digunakan secara umum oleh konsumen. Daya aktif inilah yang biasanya dapat dikonversikan dalam bentuk kerja. Adapun rumus dari daya aktif adalah : P = V x I x cos θ

9 15 Daya Reaktif Daya reaktif adalah jumlah daya yang diperlukan untuk pembentukan medan magnet. Dari pembentukan medan magnet, maka akan terbentuk fluks magnetik. Satuan daya reaktif dinyatakan dalam VAR. Sedangkan rumus dari daya reaktif adalah sebagai berikut. Q = V x I x sin θ Daya nyata Daya nyata adalah penjumlahan geometris dari daya aktif dan daya reaktif. Daya nyata merupakan daya yang diproduksi oleh perusahaan sumber listirk untuk didistribusikan ke konsumen. Daya nyata ini dinyatakan dalam VA. Rumus dari daya nyata adalah sebagai berikut. S = V x I Korelasi dari ketiga macam daya diatas bisa digambarkan sebagai segitiga daya, Dimana : P = Daya aktif (true power), sisi x atau mendatar pada segitiga daya Q = Daya reaktif (reactive power), sisi y atau mendatar pada segitiga daya S = Daya nyata (apparent power), penjumlahan geometris dari P dan Q Q (VAR) S (VA) P (W) Gambar 2.7 Segitiga Daya

10 Jenis-Jenis Beban Listrik a. Beban Linier Beban linier adalah beban yang memberikan bentuk gelombang keluaran yang linier artinya arus yang mengalir sebanding dengan impedansi dan perubahan tegangan, sehingga gelombangnya bersih, tidak terdistorsi dan tidak menimbulkan harmonisa. Beban ini berupa elemen pasif seperti resistor, komputer & kapasitor. Beberapa contoh beban linier ini adalah lampu pijar, pemanas, resistor dan lainlain. Gambar 2.2 berikut adalah contoh bentuk gelombang arus & tegangan dengan beban linier. Gambar 2.8 Bentuk Gelombang Arus & Tegangan dengan Beban Linier b. Beban Non Linier Beban non linier adalah beban yang impedansinya tidak konstan dalam setiap periode tegangan masukan. Dengan impedansinya yang tidak konstan, maka arus yang dihasilkan tidaklah berbanding lurus dengan tegangan yang diberikan, sehingga beban non linier tidaklah mematuhi Hukum Ohm yang menyatakan bahwa arus berbanding lurus dengan tegangan.

11 17 Gelombang arus yang dihasilkan oleh beban non linier tidak sama dengan bentuk gelombang tegangan sehingga terjadi cacat (distorsi). Dengan meluasnya pemakaian beban non linier, gelombang sinusoidal ini dapat mengalami distorsi. Gambar 2.9 Jenis Beban Non Linier Gambar 2.10 Gelombang Tegangan & Arus dengan Beban Non Linier

12 Pengertian Faktor Daya Faktor daya atau biasa disebut dengan cos θ merupakan pergeseran sudut antara tegangan dan arus. Besar dari cos θ yang sempurna adalah 1, meskipun pada kenyataan dilapangan sangatlah sulit mendapatkan nilai 1. Cos θ ini akan menetukan nilai dari daya aktif. Apabila nilai dari cos ini mendekati 1 maka besar dari daya reaktif (VAR) akan semakin kecil dan nilai daya aktif (W) akan mendekati daya nyatanya (VA). Seperti telah kita ketahui gambar dari segitiga daya, maka besar dari cos θ bisa dicari seperti gambar berikut ini. DAYA REAKTIF (Q) DAYA NYATA (S) θ DAYA AKTIF (P) PF : P S W VA PF : Cosinus θ Gambar 2.11 Faktor Daya Penurunan faktor daya akan memerlukan arus yang lebih besar untuk memenuhi daya yang dibutuhkan oleh beban. Pada waktunya hal ini menyebabkan penurunan tegangan dan kerugian arus dalam transmisi bertambah besar. Untuk alasan ini, perusahaan sumber listrik memberikan denda untuk faktor daya yang lebih rendah dari 0,85. Selain itu pula daya nyata yang didistribusikan dari perusahaan sumber listrik yang bisa dimanfaatkan akan semakin berkurang.

13 19 Faktor daya yang rendah bisa disebabkan oleh peralatan seperti motor induksi dan unit-unit balas (ballast) dari lampu TL yang memerlukan arus magnetisasi reaktif untuk geraknya. Peralatan seperti ini tidak memerlukan arus untuk melakukan kerja yang bermanfaat, melainkan hanya untuk membangkitkan medan magnet Konsep Perbaikan Faktor Daya Daya dalam rangkaian DC sama dengan perkalian antara arus dan tegangan. Daya dalam rangkaian AC pada setiap saat sama dengan perkalian dari harga daya rata rata dalan satu periode sama dengan perkalian antara arus dan tegangan efektif. Tetapi jika ada reaktansi dalam rangkaian, arus dan tegangan tidak sephase selama siklusnya seperti halnya arus bernilai negatif seraya tegangan bernilai positif. Hal ini menghasilkan besarnya daya kurang dari perkalian I dan V. Perkalian arus dan tegangan efektif dalam rangkaian AC dinyatakan dalam voltampere (VA) atau kilovoltampere (KVA). Satu KVA sama dengan VA. Daya yang berguna atau daya nyata diukur dalam watt dan diperoleh jika voltampere dari rangkaian dikalikan dengan faktor yang disebut dengan faktor daya. Maka dalam rangkaian AC satu phase adalah: P(dalam watt) = V x I x faktor daya P = V I Cos θ P = V I aktif I aktif = I Cos θ Oleh karena daya adalah VI dikalikan dengan faktor daya, maka faktor daya suatu rangakaian AC sama dengan kosinus dari sudut phase. Hubungan

14 20 antara daya dalam watt (P), voltampere (VA) dan voltampere reaktif (VAR) dapat dinyatakan dengan segitiga seperti yang ditunjukkan dalam Gambar 2.7 sudut θ adalah sudut phase rangkaian. Alas segitiga menyatakan daya nyata (VA), tingginya menyatakan daya reaktif (VAR), dan hipotunosa menyatakan daya aktif (W). Harga faktor daya tergantung dari beda phase antara arus dan tegangan. Kapasitor daya AC sebagai kompensator yang dihubungkan jaringan maka akan mengakibatkan arus beban mendahului 90 derajat, I c = I m sin (wt+90 ). Sehingga akan mengakibatkan arus beban menjadi sephase dengan tegangan. Dimana arus beban yang tertinggal 90 derajat akan terkompensasi arus capasitor mendahului sebesar 90 derajat, I b = I b sin (ωt ) = I b sin ωt. Hal tersebut ditunjukkan pada Gambar 2.7 Ket : I b = Arus Beban I m = Arus Maksimum I c = Arus Kapasitif I L = Arus Induktif Gambar 2.12 Diagram Phasor Konsep Kompensator Daya Nyata (VIcos θ)

15 21 Gambar 2.13 Hubungan antara Daya Aktif, Daya Nyata & Daya Reaktif Oleh karena daya aktif sama dengan VI daya nyatanya adalah VI Cos θ, dan daya reaktifnya VI Sin θ. Juga terjadi hubungan sebagai berikut. = ( ) + ( ) Ada tiga kemungkinan hubungan phase antara arus dan tegangan dalam satuan rangkaian. 1. Arus dan tegangan sephase seperti yang ditunjukkan pada Gambar Tegangan dapat melalui harga nol dan naik ke harga tertinggi pada waktu yang lebih dahulu dari arus seperti dalam Gambar 2.15 Dalam hal ini arus dikatakan tertinggal dari tegangan. 3. Tegangan dapat melalui harga nol dan harga tertingginya pada beberapa saat kemudian dari pada arus seperti dalam gambar 2.16 Dalam hal ini arus dikatakan mendahului tegangan. Lamanya waktu dimana arus mendahului atau tertinggal dari tegangan bervariasi dalam rangkaian yang berbeda dari kondisi sephase sampai mendahului atau tertinggal ¼ siklus atau 90. Oleh karena itu waktu dapat diukur dalam derajat listrik, beda waktu atau beda phase dari arus dan tegangan biasanya dinyatakan dalam derajat listrik dan disebut sudut phase.

16 22 Gambar 2.14 Arus & Tegangan (Beban Resistif) Gambar 2.15 Arus Tertinggal 30 o dari Tegangan (Beban Induktif) Gambar 2.16 Arus mendahului 30 o dari Tegangan (Beban Kapasitif) Dan untuk konsep perbaikan faktor daya maka dapat digunakan penggunaan Segitiga Daya dan Tabel Cos θ untuk analisa perbaikan faktor daya. Gambar 2.17 Segitiga Daya

17 23 Dimana : P = Daya Aktif (kw) S = Daya Nyata (kva) Q = Daya Reaktif (kvar) Qc = P ( tan ϕ 1 tan ϕ 2 ) Faktor daya dapat diperbaiki dengan memasang kapasitor pengkoreksi faktor daya atau sering disebut capasitor bank (lihat Gambar 2.7) pada sistim distribusi daya pabrik. Kapasitor bertindak sebagai pembangkit daya reaktif dan oleh karenanya akan mengurangi jumlah daya reaktif yang harus dihasilkan dihasilkan oleh produsen penyuplai energi listrik. Gambar 2.18 Kapasitor Sebagai Arus KVAR Capasitor bank adalah suatu unit komponen elctric yang digunakan untuk memperbaiki faktor daya. Sebelum pemasangan capasitor bank, daya aktif dan daya reaktif yang dibutuhkan oleh beban seluruhnya disuplai oleh perusahaan sumber listrik, sehingga daya nyata dari sentral harus besar. Sesudah pemasangan

18 24 capasitor bank, seluruh atau sebagian daya reaktif yang diperlukan oleh beban akan disuplai oleh capasitor bank, sehingga tugas dari perusahaan sumber listrik akan menjadi ringan karena hanya menyuplai daya aktif saja (apabila seluruh daya reaktif disuplay oleh capasitor bank) dan dengan demikian daya nyatanya lebih kecil. Selain meningkatkan faktor daya, pemasangan capasitor bank juga dapat menghindarkan dari dampak negatif rendahnya faktor daya yaitu trafo kelebihan beban, tegangan menurun, kenaikan suhu dan arus pada kabel, rugi-rugi listrik. Untuk pemasangan capasitor bank diperlukan penghitungan daya reaktif yang diperlukan dengan tetap mempertimbangkan pengaruh harmonisa. A. Keuntungan perbaikan faktor daya dengan penambahan kapasitor bank : 1. Bagi konsumen, khususnya perusahaan atau industri : a. Menghilangkan denda kvarh yang ditetapkan oleh PLN, dimana PLN telah menetapkan cos phi terendah adalah 0.85 atau pemakaian total kvarh tidak lebih dari 62% dari total kwh per bulan (menghemat tagihan listrik PLN akibat dihilangkan denda kvarh) b. Mengurangi besarnya arus listrik yang mengalir ke beban c. Mengurangi rugi-rugi pada trafo, kabel & busbar (menambah umur peralatan) d. Mengurangi jatuh tegangan e. Meningkatkan efisiensi daya listrik (penambahan beban listrik (kw) dalam batas-batas kemampuan daya yang tersedia.

19 25 2. Bagi utilitas pemasok listrik : a. Komponen reaktif pada jaringan dan arus total pada sistim ujung akhir berkurang b. Kehilangan daya I 2 R dalam sistim berkurang karena penurunan arus c. Kemampuan kapasitas jaringan distribusi listrik meningkat, mengurangi kebutuhan untuk memasang kapasitas tambahan 2.3 Kapasitor Bank Dengan perkembangan teknologi pada saat ini, banyak sekali industri-industri yang menciptakan barang-barang elektronik yang bisa meringankan manusia dalam pekerjaannya, seperti memasak, mencuci dan lain-lain sebagainya. Barangbarang yang diciptakan mempengaruhi daya yang terpasang pada kwh meter seperti dengan mencuci dengan mesin cuci, untuk memperkecil pengaruh pada kwh meter maka sebaiknya dipasang kapasitor bank. Karena fungsi kapasitor bank memaksimalkan daya yang terpasang tanpa mencuri aliran listrik. Keunggulan dari kapasitor bank ini dapat dipasang dengan mudah dan tanpa mengubah rangkaian instalasi listrik di rumah, kantor dan gedung dan sebagainya. Penghematan dengan memasang kapasitor bank bukan berarti kita mengurangi pemakaian daya atau mematikan beberapa peralatan listrik elektronik yang kita pakai, akan tetapi dengan cara meredam bahkan menghilangkan daya semu, listrik induksi, atau induksi yang banyak kita temui pada peralatan listrik atau elektronik yang komponennya berupa kumparan atau lilitan tembaga. Kapasitor bukan alat untuk menghemat energi tetapi alat untuk menurunkan arus listrik dari arus yang

20 26 lebih besar dengan pamakain yang sedikit sehingga menurunkan arus yang lebih kecil dengan pemakaian listrik yang lebih banyak yang mengalir pada daya yang terpasang pada kwh meter, dengan memperbaiki faktor daya, maka kita bisa memakai energi listrik lebih banyak lagi tanpa mengurangi pemakaian atau mematikan peralatan listrik. Kapasitor bank menstabilkan tegangan yang masuk ke dalam sistem jaringan listrik. Selain itu juga kapasitor bank berfungsi seperti untuk menyimpan listrik seperti pada aki. Kelebihannya dibanding dengan aki kapasitor bank bisa menyimpan energi lebih cepat, juga bisa mengeluarkan energi yang tersimpan dalam kapasitor dapat dikeluarkan dengan cepat. Gambar 2.19 Kapasitor Bank Pengertian Kapasitor Bank Kapasitor bank adalah peralatan listrik yang mempunyai sifat kapasitif yang berfungsi untuk mengimbangi sifat induktif. Kapasitas kapasitor untuk ukuran 5 KVar sampai 60 Kvar. Dari tegangan kerja 230 V sampai 525 Volt. Pengertian lain dari kapasitor Bank yaitu sekumpulan beberapa kapasitor yang dihubungkan

21 27 secara paralel untuk mendapatkan kapasitas kapasitif yang akan digunakan. Untuk suatu besaran kapasitor yang sering dipakai adalah Kvar (Kilo volt ampere reaktif) meskipun didalam Kvar terkandung atau tercantum besaran kapasitas yaitu Farad atau microfarad (μf). Kapasitor bank mempunyai sifat listrik yang kapasitif (leading). Sehingga mempunyai sifat mengurangi atau menghilangkan terhadap sifat induktif (leaging) Prinsip Kerja Kapasitor Bank Prinsip Kerja Karja Kapasitor Bank Berdasarkan dari cara kerjanya, kapasitor bank dibedakan menjadi 2 : 1) Fixed type, yaitu dengan memberikan sebuah beban kapasitif yang tetap ataupun berubah-rubah pada beban. Biasanya digunakan pada beban langsung seperti pada motor induksi. Pada tipe ini harus dipertimbangkan adalah pada saat pemasangan kapasitor bank tanpa beban. Gambar 2.20 Fixed Type

22 28 2) Automatic type, yaitu memberikan beban kapasitif yang bervariasi sesuai dengan kebutuhan kapasitor bank yang terpasang. Pada tipe ini jenis panel dilengkapi dengan sebuah Power Factor Controller (PFC) sebagai pengaman. PFC akan menjaga cos phi pada jaringan listrik yang sesuai dengan target yang ditentukan. Apabila pada tipe ini terjadi perubahan beban, maka PFC secara otamatis akan memperbaiki cos phi. Gambar 2.21 Automatic Compensation Manfaat Pemasangan Kapasitor Bank Adapun manfaat dan kelebihan dengan menggunakan kapasitor bank yaitu: 1) Memaksimalkan daya terpasang 2) Menghemat biaya pemakaian 3) Menghilangkan hambatan pada kabel penghantar 4) Menstabilkan arus tegangan listrik (frekuensi) 5) Memperpanjang usia peralatan elektronik 6) Menurunkan ampere, mengurangi panas berlebihan pada jaringan

23 29 7) Mengurangi arus start (awal) 8) Tidak merugikan PLN karena dapat mengurangi daya watt semu 9) Bebas biaya perawatan 10) Sangat mudah pemasangannya dan dipasang setelah meteran (kwh meter) Metoda Pemasangan Kapasitor Di dalam metoda pemasangan Kapasitor Bank dibedakan menjadi 2 hal, yaitu : a. Lokasi Pemasangan b. Cara Pemasangan a. Berdasarkan Lokasi Pemasangan : 1. Global Compensation Dengan metode ini kapasitor dipasang di induk panel Mine Distribution Panel (MDP) Arus yang turun dari pemasangan model ini hanya di penghantar antara panel MDP dan transformator. Sedangkan arus yang lewat setelah MDP tidak turun dengan demikian rugi akibat disipasi panas pada penghantar setelah MDP tidak terpengaruh. Terlebih instalasi tenaga dengan penghantar yang cukup panjang Delta Voltagenya masih cukup besar. Gambar 2.22 Global Compensation

24 30 2. Sectoral Compensation Dengan metoda ini kapasitor yang terdiri dari beberapa panel kapasitor dipasang dipanel Sub Distribution Panel (SDP). Cara ini cocok diterapkan pada industri dengan kapasitas beban terpasang besar sampai ribuan kva dan terlebih jarak antara panel MDP dan SDP cukup berjauhan. Gambar 2.23 Sectoral Compensation 2. Individual Compensation. Dengan metoda ini kapasitor langsung dipasang pada masing masing beban khususnya yang mempunyai daya yang besar. Cara ini sebenarnya lebih efektif dan lebih baik dari segi teknisnya. Namun ada kekurangannya yaitu harus menyediakan ruang atau tempat khusus untuk meletakkan kapasitor tersebut sehingga mengurangi nilai estetika. Disamping itu jika mesin yang dipasang sampai ratusan buah berarti total cost yang di perlukan lebih besar dari metode diatas. Gambar 2.24 Individual Compensation

25 31 b. Berdasarkan Cara Pemasangan 1. Hubung Bintang (Star) Gambar 2.25 Kapasitor Hub Bintang Dimana : V L = Tegangan antar phasa V P = Tegangan phasa I P = I L = Arus phasa / Arus saluran Bila I L adalah arus saluran dan I P adalah arus phasa,maka akan berlaku hubungan : I L = I P V L = 3 V P Qc = P ( tan ϕ 1 tan ϕ 2 ) = 3 3 = = = 2

26 32 - Keuntungan Pemasangan Kapasitor Hubung Bintang 1. Tegangan yang mengalir pada tiap kapasitor lebih kecil karena V p = - Kerugian Pemasangan Kapasitor Hubung Bintang 1. Kapasitas kapasitor harus lebih besar 3 kali dari hubung segitiga, dan harga yang dikeluarkan untuk pembelian kapasitornya lebih mahal 2. Hubung Segitiga (Delta) Gambar 2.26 Kapasitor Hub Segitiga Dimana : I L = Arus saluran I P = Arus phasa V L = V P = Tegangan antar phasa Bila V L adalah tegangan antar phasa dan V P adalah tegangan phasa maka berlaku hubungan : V L = V P I L = 3 V P

27 33 Qc = P ( tan ϕ 1 tan ϕ 2 ) = 3 = 3 = 3 2 = 3 - Keuntungan Pemasangan Kapasitor Hubung Segitiga 1. Kebutuhan kapasitas kapasitor lebih kecil atau 1/3 dari kapasitas kapasitor hubung bintang - Kerugian Pemasangan Kapasitor Hubung Segitiga 1. Tegangan yang mengalir pada kapasitor lebih besar dibandingkan hubung bintang karena V p = V L Komponen-komponen Utama Panel Kapasitor 1. Main switch / load Break switch Main switch ini sebagai peralatan kontrol dan isolasi jika ada pemeliharaan panel. Sedangkan untuk pengaman kabel / instalasi sudah tersedia disisi atasnya (dari) MDP.Main switch atau lebih dikenal load break switch adalah peralatan pemutus dan penyambung yang sifatnya on load yakni dapat diputus dan disambung dalam keadaan berbeban, berbeda dengan on-off switch model knife yang hanya dioperasikan pada saat tidak berbeban. Untuk menentukan kapasitas yang dipakai dengan perhitungan minimal 25 % lebih besar dari perhitungan KVar terpasang dari sebagai contoh :

28 34 Jika daya kvar terpasang 400 Kvar dengan arus 600 Ampere, maka pilihan kita berdasarkan 600 A + 25 % = 757 Ampere yang dipakai size 800 Ampere. 2. Kapasitor Breaker Kapasitor Breaker digunkakan untuk mengamankan instalasi kabel dari breaker ke Kapasitor bank dan juga kapasitor itu sendiri. Kapasitas breaker yang digunakan sebesar 1,5 kali dari arus nominal dengan Im = 10 x Ir. Untuk menghitung besarnya arus dapat digunakan rumus :. In = Qc / 3. VL Sebagai contoh : masing masing steps dari 10 steps besarnya 20 Kvar maka dengan menggunakan rumus diatas didapat besarnya arus sebesar 29 ampere, maka pemilihan kapasitas breaker sebesar % = 43 A atau yang dipakai 40 Ampere. Selain breaker dapat pula digunakan Fuse, Pemakaian Fuse ini sebenarnya lebih baik karena respon dari kondisi over current dan Short circuit lebih baik namun tidak efisien dalam pengoperasian jika dalam kondisi putus harus selalu ada penggantian fuse. Jika memakai fuse perhitungannya juga sama dengan pemakaian breaker. 3. Magnetic Contactor Magnetic contactor diperlukan sebagai Peralatan kontrol. Beban kapasitor mempunyai arus puncak yang tinggi, lebih tinggi dari beban motor. Untuk pemilihan magnetic contactor minimal 10 % lebih tinggi dari arus nominal ( pada

29 35 AC 3 dengan beban induktif/kapasitif). Pemilihan magnetic dengan range ampere lebih tinggi akan lebih baik sehingga umur pemakaian magnetic contactor lebih lama. 4. Kapasitor Bank Kapasitor bank adalah peralatan listrik yang mempunyai sifat kapasitif yang akan berfungsi sebagai penyeimbang sifat induktif. Kapasitas kapasitor dari ukuran 5 KVar sampai 60 Kvar. Dari tegangan kerja 230 V sampai 525 Volt atau Kapasitor Bank adalah sekumpulan beberapa kapasitor yang disambung secara parallel untuk mendapatkan kapasitas kapasitif tertentu. Besaran yang sering dipakai adalah Kvar (Kilovolt ampere reaktif) meskipun didalamnya terkandung / tercantum besaran kapasitansi yaitu Farad atau microfarad. Kapasitor ini mempunyai sifat listrik yang kapasitif (leading). Sehingga mempunyai sifat mengurangi / menghilangkan terhadap sifat induktif (leaging). 5. Reactive Power Regulator Peralatan ini berfungsi untuk mengatur kerja kontaktor agar daya reaktif yang akan disupply ke jaringan/sistem dapat bekerja sesuai kapasitas yang dibutuhkan. Dengan acuan pembacaan besaran arus dan tegangan pada sisi utama Breaker maka daya reaktif yang dibutuhkan dapat terbaca dan regulator inilah yang akan mengatur kapan dan berapa daya reaktif yang diperlukan. Peralatan ini mempunyai bermacam macam steps dari 6 steps, 12 steps sampai 18 steps.

30 36 6. Peralatan tambahan - Push button on dan push button off yang berfungsi mengoperasikan magnetic contactor secara manual. - Selektor auto off manual yang berfungsi memilih system operasional auto dari modul atau manual dari push button. - Exhaust fan + thermostat yang berfungsi mengatur ambeint temperature (suhu udara sekitar) dalam ruang panel kapasitor. Karena kapasitor, kontaktor dan kabel penghantar mempunyai disipasi daya panas yang besar maka temperature ruang panel meningkat.setelah setting dari thermostat terlampaui maka exhust fan akan otomatis berhenti Perawatan & Perlindungan Kapasitor Bank Kapasitor bank yang digunakan untuk perbaikan faktor daya supaya tahan lama, maka harus dirawat secara rutin dan teratur. Dalam perawatannya, kapasitor bank harus ditempatkan pada tempat yang lembab dan tidak basah yang tidak terlindungi dari debu dan kotoran. Sebelum melakukan pemeriksaan, maka kapasitor bank tidak terhubung lagi dengan sumber listrik. Adapun jenis pemeriksaan yang harus dilakukan yaitu : 1) Pemeriksaan kebocoran. 2) Pemeriksaan kabel dan penyangga kapasitor. 3) Pemeriksaan isolator. Untuk meminimalkan kemungkinan kegagalan sekering pemegang pembuangan atau pecahnya kasus kapasitor bank, atau keduanya, standar memaksakan batasan

31 37 ke energi maksimum total yang tersimpan dalam sebuah kelompok yang terhubung paralel ke 4659 kvar. Agar tidak melanggar batas ini, kelompok yang lebih kapasitor bank dari rating tegangan rendah dihubungkan secara seri dengan lebih sedikit unit secara paralel setiap kelompok dapat menjadi solusi yang cocok. Namun, hal ini dapat mengurangi sensitivitas skema deteksi ketidakseimbangan. Memisahkan kapasitor bank menjadi 2 bagian yaitu hubungan seri, solusi ini dapat digunakan untuk skema ketidakseimbangan yang lebih baik untuk dideteksi. Kemungkinan lain adalah penggunaan sekering pembatas arus. Koneksi optimal untuk SCB tergantung pada pemanfaatan terbaik dari peringkat tegangan yang tersedia unit kapasitor, sekering, dan menyampaikan pelindung. Hampir semua kapasitor bank gardu yang terhubung seri. Maka setiap pemakaian kapasitor bank bagaimanapun harus dihubungkan secara seri atau paralel. Contoh kasus : 1. Satu buah TL dengan daya = 15 W, tegangan = 220 V, Faktor daya = 0,35, jika faktor daya ingin diperbaiki menjadi = 0.9, maka berapa penghematan yang terjadi dan nilai C yang harus dipakai? Menghitung arus ( I ) pf = 0.35 P = V.I. Cos φ I = P/V. Cos φ = 15/220 x 0,35 = 15/77 = 0,1948 A» 194,8 ma pf = 0.90 I = P/V. Cos φ = 15/220x0,90 = 0,0757 A» 75,7 ma % penghematan : 194,8 75,7 = 119,05» ±61%

32 38 Menentukan nilai kapasitor : Cos φ 1 = 0,35 maka φ 1 = Cos -1 (0,35) = 69,50 o Cos φ 2 = 0,90 maka φ 2 = Cos -1 (0,90) = 25,840 o Daya Aktif, P 1 = 15W Daya Nyata S 1 = V.I = 42,856 VA S 1 = P/Cos φ = 15/0,35 = 42,857 VA Daya Reaktif Q 1 = S.Sin φ = 42,857.Sin 69,5 = 40,143 VAR P 2 = P 1 = 15 W S 2 = V.I = 220 x 75,7mA = 16,665VA 2.4 Simulasi Ketika data pengukuran telah didapatkan, maka dilakukan simulasi rangkaian sesuai beban yang ada. dan untuk mengetahui seberapa perlukah dalam sebuah sistem berjalan memerlukan kapasitor bank dalam pengkompensai nilai daya reaktif yang disebabkan oleh banyaknya beban non linear. Dan untuk membuktikan bahwa data yang didapatkan sesuai dengan simulasi dengan dasar

33 39 hasil pengukuran & pengambilan data. Dalam simulasi ini digunakan software Multisim Simulasi Multisim 11.0 Dalam kegiatan simulasi ini digunakan software seperti di bawah ini : a. Multisim 11.0 Multisim adalah program simulasi yang digunakan untuk melakukan simulasi cara kerja sebuah rangkaian elektronika. Program Multisim 11.0 pertama kali dibuat oleh perusahaan yang bernama Electronics Workbench yang merupakan bagian dari perusahaan National Instruments dan pertama kali dikenalkan dengan nama Electronics Instruments yang pada saat itu ditujukan sebagai alat bantu pengajaran dalam bidang elektronika. Dan di bawah ini adalah gambar workspace pada Multisim 11.0 :

34 40 Component Toolbar Simulation Toolbar Standar Toolbar Instrument Toolbar Design Toolbox Workspace pada Multisim 11.0 Runtime Gambar 2.27 Layout Multisim 11.0

35 41 b. Membuat lembar kerja (Workspace) Untuk membuat lembar kerja baru pada Multisim 11.0 dapat dilakukan dengan 2 cara yaitu : 1. Ketika Multisim 11.0 pertama kali dijalankan maka akan langsung membuka lembar kerja baru. 2. Menggunakan tombol New yang terdapat pada tampilan workspace Multisim 11.0 c. Penggunaan Komponen Komponen elektronika yang dibutuhkan untuk melakukan simulasi rangkaian elektronika telah disediakan pada library yang terdapat pada Multisim Komponen yang disediakan ada 2 jenis yaitu : 1. Komponen yang bersifat virtual Komponen virtual yang disediakan oleh Multisim 11.0 ini mempunyai nilai yang dapat diatur sesuai dengan kebutuhan dan dianggap mempunyai nilai yang ideal. 2. Komponen yang bersifat realkomponen real yang disediakan oleh Multisim 11.0 ini mempunyai nilai yang tidak dapat diubah dan memiliki sifat praktis seperti yang dimiliki oleh komponen elektronika yang digunakan pada dunia nyata. Komponen yang akan digunakan untuk membentuk rangkaian telah digabung ke dalam satu grup. Grup komponen tersebut dapat dilihat pada component toolbar

36 42 seperti yang tertera pada tabel di atas. Cara penggunaan komponen pada Multisim 11.0 dapat dilakukan dengan beberapa cara : Buka folder View pada Menu bar kemudian klik Component toolbar sampai dengan pada lembaran kerja terdapat menu Component toolbar atau tekan Ctrl+w pada keyboard. Letakkan kursor ke component toolbar kemudian klik open kemudian pilih Group open. Setiap group terdiri dari beberap komponen yang sejenis yang telah digabungkan. Dibawah ini merupakan tampilan dari component toolbar. Gambar 2.28 Component d. Meletakkan komponen Pada bagian ini akan dibahas mengenai bagaimana meletakkan komponen dengan menggunakan Component toolbar. DC_POWER 1. Klik source button pada component toolbar. Kemudian akan tampil Select a Component kemudian akan terlihat bahwa daftar komponen yang telah digabung menjadi satu. 2. Pilih group Sources dengan family POWER_SOURCES dan akan terlihat daftar komponen yang tersedia seperti yang terlihat pada gambar dibawah ini:

37 43 Gambar 2.29 Select a Component 3. Pilih DC Power dari daftar diatas kemudian klik OK. Kursor akan membawa bagian tersebut untuk diletakkan pada lembar kerja. Seperti yang tertera pada gambar dibawah ini: Gambar 2.30 DC Power 4. Kemudian pindahkan komponen sumber tegangan ke tempat yang ingin diletakan pada lembar kerja. Agar lebih tepat disarankan menggunakan bantuan page border, grid dan ruler bars sebagai pemandu yang dapat di atur di menu bar pilih view kemudian klik show grid, show borders, dan show ruler

38 44 bars. Gambar dibawah ini merupakan gambar peletakkan komponen pada lembar kerja multisim: Gambar 2.31 Place on Workplace 5. Untuk mengubah nilai komponen DC_POWER dapat dilakukan dengan klik ganda pada komponen tersebut sampai muncul kotak dialog. Gambar 2.32 Value DC Power

39 45 Untuk mengubah nilai DC_POWER dapat dilakukan dengan mengubah nilai yang terdapat pada kotak Voltage (V) misalkan dari tegangan 12 V ingin diganti menjadi tegangan 5 V. Tetapi yang perlu diingat pergantian nilai tersebut hanya berlaku untuk komponen yang bersifat virtual. Untuk menggunakan komponen virtual dapat dilakukan dengan cara masuk ke Group Basic kemudian pilih Family BASIC_VIRTUAL. Semua komponen yang terdapat di group tersebut sifatnya virtual dan dapat diubah sesuai dengan yang dibutuhkan untuk simulasi. e. Wiring Komponen yang telah diletakkan di lembar kerja multisim agar dapat bekerja harus dihubungkan menjadi satu. Semua komponen memiliki node yang dapat digunakan untuk menghubungkan semua komponen yang ada pada lembar kerja. Jadi wiring adalah cara menghubungkan node yang satu dengan node yang lain agar simulasi dapat dilakukan. Wiring dapat dilakukan dengan dua cara yaitu 1. Automatic wiring 2. Manual wiring f. Automatic Wiring Untuk memulai automatic wiring dapat dilakukan dengan cara klik pin node yang terdapat pada komponen. Kursor akan berganti simbol menjadi tanda lingkaran hitam.

40 46 Kemudian hubungkan pin node yang satu dengan yang lain sehingga wiring akan dilakukan secara otomatis dari komponen yang satu dengan komponen yang lain seperti yang terlihat pada gambar dibawah ini: Gambar 2.33 Automatic Wiring Untuk menghapus wiring tersebut dapat dilakukan dengan dua cara yaitu klik wiring tersebut kemudian gunakan tombol delete atau dengan klik kanan pada wiring tersebut kemudian pilih menu delete.untuk menghapus wiring tersebut dapat dilakukan dengan dua cara yaitu klik wiring tersebut kemudian gunakan tombol delete atau dengan klik kanan pada wiring tersebut kemudian pilih menu delete. g. Manual Wiring Untuk memulai manual wiring dapat dilakukan dengan cara pilih meu Place pada menu bar kemudian pilih Junction atau tekan Ctrl + j pada keyboard sehingga akan muncul tanda lingkaran kecil yang sebagai tanda memulai wiring. Agar wiring dapat dilakukan dengan lebih mudah maka dapat menggunakan bantuan grid yang tersedia pada multisim.

41 47 Klik junction maka akan terlihat pada lembar kerja multisim terdapat tanda lingkaran kecil kemudian taruh ke lembar kerja. Klik sekali lagi junction kemudian taruh lingkaran kecil tersebut ketempat yang ingin dihubungkan seperti yang terlihat pada gambar dibawah ini: Gambar 2.34 Manual Wiring I Setelah kedua node diletakan sekarang arahkan kursor ke salah satu node kemudian di klik dan hubungkan dengan node yang lain seperti yang tertera pada gambar dibawah ini: Gambar 2.35 Manual Wiring II h. Teks Untuk menambahkan teks pada lembar kerja multisim dapat dilakukan dengan cara Pilih menu Place pada menu bar kemudian pilih text atau tekan Ctrl+t pada keyboard.

42 48 1. Klik rangkaian tempat kita ingin menaruh teks tersebut sampai muncul text box. 2. Ketik tulisan yang diinginkan contohnya LED Merah 3. Setelah selesai menuliskan teks tersebut klik di mana saja pada lembar kerja untuk keluar dari teks box. Untuk menghapus teks tersebut dapat dilakukan dengan klik kanan kemudian pilih menu Delete. Untuk mengubah warna teks dapat dilakukan dengan cara klik kanan kemudian pilih menu Color. Untuk mengedit teks dapat dilakukan dengan cara klik ganda teks tersebut sampai muncul teks dan ubah teks kemudian klik dimana saja pada lembar kerja multisim untuk keluar dari text box tersebut. i. Penggunaan Alat Ukur Multisim menyediaka berbagai jenis alat ukur virtual yang dapat digunakan untuk melakukan simulasi. Alat ukur yang disediakan di multisim menyerupai alat ukur yang asli. Alat ukur tersebut dapat dilihat di View/Toolbars/Instrument Toolbar pada menu bar. Dibawah ini merupakan gambar tampilan instrument toolbar pada multisim:

43 49 Gambar 2.36 Instruments Dibawah ini akan membahas penggunaan beberapa jenis alat ukur yang sering digunakan seperti penggunaan multimeter. Multimeter Gambar dibawah ini merupakan gambar dari sebuah virtual multimeter yang terdapat pada multisim 11.0 Gambar 2.37 Multimeter Ketika alat ukur tersebut di klik maka akan mempunyai tampilan seperti dibawah ini: Gambar 2.38 Multimeter Display

44 50 j. Simulasi Simulasi digunakan untuk menggambarkan kinerja sebuah rangkaian elektronika yang terdapat pada lembar kerja multisim. Simulasi dilakukan ketika rangkaian elektronika yang terdiri dari komponen-komponen telah terhubung dengan menggunakan teknik wiring kemudian dijalankan untuk mengetahui hasil dari rangkaian elektronika tersebut. Pastikan rangkaian elektronika yang akan disimulasi telah terhubung dengan Ground karena simulasi tidak dapat berjalan apabila belum terhubung dengan ground. Dibawah ini terdapat beberapa cara yang dapat digunakan untuk melakukan simulasi: Klik menu Simulate/Run pada menu bar Klik tombol Simulate button seperti yang terlihat pada gambar disamping Tekan tombol F5 pada keyboard untuk menjalankan simulasi. Untuk menghenntikan simulasi yang sedang berjalan dapat dilakukan beberapa cara yaitu: klik menu Simulate/pause atau tekan F6 pada keyboard maka simulasi akan diberhentikan sementara. klik menu Simulate/run maka simulasi akan dihentikan. Dengan klik gambar ikon simulasi maka simulasi akan dihentikan.

45 Model Rangkaian Sistem kelistrikan yang berjalan di PT. ADM VLC adalah 3 phase, untuk melakukan simulasi maka digunakan model 1 phase berupa rangkaian RLC sebagai berikut : Gambar 2.39 Model Rangkaian 2.5 Tarif Dasar Listrik Tarif dasar listrik atau biasa disingkat TDL, adalah tarif yang boleh dikenakan oleh pemerintah untuk para pelanggan PLN. PLN adalah satu-satunya perusahaan yang boleh menjual listrik secara langsung kepada masyarakat Indonesia, maka TDL bisa dibilang adalah tarif untuk penggunaan listrik di Indonesia. Pada dasarnya, PLN menagih biaya listrik dengan pengukur kwh (kilowatthour) atau kilo Watt jam. kwh ini akan mengukur konsumsi listrik kita dalam Watt x jam (hour), artinya konsumsi listrik dalam 1 bulan akan menghabiskan berapa kilo

46 52 Watt ( 1 kw= 1000 Watt). Dan pada dasarnya semua produk yg diklaim dapat menghemat listrik dengan salah satu komponen utamanya adalah kapasitor, dimana penggunaan kapasitor dalam hal ini dapat menurunkan arus daya dan juga cos phi. Cos phi adalah faktor efisiensi listrik. Dalam arus listrik, Watt adalah produk perkalian dari tegangan x arus x cos phi (volt x ampere x cos phi ). Tentu saja dengan pemakaian kapasitor ini arus akan turun dan cos phi juga naik / tinggi ( cos phi ini tidak akan ditampilkan ), tetapi jangan lupa, bahwa kita membayar listrik ke PLN besar kwh ( dalam hal ini Watt) yaitu perkalian tegangan, arus dan cos phi, bukan arus saja. Jadi dalam hal ini pemakaian kapasitor pemakaian Watt listrik adalah sama, dengan atau tanpa pemakaian kapasitor tsb. Tetapi dalam teknik listrik, pemakaian kapasitor terutama digunakan dalam hal EFISIENSI daya, bukan penghematan biaya kwh. Dan di bawah ini adalah range yang bebas denda kvar adalah cos phi induktif di atas 0.85 sampai dengan kapasitif Gambar 2.40 Batas Denda kvar

BAB II LANDASAN TEORI. melakukan kerja atau usaha. Daya memiliki satuan Watt, yang merupakan

BAB II LANDASAN TEORI. melakukan kerja atau usaha. Daya memiliki satuan Watt, yang merupakan BAB II LANDASAN TEORI 2.1 Pengertian Daya Daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam sistem tenaga listrik, daya merupakan jumlah energi yang digunakan untuk melakukan kerja atau

Lebih terperinci

BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA. daya aktif (watt) dan daya nyata (VA) yang digunakan dalam sirkuit AC atau beda

BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA. daya aktif (watt) dan daya nyata (VA) yang digunakan dalam sirkuit AC atau beda 25 BAB III PENGGUNAAN KAPASITOR SHUNT UNTUK MEMPERBAIKI FAKTOR DAYA 3.1 Pengertian Faktor Daya Listrik Faktor daya (Cos φ) dapat didefinisikan sebagai rasio perbandingan antara daya aktif (watt) dan daya

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

BAB III CAPACITOR BANK. Daya Semu (S, VA, Volt Ampere) Daya Aktif (P, W, Watt) Daya Reaktif (Q, VAR, Volt Ampere Reactive)

BAB III CAPACITOR BANK. Daya Semu (S, VA, Volt Ampere) Daya Aktif (P, W, Watt) Daya Reaktif (Q, VAR, Volt Ampere Reactive) 15 BAB III CAPACITOR BANK 3.1 Panel Capacitor Bank Dalam sistem listrik arus AC/Arus Bolak Balik ada tiga jenis daya yang dikenal, khususnya untuk beban yang memiliki impedansi (Z), yaitu: Daya Semu (S,

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Daya 2.1.1 Pengertian Daya Daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam sistem tenaga listrik, daya merupakan jumlah energi yang digunakan untuk melakukan

Lebih terperinci

BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT

BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT BAB IV ANALISA PERANCANGAN INSTALASI DAN EFEK EKONOMIS YANG DIDAPAT 4.1. Perancangan Instalasi dan Jenis Koneksi (IEEE std 18-1992 Standard of shunt power capacitors & IEEE 1036-1992 Guide for Application

Lebih terperinci

DAYA LISTRIK ARUS BOLAK BALIK

DAYA LISTRIK ARUS BOLAK BALIK DAYA LISTRIK ARUS BOLAK BALIK DASAR TEORI Daya listrik didefinisikan sebagai laju hantaran energi listrik dalam rangkaian listrik. Satuan SI daya listrik adalah watt. Arus listrik yang mengalir dalam rangkaian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kualitas Daya Listrik Peningkatan terhadap kebutuhan dan konsumsi energi listrik yang baik dari segi kualitas dan kuantitas menjadi salah satu alasan mengapa perusahaan utilitas

Lebih terperinci

RANCANG BANGUN MODUL POWER FACTOR CONTROL UNIT

RANCANG BANGUN MODUL POWER FACTOR CONTROL UNIT RANCANG BANGUN MODUL POWER FACTOR CONTROL UNIT BUILD DESIGN MODUL POWER FACTOR CONTROL UNIT Tri Agus Budiyanto (091321063) Jurusan Teknik Elektro Program Studi Teknik Listrik Politeknik Negeri Bandung

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK 2.1 Umum BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK Kehidupan moderen salah satu cirinya adalah pemakaian energi listrik yang besar. Besarnya pemakaian energi listrik itu disebabkan karena banyak dan beraneka

Lebih terperinci

BAB II ELEMEN RANGKAIAN LISTRIK

BAB II ELEMEN RANGKAIAN LISTRIK 14 BAB II ELEMEN RANGKAIAN LISTRIK Seperti dijelaskan pada bab sebelumnya, bahwa pada tidak dapat dipisahkan dari penyusunnya sendiri, yaitu berupa elemen atau komponen. Pada bab ini akan dibahas elemen

Lebih terperinci

BAB III. PERANCANGAN PERBAIKAN FAKTOR DAYA (COS φ) DAN PERHITUNGAN KOMPENSASI DAYA REAKTIF

BAB III. PERANCANGAN PERBAIKAN FAKTOR DAYA (COS φ) DAN PERHITUNGAN KOMPENSASI DAYA REAKTIF BAB III PERANCANGAN PERBAIKAN FAKTOR DAYA (COS φ) DAN PERHITUNGAN KOMPENSASI DAYA REAKTIF 3.1. Perancangan Perbaikan Faktor Daya ( Power Factor Correction ) Seperti diuraikan pada bab terdahulu, Faktor

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat. BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Daya Aktif, Daya Reaktif & Daya Semu Daya aktif (P) adalah daya beban listrik yang terpasang pada jaringan distribusi termasuk rugi-rugi yang ditimbulkan oleh kabel, trafo dan

Lebih terperinci

Analisis Pemasangan Kapasitior Daya

Analisis Pemasangan Kapasitior Daya Analisis Pemasangan Kapasitior Daya Dr. Giri Wiyono, M.T. Jurusan Pendidikan Teknik Elektro, Fakultas Teknik Universitas Negeri Yogyakarta HP: 0812 274 5354 giriwiyono@uny.ac.id Analisis Pemasangan Kapasitor

Lebih terperinci

1.KONSEP SEGITIGA DAYA

1.KONSEP SEGITIGA DAYA Daya Aktif, Daya Reaktif dan Dan Pasif 1.KONSEP SEGITIGA DAYA Telah dipahami dan dianalisa tentang teori daya listrik pada arus bolak-balik, bahwa disipasi daya pada beban reaktif (induktor dan kapasitor)

Lebih terperinci

Kajian Tentang Efektivitas Penggunaan Alat Penghemat Listrik

Kajian Tentang Efektivitas Penggunaan Alat Penghemat Listrik Kajian Tentang Efektivitas Penggunaan Alat Penghemat Listrik Rita Prasetyowati Jurusan Pendidikan Fisika-FMIPA UNY ABSTRAK Masyarakat luas mengenal alat penghemat listrik sebagai alat yang dapat menghemat

Lebih terperinci

PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PADA PANEL UTAMA LISTRIK GEDUNG FAKULTAS TEKNIK UNIVERSITAS IBN KHALDUN BOGOR

PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PADA PANEL UTAMA LISTRIK GEDUNG FAKULTAS TEKNIK UNIVERSITAS IBN KHALDUN BOGOR PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PADA PANEL UTAMA LISTRIK GEDUNG FAKULTAS TEKNIK UNIVERSITAS IBN KHALDUN BOGOR M. Hariansyah 1, Joni Setiawan 2 1 Dosen Tetap Program Studi Teknik Elektro

Lebih terperinci

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh.

BAB II DASAR TEORI. a. Pusat pusat pembangkit tenaga listrik, merupakan tempat dimana. ke gardu induk yang lain dengan jarak yang jauh. BAB II DASAR TEORI 2.1. Sistem Jaringan Distribusi Pada dasarnya dalam sistem tenaga listrik, dikenal 3 (tiga) bagian utama seperti pada gambar 2.1 yaitu : a. Pusat pusat pembangkit tenaga listrik, merupakan

Lebih terperinci

Gambar 2.1 Alat Penghemat Daya Listrik

Gambar 2.1 Alat Penghemat Daya Listrik 30%. 1 Alat penghemat daya listrik bekerja dengan cara memperbaiki faktor daya Politeknik Negeri Sriwijaya BAB II TINJAUAN PUSTAKA 2.1 Alat Penghemat Daya Listrik Alat penghemat daya listrik adalah suatu

Lebih terperinci

Dari Gambar 1 tersebut diperoleh bahwa perbandingan daya aktif (kw) dengan daya nyata (kva) dapat didefinisikan sebagai faktor daya (pf) atau cos r.

Dari Gambar 1 tersebut diperoleh bahwa perbandingan daya aktif (kw) dengan daya nyata (kva) dapat didefinisikan sebagai faktor daya (pf) atau cos r. Kehidupan modern salah satu cirinya adalah pemakaian energi listrik yang besar. Besarnya energi atau beban listrik yang dipakai ditentukan oleh reaktansi (R), induktansi (L) dan capasitansi (C). Besarnya

Lebih terperinci

METODE PERBAIKAN FAKTOR DAYA MENGGUNAKAN KAPASITOR BANK UNTUK MENGURANGI DAYA REAKTIF UNTUK PENINGKATAN KUALITAS DAYA LISTRIK PADA INDUSTRI

METODE PERBAIKAN FAKTOR DAYA MENGGUNAKAN KAPASITOR BANK UNTUK MENGURANGI DAYA REAKTIF UNTUK PENINGKATAN KUALITAS DAYA LISTRIK PADA INDUSTRI METODE PERBAIKAN FAKTOR DAYA MENGGUNAKAN KAPASITOR BANK UNTUK MENGURANGI DAYA REAKTIF UNTUK PENINGKATAN KUALITAS DAYA LISTRIK PADA INDUSTRI M. Khairil Anwar - 23211007 email : anwardz12@gmail.com Sekolah

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Sistem Catu Daya Listrik dan Distribusi Daya

BAB 2 TINJAUAN PUSTAKA. 2.1 Sistem Catu Daya Listrik dan Distribusi Daya 9 BAB 2 TINJAUAN PUSTAKA 2.1 Sistem Catu Daya Listrik dan Distribusi Daya Pada desain fasilitas penunjang Bandara Internasional Kualanamu adanya tuntutan agar keandalan sistem tinggi, sehingga kecuali

Lebih terperinci

atau pengaman pada pelanggan.

atau pengaman pada pelanggan. 16 b. Jaringan Distribusi Sekunder Jaringan distribusi sekunder terletak pada sisi sekunder trafo distribusi, yaitu antara titik sekunder dengan titik cabang menuju beban (Lihat Gambar 2.1). Sistem distribusi

Lebih terperinci

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1].

BAB II DASAR TEORI. melalui gandengan magnet dan prinsip induksi elektromagnetik [1]. BAB II DASAR TEORI 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah energi listrik dari satu rangkaian listrik ke rangkaian listrik lainnya melalui gandengan

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. dibawah Kementrian Keuangan yang bertugas memberikan pelayanan masyarakat

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. dibawah Kementrian Keuangan yang bertugas memberikan pelayanan masyarakat BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 Umum Gedung Keuangan Negara Yogyakarta merupakan lembaga keuangan dibawah Kementrian Keuangan yang bertugas memberikan pelayanan masyarakat serta penyelenggaraan

Lebih terperinci

ANALISIS PENGARUH PEMASANGAN KAPASITOR BANK TERHADAP FAKTOR DAYA (STUDI KASUS GARDU DISTRIBUSI FAKULTAS TEKNIK UNIVERSITAS HALU OLEO

ANALISIS PENGARUH PEMASANGAN KAPASITOR BANK TERHADAP FAKTOR DAYA (STUDI KASUS GARDU DISTRIBUSI FAKULTAS TEKNIK UNIVERSITAS HALU OLEO SKRIPSI ANALISIS PENGARUH PEMASANGAN KAPASITOR BANK TERHADAP FAKTOR DAYA (STUDI KASUS GARDU DISTRIBUSI FAKULTAS TEKNIK UNIVERSITAS HALU OLEO) Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana

Lebih terperinci

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK

BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK BAB III PERENCANAAN INSTALASI SISTEM TENAGA LISTRIK 3.1 Tahapan Perencanaan Instalasi Sistem Tenaga Listrik Tahapan dalam perencanaan instalasi sistem tenaga listrik pada sebuah bangunan kantor dibagi

Lebih terperinci

Design of Power Factor Corection (PFC) with Metering and Capasitor Bank Control for Dynamic Load

Design of Power Factor Corection (PFC) with Metering and Capasitor Bank Control for Dynamic Load 1 Design of Power Factor Corection (PFC) with Metering and Capasitor Bank Control for Dynamic Load Yahya Chusna Arif ¹, Indhana Sudiharto ², Farit Ardiansyah 3 1 Dosen Jurusan Teknik Elektro Industri ²

Lebih terperinci

ANALISIS KEBUTUHAN CAPACITOR BANK BESERTA IMPLEMENTASINYA UNTUK MEMPERBAIKI FAKTOR DAYA LISTRIK DI POLITEKNIK KOTA MALANG

ANALISIS KEBUTUHAN CAPACITOR BANK BESERTA IMPLEMENTASINYA UNTUK MEMPERBAIKI FAKTOR DAYA LISTRIK DI POLITEKNIK KOTA MALANG M. Fahmi Hakim, Analisis Kebutuhan Capacitor Bank, Hal 105-118 ANALISIS KEBUTUHAN CAPACITOR BANK BESERTA IMPLEMENTASINYA UNTUK MEMPERBAIKI FAKTOR DAYA LISTRIK DI POLITEKNIK KOTA MALANG Muhammad Fahmi Hakim

Lebih terperinci

PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK

PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK 1. Konsep Dasar a. Arus dan Rapat Arus Sebuah arus listrik i dihasilkan jika sebuah

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA Pembangkit Harmonisa Beban Listrik Rumah Tangga. Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah

BAB 2 TINJAUAN PUSTAKA Pembangkit Harmonisa Beban Listrik Rumah Tangga. Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah 24 BAB 2 TINJAUAN PUSTAKA 2.1. Pembangkit Harmonisa Beban Listrik Rumah Tangga Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah tangga diantaranya, switch-mode power suplay pada TV,

Lebih terperinci

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti

BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN. Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti 6 BAB II TRANSFORMATOR DAYA DAN PENGUBAH SADAPAN BERBEBAN 2.1 Sistem Tenaga Listrik Tenaga listrik dibangkitkan dipusat pusat listrik (power station) seperti PLTA, PLTU, PLTD, PLTP dan PLTGU kemudian disalurkan

Lebih terperinci

PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK

PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK 1. Konsep Dasar a. Arus dan Rapat Arus Sebuah arus listrik i dihasilkan jika sebuah muatan netto q lewat melalui suatu penampang penghantar selama

Lebih terperinci

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN

MODUL FISIKA. TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN MODUL ISIKA TEGANGAN DAN ARUS BOLAK-BALIK (AC) DISUSUN OLEH : NENIH, S.Pd SMA ISLAM PB. SOEDIRMAN TEGANGAN DAN ARUS BOLAK-BALIK (AC) 1. SUMBER TEGANGAN DAN ARUS BOLAK-BALIK Sumber tegangan bolak-balik

Lebih terperinci

BAB IV ANALISA POTENSI UPAYA PENGHEMATAN ENERGI LISTRIK PADA GEDUNG AUTO 2000 CABANG JUANDA (JAKARTA)

BAB IV ANALISA POTENSI UPAYA PENGHEMATAN ENERGI LISTRIK PADA GEDUNG AUTO 2000 CABANG JUANDA (JAKARTA) BAB IV ANALISA POTENSI UPAYA PENGHEMATAN ENERGI LISTRIK PADA GEDUNG AUTO 2000 CABANG JUANDA (JAKARTA) 4.1 Pola Penggunaan Energi Daya listrik yang dipasok oleh PT PLN (Persero) ke Gedung AUTO 2000 Cabang

Lebih terperinci

RANGKAIAN ARUS BOLAK-BALIK.

RANGKAIAN ARUS BOLAK-BALIK. Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas

Lebih terperinci

² Dosen Jurusan Teknik Elektro Industri 3 Dosen Jurusan Teknik Elektro Industri

² Dosen Jurusan Teknik Elektro Industri 3 Dosen Jurusan Teknik Elektro Industri 1 Efisiensi Daya Pada Beban Dinamik Dengan Kapasitor Bank Dan Filter Harmonik Bambang Wahyono ¹, Suhariningsih ², Indhana Sudiharto 3 1 Mahasiswa D4 Jurusan Teknik Elektro Industri ² Dosen Jurusan Teknik

Lebih terperinci

PENGENALAN MULTISIM. Created by Albert Daniel

PENGENALAN MULTISIM. Created by Albert Daniel PENGENALAN MULTISIM Multisim adalah program simulasi yang digunakan untuk melakukan simulasi cara kerja sebuah rangkaian elektronika. Program multisim pertama kali dibuat oleh perusahaan yang bernama Electronics

Lebih terperinci

Tarif dan Koreksi Faktor Daya

Tarif dan Koreksi Faktor Daya Tarif dan Koreksi Faktor Daya Dr. Giri Wiyono, M.T. Jurusan Pendidikan Teknik Elektro, Fakultas Teknik Universitas Negeri Yogyakarta HP: 0812 274 5354 giriwiyono @uny.ac.id Tujuan: Mahasiswa dapat: 1.

Lebih terperinci

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan RANGKAIAN ARUS BOLAK-BALIK Arus bolak-balik atau Alternating Current (AC) yaitu arus listrik yang besar dan arahnya yang selalu berubah-ubah secara periodik. 1. Sumber Arus Bolak-balik Sumber arus bolak-balik

Lebih terperinci

PENDAHULUAN. Adapun tampilan Program ETAP Power Station sebagaimana tampak ada gambar berikut:

PENDAHULUAN. Adapun tampilan Program ETAP Power Station sebagaimana tampak ada gambar berikut: PENDAHULUAN Dalam perancangan dan analisis sebuah sistem tenaga listrik, sebuah software aplikasi sangat dibutuhkan untuk merepresentasikan kondisi real.hal ini dikarenakan sulitnya meng-uji coba suatu

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Fisika

K13 Revisi Antiremed Kelas 12 Fisika K13 Revisi Antiremed Kelas 12 Fisika Listrik Arus Bolak-balik - Soal Doc. Name: RK13AR12FIS0401 Version: 2016-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi

Lebih terperinci

BAB III KETIDAKSEIMBANGAN BEBAN

BAB III KETIDAKSEIMBANGAN BEBAN 39 BAB III KETIDAKSEIMBANGAN BEBAN 3.1 Sistem Distribusi Awalnya tenaga listrik dihasilkan di pusat-pusat pembangkit seperti PLTA, PLTU, PLTG, PLTGU, PLTP, dan PLTP dan yang lainnya, dengan tegangan yang

Lebih terperinci

AUTOMATIC POWER FACTOR CONTROL (APFR) CAPACITOR SHUNT UNTUK OPTIMALISASI DAYA REAKTIF MENGGUNAKAN METODE INVOICE (CASE STUDY PDAM)

AUTOMATIC POWER FACTOR CONTROL (APFR) CAPACITOR SHUNT UNTUK OPTIMALISASI DAYA REAKTIF MENGGUNAKAN METODE INVOICE (CASE STUDY PDAM) AUTOMATIC POWER FACTOR CONTROL (APFR) CAPACITOR SHUNT UNTUK OPTIMALISASI DAYA REAKTIF MENGGUNAKAN METODE INVOICE (CASE STUDY PDAM) Safrizal Department of Electrical Engineering University of Islam Nahdlatul

Lebih terperinci

BAB II. Dasar Teori. = muatan elektron dalam C (coulombs) = nilai kapasitansi dalam F (farad) = besar tegangan dalam V (volt)

BAB II. Dasar Teori. = muatan elektron dalam C (coulombs) = nilai kapasitansi dalam F (farad) = besar tegangan dalam V (volt) BAB I Pendahuluan Kapasitor (Kondensator) yang dalam rangkaian elektronika dilambangkan dengan huruf C adalah suatu alat yang dapat menyimpan energi/muatan listrik di dalam medan listrik, dengan cara mengumpulkan

Lebih terperinci

MENGENAL ALAT UKUR. Amper meter adalah alat untuk mengukur besarnya arus listrik yang mengalir dalam penghantar ( kawat )

MENGENAL ALAT UKUR. Amper meter adalah alat untuk mengukur besarnya arus listrik yang mengalir dalam penghantar ( kawat ) MENGENAL ALAT UKUR AMPER METER Amper meter adalah alat untuk mengukur besarnya arus listrik yang mengalir dalam penghantar ( kawat ) Arus = I satuannya Amper ( A ) Cara menggunakannya yaitu dengan disambung

Lebih terperinci

PEMBAHASAN. R= ρ l A. Secara matematis :

PEMBAHASAN. R= ρ l A. Secara matematis : PEMBAHASAN 1. Rangkaian DC a.) Dasar-dasar Rangkaian Listrik Resistor (hambatan) Resistor adalah komponen elektronik dua saluran yang didesain untuk menahan arus listrik dengan memproduksi penurunan tegangan

Lebih terperinci

Percobaan 1 Hubungan Lampu Seri Paralel

Percobaan 1 Hubungan Lampu Seri Paralel Percobaan 1 Hubungan Lampu Seri Paralel A. Tujuan Mahasiswa mampu dan terampil melakukan pemasangan instalasi listrik secara seri, paralel, seri-paralel, star, dan delta. Mahasiswa mampu menganalisis rangkaian

Lebih terperinci

PERBAIKAN REGULASI TEGANGAN

PERBAIKAN REGULASI TEGANGAN JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER PERBAIKAN REGULASI TEGANGAN Distribusi Tenaga Listrik Ahmad Afif Fahmi 2209 100 130 2011 REGULASI TEGANGAN Dalam Penyediaan

Lebih terperinci

BAB IV ANALISIS DATA

BAB IV ANALISIS DATA BAB IV ANALISIS DATA 4.1. Pengumpulan Data Sebelum dilakukan perhitungan dalam analisa data, terlebih dahulu harus mengetahui data data apa saja yang dibutuhkan dalam perhitungan. Data data yang dikumpulkan

Lebih terperinci

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis

Bahan Ajar Ke 1 Mata Kuliah Analisa Sistem Tenaga Listrik. Diagram Satu Garis 24 Diagram Satu Garis Dengan mengasumsikan bahwa sistem tiga fasa dalam keadaan seimbang, penyelesaian rangkaian dapat dikerjakan dengan menggunakan rangkaian 1 fasa dengan sebuah jalur netral sebagai

Lebih terperinci

BAB II DASAR TEORI. konsumsi energi pada bangunan gedung dan mengenali cara cara untuk

BAB II DASAR TEORI. konsumsi energi pada bangunan gedung dan mengenali cara cara untuk 6 BAB II DASAR TEORI 2.1. AUDIT ENERGI Audit energi adalah teknik yang dipakai untuk menghitung besarnya konsumsi energi pada bangunan gedung dan mengenali cara cara untuk penghematan. Tujuan suatu audit

Lebih terperinci

ANALISA RUGI-RUGI PADA GARDU 20/0.4 KV

ANALISA RUGI-RUGI PADA GARDU 20/0.4 KV ANALISA RUGI-RUGI PADA GARDU 20/0.4 KV Oleh Endi Sopyandi Dasar Teori Dalam penyaluran daya listrik banyak digunakan transformator berkapasitas besar dan juga bertegangantinggi. Dengan transformator tegangan

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Induksi Elektromagnet Nama : Kelas/No : / - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS BOLAK-BALIK Induksi

Lebih terperinci

BAB III ALAT PENGUKUR DAN PEMBATAS (APP)

BAB III ALAT PENGUKUR DAN PEMBATAS (APP) BAB III ALAT PENGUKUR DAN PEMBATAS (APP) 3.1 Alat Ukur Listrik Besaran listrik seperti arus, tegangan, daya dan lain sebagainya tidak dapat secara langsung kita tanggapi dengan panca indra kita. Untuk

Lebih terperinci

MODUL 1 PRINSIP DASAR LISTRIK

MODUL 1 PRINSIP DASAR LISTRIK MODUL 1 PINSIP DASA LISTIK 1.Dua Bentuk Arus Listrik Penghasil Energi Listrik o o Arus listrik bolak-balik ( AC; alternating current) Diproduksi oleh sumber tegangan/generator AC Arus searah (DC; direct

Lebih terperinci

BAB IV ANALISA DAN PERENCANAAN SISTEM INSTALASI LISTRIK

BAB IV ANALISA DAN PERENCANAAN SISTEM INSTALASI LISTRIK 57 BAB IV ANALISA DAN PERENCANAAN SISTEM INSTALASI LISTRIK 4.1. Sistem Instalasi Listrik Sistem instalasi listrik di gedung perkantoran Talavera Suite menggunakan sistem radial. Sumber utama untuk suplai

Lebih terperinci

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator,

BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK. karena terdiri atas komponen peralatan atau mesin listrik seperti generator, BAB II JARINGAN DISTRIBUSI TENAGA LISTRIK II.1. Sistem Tenaga Listrik Struktur tenaga listrik atau sistem tenaga listrik sangat besar dan kompleks karena terdiri atas komponen peralatan atau mesin listrik

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Listrik Arus Bolak Balik - Latihan Soal Doc. Name: AR12FIS0699 Version: 2011-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi: v =140

Lebih terperinci

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder

TRANSFORMATOR. Bagian-bagian Tranformator adalah : 1. Lilitan Primer 2. Inti besi berlaminasi 3. Lilitan Sekunder TRANSFORMATOR PENGERTIAN TRANSFORMATOR : Suatu alat untuk memindahkan daya listrik arus bolak-balik dari suatu rangkaian ke rangkaian lainnya secara induksi elektromagnetik (lewat mutual induktansi) Bagian-bagian

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang mengubah suatu nilai arus maupun tegangan (energi listrik AC) pada satu rangkaian listrik atau lebih ke rangkaian listrik

Lebih terperinci

BAB III PENGUMPULAN DAN PENGOLAHAN DATA. Dalam system tenaga listrik, daya merupakan jumlah energy listrik yang

BAB III PENGUMPULAN DAN PENGOLAHAN DATA. Dalam system tenaga listrik, daya merupakan jumlah energy listrik yang BAB III PENGUMPULAN DAN PENGOLAHAN DATA 3.1 Daya 3.1.1 Daya motor Secara umum, daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam system tenaga listrik, daya merupakan jumlah energy listrik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Umum Pada dasarnya penggunaan energi listrik di industri dibagi menjadi dua pemakaian yaitu pemakaian langsung untuk proses produksi dan pemakaian untuk penunjang proses produksi.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Energi dan Daya Listrik Listrik merupakan salah satu energi yang sangat penting bagi kehidupan umat manusia dan tidak dapat dipisahkan. Hal ini disebabkan karena hampir sebagian

Lebih terperinci

STUDI PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PT. ASIAN PROFILE INDOSTEEL

STUDI PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PT. ASIAN PROFILE INDOSTEEL STUDI PEMASANGAN KAPASITOR BANK UNTUK PERBAIKAN FAKTOR DAYA PT. ASIAN PROFILE INDOSTEEL Ifhan Firmansyah-2204 100 166 Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih-Sukolilo,

Lebih terperinci

BAB 3 METODE PENELITIAN. Serdang. Dalam memenuhi kebutuhan daya listrik industri tersebut menggunakan

BAB 3 METODE PENELITIAN. Serdang. Dalam memenuhi kebutuhan daya listrik industri tersebut menggunakan BAB 3 METODE PENELITIAN 3.1 Lokasi Penelitian Penelitian yang dilakukan adalah studi kasus pada pabrik pengolahan plastik. Penelitian direncanakan selesai dalam waktu 6 bulan dan lokasi penelitian berada

Lebih terperinci

BAB 4 ANALISIS HASIL PENGUKURAN

BAB 4 ANALISIS HASIL PENGUKURAN BAB 4 ANALISIS HASIL PENGUKURAN Skripsi ini bertujuan untuk melihat perbedaan hasil pengukuran yang didapat dengan menggunakan KWh-meter analog 3 fasa dan KWh-meter digital 3 fasa. Perbandingan yang dilihat

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4

LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 LAPORAN PRAKTIKUM TEKNIK TENAGA LISTRIK NO LOAD AND LOAD TEST GENERATOR SINKRON EXPERIMENT N.2 & N.4 DOSEN PEMBIMBING : Bp. DJODI ANTONO, B.Tech. Oleh: Hanif Khorul Fahmy LT-2D 3.39.13.3.09 PROGRAM STUDI

Lebih terperinci

COS PHI (COS φ) METER

COS PHI (COS φ) METER COS PHI (COS φ) METER Makalah Ini Disusun Untuk Memenuhi Tugas Mata Kuliah Alat Ukur Dan Pengukuran Listrik Dosen Pengampu Achmad Hardito, B.Eng., M.Kom. Disusun Oleh kelompok 3 kelas LT 1D : 1. 2. 3.

Lebih terperinci

Nama : Taufik Ramuli NIM :

Nama : Taufik Ramuli NIM : Nama : Taufik Ramuli NIM : 1106139866 Rangkaian RLC merupakan rangkaian baik yang dihubungkan dengan paralel pun secara seri, namun rangkaian tersebut harus terdiri dari kapasitor; Induktor; dan resistor.

Lebih terperinci

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK FASO DAN impedansi pada ELEMEN-elemen DASA ANGKAIAN LISTIK 1. Fasor Fasor adalah grafik untuk menyatakan magnituda (besar) dan arah (posisi sudut). Fasor utamanya digunakan untuk menyatakan gelombang sinus

Lebih terperinci

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat

BAB II TRANSFORMATOR. elektromagnet. Pada umumnya transformator terdiri atas sebuah inti yang terbuat BAB II TRANSFORMATOR 2.1 UMUM Transformator merupakan suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkain listrik ke rangkaian listrik lainnya melalui suatu

Lebih terperinci

tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter

tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter tersebut. 1.5. Manfaat Penelitian Adapun manfaat dari penelitian ini dapat memberikan konsep mengenai penggunaan single

Lebih terperinci

BAB II TRANSFORMATOR

BAB II TRANSFORMATOR 7 BAB II TRANSFORMATOR 2.1 Umum Transformator merupakan suatu alat listrik statis yang dapat memindahkan dan mengubah tegangan dan arus bolak-balik dari suatu atau lebih rangkaian listrik ke rangkaian

Lebih terperinci

PENGARUH PEMASANGAN KAPASITOR SHUNT TERHADAP KONSUMSI DAYA AKTIF INSTALASI LISTRIK

PENGARUH PEMASANGAN KAPASITOR SHUNT TERHADAP KONSUMSI DAYA AKTIF INSTALASI LISTRIK Abstract PENGARUH PEMASANGAN KAPASITOR SHUNT TERHADAP KONSUMSI DAYA AKTIF INSTALASI LISTRIK Oleh : Winasis, Azis Wisnu Widhi Nugraha Program Sarjana Teknik Unsoed Purwokerto The application of shunt capacitor

Lebih terperinci

ANALISIS UPAYA PENURUNAN BIAYA PEMAKAIAN ENERGI LISTRIK PADA LAMPU PENERANGAN

ANALISIS UPAYA PENURUNAN BIAYA PEMAKAIAN ENERGI LISTRIK PADA LAMPU PENERANGAN SSN: 1693-6930 39 ANALSS UPAYA PENUUNAN BAYA PEMAKAAN ENEG LSTK PADA LAMPU PENEANGAN Slamet Suripto Jurusan Teknik Elektro Fakultas Teknik Universitas Muhamadiyah Yogyakarta Abstrak Keterbatasan sumber

Lebih terperinci

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya. BAB II TRANSFORMATOR II.. Umum Transformator merupakan komponen yang sangat penting peranannya dalam sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik elektromagnetis statis yang berfungsi

Lebih terperinci

ANALISA PERBAIKAN FAKTOR DAYA UNTUK PENGHEMATAN BIAYA LISTRIK DI KUD TANI MULYO LAMONGAN

ANALISA PERBAIKAN FAKTOR DAYA UNTUK PENGHEMATAN BIAYA LISTRIK DI KUD TANI MULYO LAMONGAN ANALISA PERBAIKAN FAKTOR DAYA UNTUK PENGHEMATAN BIAYA LISTRIK DI KUD TANI MULYO LAMONGAN Sylvia Handriyani, Adi Soeprijanto, Sjamsjul Anam Jurusan Teknik Elektro FTI - ITS Abstrak Besarnya pemakaian energi

Lebih terperinci

ANALISA PERBANDINGAN R DAN C SEBAGAI PENGGANTI L ( BALLAST ) PADA FLUORESCENT ATAU LAMPU TL ( LAMPU TABUNG ) Yasri

ANALISA PERBANDINGAN R DAN C SEBAGAI PENGGANTI L ( BALLAST ) PADA FLUORESCENT ATAU LAMPU TL ( LAMPU TABUNG ) Yasri ANALISA PERBANDINGAN R DAN C SEBAGAI PENGGANTI L ( BALLAST ) PADA FLUORESCENT ATAU LAMPU TL ( LAMPU TABUNG ) Yasri Program Studi Teknik Elektro Fakultas Teknik Universitas Tanjungpura Pontianak 013 Yasri_st@yahoo.com

Lebih terperinci

PENGGUNAAN MOTOR LISTRIK 3 PHASA SEBAGAI GENERATOR LISTRIK 1 PHASA PADA PEMBANGKIT LISTRIK BERDAYA KECIL

PENGGUNAAN MOTOR LISTRIK 3 PHASA SEBAGAI GENERATOR LISTRIK 1 PHASA PADA PEMBANGKIT LISTRIK BERDAYA KECIL PENGGUNAAN MOTOR LISTRIK 3 PHASA SEBAGAI GENERATOR LISTRIK 1 PHASA PADA PEMBANGKIT LISTRIK BERDAYA KECIL Arwadi Sinuraya*) Abstrak Pembangunan pembangkit listrik dengan daya antara 1kW 10 kw banyak dilaksanakan

Lebih terperinci

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING

BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING BAB II LANDASAN TEORI ANALISA HUBUNG SINGKAT DAN MOTOR STARTING 2.1 Jenis Gangguan Hubung Singkat Ada beberapa jenis gangguan hubung singkat dalam sistem tenaga listrik antara lain hubung singkat 3 phasa,

Lebih terperinci

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart 1. Hipotesis tentang gejala kelistrikan dan ke-magnetan yang disusun Maxwell ialah... a. perubahan medan listrik akan menghasilkan medan magnet b. di sekitar muatan listrik terdapatat medan listrik c.

Lebih terperinci

Perbaikan Tegangan untuk Konsumen

Perbaikan Tegangan untuk Konsumen Perbaikan Tegangan untuk Konsumen Hasyim Asy ari, Jatmiko, Ivan Bachtiar Rivai Teknik Elektro Universitas Muhammadiyah Surakarta Abstrak Salah satu persyaratan keandalan sistem penyaluran tenaga listrik

Lebih terperinci

ANALISA PERBAIKAN FAKTOR DAYA UNTUK PENGHEMATAN BIAYA LISTRIK DI KUD TANI MULYO LAMONGAN

ANALISA PERBAIKAN FAKTOR DAYA UNTUK PENGHEMATAN BIAYA LISTRIK DI KUD TANI MULYO LAMONGAN ANALISA PERBAIKAN FAKTOR DAYA UNTUK PENGHEMATAN BIAYA LISTRIK DI KUD TANI MULYO LAMONGAN Sylvia Handriyani 2200109034 LATAR BELAKANG Rendahnya faktor daya listrik pada KUD Tani Mulyo Lamongan Besarnya

Lebih terperinci

Gambar 2.1 Skema Sistem Tenaga Listrik

Gambar 2.1 Skema Sistem Tenaga Listrik Generator Transformator Pemutus Tenaga Distribusi sekunder Distribusi Primer 5 BAB II TINJAUAN PUSTAKA 2.1 Sistem Distribusi Tenaga Listrik Secara garis besar, suatu sistem tenaga listrik yang lengkap

Lebih terperinci

[Listrik Dinamis] Lembar Kerja Siswa (LKS) Fisika Kelas X Semester 2 Waktu : 48 x 45 menit UNIVERSITAS NEGERI JAKARTA NAMA ANGGOTA :

[Listrik Dinamis] Lembar Kerja Siswa (LKS) Fisika Kelas X Semester 2 Waktu : 48 x 45 menit UNIVERSITAS NEGERI JAKARTA NAMA ANGGOTA : Lembar Kerja Siswa (LKS) Fisika Kelas X Semester 2 Waktu : 48 x 45 menit [Listrik Dinamis] NAMA ANGGOTA : IRENE TASYA ANGELIA (3215149632) SARAH SALSABILA (3215141709) SABILA RAHMA (3215141713) UNIVERSITAS

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan

BAB 2 TINJAUAN PUSTAKA. Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan BAB 2 TINJAUAN PUSTAKA 2.1. Sumber Harmonisa Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan elektronik yang didalamnya banyak terdapat penggunaan komponen semi konduktor pada

Lebih terperinci

BAB I PENDAHULUAN. pemasangan atau pembuatan barang-barang elektronika dan listrik.

BAB I PENDAHULUAN. pemasangan atau pembuatan barang-barang elektronika dan listrik. BAB I PENDAHULUAN 1.1. Latar Belakang Pengukuran merupakan suatu aktifitas dan atau tindakan membandingkan suatu besaran yang belum diketahui nilainya atau harganya terhadap besaran lain yang sudah diketahui

Lebih terperinci

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII gaya F. Jika panjang kawat diperpendek setengah kali semula dan kuat arus diperbesar dua kali semula, maka besar gaya yang dialami kawat adalah. Medan Magnet

Lebih terperinci

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik Menganalisis rangkaian listrik Mendeskripsikan konsep rangkaian listrik Listrik berasal dari kata elektron yang berarti batu ambar. Jika sebuah batu ambar digosok dengan kain sutra, maka batu akan dapat

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Blok Diagram dan Alur Rangkaian Blok diagram dan alur rangkaian ini digunakan untuk membantu menerangkan proses penyuplaian tegangan maupun arus dari sumber input PLN

Lebih terperinci

BAB 1 PENDAHULUAN. tertentu seperti beban non linier dan beban induktif. Akibat yang ditimbulkan adalah

BAB 1 PENDAHULUAN. tertentu seperti beban non linier dan beban induktif. Akibat yang ditimbulkan adalah BAB 1 PENDAHULUAN 1.1 Latar belakang masalah Kualitas daya listrik sangat dipengaruhi oleh penggunaan jenis-jenis beban tertentu seperti beban non linier dan beban induktif. Akibat yang ditimbulkan adalah

Lebih terperinci

Pemasangan Kapasitor Bank untuk Perbaikan Faktor Daya

Pemasangan Kapasitor Bank untuk Perbaikan Faktor Daya Ahmad Yani, Pemasangan... Pemasangan untuk Perbaikan Faktor Daya Ahmad Yani Staf Pengajar Teknik Elektro STT-Harapan email: yani.ahmad34@yahoo.com Abstrak seri dan parallel pada system daya menimbulkan

Lebih terperinci

BAB II LANDASAN TEORI Dan TINJAUAN PUSTAKA

BAB II LANDASAN TEORI Dan TINJAUAN PUSTAKA BAB II LANDASAN TEORI Dan TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka Penelitian ini didasari oleh penelitian yang dilakukan oleh Muhammad Fahmi Hakim yang berjudul Analisis Kebutuhan Capasitor Bank beserta

Lebih terperinci

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi BAB II GENERATOR SINKRON 2.1. UMUM Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator) merupakan

Lebih terperinci

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen

TINJAUAN PUSTAKA. Dalam menyalurkan daya listrik dari pusat pembangkit kepada konsumen TINJAUAN PUSTAKA 2.1. Sistem Distribusi Sistem distribusi merupakan keseluruhan komponen dari sistem tenaga listrik yang menghubungkan secara langsung antara sumber daya yang besar (seperti gardu transmisi)

Lebih terperinci

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa

BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA. 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa BAB III SISTEM KELISTRIKAN MOTOR INDUKSI 3 PHASA 3.1 Rangkaian Ekivalen Motor Induksi Tiga Fasa Telah disebutkan sebelumnya bahwa motor induksi identik dengan sebuah transformator, tentu saja dengan demikian

Lebih terperinci

BAB II SISTEM DAYA LISTRIK TIGA FASA

BAB II SISTEM DAYA LISTRIK TIGA FASA BAB II SISTEM DAYA LISTRIK TIGA FASA Jaringan listrik yang disalurkan oleh PLN ke konsumen, merupakan bagian dari sistem tenaga listrik secara keseluruhan. Secara umum, sistem tenaga listrik terdiri dari

Lebih terperinci