Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan Metode Backpropagation dengan Input Citra Kamera Digital

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan Metode Backpropagation dengan Input Citra Kamera Digital"

Transkripsi

1 Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan Metode Backpropagation dengan Input Citra Kamera Digital Dompak Petrus Sinambela 1 Sampe Hotlan Sitorus 2 Universitas Mpu Tantular Jakarta. Universitas Tanjungpura Pontianak-Kalbar Jl. Cipinang Besar no 2 Jakarta Telp. (021) Fax Abstrak Pada saat proses pengajuan kredit, nasabah akan mengisi formulir yang ditulis dengan cara tulis tangan, kemudian costumer service melakukan proses input secara manual ke database dengan komputer. Sistem dan program yang dibuatkan dapat mengenali karakter tulisan tangan tersebut kedalam bentuk ASCII dengan menggunakan jaringan syaraf tiruan, sehingga costumer service tidak perlu lagi melakukan proses input secara manual. Data citra yang sudah dilakukan pengolahan citra dilatih dengan menggunakan algoritma pembelajaran backpropagation. Bobot-bobot yang sudah dilatih akan dijadikan sebagai bobot-bobot acuan yang sudah terlatih dan akan digunakan dalam pengenalan karakter tulisan tangan. Hasil yang diperoleh setelah dilakukan pengujian sample tulisan tangan dari 5 orang, menunjukkan bahwa proses input data tulisan tangan di formulir pengajuan kredit ke komputer dapat dilakukan dengan program jaringan syaraf tiruan yang menggunakan algoritma pembelajaran backpropagation. Kata kunci: neural network, backpropagation, skeletonisasi, pengolahan citra Abstract At the time of the credit application process, customers will fill out a form that was written by hand writing, then the customer service process manually input into the computer database. Systems and programs that can be made to recognize the handwritten characters into ASCII form by using artificial neural networks, so that customer service no longer have to manually input process. Image data that has been trained to do image processing using backpropagation learning algorithm. Weights that have been trained to serve as a reference weights that have been trained and will be used in handwritten character recognition. The results obtained after testing samples of handwriting 5 people, shows that the process of handwriting data input in the credit application form to a computer can be done with a program that uses neural network backpropagation learning algorithm. Keywords: neural network, backpropagation, skeletonisasi, image processing 1. Pendahuluan Kemajuan teknologi di bidang komputer saat ini sangat pesat terutama di bidang kecerdasan buatan (artificial inteligence), yang salah satu terapannya adalah sistem Jaringan syaraf tiruan. Dengan data citra digital, sistem jaringan syaraf tiruan dapat melakukan pengolahan citra sehingga dapat mengenal karakter tulisan tangan ke dalam bentuk digital standar ASCII (data komputer). Dalam sebuah perusahaan perbankan, masih ditemukan formulir yang akan diisi oleh nasabah maupun pihak bank secara manual. Formulir tersebut akan diisi data dengan cara menuliskan didalamnya, data tersebut menjadi input ke komputer. Banyak keunggulan jika data dapat diproses secara digital komputer, mudah untuk pencarian, pengolahan dan dokumentasi. Kondisi tersebut membutuhkan waktu yang lama dan tidak efisien, sehingga mengakibatkan antrian yang cukup panjang. Agar fokus ke permasalahan, maka dilakukan pembatasan masalah yaitu sebagai berikut: Pengenalan tulisan tangan hanya untuk karakter huruf capital jenis tulisan latin dan angka latin. Dan Perancangan aplikasi dengan sistem jaringan syaraf tiruan metode pembelajaran algoritma backpropagation.karakter tulisan tangan ditulis pada formulir pengajuan kredit dengan input citra digital hasil kamera scanner. Proses pengenalan karakter tulisan tangan hanya difokuskan pada formulir

2 60 pengajuan kredit dengan field Nama Lengkap dan No Handphone. Perancangan sistem jaringan syaraf tiruan menggunakan bahasa pemograman Matlab (Matrix Laboratory) dan Jumlah tulisan tangan yang digunakan dibatasi dengan jumlah 5 orang. 2. Metodologi Penelitian Metodologi penelitian dilakukan dengan mengumpulkan data terlebih dahulu. Proses pengumpulan data dilakukan dengan dua cara yaitu : studi kepustakaan dan studi lapangan. Studi kepustakaan dilakukan untuk memahami proses perancangan sistem seperti mengumpulkan teori-teori yang berhubungan dengan pada jaringan saraf tiruan, input citra kamera digital dan pengenalan karakter tulisan tangan latin. Studi lapangan dilakukan mencari bahan penelitian dengan menuju langsung ke lokasi penelitian untuk melakukan : sampel dan investigasi yaitu dengan meminta dan melihat dokumen yang digunakan dalam proses pengajuan kredit. wawancara yaitu mengajukan beberapa pertanyaan kepada pihak yang bersangkutan seputar objek penelitian dan observasi yaitu dengan melakukan pengamatan secara langsung terhadap kegiatan proses pengajuan kredit, seperti nasabah mengisi formulir yang ditulis dengan cara tulis tangan, kemudian costumer service melakukan proses input secara manual ke database dengan komputer. Metode perancangan yang dilakukan terdiri dari perancangan flow map, data flow diagram (DFD), perancangan database dan perancangan interface. Data Flow Diagram (DFD) sering digunakan untuk menggambarkan suatu sistem yang telah ada atau sistem baru yang akan dikembangkan secara logika tanpa mempertimbangkan lingkungan fisik dimana data tersebut mengalir atau lingkungan fisik dimana data tersebut disimpan. Data Flow Diagram pada sistem yang berjalan dapat digambarkan seperti dibawah ini. Gambar 1 Flow Map Arus pengajuan kredit pada Bank Gambar 2 Diagram Konteks

3 61 Interface untuk pengenalan karakter tulisan tangan dibuat menyerupai formulir pengajuan kredit yaitu dengan kotak per kotak yang bertujuan untuk memudahkan cropping dan pengolahan citra. Seperti penulis jelaskan pada batasan masalah pada bab sebelumnya, program dirancang hanya untuk pengenalan field nama lengkap dan nomor handphone. Sistem yang diusulkan disediakan interface untuk image processing yang bertujuan untuk mengetahui setiap langkah-langkah untuk pengolahan citra hingga menghasilkan data input yang direpresentasikan menjadi bernilai angka. Interface program dapat dilihat pada gambar 7 dibawah ini. Gambar 3 interface program Gambar 4 Interface program saat proses Image Processing Gambar 5 program saat proses Convert Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan (Dompak Petrus Sinambela)

4 62 Jaringan saraf tiruan dibentuk dengan input 25 neuron, hidden layer 12 neuron dan output layer 7 neuron. Arsitektur jaringan saraf tiruan ini dapat dilihat pada gambar 6 dibawah ini. Gambar 6 Arsitektur Backpropagation Jaringan syaraf tiruan akan dilatih dengan menggunakan fungsi aktivasi sigmoid biner, learning rate=0.5, dan pelatihan akan dihentikan pada epoh Analisis dan Hasil 3.1. Analisis Jaringan syaraf tiruan didefenisikan sebagai susunan dari elemen-elemen penghitung yang disebut neuron atau titik (node) yang saling terhubung guna dimodelkan untuk meniru fungsi otak manusia. Sistem jaringan syaraf tiruan disirikan dengan adanya proses pembelajaran (learning) yang berfungsi untuk mengadaptasi parameter-parameter jaringannya.

5 63 Gambar 7. Jaringan syaraf manusia Salah satu bagian terpenting dari konsep jaringan syaraf adalah terjadinya proses pembelajaran. Tujuan utama dari proses pembelajaran adalah melakukan pengaturan terhadap bobot-bobot yang ada pada jaringan syaraf, sehingga diperoleh bobot akhir yang tepat sesuai dengan pola data yang dilatih. Selama proses pembelajaran akan terjadi perbaikan bobot-bobot berdasarkan algoritma tertentu. Nilai bobot akan bertambah, jika informasi yang diberikan oleh neuron yang bersangkutan tersampaikan, sebaliknya jika informasi tidak disampaikan oleh suatu neuron ke neuron yang lain, maka nilai bobot yang menghubungkan keduanya akan dikurangi. Pada saat pembelajaran dilakukan pada input yang berbeda, maka nilai bobot akan diubah secara dinamis hingga mencapai mengindikasikan bahwa tiap-tiap input telah berhubungan dengan output yang diharapkan. Cara berlangsungnya pembelajaran atau pelatihan Jaringan syaraf tiruan dikelompokkan menjadi 3 yaitu: a. Pembelajaran terawasi (Supervised Learning) Pada metode ini, setiap pola yang diberikan kedalam jaringan syaraf tiruan telah diketahui outputnya. Selisih antara pola output aktual (output yang dihasilkan) dengan pola output yang dikehendaki (output target) yang disebut error digunakan untuk mengoreksi bobot jaringan syaraf tiruan hingga mampu menghasilkan output sedekat mungkin dengan target yang telah diketahui oleh jaringan syaraf tiruan. Apabila nilai error ini masih cukup besar, mengindikasikan bahwa masih perlu dilakukan lebih banyak pembelajaran lagi. Contoh pembelajaran terawasi adalah: Hebbian, Perceptron, ADALINE, Boltzman, Hopfield, dan Backpropagation. Untuk itu, pada tulisan ini pengenalan karakter tulisan tangan akan menggunakan algoritma pembelajaran Backpropagation. b. Pembelajaran tak terawasi (Unsupervised Learning) Pada metode ini, tidak memerlukan target output. Pada metode ini tidak dapat ditentukan hasil seperti apakah yang diharapkan selama proses pembelajaran. Selama proses pembelajaran, nilai bobot disusun dalam suatu range tertentu tergantung pada nilai input yang diberikan. Tujuan pembelajaran ini adalah mengelompokkan unit-unit ynag hampir sama dalam suatu area tertentu. Pembelajaran ini biasanya cocok untuk pengelompokan (kelasifikasi) pola. Contoh algoritma ini adalah: Competitive, Hebbian, Kohonen, LVQ (Learning Vector Quantization), Neocognitron. c. Pembelajaran Hibrida (Hybrid Learning) Merupakan kombinasi dari metode pembelajaran supervised learning dan unsupervised learning. Sebagian dari bobot-bobotnya ditentukan melalui pembelajaran terawasi dan sebagian lainnya melalui pembelajaran tak terawasi. Contoh algoritma jaringan syaraf tiruan yang menggunkan metode ini adalah algoritma Radial Basis Function (RBF). Didalam jaringan backpropagation, setiap unit yang berada di lapisan input terhubung dengan setiap unit yang ada di lapisan tersembunyi terhubung dengan setiap unit yang ada di lapisan output. Jaringan ini terdiri dari banyak lapisan (multilayer network). Ketika jaringan diberikan pola masukan sebagai pola pelatihan, maka pola tersebut menuju unit-unit lapisan tersembunyi untuk selanjutnya keluaran akan memberikan respon sebagai keluaran jaringan syaraf tiruan. Saat hasil keluaran tidak sesuai dengan yang diharapkan, maka keluaran akan disebarkan mundur (backward) pada lapisan tersembunyi kemudian dari lapisan tersembunyi menuju lapisan masukan. Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan (Dompak Petrus Sinambela)

6 64 Setiap unit di dalam layer input pada jaringan Backpropagation selalu terhubung dengan setiap unit yang berada pada layer tersembunyi, demikian juga setiap unit pada layer tersembunyi selalu dari banyak lapisan (multilayer network), yaitu: 1. Lapisan input (1 buah), yang terdiri dari 1 hingga n unit input. 2. Lapisan tersembunyi (minimal 1 buah), yang terdiri dari 1 hingga p unit tersembunyi. 3. Lapisan output (1 buah), yang terdiri dari 1 hingga m unit output. Gambar 8 Arsitektur Jaringan Backpropagation Aturan pelatihan jaringan backpropagation terdiri dari 2 tahapan, feedforward dan backward propagation. Pada jaringan diberikan sekumpulan contoh pelatihan yang disebut set pelatihan. Set pelatihan ini digambarkan dengan sebuah vector feature yang disebut dengan vector input yang diasosiasikan dengan sebuah output yang menjadi target pelatihannya. Untuk pelatihan jaringan backpropagation ini, dapat dilakukan dengan algoritma sebagai berikut: Inisialisasi bobot (ambil bobot awal dengan nilai random yang cukup kecil) Tetapkan: maksimum Epoh, Target Error, dan Learning Rate (α). Inisialisasikan: Epoh = 0. Kerjakan langkah-langkah berikut selama (Epoh < maksimum Epoh) dan (MSE < Target Error): 1. Epoh = Epoh Untuk tiap-tiap pasangan elemen yang akan dilakukan pembelajaran, kerjakan: Feedforward: a. Tiap-tiap unit input (Xi, i=1, 2, 3., n) menerima sinyal xi dan meneruskan sinyal tersebut ke semua unit pada lapisan yang ada di atasnya (lapisan tersembunyi). b. Tiap-tiap unit pada suatu lapisan tersembunyi (Zi, j=1, 2, 3,.p) menjumlahkan sinyalsinyal input terbobot: n z_in j = b1 j + i=1 x i v ij (1) Gunakan fungsi aktivasi untuk menghitung sinyal outputnya: z j = f (z_in j ) = 1 (2) 1+e z_in j Dan kirimkan sinyal tersebut ke semua unit di lapisan atasnya (unit-unit output). c. Tiap-tiap unit output (Yk, k=1, 2, 3,..m) menjumlahkan sinyal-sinyal input terbobot. p z in k = b2 k + i=1 z i w jk (3) Gunakan fungsi aktivasi untuk menghitung sinyal outputnya: y k = f (y in k ) = 1 1+e y (4) in k Dan kirimkan sinyal tersebut ke semua unit di lapisan atasnya (unit-unit output). Catatan: Langkah (b) dilakukan sebanyak jumlah lapisan tersembunyi. Backward propagation d. Tiap-tiap unit output (Yk, k=1,2,3,..,m) menerima target pola yang berhubungan dengan pola input pembelajaran, hitung informasi errornya: δ2 k = t k y k f (y_in k ) (5) φ2 jk = δ k z j (6) β2 k = δ k (7)

7 65 kemudian hitung koreksi bobot (yang nantinya akan digunakan untuk memperbaiki nilai wjk): w jk = α φ jk (8) Hitung juga koreksi bias (yang nantinya akan digunakan untuk memperbaiki nilai b2k): b2 k = α β k (9) Langkah (d) ini juga dilakukan sebanyak jumlah lapisan tersembunyi, yaitu menghitung informasi error dari suatu lapisan tersembunyi ke lapisan tersembunyi sebelumnya. e. Tiap-tiap unit tersembunyi (Zj, j=1,2,3,.,p) menjumlahkan delta inputnya (dari unit-unit yang berada pada lapisan di atasnya): δ_in j = m k=1 δ i w jk (10) kalikan nilai ini dengan turunan dari fungsi aktivasinya untuk menghitung informasi error: δ1 j = δ_in j f (z_in j ) (11) φ1 ij = δ j x j (12) β1 j = δ1 j (13) kemudian hitung koreksi bobot (yang nantinya akan digunakan untuk memperbaiki nilai vij ): v ij = α φ 1 ij (14) Hitung juga koreksi biasa (yang nantinya akan digunakan untuk memperbaiki nilai b1j ): b1 j = α φ 1 j (15) f. Tiap-tiap unit output (Yk, k=1,2,3,.,m) memperbaiki bias dan bobotnya (j = 0,1,2,.,p): w jk baru = w jk lama + w jk (16) b2 k baru = b2 k lama + b2 k (17) Tiap-tiap unit tersembunyi (Zj, j=1,2,3,..,p) memperbaiki bias dan bobotnya (i=0,1,2,.,n ): v ij baru = v ij lama + v ij (18) b1 j baru = b1 j + b1 j (19) 3. Hitung (MSE) Mean Square Error Setelah dilakukan algoritma tersebut pada jaringan, maka akan didapatkan jaringan yang sudah ditraining. Sehingga untuk melakukan identifikasi, dapat dilakukan dengan langsung memberikan input dan jaringan akan mengklasifikasikannya sesuai dengan bobotbobot yang diperoleh dari proses training sebelumnya. Dimana besar mean square error ditunjukkan persamaan berikut. E = 1 m t 2 j=1 j k y j k 2 (20) m j=1 e 2 j k (21) = 1 2 Untuk mendapatkan data matrik yang akan dijadikan data untuk pelatihan jaringan syaraf tiruan, maupun untuk pengenalan karakter. Dilakukan beberapa pengolahan citra yang bertujuan untuk mendapatkan data yang lebih akurat sesuai dengan flow chart gambar IV-1 dibawah ini. Formulir di scanning 1 Data scanning disimpan dalam format *.jpg 2 Image load 3 Image cropping kotak per kotak 4 Image resize ke ukuran 35 x 35 piksel 5 Merubah warna image dari RGB ke GRAY 6 Merubah warna background menjadi hitam dan warna foreground menjadi putih 7 Skeletonisasi 8 Data Matrik 9 Gambar 9 Flow Chart Pengolahan Citra Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan (Dompak Petrus Sinambela)

8 Hasil Pengenalan karakter tulisan tangan akan dilakukan testing terhadap 5 orang dengan kriteria karakter A~Z dan 0~9 (sampling 5 orang), selanjutnya masing-masing menuliskan nama dan no handphone untuk dilakukan pengenalan. Hasil pengenalan karakter tulisan tangan dapat dilihat di bawah ini. 1. Hasil test untuk orang ke-1 2. Hasil test untuk orang ke-2 3. Hasil test untuk orang ke-3 4. Hasil test untuk orang ke-4

9 67 5. Hasil test untuk orang ke-5 Dari hasil testing diatas, maka didapatkan hasil persentase keakurasian seperti pada tabel berikut. Tabel 1 Hasil test untuk karakter A~Z dan 0~9 Sample Benar Salah % Akurasi Orang ke Orang ke Orang ke Orang ke Orang ke Total Tabel 2 Hasil test untuk field nama lengkap dan no Sample Benar Salah % Akurasi Orang ke Orang ke Orang ke Orang ke Orang ke Total Kesimpulan dan Saran Adapun kesimpulan dari hasil penelitian ini adalah sebagai berikut: hasil pengujian pengenalan karakter tulisan tangan untuk 5 orang, tingkat keakurasian program yaitu sebesar 87.2%. Penentuan nilai learning rate sangat mempengaruhi pergesaran nilai pada bobot-bobot saat proses pelatihan jaringan syaraf tiruan, dimana data bobot v dan bias ke hidden layer yang baru, mengalami pergeseran yang sangat kecil. Sedangkan data bobot w dan bias ke output layer yang baru, mengalami pergesaran nilai yang cukup besar. Nilai input dan jumlah epoh pada saat proses pelatihan jaringan syaraf tiruan mempengaruhi pendekatan nilai ke target output jaringan saraf tiruan dengan menggunakan algoritma backpropagation untuk dapat mengenali tulisan tangan yang ditulis di formulir pengajuan kredit. Adapun saran dari hasil penelitian adalah sebagai berikut : sistem yang dibuat dapat diimplementasikan dengan menambah jumlah karakter tulisan tangan dan jumlah epoh untuk proses pelatihan jaringan syaraf tiruan minimal 100 orang. Hal ini bertujuan untuk memperbaiki bobot-bobot pada jaringan syaraf tiruan. Untuk meningkatkan keakurasian sistem yang dibuat, maka penulis akan terus melakukan riset dan perbaikan. Daftar Pustaka Buku Teks : [1] Hermawan arif. Jaringan Saraf Tiruan dan Aplikasi, Yogyakarta : Andi Offset [2] Siang JJ. Jaringan Saraf Tiruan dan Pemrogramannya menggunakan MathLab. Yogyakarta : Andi Offset [3] Puspitaningrum, Diyah. Pengantar Jaringan Saraf Tiruan. Yogyakarta : Andi Offset [4] Ahmad, Usman, Pengolahan Citra Digital & Teknik Pemrogramannya, Cetakan Pertama, Graha Ilmu, Yogyakarta, Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan (Dompak Petrus Sinambela)

10 68 [5] Basuki, Achmad, Jozua F. Palandi, Fatcurrochman, Pengolahan Citra Digital Menggunakan Visual Basic, Cetakan Pertama, Graha Ilmu, Yogyakarta, [6] Dunteman, G. H., Principal Components Analysis, Sage Publications, [7] Gomes, J. dan Velho, L., Image Processing For Computer Graphics, Translated by Silvio Levy, Springer, Rio de Janeiro, [8] Gonzales, R. C., Digital Image Processing, Addison Wesley Publishing Company., 1992 [9] Hadi R, Pemrograman Windows API dengan Microsoft Visual Basic, PT. Elex Media Komputindo, Jakarta, 2001 [10] Halvorson M, Microsoft Visual Basic 6.0 Professional Step by Step, PT. Elex Media Komputindo, Jakarta, 2000 [11] Munir, Rinaldi, Pengolahan Citra Digital Dengan Pendekatan Algoritmik, Penerbit Informatika, 1992

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT Havid Syafwan Program Studi Manajemen Informatika, Amik Royal, Kisaran E-mail: havid_syafwan@yahoo.com ABSTRAK:

Lebih terperinci

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Sari Indah Anatta Setiawan SofTech, Tangerang, Indonesia cu.softech@gmail.com Diterima 30 November 2011 Disetujui 14 Desember 2011

Lebih terperinci

Architecture Net, Simple Neural Net

Architecture Net, Simple Neural Net Architecture Net, Simple Neural Net 1 Materi 1. Model Neuron JST 2. Arsitektur JST 3. Jenis Arsitektur JST 4. MsCulloh Pitts 5. Jaringan Hebb 2 Model Neuron JST X1 W1 z n wi xi; i1 y H ( z) Y1 X2 Y2 W2

Lebih terperinci

PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER

PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER PEMANFAATAN NEURAL NETWORK PERCEPTRON PADA PENGENALAN POLA KARAKTER Fakultas Teknologi Informasi Universitas Merdeka Malang Abstract: Various methods on artificial neural network has been applied to identify

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK

PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK PENGENALAN HURUF DAN ANGKA PADA CITRA BITMAP DENGAN JARINGAN SARAF TIRUAN METODE PROPAGASI BALIK Naskah Publikasi disusun oleh Zul Chaedir 05.11.0999 Kepada SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER

Lebih terperinci

ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA

ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA Nazla Nurmila, Aris Sugiharto, Eko Adi Sarwoko ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA Nazla Nurmila, Aris Sugiharto, dan Eko Adi Sarwoko Prodi Ilmu Komputer

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 7 BAB 2 TINJAUAN PUSTAKA 2.1 Jaringan Syaraf Biologi Otak manusia memiliki struktur yang sangat kompleks dan memiliki kemampuan yang luar biasa. Otak terdiri dari neuron-neuron dan penghubung yang disebut

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Forecasting Forecasting (peramalan) adalah seni dan ilmu untuk memperkirakan kejadian di masa yang akan datang. Hal ini dapat dilakukan dengan melibatkan data historis dan memproyeksikannya

Lebih terperinci

JARINGAN SYARAF TIRUAN

JARINGAN SYARAF TIRUAN JARINGAN SYARAF TIRUAN 8 Jaringan syaraf adalah merupakan salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak manusia tersebut. Istilah

Lebih terperinci

BAB VIII JARINGAN SYARAF TIRUAN

BAB VIII JARINGAN SYARAF TIRUAN BAB VIII JARINGAN SYARAF TIRUAN A. OTAK MANUSIA Otak manusia berisi berjuta-juta sel syaraf yang bertugas untuk memproses informasi. Tiaptiap sel bekerja seperti suatu prosesor sederhana. Masing-masing

Lebih terperinci

Arsitektur Jaringan Salah satu metode pelatihan terawasi pada jaringan syaraf adalah metode Backpropagation, di mana ciri dari metode ini adalah memin

Arsitektur Jaringan Salah satu metode pelatihan terawasi pada jaringan syaraf adalah metode Backpropagation, di mana ciri dari metode ini adalah memin BACK PROPAGATION Arsitektur Jaringan Salah satu metode pelatihan terawasi pada jaringan syaraf adalah metode Backpropagation, di mana ciri dari metode ini adalah meminimalkan error pada output yang dihasilkan

Lebih terperinci

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,

Lebih terperinci

lalu menghitung sinyal keluarannya menggunakan fungsi aktivasi,

lalu menghitung sinyal keluarannya menggunakan fungsi aktivasi, LAMPIRAN 15 Lampiran 1 Algoritme Jaringan Syaraf Tiruan Propagasi Balik Standar Langkah 0: Inisialisasi bobot (bobot awal dengan nilai random yang paling kecil). Langkah 1: Menentukan maksimum epoch, target

Lebih terperinci

BAB II DASAR TEORI Jaringan Syaraf Tiruan. Universitas Sumatera Utara

BAB II DASAR TEORI Jaringan Syaraf Tiruan. Universitas Sumatera Utara BAB II DASAR TEORI Landasan teori adalah teori-teori yang relevan dan dapat digunakan untuk menjelaskan variabel-variabel penelitian. Landasan teori ini juga berfungsi sebagai dasar untuk memberi jawaban

Lebih terperinci

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA (Studi Eksplorasi Pengembangan Pengolahan Lembar Jawaban Ujian Soal Pilihan Ganda di

Lebih terperinci

BACK PROPAGATION NETWORK (BPN)

BACK PROPAGATION NETWORK (BPN) BACK PROPAGATION NETWORK (BPN) Arsitektur Jaringan Digunakan untuk meminimalkan error pada output yang dihasilkan oleh jaringan. Menggunakan jaringan multilayer. Arsitektur Jaringan Proses belajar & Pengujian

Lebih terperinci

BACK PROPAGATION NETWORK (BPN)

BACK PROPAGATION NETWORK (BPN) BACK PROPAGATION NETWORK (BPN) Arsitektur Jaringan Salah satu metode pelatihan terawasi pada jaringan syaraf adalah metode Backpropagation, di mana ciri dari metode ini adalah meminimalkan error pada output

Lebih terperinci

PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK

PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN Decy Nataliana [1], Sabat Anwari [2], Arief Hermawan [3] Jurusan Teknik Elektro Fakultas Teknologi Industri Institut

Lebih terperinci

PREDIKSI PENDAPATAN ASLI DAERAH KALIMANTAN BARAT MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

PREDIKSI PENDAPATAN ASLI DAERAH KALIMANTAN BARAT MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION PREDIKSI PENDAPATAN ASLI DAERAH KALIMANTAN BARAT MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Dwi Marisa Midyanti Sistem Komputer Universitas Tanjungpura Pontianak Jl Prof.Dr.Hadari Nawawi, Pontianak

Lebih terperinci

Jurnal Informatika Mulawarman Vol 5 No. 1 Februari

Jurnal Informatika Mulawarman Vol 5 No. 1 Februari Jurnal Informatika Mulawarman Vol 5 No. 1 Februari 2010 50 Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Jaringan Syaraf Biologi Jaringan Syaraf Tiruan merupakan suatu representasi buatan dari otak manusia yang dibuat agar dapat mensimulasikan apa yang dipejalari melalui proses pembelajaran

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK Fany Hermawan Teknik Informatika Universitas Komputer Indonesia Jl. Dipatiukur 112-114 Bandung E-mail : evan.hawan@gmail.com

Lebih terperinci

ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENGETAHUI LOYALITAS KARYAWAN

ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENGETAHUI LOYALITAS KARYAWAN ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENGETAHUI LOYALITAS KARYAWAN Jasmir, S.Kom, M.Kom Dosen tetap STIKOM Dinamika Bangsa Jambi Abstrak Karyawan atau tenaga kerja adalah bagian

Lebih terperinci

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL

IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL IMPLEMENTASI SEGMENTASI CITRA DAN ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGENALAN BENTUK BOTOL Andri STMIK Mikroskil Jl. Thamrin No. 122, 124, 140 Medan 20212 andri@mikroskil.ac.id Abstrak

Lebih terperinci

Realisasi Pengenalan Tulisan Tangan Menggunakan Jaringan Syaraf Tiruan dengan Metode Kohonen

Realisasi Pengenalan Tulisan Tangan Menggunakan Jaringan Syaraf Tiruan dengan Metode Kohonen Realisasi Pengenalan Tulisan Tangan Menggunakan Jaringan Syaraf Tiruan dengan Metode Kohonen David Novyanto Candra/0322003 Email: dave_christnc@yahoo.com Jurusan Teknik Elektro, Fakultas Teknik, Jln.Prof.Drg.Suria

Lebih terperinci

JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)

JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Bagian ini membahas jaringan saraf tiruan, pengenalan tulisan tangan, dan algoritma backpropagation. 2. Jaringan Saraf Tiruan Jaringan saraf tiruan (JST)

Lebih terperinci

PENGENAL HURUF TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN METODE LVQ (LEARNING VECTOR QUANTIZATION) By. Togu Sihombing. Tugas Ujian Sarjana

PENGENAL HURUF TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN METODE LVQ (LEARNING VECTOR QUANTIZATION) By. Togu Sihombing. Tugas Ujian Sarjana PENGENAL HURUF TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN METODE LVQ (LEARNING VECTOR QUANTIZATION) By. Togu Sihombing Tugas Ujian Sarjana. Penjelasan Learning Vector Quantization (LVQ) Learning

Lebih terperinci

T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX

T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX T 11 Aplikasi Model Backpropagation Neural Network Untuk Perkiraan Produksi Tebu Pada PT. Perkebunan Nusantara IX Oleh: Intan Widya Kusuma Program Studi Matematika, FMIPA Universitas Negeri yogyakarta

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Jaringan Saraf Tiruan (JST) Jaringan saraf tiruan pertama kali secara sederhana diperkenalkan oleh McCulloch dan Pitts pada tahun 1943. McCulloch dan Pitts menyimpulkan bahwa

Lebih terperinci

PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK

PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK PREDIKSI CURAH HUJAN DI KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian 1, Erlinda Ningsih 2 1 Dosen Teknik Informatika, STMIK Potensi Utama 2 Mahasiswa Sistem Informasi, STMIK

Lebih terperinci

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION ABSTRAK Juventus Suharta (0722026) Jurusan Teknik Elektro

Lebih terperinci

Pengembangan Aplikasi Pengenalan Karaketer Alfanumerik Dengan Menggunakan Algoritma Neural Network Three-Layer Backpropagation

Pengembangan Aplikasi Pengenalan Karaketer Alfanumerik Dengan Menggunakan Algoritma Neural Network Three-Layer Backpropagation Pengembangan Aplikasi Pengenalan Karaketer Alfanumerik Dengan Menggunakan Algoritma Neural Network Three-Layer Backpropagation Andi Wahju Rahardjo Emanuel, Arie Hartono Jurusan S1 Teknik Informatika Fakultas

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 19 BAB III METODOLOGI PENELITIAN 3.1. Kerangka Pemikiran Kerangka pemikiran untuk penelitian ini seperti pada Gambar 9. Penelitian dibagi dalam empat tahapan yaitu persiapan penelitian, proses pengolahan

Lebih terperinci

BAB 2 KONSEP DASAR PENGENAL OBJEK

BAB 2 KONSEP DASAR PENGENAL OBJEK BAB 2 KONSEP DASAR PENGENAL OBJEK 2.1 KONSEP DASAR Pada penelitian ini, penulis menggunakan beberapa teori yang dijadikan acuan untuk menyelesaikan penelitian. Berikut ini teori yang akan digunakan penulis

Lebih terperinci

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION ABSTRAK

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION ABSTRAK IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION Disusun oleh: Togu Pangaribuan 0722087 Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof.Drg. Suria Sumantri, MPH No. 65, Bandung

Lebih terperinci

SATIN Sains dan Teknologi Informasi

SATIN Sains dan Teknologi Informasi SATIN - Sains dan Teknologi Informasi, Vol. 2, No. 1, Juni 2015 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Jaringan Syaraf Tiruan untuk Memprediksi Prestasi

Lebih terperinci

ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI PRODUKTIVITAS PEGAWAI. Jasmir, S.Kom, M.Kom

ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI PRODUKTIVITAS PEGAWAI. Jasmir, S.Kom, M.Kom ANALISA JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI PRODUKTIVITAS PEGAWAI Jasmir, S.Kom, M.Kom Dosen tetap STIKOM Dinamika Bangsa Jambi Abstrak Pegawai atau karyawan merupakan

Lebih terperinci

SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK

SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN Disusun Oleh : Apriliyanto Taufik Betama (1022070) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. drg. Suria Sumantri, MPH, No.

Lebih terperinci

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation 65 Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation Risty Jayanti Yuniar, Didik Rahadi S. dan Onny Setyawati Abstrak - Kecepatan angin dan curah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.6. Jaringan Syaraf Tiruan Jaringan syaraf tiruan atau neural network merupakan suatu sistem informasi yang mempunyai cara kerja dan karakteristik menyerupai jaringan syaraf pada

Lebih terperinci

APLIKASI JARINGAN SARAF TIRUAN UNTUK INVENTARISASI LUAS SUMBER DAYA ALAM STUDI KASUS PULAU PARI

APLIKASI JARINGAN SARAF TIRUAN UNTUK INVENTARISASI LUAS SUMBER DAYA ALAM STUDI KASUS PULAU PARI APLIKASI JARINGAN SARAF TIRUAN UNTUK INVENTARISASI LUAS SUMBER DAYA ALAM STUDI KASUS PULAU PARI Putri Khatami Rizki 1), Muchlisin Arief 2), Priadhana Edi Kresnha 3) 1), 2), 3) Teknik Informatika Fakultas

Lebih terperinci

BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)

BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) BAB IV JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Kompetensi : 1. Mahasiswa memahami konsep Jaringan Syaraf Tiruan Sub Kompetensi : 1. Dapat mengetahui sejarah JST 2. Dapat mengetahui macam-macam

Lebih terperinci

ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK

ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Seminar Nasional Informatika 0 ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian, Purwa Hasan Putra Dosen Teknik Informatika,

Lebih terperinci

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI Oleh Nama : Januar Wiguna Nim : 0700717655 PROGRAM GANDA TEKNIK INFORMATIKA DAN MATEMATIKA

Lebih terperinci

1.1. Jaringan Syaraf Tiruan

1.1. Jaringan Syaraf Tiruan BAB I PENDAHULUAN 1.1. Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan (JST) adalah sistem pemroses informasi yang memiliki karakteristik mirip dengan jaringan syaraf biologi yang digambarkan sebagai berikut

Lebih terperinci

OPTICAL CHARACTER RECOGNIZATION (OCR)

OPTICAL CHARACTER RECOGNIZATION (OCR) LAPORAN JARINGAN SYARAF TIRUAN OPTICAL CHARACTER RECOGNIZATION (OCR) DISUSUN OLEH: DIJAS SCHWARTZ. S (524) FIRNAS NADIRMAN (481) INDAH HERAWATI (520) NORA SISKA PUTRI (511) OKTI RAHMAWATI (522) EKSTENSI

Lebih terperinci

Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Jumlah Pengangguran (Studi Kasus DiKota Padang)

Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Jumlah Pengangguran (Studi Kasus DiKota Padang) Jaringan Syaraf Tiruan Menggunakan Algoritma Backpropagation Untuk Memprediksi Jumlah Pengangguran (Studi Kasus DiKota Padang) Hadi Syahputra Universitas Putra Indonesia YPTK Padang E-mail: hadisyahputra@upiyptk.ac.id

Lebih terperinci

SATIN Sains dan Teknologi Informasi

SATIN Sains dan Teknologi Informasi SATIN - Sains dan Teknologi Informasi, Vol. 2, No., Juni 206 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Jaringan Syaraf Tiruan Peramalan Inventory Barang

Lebih terperinci

BACKPROPAGATION NEURAL NETWORK AS A METHOD OF FORECASTING ON CALCULATION INFLATION RATE IN JAKARTA AND SURABAYA

BACKPROPAGATION NEURAL NETWORK AS A METHOD OF FORECASTING ON CALCULATION INFLATION RATE IN JAKARTA AND SURABAYA BACKPROPAGATION NEURAL NETWORK AS A METHOD OF FORECASTING ON CALCULATION INFLATION RATE IN JAKARTA AND SURABAYA Anggi Purnama Undergraduate Program, Computer Science, 2007 Gunadarma Universiy http://www.gunadarma.ac.id

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan diuraikan materi yang mendukung dalam pembahasan evaluasi implementasi sistem informasi akademik berdasarkan pengembangan model fit HOT menggunakan regresi linier

Lebih terperinci

Analisis Jaringan Saraf Tiruan dengan Metode Backpropagation Untuk Mendeteksi Gangguan Psikologi

Analisis Jaringan Saraf Tiruan dengan Metode Backpropagation Untuk Mendeteksi Gangguan Psikologi Analisis Jaringan Saraf Tiruan dengan Metode Backpropagation Untuk Mendeteksi Gangguan Psikologi Kiki, Sri Kusumadewi Laboratorium Komputasi & Sistem Cerdas Jurusan Teknik Informatika, Fakultas Teknologi

Lebih terperinci

JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENDETEKSI GANGGUAN PSIKOLOGI

JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENDETEKSI GANGGUAN PSIKOLOGI Media Informatika, Vol. 2, No. 2, Desember 2004, 1-11 ISSN: 0854-4743 JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENDETEKSI GANGGUAN PSIKOLOGI Kiki, Sri Kusumadewi Jurusan Teknik Informatika,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perangkat keras komputer berkembang dengan pesat setiap tahunnya selalu sudah ditemukan teknologi yang lebih baru. Meskipun demikian masih banyak hal yang belum dapat

Lebih terperinci

Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation

Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation 1 Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation Reza Subintara Teknik Informatika, Ilmu Komputer, Universitas

Lebih terperinci

Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah Karakter Braille Ke Bentuk Abjad

Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah Karakter Braille Ke Bentuk Abjad The 13 th Industrial Electronics Seminar 2011 (IES 2011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 26, 2011 Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM 3.1 Definisi Masalah Dalam beberapa tahun terakhir perkembangan Computer Vision terutama dalam bidang pengenalan wajah berkembang pesat, hal ini tidak terlepas dari pesatnya

Lebih terperinci

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini.

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini. BAB III METODE PENELITIAN Pada bab ini akan dijelaskan bahan yang digunakan dalam membantu menyelesaikan permasalahan, dan juga langkah-langkah yang dilakukan dalam menjawab segala permasalahan yang ada

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN Bab ini menjelaskan tentang latar belakang, rumusan masalah, batasan masalah, tujuan penelitian, manfaat penelitian, metode penelitian, dan sistematika penulisan dalam penelitian ini.

Lebih terperinci

BAB 3 PERANCANGAN SISTEM. untuk pengguna interface, membutuhkan perangkat keras dan perangkat lunak.

BAB 3 PERANCANGAN SISTEM. untuk pengguna interface, membutuhkan perangkat keras dan perangkat lunak. 29 BAB 3 PERANCANGAN SISTEM 3.1 Gambaran Umum Sistem Pada dasarnya untuk pembuatan aplikasi ini, yakni aplikasi pengenalan suara untuk pengguna interface, membutuhkan perangkat keras dan perangkat lunak.

Lebih terperinci

JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM

JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) ERWIEN TJIPTA WIJAYA, ST, M.KOM INTRODUCTION Jaringan Saraf Tiruan atau JST adalah merupakan salah satu representasi tiruan dari otak manusia yang selalu

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM

IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM IMPLEMENTASI JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION UNTUK MEMPREDIKSI HARGA SAHAM Ayu Trimulya 1, Syaifurrahman 2, Fatma Agus Setyaningsih 3 1,3 Jurusan Sistem Komputer, Fakultas MIPA Universitas

Lebih terperinci

PENGENALAN KARAKTER PADA SURAT MASUK MENGGUNAKAN NEURAL NETWORK BACKPROPAGATION

PENGENALAN KARAKTER PADA SURAT MASUK MENGGUNAKAN NEURAL NETWORK BACKPROPAGATION PENGENALAN KARAKTER PADA SURAT MASUK MENGGUNAKAN NEURAL NETWORK BACKPROPAGATION Rizqia Lestika Atimi Program Studi Teknik Informatika Jurusan Teknik Elektro Fakultas Teknik Universitas Tanjungpura rizqia.lestika@yahoo.com

Lebih terperinci

PENGGUNAAN JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK SELEKSI PENERIMAAN MAHASISWA BARU PADA JURUSAN TEKNIK KOMPUTER DI POLITEKNIK NEGERI SRIWIJAYA

PENGGUNAAN JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK SELEKSI PENERIMAAN MAHASISWA BARU PADA JURUSAN TEKNIK KOMPUTER DI POLITEKNIK NEGERI SRIWIJAYA PENGGUNAAN JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK SELEKSI PENERIMAAN MAHASISWA BARU PADA JURUSAN TEKNIK KOMPUTER DI POLITEKNIK NEGERI SRIWIJAYA Tesis untuk memenuhi sebagian persyaratan mencapai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 JARINGAN SARAF SECARA BIOLOGIS Jaringan saraf adalah salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak

Lebih terperinci

PENGENALAN AKSARA JAWAMENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ)

PENGENALAN AKSARA JAWAMENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ) PENGENALAN AKSARA JAWAMENGGUNAKAN LEARNING VECTOR QUANTIZATION (LVQ) Alfa Ceria Agustina (1) Sri Suwarno (2) Umi Proboyekti (3) sswn@ukdw.ac.id othie@ukdw.ac.id Abstraksi Saat ini jaringan saraf tiruan

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN 32 BAB III ANALISIS DAN PERANCANGAN Pada bab ini akan dibahas tentang analisis sistem melalui pendekatan secara terstruktur dan perancangan yang akan dibangun dengan tujuan menghasilkan model atau representasi

Lebih terperinci

PERKIRAAN PENJUALAN BEBAN LISTRIK MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILENT BACKPROPAGATION (RPROP)

PERKIRAAN PENJUALAN BEBAN LISTRIK MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILENT BACKPROPAGATION (RPROP) PERKIRAAN PENJUALAN BEBAN LISTRIK MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILENT BACKPROPAGATION (RPROP) Apriliyah, Wayan Firdaus Mahmudy, Agus Wahyu Widodo Program Studi Ilmu Komputer Fakultas MIPA Universitas

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR Seminar Nasional Teknologi Informasi dan Multimedia 205 STMIK AMIKOM Yogyakarta, 6-8 Februari 205 IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI

Lebih terperinci

Proses Pembelajaran dengan BackPropagation pada kasus penyakit asma

Proses Pembelajaran dengan BackPropagation pada kasus penyakit asma Proses Pembelajaran dengan BackPropagation pada kasus penyakit asma Oleh Jasmir, S.Kom, M.Kom Dosen tetap STIKOM Dinamika Bangsa Jambi Abstrak Penyakit asma merupakan penyakit yang menyerang pada saluran

Lebih terperinci

Jaringan Syaraf Tiruan

Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan Pendahuluan Otak Manusia Sejarah Komponen Jaringan Syaraf Arisitektur Jaringan Fungsi Aktivasi Proses Pembelajaran Pembelajaran Terawasi Jaringan Kohonen Referensi Sri Kusumadewi

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan Februari 2014 sampai dengan Juli 2014 di

BAB III METODE PENELITIAN. Penelitian ini dilaksanakan Februari 2014 sampai dengan Juli 2014 di BAB III METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan Februari 2014 sampai dengan Juli 2014 di Laboratorium Pemodelan Fisika, Jurusan Fisika, Fakultas Matematika dan Ilmu

Lebih terperinci

SATIN Sains dan Teknologi Informasi

SATIN Sains dan Teknologi Informasi SATIN - Sains dan Teknologi Informasi, Vol. 2, No., Juni 206 SATIN Sains dan Teknologi Informasi journal homepage : http://jurnal.stmik-amik-riau.ac.id Penerapan Jaringan Syaraf Tiruan Untuk Estimasi Needs

Lebih terperinci

RANCANG BANGUN TOOL UNTUK JARINGAN SYARAF TIRUAN (JST) MODEL PERCEPTRON

RANCANG BANGUN TOOL UNTUK JARINGAN SYARAF TIRUAN (JST) MODEL PERCEPTRON RANCANG BANGUN TOOL UNTUK JARINGAN SYARAF TIRUAN (JST) MODEL PERCEPTRON Liza Afriyanti Laboratorium Komputasi dan Sistem Cerdas Jurusan Teknik Informatika, Fakultas Teknologi Industri,Universitas Islam

Lebih terperinci

IDENTIFIKASI RAMBU-RAMBU LALU LINTAS MENGGUNAKAN LEARNING VECTOR QUANTIZATION

IDENTIFIKASI RAMBU-RAMBU LALU LINTAS MENGGUNAKAN LEARNING VECTOR QUANTIZATION IDENTIFIKASI RAMBU-RAMBU LALU LINTAS MENGGUNAKAN LEARNING VECTOR QUANTIZATION RULIAH Program Studi Sistem Informasi Sekolah Tinggi Manajemen Informatika dan Komputer Banjarbaru Jl. A. Yani Km. 33,3 Loktabat

Lebih terperinci

SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION )

SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION ) SIMULASI PENGENALAN TULISAN MENGGUNAKAN LVQ (LEARNING VECTOR QUANTIZATION ) Fachrul Kurniawan, Hani Nurhayati Jurusan Teknik Informatika, Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik

Lebih terperinci

ANALISA NILAI UJIAN MASUK STT WASTUKANCANA BERDASARKAN NILAI UJIAN NASIONAL MENGGUNAKAN METODE BACKPROPAGATION

ANALISA NILAI UJIAN MASUK STT WASTUKANCANA BERDASARKAN NILAI UJIAN NASIONAL MENGGUNAKAN METODE BACKPROPAGATION ANALISA NILAI UJIAN MASUK STT WASTUKANCANA BERDASARKAN NILAI UJIAN NASIONAL MENGGUNAKAN METODE BACKPROPAGATION Program Studi Teknik Informatika STT Wastukancana Jl. Raya Cikopak No.53, Sadang, Purwakarta

Lebih terperinci

Jaringan Syaraf Tiruan. Disusun oleh: Liana Kusuma Ningrum

Jaringan Syaraf Tiruan. Disusun oleh: Liana Kusuma Ningrum Jaringan Syaraf Tiruan Disusun oleh: Liana Kusuma Ningrum Susilo Nugroho Drajad Maknawi M0105047 M0105068 M01040 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret

Lebih terperinci

ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION

ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION ANALISIS PENAMBAHAN NILAI MOMENTUM PADA PREDIKSI PRODUKTIVITAS KELAPA SAWIT MENGGUNAKAN BACKPROPAGATION Eka Irawan1, M. Zarlis2, Erna Budhiarti Nababan3 Magister Teknik Informatika, Universitas Sumatera

Lebih terperinci

JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Pertemuan 11 Diema Hernyka Satyareni, M.Kom

JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Pertemuan 11 Diema Hernyka Satyareni, M.Kom JARINGAN SYARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Pertemuan 11 Diema Hernyka Satyareni, M.Kom Outline Konsep JST Model Struktur JST Arsitektur JST Aplikasi JST Metode Pembelajaran Fungsi Aktivasi McCulloch

Lebih terperinci

SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Barcode Rcognition System Using Backpropagation Neural Networks M. Kayadoe, Francis Yuni Rumlawang, Yopi Andry Lesnussa * Jurusan

Lebih terperinci

Research of Science and Informatic BROILER CHICKENS WEIGHT PREDICTION BASE ON FEED OUT USING BACKPROPAGATION

Research of Science and Informatic   BROILER CHICKENS WEIGHT PREDICTION BASE ON FEED OUT USING BACKPROPAGATION Sains dan Informatika Vol.2 (N0.2) (2016): 1-9 1 Andre Mariza Putra, Chickens Weight Prediction Using Backpropagation JURNAL SAINS DAN INFORMATIKA Research of Science and Informatic e-mail: jit.kopertis10@gmail.com

Lebih terperinci

PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN METODE BACKPROPAGARATION

PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN METODE BACKPROPAGARATION PENGENALAN KARAKTER ALFANUMERIK MENGGUNAKAN METODE BACKPROPAGARATION Amriana 1 Program Studi D1 Teknik Informatika Jurusan Teknik Elektro Fakultas Teknik UNTAD ABSTRAK Jaringan saraf tiruan untuk aplikasi

Lebih terperinci

DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Bambang Yuwono 1), Heru Cahya Rustamaji 2), Usamah Dani 3) 1,2,3) Jurusan Teknik Informatika UPN "Veteran" Yogyakarta

Lebih terperinci

BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses

BAB 2 LANDASAN TEORI. fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses 8 BAB 2 LANDASAN TEORI 2.1 Teori Neuro Fuzzy Neuro-fuzzy sebenarnya merupakan penggabungan dari dua studi utama yaitu fuzzy logic dengan aplikasi neuro computing. Masing-masing memiliki cara dan proses

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 Edisi.,Volume,. Bulan.. ISSN :

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 Edisi.,Volume,. Bulan.. ISSN : Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) Edisi.,Volume,. Bulan.. ISSN : 289-933 ANALISIS METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK PENGENALAN SEL KANKER OTAK Novita Handayani Teknik Informatika

Lebih terperinci

PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN. Disusun oleh : Mario Herryn Tambunan ( )

PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN. Disusun oleh : Mario Herryn Tambunan ( ) PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN Disusun oleh : Mario Herryn Tambunan (1022056) Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

BAB II. Penelitian dengan jaringan syaraf tiruan propagasi balik. dalam bidang kesehatan sebelumnya pernah dilakukan oleh

BAB II. Penelitian dengan jaringan syaraf tiruan propagasi balik. dalam bidang kesehatan sebelumnya pernah dilakukan oleh BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Penelitian dengan jaringan syaraf tiruan propagasi balik dalam bidang kesehatan sebelumnya pernah dilakukan oleh Sudharmadi Bayu Jati Wibowo

Lebih terperinci

ANALISIS ALGORITMA INISIALISASI NGUYEN-WIDROW PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK

ANALISIS ALGORITMA INISIALISASI NGUYEN-WIDROW PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK ANALISIS ALGORITMA INISIALISASI NGUYEN-WIDROW PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian 1, M. Rhifky Wayahdi 2 1 Dosen Teknik Informatika,

Lebih terperinci

ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION (Studi Kasus Hotel Grand Zuri Padang)

ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION (Studi Kasus Hotel Grand Zuri Padang) ANALISIS JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI JUMLAH RESERVASI KAMAR HOTEL DENGAN METODE BACKPROPAGATION (Studi Kasus Hotel Grand Zuri Padang) 1 Musli Yanto, 2 Sarjon Defit, 3 Gunadi Widi Nurcahyo

Lebih terperinci

NOISE REMOVAL PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN

NOISE REMOVAL PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN NOISE REMOVAL PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN Denny Susanto (1022029) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jl. Prof. Drg. Suria Sumantri, MPH no.65,

Lebih terperinci

Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan

Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization Pada Pengenalan Pola Tandatangan Jurnal Sains & Matematika (JSM) ISSN Kajian 0854-0675 Pustaka Volume14, Nomor 4, Oktober 2006 Kajian Pustaka: 147-153 Perbandingan Antara Metode Kohonen Neural Network dengan Metode Learning Vector Quantization

Lebih terperinci

SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN. Evelyn Evangelista ( )

SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN. Evelyn Evangelista ( ) SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN Evelyn Evangelista (1022004) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jl. Prof. Drg. Suria

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA

JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA Dahriani Hakim Tanjung STMIK POTENSI UTAMA Jl.K.L.Yos Sudarso Km 6.5 Tanjung Mulia Medan notashapire@gmail.com Abstrak

Lebih terperinci

BAB IV IMPLEMENTASI DAN PENGUJIAN

BAB IV IMPLEMENTASI DAN PENGUJIAN 68 BAB IV IMPLEMENTASI DAN PENGUJIAN Bab ini membahas tentang program yang telah dianalisis dan dirancang atau realisasi program yang telah dibuat. Pada bab ini juga akan dilakukan pengujian program. 4.1

Lebih terperinci

APLIKASI JARINGAN SYARAF TIRUAN MULTI LAYER PERCEPTRON PADA APLIKASI PRAKIRAAN CUACA

APLIKASI JARINGAN SYARAF TIRUAN MULTI LAYER PERCEPTRON PADA APLIKASI PRAKIRAAN CUACA Aplikasi Jaringan Syaraf Tiruan Multilayer Perceptron (Joni Riadi dan Nurmahaludin) APLIKASI JARINGAN SYARAF TIRUAN MULTI LAYER PERCEPTRON PADA APLIKASI PRAKIRAAN CUACA Joni Riadi (1) dan Nurmahaludin

Lebih terperinci

PERANGKAT LUNAK PENGKONVERSI TEKS TULISAN TANGAN MENJADI TEKS DIGITAL

PERANGKAT LUNAK PENGKONVERSI TEKS TULISAN TANGAN MENJADI TEKS DIGITAL PERANGKAT LUNAK PENGKONVERSI TEKS TULISAN TANGAN MENJADI TEKS DIGITAL Oleh : ACHMAD FAUZI ARIEF 1203 109 007 Dosen Pembimbing : Drs. Nurul Hidayat, M.Kom JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

JURNAL INFORMATIKA PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN

JURNAL INFORMATIKA PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN Decy Nataliana [1], Sabat Anwari [2], Arief Hermawan [3] Jurusan Teknik Elektro Institut Teknologi Nasional Bandung ABSTRAK

Lebih terperinci

Presentasi Tugas Akhir

Presentasi Tugas Akhir Presentasi Tugas Akhir Bagian terpenting dari CRM adalah memahami kebutuhan dari pelanggan terhadap suatu produk yang ditawarkan para pelaku bisnis. CRM membutuhkan sistem yang dapat memberikan suatu

Lebih terperinci