Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan Metode Backpropagation dengan Input Citra Kamera Digital

Ukuran: px
Mulai penontonan dengan halaman:

Download "Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan Metode Backpropagation dengan Input Citra Kamera Digital"

Transkripsi

1 Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan Metode Backpropagation dengan Input Citra Kamera Digital Dompak Petrus Sinambela 1 Sampe Hotlan Sitorus 2 Universitas Mpu Tantular Jakarta. Universitas Tanjungpura Pontianak-Kalbar Jl. Cipinang Besar no 2 Jakarta Telp. (021) Fax Abstrak Pada saat proses pengajuan kredit, nasabah akan mengisi formulir yang ditulis dengan cara tulis tangan, kemudian costumer service melakukan proses input secara manual ke database dengan komputer. Sistem dan program yang dibuatkan dapat mengenali karakter tulisan tangan tersebut kedalam bentuk ASCII dengan menggunakan jaringan syaraf tiruan, sehingga costumer service tidak perlu lagi melakukan proses input secara manual. Data citra yang sudah dilakukan pengolahan citra dilatih dengan menggunakan algoritma pembelajaran backpropagation. Bobot-bobot yang sudah dilatih akan dijadikan sebagai bobot-bobot acuan yang sudah terlatih dan akan digunakan dalam pengenalan karakter tulisan tangan. Hasil yang diperoleh setelah dilakukan pengujian sample tulisan tangan dari 5 orang, menunjukkan bahwa proses input data tulisan tangan di formulir pengajuan kredit ke komputer dapat dilakukan dengan program jaringan syaraf tiruan yang menggunakan algoritma pembelajaran backpropagation. Kata kunci: neural network, backpropagation, skeletonisasi, pengolahan citra Abstract At the time of the credit application process, customers will fill out a form that was written by hand writing, then the customer service process manually input into the computer database. Systems and programs that can be made to recognize the handwritten characters into ASCII form by using artificial neural networks, so that customer service no longer have to manually input process. Image data that has been trained to do image processing using backpropagation learning algorithm. Weights that have been trained to serve as a reference weights that have been trained and will be used in handwritten character recognition. The results obtained after testing samples of handwriting 5 people, shows that the process of handwriting data input in the credit application form to a computer can be done with a program that uses neural network backpropagation learning algorithm. Keywords: neural network, backpropagation, skeletonisasi, image processing 1. Pendahuluan Kemajuan teknologi di bidang komputer saat ini sangat pesat terutama di bidang kecerdasan buatan (artificial inteligence), yang salah satu terapannya adalah sistem Jaringan syaraf tiruan. Dengan data citra digital, sistem jaringan syaraf tiruan dapat melakukan pengolahan citra sehingga dapat mengenal karakter tulisan tangan ke dalam bentuk digital standar ASCII (data komputer). Dalam sebuah perusahaan perbankan, masih ditemukan formulir yang akan diisi oleh nasabah maupun pihak bank secara manual. Formulir tersebut akan diisi data dengan cara menuliskan didalamnya, data tersebut menjadi input ke komputer. Banyak keunggulan jika data dapat diproses secara digital komputer, mudah untuk pencarian, pengolahan dan dokumentasi. Kondisi tersebut membutuhkan waktu yang lama dan tidak efisien, sehingga mengakibatkan antrian yang cukup panjang. Agar fokus ke permasalahan, maka dilakukan pembatasan masalah yaitu sebagai berikut: Pengenalan tulisan tangan hanya untuk karakter huruf capital jenis tulisan latin dan angka latin. Dan Perancangan aplikasi dengan sistem jaringan syaraf tiruan metode pembelajaran algoritma backpropagation.karakter tulisan tangan ditulis pada formulir pengajuan kredit dengan input citra digital hasil kamera scanner. Proses pengenalan karakter tulisan tangan hanya difokuskan pada formulir

2 60 pengajuan kredit dengan field Nama Lengkap dan No Handphone. Perancangan sistem jaringan syaraf tiruan menggunakan bahasa pemograman Matlab (Matrix Laboratory) dan Jumlah tulisan tangan yang digunakan dibatasi dengan jumlah 5 orang. 2. Metodologi Penelitian Metodologi penelitian dilakukan dengan mengumpulkan data terlebih dahulu. Proses pengumpulan data dilakukan dengan dua cara yaitu : studi kepustakaan dan studi lapangan. Studi kepustakaan dilakukan untuk memahami proses perancangan sistem seperti mengumpulkan teori-teori yang berhubungan dengan pada jaringan saraf tiruan, input citra kamera digital dan pengenalan karakter tulisan tangan latin. Studi lapangan dilakukan mencari bahan penelitian dengan menuju langsung ke lokasi penelitian untuk melakukan : sampel dan investigasi yaitu dengan meminta dan melihat dokumen yang digunakan dalam proses pengajuan kredit. wawancara yaitu mengajukan beberapa pertanyaan kepada pihak yang bersangkutan seputar objek penelitian dan observasi yaitu dengan melakukan pengamatan secara langsung terhadap kegiatan proses pengajuan kredit, seperti nasabah mengisi formulir yang ditulis dengan cara tulis tangan, kemudian costumer service melakukan proses input secara manual ke database dengan komputer. Metode perancangan yang dilakukan terdiri dari perancangan flow map, data flow diagram (DFD), perancangan database dan perancangan interface. Data Flow Diagram (DFD) sering digunakan untuk menggambarkan suatu sistem yang telah ada atau sistem baru yang akan dikembangkan secara logika tanpa mempertimbangkan lingkungan fisik dimana data tersebut mengalir atau lingkungan fisik dimana data tersebut disimpan. Data Flow Diagram pada sistem yang berjalan dapat digambarkan seperti dibawah ini. Gambar 1 Flow Map Arus pengajuan kredit pada Bank Gambar 2 Diagram Konteks

3 61 Interface untuk pengenalan karakter tulisan tangan dibuat menyerupai formulir pengajuan kredit yaitu dengan kotak per kotak yang bertujuan untuk memudahkan cropping dan pengolahan citra. Seperti penulis jelaskan pada batasan masalah pada bab sebelumnya, program dirancang hanya untuk pengenalan field nama lengkap dan nomor handphone. Sistem yang diusulkan disediakan interface untuk image processing yang bertujuan untuk mengetahui setiap langkah-langkah untuk pengolahan citra hingga menghasilkan data input yang direpresentasikan menjadi bernilai angka. Interface program dapat dilihat pada gambar 7 dibawah ini. Gambar 3 interface program Gambar 4 Interface program saat proses Image Processing Gambar 5 program saat proses Convert Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan (Dompak Petrus Sinambela)

4 62 Jaringan saraf tiruan dibentuk dengan input 25 neuron, hidden layer 12 neuron dan output layer 7 neuron. Arsitektur jaringan saraf tiruan ini dapat dilihat pada gambar 6 dibawah ini. Gambar 6 Arsitektur Backpropagation Jaringan syaraf tiruan akan dilatih dengan menggunakan fungsi aktivasi sigmoid biner, learning rate=0.5, dan pelatihan akan dihentikan pada epoh Analisis dan Hasil 3.1. Analisis Jaringan syaraf tiruan didefenisikan sebagai susunan dari elemen-elemen penghitung yang disebut neuron atau titik (node) yang saling terhubung guna dimodelkan untuk meniru fungsi otak manusia. Sistem jaringan syaraf tiruan disirikan dengan adanya proses pembelajaran (learning) yang berfungsi untuk mengadaptasi parameter-parameter jaringannya.

5 63 Gambar 7. Jaringan syaraf manusia Salah satu bagian terpenting dari konsep jaringan syaraf adalah terjadinya proses pembelajaran. Tujuan utama dari proses pembelajaran adalah melakukan pengaturan terhadap bobot-bobot yang ada pada jaringan syaraf, sehingga diperoleh bobot akhir yang tepat sesuai dengan pola data yang dilatih. Selama proses pembelajaran akan terjadi perbaikan bobot-bobot berdasarkan algoritma tertentu. Nilai bobot akan bertambah, jika informasi yang diberikan oleh neuron yang bersangkutan tersampaikan, sebaliknya jika informasi tidak disampaikan oleh suatu neuron ke neuron yang lain, maka nilai bobot yang menghubungkan keduanya akan dikurangi. Pada saat pembelajaran dilakukan pada input yang berbeda, maka nilai bobot akan diubah secara dinamis hingga mencapai mengindikasikan bahwa tiap-tiap input telah berhubungan dengan output yang diharapkan. Cara berlangsungnya pembelajaran atau pelatihan Jaringan syaraf tiruan dikelompokkan menjadi 3 yaitu: a. Pembelajaran terawasi (Supervised Learning) Pada metode ini, setiap pola yang diberikan kedalam jaringan syaraf tiruan telah diketahui outputnya. Selisih antara pola output aktual (output yang dihasilkan) dengan pola output yang dikehendaki (output target) yang disebut error digunakan untuk mengoreksi bobot jaringan syaraf tiruan hingga mampu menghasilkan output sedekat mungkin dengan target yang telah diketahui oleh jaringan syaraf tiruan. Apabila nilai error ini masih cukup besar, mengindikasikan bahwa masih perlu dilakukan lebih banyak pembelajaran lagi. Contoh pembelajaran terawasi adalah: Hebbian, Perceptron, ADALINE, Boltzman, Hopfield, dan Backpropagation. Untuk itu, pada tulisan ini pengenalan karakter tulisan tangan akan menggunakan algoritma pembelajaran Backpropagation. b. Pembelajaran tak terawasi (Unsupervised Learning) Pada metode ini, tidak memerlukan target output. Pada metode ini tidak dapat ditentukan hasil seperti apakah yang diharapkan selama proses pembelajaran. Selama proses pembelajaran, nilai bobot disusun dalam suatu range tertentu tergantung pada nilai input yang diberikan. Tujuan pembelajaran ini adalah mengelompokkan unit-unit ynag hampir sama dalam suatu area tertentu. Pembelajaran ini biasanya cocok untuk pengelompokan (kelasifikasi) pola. Contoh algoritma ini adalah: Competitive, Hebbian, Kohonen, LVQ (Learning Vector Quantization), Neocognitron. c. Pembelajaran Hibrida (Hybrid Learning) Merupakan kombinasi dari metode pembelajaran supervised learning dan unsupervised learning. Sebagian dari bobot-bobotnya ditentukan melalui pembelajaran terawasi dan sebagian lainnya melalui pembelajaran tak terawasi. Contoh algoritma jaringan syaraf tiruan yang menggunkan metode ini adalah algoritma Radial Basis Function (RBF). Didalam jaringan backpropagation, setiap unit yang berada di lapisan input terhubung dengan setiap unit yang ada di lapisan tersembunyi terhubung dengan setiap unit yang ada di lapisan output. Jaringan ini terdiri dari banyak lapisan (multilayer network). Ketika jaringan diberikan pola masukan sebagai pola pelatihan, maka pola tersebut menuju unit-unit lapisan tersembunyi untuk selanjutnya keluaran akan memberikan respon sebagai keluaran jaringan syaraf tiruan. Saat hasil keluaran tidak sesuai dengan yang diharapkan, maka keluaran akan disebarkan mundur (backward) pada lapisan tersembunyi kemudian dari lapisan tersembunyi menuju lapisan masukan. Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan (Dompak Petrus Sinambela)

6 64 Setiap unit di dalam layer input pada jaringan Backpropagation selalu terhubung dengan setiap unit yang berada pada layer tersembunyi, demikian juga setiap unit pada layer tersembunyi selalu dari banyak lapisan (multilayer network), yaitu: 1. Lapisan input (1 buah), yang terdiri dari 1 hingga n unit input. 2. Lapisan tersembunyi (minimal 1 buah), yang terdiri dari 1 hingga p unit tersembunyi. 3. Lapisan output (1 buah), yang terdiri dari 1 hingga m unit output. Gambar 8 Arsitektur Jaringan Backpropagation Aturan pelatihan jaringan backpropagation terdiri dari 2 tahapan, feedforward dan backward propagation. Pada jaringan diberikan sekumpulan contoh pelatihan yang disebut set pelatihan. Set pelatihan ini digambarkan dengan sebuah vector feature yang disebut dengan vector input yang diasosiasikan dengan sebuah output yang menjadi target pelatihannya. Untuk pelatihan jaringan backpropagation ini, dapat dilakukan dengan algoritma sebagai berikut: Inisialisasi bobot (ambil bobot awal dengan nilai random yang cukup kecil) Tetapkan: maksimum Epoh, Target Error, dan Learning Rate (α). Inisialisasikan: Epoh = 0. Kerjakan langkah-langkah berikut selama (Epoh < maksimum Epoh) dan (MSE < Target Error): 1. Epoh = Epoh Untuk tiap-tiap pasangan elemen yang akan dilakukan pembelajaran, kerjakan: Feedforward: a. Tiap-tiap unit input (Xi, i=1, 2, 3., n) menerima sinyal xi dan meneruskan sinyal tersebut ke semua unit pada lapisan yang ada di atasnya (lapisan tersembunyi). b. Tiap-tiap unit pada suatu lapisan tersembunyi (Zi, j=1, 2, 3,.p) menjumlahkan sinyalsinyal input terbobot: n z_in j = b1 j + i=1 x i v ij (1) Gunakan fungsi aktivasi untuk menghitung sinyal outputnya: z j = f (z_in j ) = 1 (2) 1+e z_in j Dan kirimkan sinyal tersebut ke semua unit di lapisan atasnya (unit-unit output). c. Tiap-tiap unit output (Yk, k=1, 2, 3,..m) menjumlahkan sinyal-sinyal input terbobot. p z in k = b2 k + i=1 z i w jk (3) Gunakan fungsi aktivasi untuk menghitung sinyal outputnya: y k = f (y in k ) = 1 1+e y (4) in k Dan kirimkan sinyal tersebut ke semua unit di lapisan atasnya (unit-unit output). Catatan: Langkah (b) dilakukan sebanyak jumlah lapisan tersembunyi. Backward propagation d. Tiap-tiap unit output (Yk, k=1,2,3,..,m) menerima target pola yang berhubungan dengan pola input pembelajaran, hitung informasi errornya: δ2 k = t k y k f (y_in k ) (5) φ2 jk = δ k z j (6) β2 k = δ k (7)

7 65 kemudian hitung koreksi bobot (yang nantinya akan digunakan untuk memperbaiki nilai wjk): w jk = α φ jk (8) Hitung juga koreksi bias (yang nantinya akan digunakan untuk memperbaiki nilai b2k): b2 k = α β k (9) Langkah (d) ini juga dilakukan sebanyak jumlah lapisan tersembunyi, yaitu menghitung informasi error dari suatu lapisan tersembunyi ke lapisan tersembunyi sebelumnya. e. Tiap-tiap unit tersembunyi (Zj, j=1,2,3,.,p) menjumlahkan delta inputnya (dari unit-unit yang berada pada lapisan di atasnya): δ_in j = m k=1 δ i w jk (10) kalikan nilai ini dengan turunan dari fungsi aktivasinya untuk menghitung informasi error: δ1 j = δ_in j f (z_in j ) (11) φ1 ij = δ j x j (12) β1 j = δ1 j (13) kemudian hitung koreksi bobot (yang nantinya akan digunakan untuk memperbaiki nilai vij ): v ij = α φ 1 ij (14) Hitung juga koreksi biasa (yang nantinya akan digunakan untuk memperbaiki nilai b1j ): b1 j = α φ 1 j (15) f. Tiap-tiap unit output (Yk, k=1,2,3,.,m) memperbaiki bias dan bobotnya (j = 0,1,2,.,p): w jk baru = w jk lama + w jk (16) b2 k baru = b2 k lama + b2 k (17) Tiap-tiap unit tersembunyi (Zj, j=1,2,3,..,p) memperbaiki bias dan bobotnya (i=0,1,2,.,n ): v ij baru = v ij lama + v ij (18) b1 j baru = b1 j + b1 j (19) 3. Hitung (MSE) Mean Square Error Setelah dilakukan algoritma tersebut pada jaringan, maka akan didapatkan jaringan yang sudah ditraining. Sehingga untuk melakukan identifikasi, dapat dilakukan dengan langsung memberikan input dan jaringan akan mengklasifikasikannya sesuai dengan bobotbobot yang diperoleh dari proses training sebelumnya. Dimana besar mean square error ditunjukkan persamaan berikut. E = 1 m t 2 j=1 j k y j k 2 (20) m j=1 e 2 j k (21) = 1 2 Untuk mendapatkan data matrik yang akan dijadikan data untuk pelatihan jaringan syaraf tiruan, maupun untuk pengenalan karakter. Dilakukan beberapa pengolahan citra yang bertujuan untuk mendapatkan data yang lebih akurat sesuai dengan flow chart gambar IV-1 dibawah ini. Formulir di scanning 1 Data scanning disimpan dalam format *.jpg 2 Image load 3 Image cropping kotak per kotak 4 Image resize ke ukuran 35 x 35 piksel 5 Merubah warna image dari RGB ke GRAY 6 Merubah warna background menjadi hitam dan warna foreground menjadi putih 7 Skeletonisasi 8 Data Matrik 9 Gambar 9 Flow Chart Pengolahan Citra Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan (Dompak Petrus Sinambela)

8 Hasil Pengenalan karakter tulisan tangan akan dilakukan testing terhadap 5 orang dengan kriteria karakter A~Z dan 0~9 (sampling 5 orang), selanjutnya masing-masing menuliskan nama dan no handphone untuk dilakukan pengenalan. Hasil pengenalan karakter tulisan tangan dapat dilihat di bawah ini. 1. Hasil test untuk orang ke-1 2. Hasil test untuk orang ke-2 3. Hasil test untuk orang ke-3 4. Hasil test untuk orang ke-4

9 67 5. Hasil test untuk orang ke-5 Dari hasil testing diatas, maka didapatkan hasil persentase keakurasian seperti pada tabel berikut. Tabel 1 Hasil test untuk karakter A~Z dan 0~9 Sample Benar Salah % Akurasi Orang ke Orang ke Orang ke Orang ke Orang ke Total Tabel 2 Hasil test untuk field nama lengkap dan no Sample Benar Salah % Akurasi Orang ke Orang ke Orang ke Orang ke Orang ke Total Kesimpulan dan Saran Adapun kesimpulan dari hasil penelitian ini adalah sebagai berikut: hasil pengujian pengenalan karakter tulisan tangan untuk 5 orang, tingkat keakurasian program yaitu sebesar 87.2%. Penentuan nilai learning rate sangat mempengaruhi pergesaran nilai pada bobot-bobot saat proses pelatihan jaringan syaraf tiruan, dimana data bobot v dan bias ke hidden layer yang baru, mengalami pergeseran yang sangat kecil. Sedangkan data bobot w dan bias ke output layer yang baru, mengalami pergesaran nilai yang cukup besar. Nilai input dan jumlah epoh pada saat proses pelatihan jaringan syaraf tiruan mempengaruhi pendekatan nilai ke target output jaringan saraf tiruan dengan menggunakan algoritma backpropagation untuk dapat mengenali tulisan tangan yang ditulis di formulir pengajuan kredit. Adapun saran dari hasil penelitian adalah sebagai berikut : sistem yang dibuat dapat diimplementasikan dengan menambah jumlah karakter tulisan tangan dan jumlah epoh untuk proses pelatihan jaringan syaraf tiruan minimal 100 orang. Hal ini bertujuan untuk memperbaiki bobot-bobot pada jaringan syaraf tiruan. Untuk meningkatkan keakurasian sistem yang dibuat, maka penulis akan terus melakukan riset dan perbaikan. Daftar Pustaka Buku Teks : [1] Hermawan arif. Jaringan Saraf Tiruan dan Aplikasi, Yogyakarta : Andi Offset [2] Siang JJ. Jaringan Saraf Tiruan dan Pemrogramannya menggunakan MathLab. Yogyakarta : Andi Offset [3] Puspitaningrum, Diyah. Pengantar Jaringan Saraf Tiruan. Yogyakarta : Andi Offset [4] Ahmad, Usman, Pengolahan Citra Digital & Teknik Pemrogramannya, Cetakan Pertama, Graha Ilmu, Yogyakarta, Pengenalan Karakter Tulisan Tangan Latin pada Jaringan Saraf Tiruan (Dompak Petrus Sinambela)

10 68 [5] Basuki, Achmad, Jozua F. Palandi, Fatcurrochman, Pengolahan Citra Digital Menggunakan Visual Basic, Cetakan Pertama, Graha Ilmu, Yogyakarta, [6] Dunteman, G. H., Principal Components Analysis, Sage Publications, [7] Gomes, J. dan Velho, L., Image Processing For Computer Graphics, Translated by Silvio Levy, Springer, Rio de Janeiro, [8] Gonzales, R. C., Digital Image Processing, Addison Wesley Publishing Company., 1992 [9] Hadi R, Pemrograman Windows API dengan Microsoft Visual Basic, PT. Elex Media Komputindo, Jakarta, 2001 [10] Halvorson M, Microsoft Visual Basic 6.0 Professional Step by Step, PT. Elex Media Komputindo, Jakarta, 2000 [11] Munir, Rinaldi, Pengolahan Citra Digital Dengan Pendekatan Algoritmik, Penerbit Informatika, 1992

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT

PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT PENERAPAN JARINGAN SYARAF TIRUAN DALAM MEMPREDIKSI TINGKAT PENGANGGURAN DI SUMATERA BARAT Havid Syafwan Program Studi Manajemen Informatika, Amik Royal, Kisaran E-mail: havid_syafwan@yahoo.com ABSTRAK:

Lebih terperinci

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6

Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Penerapan Jaringan Saraf Tiruan Metode Backpropagation Menggunakan VB 6 Sari Indah Anatta Setiawan SofTech, Tangerang, Indonesia cu.softech@gmail.com Diterima 30 November 2011 Disetujui 14 Desember 2011

Lebih terperinci

Architecture Net, Simple Neural Net

Architecture Net, Simple Neural Net Architecture Net, Simple Neural Net 1 Materi 1. Model Neuron JST 2. Arsitektur JST 3. Jenis Arsitektur JST 4. MsCulloh Pitts 5. Jaringan Hebb 2 Model Neuron JST X1 W1 z n wi xi; i1 y H ( z) Y1 X2 Y2 W2

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dielaskan mengenai teori-teori yang berhubungan dengan penelitian ini, sehingga dapat diadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA

ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA Nazla Nurmila, Aris Sugiharto, Eko Adi Sarwoko ALGORITMA BACK PROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA KARAKTER HURUF JAWA Nazla Nurmila, Aris Sugiharto, dan Eko Adi Sarwoko Prodi Ilmu Komputer

Lebih terperinci

JARINGAN SYARAF TIRUAN

JARINGAN SYARAF TIRUAN JARINGAN SYARAF TIRUAN 8 Jaringan syaraf adalah merupakan salah satu representasi buatan dari otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak manusia tersebut. Istilah

Lebih terperinci

Jurnal Informatika Mulawarman Vol 5 No. 1 Februari

Jurnal Informatika Mulawarman Vol 5 No. 1 Februari Jurnal Informatika Mulawarman Vol 5 No. 1 Februari 2010 50 Penerapan Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Pengangguran di Provinsi Kalimantan Timur Dengan Menggunakan Algoritma Pembelajaran

Lebih terperinci

BACK PROPAGATION NETWORK (BPN)

BACK PROPAGATION NETWORK (BPN) BACK PROPAGATION NETWORK (BPN) Arsitektur Jaringan Salah satu metode pelatihan terawasi pada jaringan syaraf adalah metode Backpropagation, di mana ciri dari metode ini adalah meminimalkan error pada output

Lebih terperinci

BAB VIII JARINGAN SYARAF TIRUAN

BAB VIII JARINGAN SYARAF TIRUAN BAB VIII JARINGAN SYARAF TIRUAN A. OTAK MANUSIA Otak manusia berisi berjuta-juta sel syaraf yang bertugas untuk memproses informasi. Tiaptiap sel bekerja seperti suatu prosesor sederhana. Masing-masing

Lebih terperinci

PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK

PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK PENGENALAN PLAT NOMOR KENDARAAN DALAM SEBUAH CITRA MENGUNAKAN JARINGAN SARAF TIRUAN Decy Nataliana [1], Sabat Anwari [2], Arief Hermawan [3] Jurusan Teknik Elektro Fakultas Teknologi Industri Institut

Lebih terperinci

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA

APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA APLIKASI JARINGAN SYARAF TIRUAN UNTUK MENGENALI TULISAN TANGAN HURUF A, B, C, DAN D PADA JAWABAN SOAL PILIHAN GANDA (Studi Eksplorasi Pengembangan Pengolahan Lembar Jawaban Ujian Soal Pilihan Ganda di

Lebih terperinci

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON

SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Jurnal Informatika Mulawarman Vol. 7 No. 3 Edisi September 2012 105 SISTEM PENGENALAN KARAKTER DENGAN JARINGAN SYARAF TIRUAN ALGORITMA PERCEPTRON Anindita Septiarini Program Studi Ilmu Komputer FMIPA,

Lebih terperinci

JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK)

JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) JARINGAN SARAF TIRUAN (ARTIFICIAL NEURAL NETWORK) Bagian ini membahas jaringan saraf tiruan, pengenalan tulisan tangan, dan algoritma backpropagation. 2. Jaringan Saraf Tiruan Jaringan saraf tiruan (JST)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Jaringan Syaraf Biologi Jaringan Syaraf Tiruan merupakan suatu representasi buatan dari otak manusia yang dibuat agar dapat mensimulasikan apa yang dipejalari melalui proses pembelajaran

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK MENGENALI MOTIF BATIK Fany Hermawan Teknik Informatika Universitas Komputer Indonesia Jl. Dipatiukur 112-114 Bandung E-mail : evan.hawan@gmail.com

Lebih terperinci

Realisasi Pengenalan Tulisan Tangan Menggunakan Jaringan Syaraf Tiruan dengan Metode Kohonen

Realisasi Pengenalan Tulisan Tangan Menggunakan Jaringan Syaraf Tiruan dengan Metode Kohonen Realisasi Pengenalan Tulisan Tangan Menggunakan Jaringan Syaraf Tiruan dengan Metode Kohonen David Novyanto Candra/0322003 Email: dave_christnc@yahoo.com Jurusan Teknik Elektro, Fakultas Teknik, Jln.Prof.Drg.Suria

Lebih terperinci

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION ABSTRAK Juventus Suharta (0722026) Jurusan Teknik Elektro

Lebih terperinci

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION ABSTRAK

IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION ABSTRAK IDENTIFIKASI TANDA TANGAN MENGGUNAKAN ALGORITMA DOUBLE BACKPROPAGATION Disusun oleh: Togu Pangaribuan 0722087 Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof.Drg. Suria Sumantri, MPH No. 65, Bandung

Lebih terperinci

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation

Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation 65 Perbaikan Metode Prakiraan Cuaca Bandara Abdulrahman Saleh dengan Algoritma Neural Network Backpropagation Risty Jayanti Yuniar, Didik Rahadi S. dan Onny Setyawati Abstrak - Kecepatan angin dan curah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.6. Jaringan Syaraf Tiruan Jaringan syaraf tiruan atau neural network merupakan suatu sistem informasi yang mempunyai cara kerja dan karakteristik menyerupai jaringan syaraf pada

Lebih terperinci

ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK

ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Seminar Nasional Informatika 0 ANALISIS PENAMBAHAN MOMENTUM PADA PROSES PREDIKSI CURAH HUJAN KOTA MEDAN MENGGUNAKAN METODE BACKPROPAGATION NEURAL NETWORK Yudhi Andrian, Purwa Hasan Putra Dosen Teknik Informatika,

Lebih terperinci

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI

PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI PERANCANGAN PROGRAM PENGENALAN BENTUK MOBIL DENGAN METODE BACKPROPAGATION DAN ARTIFICIAL NEURAL NETWORK SKRIPSI Oleh Nama : Januar Wiguna Nim : 0700717655 PROGRAM GANDA TEKNIK INFORMATIKA DAN MATEMATIKA

Lebih terperinci

SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK

SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN ABSTRAK SLOPE CORRECTION PADA TULISAN TANGAN MENGGUNAKAN JARINGAN SARAF TIRUAN Disusun Oleh : Apriliyanto Taufik Betama (1022070) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. drg. Suria Sumantri, MPH, No.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Perangkat keras komputer berkembang dengan pesat setiap tahunnya selalu sudah ditemukan teknologi yang lebih baru. Meskipun demikian masih banyak hal yang belum dapat

Lebih terperinci

PERKIRAAN PENJUALAN BEBAN LISTRIK MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILENT BACKPROPAGATION (RPROP)

PERKIRAAN PENJUALAN BEBAN LISTRIK MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILENT BACKPROPAGATION (RPROP) PERKIRAAN PENJUALAN BEBAN LISTRIK MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILENT BACKPROPAGATION (RPROP) Apriliyah, Wayan Firdaus Mahmudy, Agus Wahyu Widodo Program Studi Ilmu Komputer Fakultas MIPA Universitas

Lebih terperinci

JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENDETEKSI GANGGUAN PSIKOLOGI

JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENDETEKSI GANGGUAN PSIKOLOGI Media Informatika, Vol. 2, No. 2, Desember 2004, 1-11 ISSN: 0854-4743 JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION UNTUK MENDETEKSI GANGGUAN PSIKOLOGI Kiki, Sri Kusumadewi Jurusan Teknik Informatika,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan diuraikan materi yang mendukung dalam pembahasan evaluasi implementasi sistem informasi akademik berdasarkan pengembangan model fit HOT menggunakan regresi linier

Lebih terperinci

PENGGUNAAN JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK SELEKSI PENERIMAAN MAHASISWA BARU PADA JURUSAN TEKNIK KOMPUTER DI POLITEKNIK NEGERI SRIWIJAYA

PENGGUNAAN JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK SELEKSI PENERIMAAN MAHASISWA BARU PADA JURUSAN TEKNIK KOMPUTER DI POLITEKNIK NEGERI SRIWIJAYA PENGGUNAAN JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK SELEKSI PENERIMAAN MAHASISWA BARU PADA JURUSAN TEKNIK KOMPUTER DI POLITEKNIK NEGERI SRIWIJAYA Tesis untuk memenuhi sebagian persyaratan mencapai

Lebih terperinci

Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation

Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation 1 Prediksi Pergerakan Harga Harian Nilai Tukar Rupiah (IDR) Terhadap Dollar Amerika (USD) Menggunakan Metode Jaringan Saraf Tiruan Backpropagation Reza Subintara Teknik Informatika, Ilmu Komputer, Universitas

Lebih terperinci

Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah Karakter Braille Ke Bentuk Abjad

Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah Karakter Braille Ke Bentuk Abjad The 13 th Industrial Electronics Seminar 2011 (IES 2011) Electronic Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, October 26, 2011 Aplikasi Jaringan Saraf Tiruan Sebagai Penterjemah

Lebih terperinci

Proses Pembelajaran dengan BackPropagation pada kasus penyakit asma

Proses Pembelajaran dengan BackPropagation pada kasus penyakit asma Proses Pembelajaran dengan BackPropagation pada kasus penyakit asma Oleh Jasmir, S.Kom, M.Kom Dosen tetap STIKOM Dinamika Bangsa Jambi Abstrak Penyakit asma merupakan penyakit yang menyerang pada saluran

Lebih terperinci

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini.

BAB III METODE PENELITIAN. menjawab segala permasalahan yang ada dalam penelitian ini. BAB III METODE PENELITIAN Pada bab ini akan dijelaskan bahan yang digunakan dalam membantu menyelesaikan permasalahan, dan juga langkah-langkah yang dilakukan dalam menjawab segala permasalahan yang ada

Lebih terperinci

Jaringan Syaraf Tiruan. Disusun oleh: Liana Kusuma Ningrum

Jaringan Syaraf Tiruan. Disusun oleh: Liana Kusuma Ningrum Jaringan Syaraf Tiruan Disusun oleh: Liana Kusuma Ningrum Susilo Nugroho Drajad Maknawi M0105047 M0105068 M01040 Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret

Lebih terperinci

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR

IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI NILAI KURS JUAL SGD-IDR Seminar Nasional Teknologi Informasi dan Multimedia 205 STMIK AMIKOM Yogyakarta, 6-8 Februari 205 IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI LAYER FEEDFORWARD DENGAN ALGORITMA BACKPROPAGATION SEBAGAI ESTIMASI

Lebih terperinci

Jaringan Syaraf Tiruan

Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan Pendahuluan Otak Manusia Sejarah Komponen Jaringan Syaraf Arisitektur Jaringan Fungsi Aktivasi Proses Pembelajaran Pembelajaran Terawasi Jaringan Kohonen Referensi Sri Kusumadewi

Lebih terperinci

ANALISA NILAI UJIAN MASUK STT WASTUKANCANA BERDASARKAN NILAI UJIAN NASIONAL MENGGUNAKAN METODE BACKPROPAGATION

ANALISA NILAI UJIAN MASUK STT WASTUKANCANA BERDASARKAN NILAI UJIAN NASIONAL MENGGUNAKAN METODE BACKPROPAGATION ANALISA NILAI UJIAN MASUK STT WASTUKANCANA BERDASARKAN NILAI UJIAN NASIONAL MENGGUNAKAN METODE BACKPROPAGATION Program Studi Teknik Informatika STT Wastukancana Jl. Raya Cikopak No.53, Sadang, Purwakarta

Lebih terperinci

DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DIAGNOSA GANGGUAN SALURAN PERNAFASAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Bambang Yuwono 1), Heru Cahya Rustamaji 2), Usamah Dani 3) 1,2,3) Jurusan Teknik Informatika UPN "Veteran" Yogyakarta

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 Edisi.,Volume,. Bulan.. ISSN :

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 1 Edisi.,Volume,. Bulan.. ISSN : Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) Edisi.,Volume,. Bulan.. ISSN : 289-933 ANALISIS METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK PENGENALAN SEL KANKER OTAK Novita Handayani Teknik Informatika

Lebih terperinci

SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION SISTEM PENGENALAN BARCODE MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Barcode Rcognition System Using Backpropagation Neural Networks M. Kayadoe, Francis Yuni Rumlawang, Yopi Andry Lesnussa * Jurusan

Lebih terperinci

Research of Science and Informatic BROILER CHICKENS WEIGHT PREDICTION BASE ON FEED OUT USING BACKPROPAGATION

Research of Science and Informatic   BROILER CHICKENS WEIGHT PREDICTION BASE ON FEED OUT USING BACKPROPAGATION Sains dan Informatika Vol.2 (N0.2) (2016): 1-9 1 Andre Mariza Putra, Chickens Weight Prediction Using Backpropagation JURNAL SAINS DAN INFORMATIKA Research of Science and Informatic e-mail: jit.kopertis10@gmail.com

Lebih terperinci

BAB II. Penelitian dengan jaringan syaraf tiruan propagasi balik. dalam bidang kesehatan sebelumnya pernah dilakukan oleh

BAB II. Penelitian dengan jaringan syaraf tiruan propagasi balik. dalam bidang kesehatan sebelumnya pernah dilakukan oleh BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. Tinjauan Pustaka Penelitian dengan jaringan syaraf tiruan propagasi balik dalam bidang kesehatan sebelumnya pernah dilakukan oleh Sudharmadi Bayu Jati Wibowo

Lebih terperinci

PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN. Disusun oleh : Mario Herryn Tambunan ( )

PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN. Disusun oleh : Mario Herryn Tambunan ( ) PENGENALAN HURUF TULISAN TANGAN BERBASIS CIRI SKELETON DAN STATISTIK MENGGUNAKAN JARINGAN SARAF TIRUAN Disusun oleh : Mario Herryn Tambunan (1022056) Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA

JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA JARINGAN SARAF TIRUAN DENGAN BACKPROPAGATION UNTUK MENDETEKSI PENYALAHGUNAAN NARKOTIKA Dahriani Hakim Tanjung STMIK POTENSI UTAMA Jl.K.L.Yos Sudarso Km 6.5 Tanjung Mulia Medan notashapire@gmail.com Abstrak

Lebih terperinci

KOMPARASI HASIL KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DAN LEARNING VECTOR QUANTIZATION

KOMPARASI HASIL KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DAN LEARNING VECTOR QUANTIZATION Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 KOMPARASI HASIL KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN

Lebih terperinci

ABSTRACT. Kata kunci: Fuzzy Tsukamoto, Jaringan Syaraf Tiruan, Backpropagation 1. LATAR BELAKANG MASALAH

ABSTRACT. Kata kunci: Fuzzy Tsukamoto, Jaringan Syaraf Tiruan, Backpropagation 1. LATAR BELAKANG MASALAH PERBANDINGAN PREDIKSI HARGA SAHAM DENGAN MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN DAN FUZZY TSUKAMOTO COMPARISON OF SHARE PRICE PREDICTION USING ARTIFICIAL NEURAL NETWORK AND FUZZY TSUKAMOTO ABSTRACT

Lebih terperinci

SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN. Evelyn Evangelista ( )

SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN. Evelyn Evangelista ( ) SEGMENTASI HURUF TULISAN TANGAN BERSAMBUNG DENGAN VALIDASI JARINGAN SYARAF TIRUAN Evelyn Evangelista (1022004) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha, Jl. Prof. Drg. Suria

Lebih terperinci

Perancangan Pengenalan Karakter Alfabet menggunakan Metode Hybrid Jaringan Syaraf Tiruan

Perancangan Pengenalan Karakter Alfabet menggunakan Metode Hybrid Jaringan Syaraf Tiruan IJCCS, Vol.x, No.x, Julyxxxx, pp. 1~5 ISSN: 1978-1520 Perancangan Pengenalan Karakter Alfabet menggunakan Metode Hybrid Jaringan Syaraf Tiruan Rin Rin Meilani Salim 1, Andrew Sagitta Jauhari 2 STMIK Mikroskil,

Lebih terperinci

DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION

DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION No Makalah : 299 Konferensi Nasional Sistem Informasi 2012, STMIK - STIKOM Bali 23-25 Pebruari 2012 DETEKSI JENIS KAYU CITRA FURNITURE UKIRAN JEPARA MENGGUNAKAN JST BACKPROPAGATION Ratri Dwi Atmaja 1,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bab ini akan dibahas mengenai teori-teori pendukung pada penelitian ini. Adapun teori tersebut yaitu teori jaringan saraf tiruan dan algoritma backpropragation. 2.1. Jaringan Saraf

Lebih terperinci

BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu

BAB 2 LANDASAN TEORI. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu BAB 2 LANDASAN TEORI 2.1 Pengenalan Suara. Pengenalan suara (voice recognition) dibagi menjadi dua jenis, yaitu speech recognition dan speaker recognition. Speech recognition adalah proses yang dilakukan

Lebih terperinci

PENGENDALIAN POSISI MOBILE ROBOT MENGGUNAKAN METODE NEURAL NETWORK DENGAN UMPAN BALIK KAMERA PEMOSISIAN GLOBAL

PENGENDALIAN POSISI MOBILE ROBOT MENGGUNAKAN METODE NEURAL NETWORK DENGAN UMPAN BALIK KAMERA PEMOSISIAN GLOBAL PENGENDALIAN POSISI MOBILE ROBOT MENGGUNAKAN METODE NEURAL NETWORK DENGAN UMPAN BALIK KAMERA PEMOSISIAN GLOBAL Randy Reza Kautsar (1), Bima Sena Bayu D S.ST M.T (2), A.R. Anom Besari. S.ST, M.T (2) (1)

Lebih terperinci

Architecture Net, Simple Neural Net

Architecture Net, Simple Neural Net Architecture Net, Simple Neural Net 1 Materi 1. Perceptron 2. ADALINE 3. MADALINE 2 Perceptron Perceptron lebih powerful dari Hebb Pembelajaran perceptron mampu menemukan konvergensi terhadap bobot yang

Lebih terperinci

PERANCANGAN PARAMETER TERBAIK UNTUK PREDIKSI PRODUKSI BAN GT3 MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILIENT PROPAGATION

PERANCANGAN PARAMETER TERBAIK UNTUK PREDIKSI PRODUKSI BAN GT3 MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILIENT PROPAGATION PERANCANGAN PARAMETER TERBAIK UNTUK PREDIKSI PRODUKSI BAN GT3 MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILIENT PROPAGATION Fitrisia, Adiwijaya, dan Andrian Rakhmatsyah Program Studi S1 Teknik Informatika,

Lebih terperinci

ANALISIS PENGENALAN MOTIF BATIK PEKALONGAN MENGGUNAKAN ALGORITMA BACKPROPAGATION

ANALISIS PENGENALAN MOTIF BATIK PEKALONGAN MENGGUNAKAN ALGORITMA BACKPROPAGATION ANALISIS PENGENALAN MOTIF BATIK PEKALONGAN MENGGUNAKAN ALGORITMA BACKPROPAGATION Vera Pebrianasari 1, Edy Mulyanto, S.Si, M.Kom 2 Teknik Informatika, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro

Lebih terperinci

PREDIKSI DAYA SERAP PERUSAHAAN TERHADAP ALUMNI TEKNIK INFORMATIKA IBI DARMAJAYA BERBASIS JARINGAN SYARAF TIRUAN. 1Chairani

PREDIKSI DAYA SERAP PERUSAHAAN TERHADAP ALUMNI TEKNIK INFORMATIKA IBI DARMAJAYA BERBASIS JARINGAN SYARAF TIRUAN. 1Chairani Jurnal Informatika, Vol. 12, No. 2, Desember 2012 Chairani PREDIKSI DAYA SERAP PERUSAHAAN TERHADAP ALUMNI TEKNIK INFORMATIKA IBI DARMAJAYA BERBASIS JARINGAN SYARAF TIRUAN 1Chairani 1 Jurusan Teknik Informatika

Lebih terperinci

KLASIFIKASI DAUN TANAMAN THEOBROMA CACAO MENGGUNAKAN METODE NEURAL NETWORK

KLASIFIKASI DAUN TANAMAN THEOBROMA CACAO MENGGUNAKAN METODE NEURAL NETWORK KLASIFIKASI DAUN TANAMAN THEOBROMA CACAO MENGGUNAKAN METODE NEURAL NETWORK Endi Permata 1), Andri Suherman 2), Alief Maulana 3) 1) 2 )3) Program Studi S1 Teknik Elektro, Fakultas Teknik,Universitas Sultan

Lebih terperinci

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA PROBABILISTIC NEURAL NETWORK

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA PROBABILISTIC NEURAL NETWORK PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA PROBABILISTIC NEURAL NETWORK ABSTRAK Dwi Putra Alexander (0722067) Jurusan Teknik

Lebih terperinci

KNIT-2 Nusa Mandiri ISBN: SISTEM BIOMETRIK TELINGA MENGGUNAKAN JARINGAN SYARAF TIRUAN

KNIT-2 Nusa Mandiri ISBN: SISTEM BIOMETRIK TELINGA MENGGUNAKAN JARINGAN SYARAF TIRUAN SISTEM BIOMETRIK TELINGA MENGGUNAKAN JARINGAN SYARAF TIRUAN Ina Agustina 1, Fauziah 2, Aris Gunaryati 3 1, 2 Sistem Informasi, 3Teknik Informatika, Universitas Nasional Jl Sawo Manila Pejaten Pasar Minggu

Lebih terperinci

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF RADIAL BASIS FUNCTION (RBF)

PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF RADIAL BASIS FUNCTION (RBF) Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Yogyakarta, 14 Mei 2011 PENGENALAN POLA TANDA TANGAN MENGGUNAKAN METODE MOMENT INVARIANT DAN JARINGAN SYARAF

Lebih terperinci

PERAMALAN BEBAN LISTRIK MENGGUNAK AN JARINGAN SARAF TIRUAN METODE KOHONEN ABSTRAK

PERAMALAN BEBAN LISTRIK MENGGUNAK AN JARINGAN SARAF TIRUAN METODE KOHONEN ABSTRAK PERAMALAN BEBAN LISTRIK MENGGUNAK AN JARINGAN SARAF TIRUAN METODE KOHONEN Galang Jiwo Syeto, Arna Fariza, S.Kom, M.Kom, Setiawardhana, S.T Program DIV Jurusan Teknik Informatika Politeknik Elektronika

Lebih terperinci

2.1. Dasar Teori Bandwidth Regression

2.1. Dasar Teori Bandwidth Regression 2.1. Dasar Teori 2.1.1. Bandwidth Bandwidth adalah ukuran kapasitas dari sistem transmisi (Comer, 2004) Bandwidth adalah konsep pengukuran yang sangat penting dalam jaringan, tetapi konsep ini memiliki

Lebih terperinci

IMPLEMENTASI ALGORITMA PERCEPTRON UNTUK PENGENALAN POLA MASUKAN BINER MAUPUN BIPOLAR MENGGUNAKAN BORLAND DELPHI

IMPLEMENTASI ALGORITMA PERCEPTRON UNTUK PENGENALAN POLA MASUKAN BINER MAUPUN BIPOLAR MENGGUNAKAN BORLAND DELPHI IMPLEMENTASI ALGORITMA PERCEPTRON UNTUK PENGENALAN POLA MASUKAN BINER MAUPUN BIPOLAR MENGGUNAKAN BORLAND DELPHI Andi Harmin Program Studi : Teknik Komputer STMIK Profesional Makassar andiharmin1976@gmail.com

Lebih terperinci

PERAMALAN HARGA SAHAM PERUSAHAAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN AKAIKE INFORMATION CRITERION

PERAMALAN HARGA SAHAM PERUSAHAAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN AKAIKE INFORMATION CRITERION Seminar Nasional Aplikasi Teknologi Informasi 20 (SNATI 20) ISSN: 19-5022 Yogyakarta, 16 Juni 20 PERAMALAN HARGA SAHAM PERUSAHAAN MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN AKAIKE INFORMATION CRITERION

Lebih terperinci

Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia

Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia Jurnal Informatika Mulawarman Vol 4 No. 1 Feb 2009 21 Jaringan Syaraf Tiruan Bidirectional Associative Memory (BAM) Sebagai Identifikasi Pola Sidik jari Manusia ZAINAL ARIFIN Program Studi Ilmu Komputer,

Lebih terperinci

ANALISIS JARINGAN SARAF TIRUAN BACKPROPAGATION TERHADAP PERAMALAN NILAI TUKAR MATA UANG RUPIAH DAN DOLAR

ANALISIS JARINGAN SARAF TIRUAN BACKPROPAGATION TERHADAP PERAMALAN NILAI TUKAR MATA UANG RUPIAH DAN DOLAR Jurnal Barekeng Vol. 8 No. Hal. 7 3 (04) ANALISIS JARINGAN SARAF TIRUAN BACKPROPAGATION TERHADAP PERAMALAN NILAI TUKAR MATA UANG RUPIAH DAN DOLAR Analysis of Backpropagation Artificial Neural Network to

Lebih terperinci

Perancangan Perangkat Lunak Pengenal Tulisan Tangan Sambung Menggunakan Jaringan Saraf Tiruan Dengan Metode Hopfield

Perancangan Perangkat Lunak Pengenal Tulisan Tangan Sambung Menggunakan Jaringan Saraf Tiruan Dengan Metode Hopfield Perancangan Perangkat Lunak Pengenal Tulisan Tangan Sambung Menggunakan Jaringan Saraf Tiruan Dengan Metode Hopfield William Susanto Tandiari/0322139 Email: Williams_tandiari@yahoo.com Jurusan Teknik Elektro,

Lebih terperinci

Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran

Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran Sebelumnya... Pembelajaran Mesin/Machine Learning Pembelajaran dengan Decision Tree (ID3) Teori Bayes dalam Pembelajaran Kecerdasan Buatan Pertemuan 11 Jaringan Syaraf Tiruan (Artificial Neural Network)

Lebih terperinci

APLIKASI PENGENALAN POLA DAUN MENGGUNAKAN JARINGAN SYARAF LEARNING VECTOR QUANTIFICATION UNTUK PENENTUAN TANAMAN OBAT

APLIKASI PENGENALAN POLA DAUN MENGGUNAKAN JARINGAN SYARAF LEARNING VECTOR QUANTIFICATION UNTUK PENENTUAN TANAMAN OBAT APLIKASI PENGENALAN POLA DAUN MENGGUNAKAN JARINGAN SYARAF LEARNING VECTOR QUANTIFICATION UNTUK PENENTUAN TANAMAN OBAT Fradika Indrawan Jurusan Teknik Informatika, Universitas Ahmad Dahlan, Yogyakarta Jl.

Lebih terperinci

PENGENALAN TULISAN TANGAN AKSARA BATAK TOBA MENGGUNAKAN JARINGAN SARAF TIRUAN BERBASIS MULTILAYER PERCEPTRON

PENGENALAN TULISAN TANGAN AKSARA BATAK TOBA MENGGUNAKAN JARINGAN SARAF TIRUAN BERBASIS MULTILAYER PERCEPTRON PENGENALAN TULISAN TANGAN AKSARA BATAK TOBA MENGGUNAKAN JARINGAN SARAF TIRUAN BERBASIS MULTILAYER PERCEPTRON Disusun oleh : Nama : J. Rio Sihombing NRP : 0322129 Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada bab ini akan membahas landasan teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teknik-teknik yang dibahas mengenai pengenalan pola, prapengolahan citra,

Lebih terperinci

PERBANDINGAN ANTARA METODE KOHONEN NEURAL NETWORK DAN LEARNING VECTOR QUANTIZATION PADA SISTEM PENGENALAN TULISAN TANGAN SECARA REAL TIME

PERBANDINGAN ANTARA METODE KOHONEN NEURAL NETWORK DAN LEARNING VECTOR QUANTIZATION PADA SISTEM PENGENALAN TULISAN TANGAN SECARA REAL TIME PERBANDINGAN ANTARA METODE KOHONEN NEURAL NETWORK DAN LEARNING VECTOR QUANTIZATION PADA SISTEM PENGENALAN TULISAN TANGAN SECARA REAL TIME Nama Mahasiswa : Asworo NRP : 205 00 077 Jurusan : Matematika FMIPA-ITS

Lebih terperinci

Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor

Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor 23 Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor Fachrudin Pakaja, Agus Naba dan Purwanto Abstrak Prediksi penjualan adalah salah satu cara untuk meningkatkan laba perusahaan,

Lebih terperinci

ANALISIS PRODUKTIVITAS PEGAWAI MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK

ANALISIS PRODUKTIVITAS PEGAWAI MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK Jurnal Computech & Bisnis, Vol. 6, No. 2, Desember 2012, 69-74 ISSN 2442-4943 ANALISIS PRODUKTIVITAS PEGAWAI MENGGUNAKAN JARINGAN SARAF TIRUAN PROPAGASI BALIK Riffa Haviani Laluma STMIKMardira Indonesia,

Lebih terperinci

Implementasi Pengenalan Tanda Tangan dengan Menggunakan Metode Backpropagation TUGAS AKHIR

Implementasi Pengenalan Tanda Tangan dengan Menggunakan Metode Backpropagation TUGAS AKHIR Implementasi Pengenalan Tanda Tangan dengan Menggunakan Metode Backpropagation TUGAS AKHIR Diajukan Oleh : RENDRA FEBRIANTO 0634015068 JURUSAN TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS

Lebih terperinci

Farah Zakiyah Rahmanti

Farah Zakiyah Rahmanti Farah Zakiyah Rahmanti Latar Belakang Struktur Dasar Jaringan Syaraf Manusia Konsep Dasar Permodelan JST Fungsi Aktivasi JST Contoh dan Program Jaringan Sederhana Metode Pelatihan Supervised Learning Unsupervised

Lebih terperinci

KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DAN LEARNING VECTOR QUANTIZATION

KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DAN LEARNING VECTOR QUANTIZATION Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 KLASIFIKASI PENYAKIT DIABETES MELLITUS MENGGUNAKAN JARINGAN SYARAF TIRUAN

Lebih terperinci

Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Integral Proyeksi

Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Integral Proyeksi Sistem Pembaca Teks Bahasa Indonesia Otomatis Menggunakan Kamera Web Dengan Metode Sigit Wasista, Siwi Dian Priyanti Jurusan Teknik Elektronika Politeknik Elektronika Negeri Surabaya- Institut Teknologi

Lebih terperinci

MODEL N EURON NEURON DAN

MODEL N EURON NEURON DAN 1 MODEL NEURON DAN ARSITEKTUR JARINGAN 1 1 Model Neuron Mengadopsi esensi dasar dari system syaraf biologi, syaraf tiruan digambarkan sebagai berikut : Menerima input atau masukan (baikdari data yang dimasukkan

Lebih terperinci

Prediksi Jumlah Penjualan Air Mineral Pada Perusahaan XYZ Dengan Jaringan Saraf Tiruan

Prediksi Jumlah Penjualan Air Mineral Pada Perusahaan XYZ Dengan Jaringan Saraf Tiruan Prediksi Jumlah Penjualan Air Mineral Pada Perusahaan XYZ Dengan Jaringan Saraf Tiruan Kusuma Dewangga, S.Kom. Jurusan Ilmu Komputer Universitas Gadjah Mada Jl. Bulaksumur, Yogyakarta kusumadewangga@gmail.com

Lebih terperinci

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi Jurusan

Lebih terperinci

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara

BAB 2 LANDASAN TEORI. Universitas Sumatera Utara BAB 2 LANDASAN TEORI 2.1 Ginjal Ginjal adalah organ tubuh yang berfungsi untuk mengeluarkan urine, yang merupakan sisa hasil metabolisme tubuh dalam bentuk cairan. Ginjal terletak pada dinding bagian luar

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. menggunakan teknik statistik, matematika, kecerdasan buatan, tiruan dan machinelearning

BAB 2 TINJAUAN PUSTAKA. menggunakan teknik statistik, matematika, kecerdasan buatan, tiruan dan machinelearning BAB 2 TINJAUAN PUSTAKA 2.1. Data Mining Data mining adalah kombinasi secara logis antara pengetahuan data, dan analisa statistik yang dikembangkan dalam pengetahuan bisnis atau suatu proses yang menggunakan

Lebih terperinci

ANALISIS DAN PERANCANGAN JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION PADA APLIKASI PENGENALAN TANDA TANGAN

ANALISIS DAN PERANCANGAN JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION PADA APLIKASI PENGENALAN TANDA TANGAN Analisis dan Perancangan Tanda Tangan Wilis K, Fani W, Heru Cahya R ANALISIS DAN PERANCANGAN JARINGAN SARAF TIRUAN DENGAN METODE BACKPROPAGATION PADA APLIKASI PENGENALAN TANDA TANGAN Wilis Kaswidjanti,

Lebih terperinci

Desain Perangkat Lunak Berbasis Jaringan Syaraf Tiruan Backpropagation untuk Klasifikasi Citra Rontgen Paru-paru

Desain Perangkat Lunak Berbasis Jaringan Syaraf Tiruan Backpropagation untuk Klasifikasi Citra Rontgen Paru-paru JURNAL FISIKA DAN APLIKASINYA VOLUME 10, NOMOR 1 JANUARI 2014 Desain Perangkat Lunak Berbasis Jaringan Syaraf Tiruan Backpropagation untuk Klasifikasi Citra Rontgen Paru-paru M. Arief Bustomi, 1, Hasan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi Penelitian merupakan acuan dalam pelaksanaan sebuah penelitian. Metodologi penelitian berisi rencana kerja yang berurutan agar hasil yang didapatkan sesuai dengan

Lebih terperinci

PENGENALAN AKSARA BALI MENGGUNAKAN METODE MODIFIED DIRECTION FEATURE DAN ALGORITMA GENERALIZED LEARNING VECTOR QUANTIZATION (GLVQ)

PENGENALAN AKSARA BALI MENGGUNAKAN METODE MODIFIED DIRECTION FEATURE DAN ALGORITMA GENERALIZED LEARNING VECTOR QUANTIZATION (GLVQ) PENGENALAN AKSARA BALI MENGGUNAKAN METODE MODIFIED DIRECTION FEATURE DAN ALGORITMA GENERALIZED LEARNING VECTOR QUANTIZATION (GLVQ) KOMPETENSI KOMPUTASI SKRIPSI NI WAYAN DEVIYANTI SEPTIARI NIM. 1108605004

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Jaringan saraf tiruan Jaringan Syaraf Tiruan (JST) atau neural network adalah suatu metode komputasi yang meniru sistem jaringan Syaraf biologis pada manusia. Metode ini menggunakan

Lebih terperinci

Penggunaan Jaringan Syaraf Tiruan Backpropagation Untuk Seleksi Penerimaan Mahasiswa Baru Pada Jurusan Teknik Komputer Di Politeknik Negeri Sriwijaya

Penggunaan Jaringan Syaraf Tiruan Backpropagation Untuk Seleksi Penerimaan Mahasiswa Baru Pada Jurusan Teknik Komputer Di Politeknik Negeri Sriwijaya Jurnal Sistem Informasi Bisnis 02(202) On-line : http://ejournal.undip.ac.id/index.php/jsinbis 89 Penggunaan Jaringan Syaraf Tiruan Backpropagation Untuk Seleksi Penerimaan Mahasiswa Baru Pada Jurusan

Lebih terperinci

PENGENALAN POLA PLAT NOMOR KENDARAAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

PENGENALAN POLA PLAT NOMOR KENDARAAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION David PENGENALAN POLA PLAT NOMOR KENDARAAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION DAVID Program Studi Teknik Informatika, Sekolah Tinggi Manajemen Informatika dan Komputer Pontianak Jalan Merdeka

Lebih terperinci

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA

TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi, Toleransi Jaringan Syaraf Tiruan TOLERANSI UNJUK PENGENALAN JARINGAN SYARAF TIRUAN PADA PENAMBAHAN DERAU DAN SUDUT PUTARAN TERHADAP POLA KARAKTER TULISAN TANGAN JENIS ANGKA Iwan Suhardi Jurusan

Lebih terperinci

ANALISIS DAN IMPLEMENTASI APLIKASI PENGENALAN SUARA MENJADI TEKS MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION

ANALISIS DAN IMPLEMENTASI APLIKASI PENGENALAN SUARA MENJADI TEKS MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION ANALISIS DAN IMPLEMENTASI APLIKASI PENGENALAN SUARA MENJADI TEKS MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION ANALYSIS AND IMPLEMENTATION OF SPEECH TO TEXT APPLICATION USING BACKPROPAGATION

Lebih terperinci

: RAHMAT HIDAYAT NPM : : Ilmu Komputer dan Teknologi Informasi

: RAHMAT HIDAYAT NPM : : Ilmu Komputer dan Teknologi Informasi APLIKASI PENGENALAN HURUF TULISAN TANGAN OFFLINE MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK Nama : RAHMAT HIDAYAT NPM : 15111783 Fakultas : Ilmu Komputer dan Teknologi Informasi Jurusan : Sistem Informasi

Lebih terperinci

VIII.PENGANTAR JARINGAN SYARAF TIRUAN (JST)

VIII.PENGANTAR JARINGAN SYARAF TIRUAN (JST) VIII.PENGANTAR JARINGAN SYARAF TIRUAN (JST) 3 JARINGAN SYARAF BIOLOGIS (JSB) Otak manusia berisi sekitar 0 sel syaraf (neuron) yang bertugas untuk memproses informasi yang masuk. Tiap sel syaraf dihubungkan

Lebih terperinci

NEURAL NETWORK BAB II

NEURAL NETWORK BAB II BAB II II. Teori Dasar II.1 Konsep Jaringan Saraf Tiruan (Artificial Neural Network) Secara biologis jaringan saraf terdiri dari neuron-neuron yang saling berhubungan. Neuron merupakan unit struktural

Lebih terperinci

Neural Network (NN) Keuntungan penggunaan Neural Network : , terdapat tiga jenis neural network Proses Pembelajaran pada Neural Network

Neural Network (NN) Keuntungan penggunaan Neural Network : , terdapat tiga jenis neural network Proses Pembelajaran pada Neural Network Neural Network (NN) adalah suatu prosesor yang melakukan pendistribusian secara besar-besaran, yang memiliki kecenderungan alami untuk menyimpan suatu pengenalan yang pernah dialaminya, dengan kata lain

Lebih terperinci

BAB II MODEL NEURON DAN ARSITEKTUR JARINGAN

BAB II MODEL NEURON DAN ARSITEKTUR JARINGAN BAB II MODEL NEURON DAN ARSITEKTUR JARINGAN Neuron adalah unit pemroses informasi yang menjadi dasar dalam pengoperasian JST. Neuron terdiri dari 3 elemen: Himpunan unit2 yang dihubungkan dengan jalus

Lebih terperinci

KLASIFIKASI CITRA BERDASARKAN TEKSTUR MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK

KLASIFIKASI CITRA BERDASARKAN TEKSTUR MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK MAKALAH SEMINAR TUGAS AKHIR KLASIFIKASI CITRA BERDASARKAN TEKSTUR MENGGUNAKAN JARINGAN SARAF TIRUAN PERAMBATAN BALIK Panji Novia Pahludi*, Achmad Hidayatno**, R. Rizal Isnanto** Abstrak Selain ukuran,

Lebih terperinci

PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA RESILENT BACKPROPAGATION SKRIPSI

PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA RESILENT BACKPROPAGATION SKRIPSI PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA RESILENT BACKPROPAGATION (Studi Kasus : Harga Penutupan Saham Unilever Indonesia Tbk. Periode September

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA)

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) PEMBANGUNAN SISTEM PENDETEKSI PENYALAHGUNAAN NARKOBA MENGGUNAKAN ALGORITMA JARINGAN SYARAF TIRUAN METODE BACKPROPAGATION Dwi Putri Pangrestu 1, Nelly Indriani Widiastuti 2 Teknik Informatika Universitas

Lebih terperinci

Pengenalan Pola Huruf Arab Tulis Tangan Menggunakan Jaringan Saraf Tiruan dengan Metode Perambatan Balik

Pengenalan Pola Huruf Arab Tulis Tangan Menggunakan Jaringan Saraf Tiruan dengan Metode Perambatan Balik Pengenalan Pola Huruf Arab Tulis Tangan Menggunakan Jaringan Saraf Tiruan dengan Metode Perambatan Balik Teguh Prakoso 1, Achmad Hidayatno 2, R.Rizal Isnanto 2 Jurusan Teknik Elektro, Fakultas Teknik Universitas

Lebih terperinci