Makalah Seminar Kerja Praktek PROSES PEMBANGKITAN ENERGI LISTRIK TENAGA ANGIN GRUP BARAT PLTH PANDANSIMO. Abstrak

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Makalah Seminar Kerja Praktek PROSES PEMBANGKITAN ENERGI LISTRIK TENAGA ANGIN GRUP BARAT PLTH PANDANSIMO. Abstrak"

Transkripsi

1 Makalah Seminar Kerja Praktek PROSES PEMBANGKITAN ENERGI LISTRIK TENAGA ANGIN GRUP BARAT PLTH PANDANSIMO Ridlwan Zein Wahyuardi Nugroho 1), Susatyo Handoko, ST. MT 2) 1 Mahasiswa dan 2 Dosen Jurusan Teknik, Fakultas Teknik, Universitas Diponegoro JL.Prof.Soedharto, Tembalang, Semarang Abstrak Selama ini banyak pembangkit listrik menggunakan bahan bakar fosil, yang mana jika digunakan terus menerus akan habis. Semakin berkembangnya IPTEK, maka ditemukannya energi angin dan matahari sebagai bahan bakar pembangkit tenaga listrik. PLTH Pandansimo merupakan pembangkit listrik yang renewable dan merupakan salah satu pembangkit terbaharukan terbesar di Indonesia dengan kapasitas maksimum 83 kw. PLTH ini dibangun dengan kerjasama antara RISTEK, LAPAN, Wind Enegy dan UGM. Pembangkit ini kombinasi antara Panel Surya yang nenggunakan energi matahari dan angin yang menggerakkan turbin angin yang masuk ke generator dan dikonversi menjadi listrik. Dan keduanya ini memiliki karakteristik dan prinsip kerja yang berbeda-beda. Dalam laporan ini akan membahas mengenai proses pembangkitan energi listrik tenaga angin pada grup barat dan monitoring pada turbin angin 1 kw no 5 dan no 21 Pembangkit Listrik Tenaga Hybrid Pandansimo, Bantul. Seoga hasil ini dapat bermanfaat untuk kedepannya. Kata Kunci : Panel Surya, Pembangkitan, Turbin Angin I. PENDAHULUAN 1.1 Latar Belakang Angin adalah sumber energi yang tersedia cukup berlimpah di alam. Pemanfaatannya telah dimulai sejak tahun 5000 SM untuk menggerakkan baling-baling perahu di Sungai Nil. Tahun 200 SM, Cina telah memanfaatkan energi angin untuk pompa air, dan di Timur Tengah telah dimanfaatkan untuk menggiling biji-bijian. Pada abad ke-20, energi angin telah banyak dimanfaatkan untuk pengolahan makanan, pompa air, dan pembangkit listrik. Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik. Pembangkit ini dapat mengkonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin. Sistem pembangkitan listrik menggunakan angin sebagai sumber energi merupakan sistem alternatif yang sangat berkembang pesat, mengingat angin merupakan salah satu energi yang tidak terbatas di alam. Salah satu Pembangkit Listrik Tenaga Angin adalah PLTH Pandansimo yang terletak di Srandakan, Bantul. Dalam makalah ini penulis akan membahas bagaimana proses pembangkitan energi listrik tenaga angin pada PLTH tersebut Tujuan Tujuan penulisan makalah kerja praktek ini adalah untuk mengetahui proses pembangkitan enegi listrik grup barat PLTH Pandansimo Batasan Maslah Mekanisme dan sistem kerja tenaga hibrid merupakan suatu kesatuan sistem yang terintegrasi. Sehingga untuk mempelajari suatu masalah tidak bisa lepas dari masalah lain. Dalam membuat laporan keja pratek ini penulis membatasi masalah yang akan dibahas yaitu hanya membahas proses pembangkitan energi listrik tenaga angin. II. DASAR TEORI 2.1 PLTH Hybrid System atau Pembangkit Listrik Tenaga Hibrida (PLTH) merupakan salah satu alternatif sistem pembangkit yang tepat diaplikasikan pada daerah-daerah yang sukar dijangkau oleh sistem pembangkit besar seperti jaringan PLN atau PLTD. PLTH ini memanfaatkan renewable energy sebagai sumber utama (primer) yang dikombinasikan dengan Diesel Generator sebagai sumber energi cadangan (sekunder).

2 Gambar 1. Sistem PLTH yang mengkombinasikan Tenaga Surya, Tenaga Angin, dan Diesel Generator Perancangan PLTH Pandansimo ini dibagi menjadi dua grup, yaitu grup 1 dan grup 2. Grup 1 atau grup barat terdiri dari 21 unit kincir angin 1 kw dan panel surya kw. Grup 2 atau grup timur terdiri dari 1 unit kapasitas maksimal 10 kw, 6 unit dengan kapasitas maksimal perunit 2,5 kw, 4 unit kapasitas maksimal perunit 1 kw, sedangkan panel surya dipasang di grup 2 adalah 2 kw. 2.2 PLTB (Angin) Pembangkit Listrik Tenaga Angin yang mengkonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin Turbin Angin Turbin angin yang digunakan pembangkit listrik tenaga bayu / angin (PLTB) tersusun dari berbagai komponen Komponen Turbin Angin Berikut akan dijelaskan bagian-bagian dari turbin angin : Gambar 2. Bagian-bagian Turbin Angin 1. Blades Kebanyakan turbin baik dua atau tiga pisau. Angin bertiup di atas menyebabkan pisau- pisau untuk mengangkat dan berputar. 2. Rotor Pisau dan terhubung bersama-sama disebut rotor. 3. Pitch untuk mengontrol kecepatan rotor dan menjaga rotor berputar dalam angin yang terlalu tinggi atau terlalu rendah untuk menghasilkan listrik. 4. Brake Digunakan untuk menjaga putaran pada poros setelah gearbox agar bekerja pada titik aman saat terdapat angin yang besar. 5. low speed shaft Mengubah poros rotor kecepatan rendah sekitar rotasi per menit 6. Gear Box gearbox adalah bagian mahal (dan berat) dari turbin angin dan insinyur generator mengeksplorasi direct-drive yang beroperasi pada kecepatan rotasi yang lebih rendah dan tidak perlu kotak gigi 7. Generator Berfungsi mengkonversi energi putar menjadi energi listrik. 8. Controller Pengontrol mesin mulai dengan kecepatan angin sekitar 8-16 mil per jam (mph) dan menutup mesin turbin sekitar 55 mph. tidak beroperasi pada kecepatan angin sekitar 55 mph di atas, karena dapat rusak karena angin yang kencang. 9. Anemometer Mengukur kecepatan angin dan mengirimkan data kecepatan angin ke pengontrol. 10. Wind Vane Tindakan arah angin dan berkomunikasi dengan yaw drive untuk menggerakkan turbin dengan koneksi yang benar dengan angin 11. Nacelle Nacelle berada di atas menara dan berisi gear box, poros kecepatan rendah dan tinggi, generator, kontrol dan rem. 12. High speed Shaft

3 Drive generator. Poros yang berhubungan langsung dengan rotor generator. 13. Yaw Drive Yaw drive yang digunakan untuk menjaga rotor menghadap ke arah angin sebagai perubahan arah angin. 14. Yaw Motor Kekuatan dari drive yaw. 15. Tower Menara yang terbuat dari baja tabung, beton atau kisi baja. Karena kecepatan angin meningkat dengan tinggi, menara tinggi memungkinkan turbin untuk menangkap lebih banyak energi dan menghasilkan listrik lebih banyak Karakteristik Turbin Angin Gambar 3.8 menunjukan pembagian daerah kerja dari turbin angin. Berdasarkan gambar 3.8 ini, daerah kerja angin dapat dibagi menjadi 3, yaitu (a) cut-in speed (b) kecepatan kerja angin rata-rata (kecepatan nominal) (c) cut-out speed. Secara ideal, turbin angin dirancang dengan kecepatan cut-in yang seminimal mungkin, kecepatan nominal yang sesuai dengan potensi angin lokal, dan kecepatan cut-out yang semaksimal mungkin. Gambar 4. Sistem PLTB Kecepatan Konstan (Fixed-Speed) Gambar 4 merupakan sistem kecepatan konstan (Fixed-Speed) dari sitem pembangkit tenaga angin. Sistem ini beroperasi pada kecepatan putar turbin yang konstan dan menghasilkan daya maksimum pada satu nilai kecepatan angin. Sistem ini biasanya menggunakan generator takserempak (unsynchronous generator), dan cocok diterapkan pada daerah yang memiliki potensi kecepatan angin yang besar. Gambar 5. Sistem PLTB Kecepatan Berubah / Variable Speed (Rotor Magnet Permanen). Gambar 3. Karakteristik Kerja turbin Angin Sistem Elektrik PLTB (Angin) Secara umum sistem kelistrikan dari PLTB dapat dibagi menjadi 2 yaitu kecepatan konstan dan kecepatan berubah. III. Proses Pembangkitan Energi Listrik Tenaga Angin 3.1 Sistem Pembangkit Listrik tenaga Angin Pembangkit Listrik tenaga Hybrid yang berlokasi di kawasan Pantai baru pandansimo ini. Kincir yang digunakan merupakan Kincir angin / Turbin Angin putaran rendah, dapat dilihat dari spesifikasi turbin bahwa rata-rata turbin angin yang digunakan adalah turbin angin kapasitas daya 1 kw. Ini berarti kecepatan angin maksimum 12 m/s, daya yang dihasilkan turbin kapasitas maksimal 1 kw. Dikarenakan kecepatan rata-rata angin tahunan

4 di kwasan pesisir pantai baru sekitar 5 m/s dalam kondisi cuaca normal Turbin Angin Turbin angin pada grup timur masingmasing memiliki 3 sudu dan ekor, dimana ekor tersebut berfungsi sebagai orientasi arah angin. Pada turbin no 21 lilitan pada generator sudah tidak asli buatan pabrik. Spesifikasi Turbin angin grup barat sebagai berikut: Tabel 1 Spesifikasi Turbin Angin Grup Barat SPESIFIKASI ELEKTRIK Tipe Sistem 1 kw/240 V P max 1 kw V max 240 V I max 4,17 A Kecepatan angin 3,5 m/s < v angin < cut in 25 m/s Kecepatan Angin V angin < 3,5 m/s cut off dan v angin > 25 m/s Kecepatan Rotasi 375 rpm Generator 3 phasa 1500 watt Sifat Magnet Magnet Permanen Generator SPESIFIKASI FISIK Tinggi Menara 15 m Jumlah Sudu 3 buah Panjang Sudu 1450 mm Berat Sudu 2,45 kg Bahan Sudu Fiber Reinforced Pengarah Turbin Plat Ekor tegangan dari turbin angin ke panel beban atau rumah induk. Gambar 6 Box kontrol Dummy Load Dummy Load merupakan tempat untuk pembuangan tegangan berlebih yang dihasilkan oleh pembangkit. Apabila tegangan yang dihasilkan pembangkit mencapai sekitar 260 V, maka tegangan akan dialihkan ke dumy load. Pada PLTH Pantai Baru grup barat jumlah dumy load sebanyak 21 karena jumlah Turbin Angin 21 unit, setiap Turbin Angin meiliki dumy load masing-masing. Dari penjelasan diatas dapat dihitung: Dengan cos phi = 1 Nilai Itotmp = 21 x 4,17 = 87,5 A V konstan = 240 V Daya maksimum (Pmax) Pmp = V x Imp total = 240 x 87,5 = 21 kw Kapasitas daya pembangkit: Pin = 21 unit x 1000 w = 21 kw Efisiensi pada v angin = 12 m/s x 100 % = 100 % Box Kontrol Turbin Angin Setiap Turbin Angin pada grup barat memiliki box kontrol masing-masing. Fungsi dari box kontrol sendiri adalah untuk mengatur kecepatan putaran pada kincir dan supply Gambar 7. Dumy load Rangkaian sederhana dumy load: Gambar 8. Ranglain sederhana dumy load

5 3.1.4 Data Logger Merupakan suatu divice atau peranti yang dapat membaca berbagai macam jenis sinyal input yang selanjutnya merekamnya untuk disimpan dalam memori internal atau dihubungkan langsung dengan komputer. Kelebihan data logger dibandingkan dengan peranti akuisisi data umumnya adalah karena dapat dioperasikan secara terpisah dengan komputer. Gambar 9. Bagian-bagian Data Logger Data logger ini sangat cocok untuk lembaga penelitian seperti PLTH dengan budget terbatas namun menginginkan spek akuisisi data yang baik. Selain itu, data loger ini dapat digunakan untuk memantau lingkungan yang mensyaratkan perekaman data secara real-time dan terus menerus 24 jam sehari Penyimpan Energi/Baterai Pada Grup barat ini memiliki kapasitas energi berupa baterai 160 unit dimana 80 unit dengan kapasitas per unit 105Ah/12 V dan 113Ah/12 V. Baterai tersebut dipasang 4 rangakain paralel, dimana setiap rangkaian berisis 20 unit baterai dipasang seri. Jenis aki atau baterai yang digunakan pada pembangkit listrik di PLTH grup barat ini adalah aki basah atau lead acid. Pada baterai memiliki proses pengisian dan pengosongan (charging atau discharging). Tegangan sebenarnya pada baterai 12 V adalah 13,8-14,7 V. Kondisi pada baterai ini tergantung dari suhu dan kelembaban, mengingat di PLTH tingkat kelembaban udara cukup tinggi. Suhu tinggi menyebabakan baterai cepat rusak. Pada saat proses pengisian baterai pada suhu ruangan melebihi 30 C. Tegangan yang direkomendasikan pada baterai adalah 14,1 V. Pada saat pengisian/charging, dan suhu ruangan tetap dibawah 30 C, maka tegangan pada saat charge disarankan 14,4-14,7 V Jika proses charging baterai sudah melebihi 14,7 V maka secara otomatis baterai akan menghentikan proses pengisian. Kapasitas baterai 105Ah, berati arus baterai akan habis dalam satu jam, apabila beban menggunakan arus sebesar 105 A. Sedangkan proses pengosongan/discharge baterai, level tegangan yang direkomendasikan adalah 10,5 V. Sehingga apabila pada proses discharging sudah mencapai pada level tersebut maka proses discharging dihentikan. Karena jika baterai pada tegangan <10,5 V, maka baterai akan mudah rusak. Gambar 10. Data logger PLTH Pandansimo Penggunaan data logger paling sering adalah untuk memonitoring kecepatan angin, arah mata angin dan juga data menyimpan file 24 pada mmc card. Gambar 11 Perawatan aki

6 Untuk proses perawatan baterai aki, harus rutin dilakukan pengecekan kondidi batas ketinggian air. Agar cell penyimpanan arus tidak teroksidasi dan berkarat. Bila air pada posisi batas minimum aki, maka harus segara diisi air accu sampai batas antara minimum dan maksimum aki. Proses pemeriksaan aki ini dilakukan setiap bulan sekali. 3.2 Proses Pembangkitan Tenaga Listrik Pada Pembangkit Listrik tenaga Hybrid Pantai Baru, Srandakan, Bantul telah dibangun pada grup barat Turbin Angin sebanyak 21 unit. Dimana mempunyai keluaran daya maksimal sebesar 21 kw atau 1 kw per unit. Besarnya daya yang dihasilkan turbin angin ini tergantung dengan besar kecepatan angin yang mengenai sudu pada kincir angin. Semakin cepat kecepatan angin, maka makin besar pula daya yang dihasilkan tiap turbin tersebut. Dengan asumsi nilai cos φ adalah 1 pada generator tersebut. 1 kw x 21 unit Turbin angin AC Box Kontrol 21 unit Dumy load 21 unit Over voltage DC 100 Wp x 150 unit PV grup barat PV controller 105Ah/240 V 105Ah/240 V 105Ah/240 V 113Ah/240 V 113Ah/240 V 113Ah/240 V Jumlah baterai 105 Ah/ 12 V = 40 unit 113 Ah/12 V = 60 uniit Gambar 12 Rangkaian sederhana proses pembangkitan Cara kerja dari turbin angin itu sendiri adalah ketika angin kecepatan tertentu yang mengenai sudu, maka sudu tersebut berputar. Dan berputarnya sudu tersebut menyebabkan rotor generator pada turbin angin bergerak. Jenis generator yang digunakan adalah magnet permanen. Generator magnet permanen merupakan jenis generator sinkron yang menggunakan magnet permanen pada rotornya, rotor yang terdapat magnet ini diletakkan seporos dengan main rotor. Magnet permanen biasanya menggunakan bahan ferromagnetik. Gambar 13 Komponen magnet permanen Setelah pada rotor berputar terjadi perubahan fluks pada stator yang menimbulkan GGL, dan stator tersebut menghasilkan tegangan AC 3 fasa. Tegangan tersebut kemudian dihubungkan ke Rectifier untuk disearahkan menjadi tegangan DC. Selanjutnya setelah tegangan listrik disearahkan, daya tersebut disimpan pada baterai 240 V yang telah dipasang secara palalel dan seri pada rumah induk. Daya yang telah disimpan tersebut tidak dapat langsung disuplai, karena jenis beban tersebut adalah AC 3 fasa. Sehingga perlu menggunakan inverter 3 fasa. Beban 3 fasa tersebut adalah pembuat es balok yang membutuhkan daya sekitar 6 kw, tetapi untuk saat ini, mesin balok dalam kondisi tidak beroperasi sehingga turbin angin yang dioperasikan beberapa secara bergantian dari total 21 unit. IV. PENUTUP 4.1 Kesimpulan Dari kerja praktek yang telah dilakukan di Pembangkit Listrik Tenaga Hibrid Pantai Pandansimo, Srandakan, Bantul DIY dapat diambil kesimpulan sebagai berikut : 1. Jenis generator yang digunakan adalah magnet permanen. Generator magnet permanen merupakan jenis generator sinkron yang menggunakan magnet permanen pada rotornya.

7 2. Energi yang dihasilkan oleh turbin angin tidak selalu konstan, tergantung dengan keadaan sekitar. Sehingga digunakan baterai agar daya yang dihasilkan bisa disimpan. 3. Jika terjadi over voltage, maka tegangan tersebut akan dibuang menuju dumy load, agar tidak terjadi kerusakan pada generator dan juga baterai. 4. Jumlah turbin angin yang terdapat pada grup barat adalah 21 buah, dengan kapasitas masing-masing turbin yaitu 1 kw. 5. Penggunaan Sistem Tenaga Hibrid Kincir Angin dan Panel Surya sangat tepat karena dengan adanya 2 sumber hibrid dapat menjaga ketersediaan energi di kawasan Pantai Pandansimo. 6. Instalasi Baterai pada Grup Barat PLTH Pantai Pandansimo terpasang 4 rangkain paralel, dimana setiap rangkaianya berisi 20 unit baterai yang terpasang secara seri. 4.2 Saran Saran-saran yang dapat penulis sampaikan adalah sebagai berikut : 1. Sebaiknya digunakan data logger untuk masing-masing turbin, agar diketahui besar masing-masing kecepatan pada turbin tersebut. 2. Perlu ditinjau lagi sistem pengaman yang digunakan pada proses pembangkitan enegri listrik tenaga Hybrid, jika terjadi gangguan tegangan lebih ataupun kegagalan fasa. 3. Perlu adanya pemeliharaan berkala yang dilakukan pada masing masing komponen pada PLTH Pantai Pandansimo untuk menjaga life time dari sistem tersebut 4. Dapat dilakukan penelitian lebih lanjut untuk memperbaiki kevalidan laporan KP ini. BIODATA Ridlwan Zein Dilahirkan di Kudus, 31 Januari 1992, menempuh pendidikan dasar di SD N 2 Cawas, SMP N 1 Cawas, SMA N 1 Klaten. Saat ini masih menjadi Mahasiswa Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro Semarang konsentrasi Teknik Energi Listrik. Semarang, Januari 2014 Mengetahui dan Mengesahkan Pembimbing Susatyo Handoko, ST. MT NIP DAFTAR PUSTAKA [1] Gunawan, Arif, Studi Pengaruh Sudut Kemiringan dari Bidang Horisontal dan Orientasi Utara Selatan Penel Surya PLTH Pandansimo, Bantul. [2] Suryaenergi.com/in/sys/hybrid.php [3] 06/permasalahan-yang-sering-terjadipada-sistem-wind-turbine-di-indonesia/

Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik.

Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik. Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik. Pembangkit ini dapat mengkonversikan energi angin menjadi

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Berikut beberapa penelitian mengenai keandalan sistem tenaga listrik yang pernah dilakukan sebagai rujukan penulis guna mendukung penyusunan

Lebih terperinci

Makalah Kerja Praktek PLTH Pandansimo, Bantul D.I. Yogyakarta 1

Makalah Kerja Praktek PLTH Pandansimo, Bantul D.I. Yogyakarta 1 Makalah Seminar Kerja Praktek STUDI ENERGI SISTEM 48 VOLT DI PEMBANGKIT LISTRIK HIBRID PANDANSIMO, BANTUL D.I. YOGYAKARTA Taufik Chemistryadha Wijaya, Ir. Yuningtyastuti, MT. Mahasiswa dan Dosen Jurusan

Lebih terperinci

3.1.1 Jenis Data Sifat Data Sumber Data Metode Pengumpulan Data Definisi Operasional

3.1.1 Jenis Data Sifat Data Sumber Data Metode Pengumpulan Data Definisi Operasional DAFTAR ISI HALAMAN JUDUL...i LEMBAR PENGESAHAN...ii LEMBAR PERNYATAAN...iii KATA PENGANTAR...iv DAFTAR ISI...viii DAFTAR TABEL...xi DAFTAR GAMBAR...xii DAFTAR LAMPIRAN...xiii INTISARI...xiv ABSTRACT...xv

Lebih terperinci

II. TINJAUAN PUSTAKA. alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi

II. TINJAUAN PUSTAKA. alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi II. TINJAUAN PUSTAKA 2.1 Sistem Pembangkit Hibrid Sistem pembangkit hibrid adalah kombinasi dari satu atau lebih sumber energi alternatif seperti matahari, angin, mikro/minihidro dan biomassa dengan teknologi

Lebih terperinci

PEMBANGKIT LISRIK TENAGA ANGIN. Nama : M. Beny Djaufani ( ) Ardhians A. W. ( Benny Kurnia ( Iqbally M.

PEMBANGKIT LISRIK TENAGA ANGIN. Nama : M. Beny Djaufani ( ) Ardhians A. W. ( Benny Kurnia ( Iqbally M. PEMBANGKIT LISRIK TENAGA ANGIN Nama : M. Beny Djaufani (11-2009-035) Ardhians A. W. (11-2009-0 Benny Kurnia (11-2009-0 Iqbally M. (11-2009-0 Pengertian PLTB Pembangkit Listrik Tenaga Angin atau sering

Lebih terperinci

1. BAB I PENDAHULUAN 1.1 Latar Belakang

1. BAB I PENDAHULUAN 1.1 Latar Belakang 1. BAB I PENDAHULUAN 1.1 Latar Belakang Pada saat ini sebagian besar pembangkit listrik di dunia masih menggunakan bahan bakar fosil seperti minyak bumi, batu bara dan gas bumi sebagai bahan bakarnya.

Lebih terperinci

LAMPIRAN. dan paralel, kapasitas setiap panel 100 Wp. Harga untuk setiap 15 kwp

LAMPIRAN. dan paralel, kapasitas setiap panel 100 Wp. Harga untuk setiap 15 kwp LAMPIRAN Komponen PLTH Grup Barat A. Panel Surya Panel surya yang berada di PLTH tediri dari 150 unit yang tersusun seri dan paralel, kapasitas setiap panel 100 Wp. Harga untuk setiap 15 kwp adalah$15.540,

Lebih terperinci

LAPORAN SURVEY DAN INVESTIGASI PLTB MALAMENGGU, TAHUNA, SULAWESI UTARA

LAPORAN SURVEY DAN INVESTIGASI PLTB MALAMENGGU, TAHUNA, SULAWESI UTARA 2016 LAPORAN SURVEY DAN INVESTIGASI LAPORAN SURVEY DAN INVESTIGASI PLTB MALAMENGGU, TAHUNA, SULAWESI UTARA PT PLN (PERSERO) PUSAT PEMELIHARAAN KETENAGALISTRIKAN 2016 File: Laporan Survey dan Investigasi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Desain Penelitian Penelitian yang dilakukan oleh penulis meggunakan metode eksperimental dengan pendekatan kuantitatif yaitu melakukan pengamatan untuk mencari data penelitian

Lebih terperinci

PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT

PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT Novi Caroko 1,a, Wahyudi 1,b, Aditya Ivanda 1,c Universitas

Lebih terperinci

Sistem PLTS OffGrid. TMLEnergy. TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat. TMLEnergy. We can make a better world together CREATED

Sistem PLTS OffGrid. TMLEnergy. TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat. TMLEnergy. We can make a better world together CREATED TMLEnergy TMLEnergy Jl Soekarno Hatta no. 541 C, Bandung, Jawa Barat Jl Soekarno Hatta no. W: 541 www.tmlenergy.co.id C, Bandung, Jawa Barat W: www.tmlenergy.co.id E: marketing@tmlenergy.co.id E: marketing@tmlenergy.co.id

Lebih terperinci

BAB 2 TEORI DASAR. Gambar 2.1. Komponen dan diagram rangkaian PLTS. Gambar 2.2. Instalasi PLTS berdaya kecil [2]

BAB 2 TEORI DASAR. Gambar 2.1. Komponen dan diagram rangkaian PLTS. Gambar 2.2. Instalasi PLTS berdaya kecil [2] 3 BAB 2 TEORI DASAR 2.1. Pembangkit Listrik Tenaga Surya PLTS adalah pembangkit listrik yang menggunakan cahaya matahari, dengan mengubah energi cahaya matahari menjadi energi listrik. Energi listrik yang

Lebih terperinci

1 BAB I PENDAHULUAN. energi alternatif yang dapat menghasilkan energi listrik. Telah diketahui bahwa saat

1 BAB I PENDAHULUAN. energi alternatif yang dapat menghasilkan energi listrik. Telah diketahui bahwa saat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Krisis energi yang melanda dunia khususnya di Indonesia, telah membuat berbagai pihak mencari solusi dan melakukan penelitian untuk mencari sumber energi

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Bab ini meliputi waktu dan tempat penelitian, alat dan bahan, rancangan alat, metode penelitian, dan prosedur penelitian. Pada prosedur penelitian akan dilakukan beberapa

Lebih terperinci

BAB 2 PEMBANGKIT LISTRIK TENAGA HIBRIDA

BAB 2 PEMBANGKIT LISTRIK TENAGA HIBRIDA 4 BAB 2 PEMBANGKIT LISTRIK TENAGA HIBRIDA 2.1 Prinsip Dasar Pembangkit listrik tenaga hibrida (PLTH) adalah gabungan atau integrasi antara beberapa jenis pembangkit listrik berbasis BBM dengan pembangkit

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat

Lebih terperinci

PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA

PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA Ahmad Sayogo 1, Novi Caroko, S.T. *, M.Eng 2, Wahyudi, S.T., M.T. 3 1,2,3 Jurusan Teknik

Lebih terperinci

BAB I PENDAHULUAN. panas yang dihasilkan oleh pembakaran bahan bakar menjadi energi mekanik, dan

BAB I PENDAHULUAN. panas yang dihasilkan oleh pembakaran bahan bakar menjadi energi mekanik, dan BAB I PENDAHULUAN 1.1. Latar Belakang Dalam menghasilkan energi listrik, terjadi konversi energi dari energi mekanik menjadi energi listrik melalui suatu alat konversi energi, dalam hal ini disebut dengan

Lebih terperinci

BAB 4 PENGUJIAN, DATA DAN ANALISIS

BAB 4 PENGUJIAN, DATA DAN ANALISIS BAB 4 PENGUJIAN, DATA DAN ANALISIS 4.1 Pengujian Turbin Angin Turbin angin yang telah dirancang, dibuat, dan dirakit perlu diuji untuk mengetahui kinerja turbin angin tersebut. Pengujian yang dilakukan

Lebih terperinci

Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB)

Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB) Rancang Bangun Generator Portable Fluks Aksial Magnet Permanen Jenis Neodymium (NdFeB) Fithri Muliawati 1, Taufiq Ramadhan 2 1 Dosen Tetap Program Studi Teknik Elektro Fakultas Teknik Universitas Ibn Khaldun

Lebih terperinci

Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III ISSN: X Yogyakarta, 3 November 2012

Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III ISSN: X Yogyakarta, 3 November 2012 DESAIN PROTOTIPE PEMBANGKIT LISTRIK TENAGA ANGIN DENGAN TURBIN HORISONTAL DAN GENERATOR MAGNET PERMANEN TIPE AXIAL KECEPATAN RENDAH Hasyim Asy ari 1, Aris Budiman 2, Wahyu Setiyawan 3 1,2,3) Jurusan Teknik

Lebih terperinci

1BAB I PENDAHULUAN. contohnya adalah baterai. Baterai memberikan kita sumber energi listrik mobile yang

1BAB I PENDAHULUAN. contohnya adalah baterai. Baterai memberikan kita sumber energi listrik mobile yang 1BAB I PENDAHULUAN 1.1 LatarBelakang Dewasa ini penggunaan energi listrik berubah dari energi listrik yang statis (berasal dari pembangkitan) menjadi energi listrik yang dapat dibawa kemana saja, contohnya

Lebih terperinci

Sistem PLTS Off Grid Komunal

Sistem PLTS Off Grid Komunal PT. REKASURYA PRIMA DAYA Jl. Terusan Jakarta, Komp Ruko Puri Dago no 342 kav.31, Arcamanik, Bandung 022-205-222-79 Sistem PLTS Off Grid Komunal PREPARED FOR: CREATED VALID UNTIL 2 2 mengapa menggunakan

Lebih terperinci

SISTEM KONVERTER PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP

SISTEM KONVERTER PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP MAKALAH SEMINAR KERJA PRAKTEK SISTEM KONVERTER PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP Novio Mahendra Purnomo (L2F008070) 1, DR. Ir. Joko Windarto,MT. 2 1 Mahasiswa dan 2 Dosen Jurusan Teknik

Lebih terperinci

SISTEM PENYIMPANAN BATERAI DAN PENDISTRIBUSIAN ENERGI LISTRIK PLTH PANDANSIMO BANTUL, D.I.YOGYAKARTA

SISTEM PENYIMPANAN BATERAI DAN PENDISTRIBUSIAN ENERGI LISTRIK PLTH PANDANSIMO BANTUL, D.I.YOGYAKARTA Makalah Seminar Kerja Praktek SISTEM PENYIMPANAN BATERAI DAN PENDISTRIBUSIAN ENERGI LISTRIK PLTH PANDANSIMO BANTUL, D.I.YOGYAKARTA Tatas Ardhy Prihanto, Ir. Bambang Winardi Mahasiswa dan Dosen Jurusan

Lebih terperinci

Makalah Seminar Kerja Praktek PROSES PENYIMPANAN ENERGI PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP

Makalah Seminar Kerja Praktek PROSES PENYIMPANAN ENERGI PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP Makalah Seminar Kerja Praktek PROSES PENYIMPANAN ENERGI PADA PLTS 1000 Wp SITTING GROUND TEKNIK ELEKTRO-UNDIP Mira Erviana 1, Dr.Ir. Joko Windarto, M.T 2 1 Mahasiswa dan 2 Dosen Jurusan Teknik Elektro,

Lebih terperinci

SEKILAS TEK.MESIN 1994 FT, 2010 FST

SEKILAS TEK.MESIN 1994 FT, 2010 FST SEKILAS TEK.MESIN FST,UNDANA 1994 FT, 2010 FST Konversi Energi Konstruksi Perancangan Rekayasa Material Dosen 21 orang Aktif : (S1=5, S2=13) Sementara study (S2=2, S3=1) Mahasiswa = 198 org Alumni = 164

Lebih terperinci

BAB I PENDAHULUAN. kebutuhan energi listrik tersebut terus dikembangkan. Kepala Satuan

BAB I PENDAHULUAN. kebutuhan energi listrik tersebut terus dikembangkan. Kepala Satuan BAB I PENDAHULUAN 1. 1. Latar Belakang Masalah Energi merupakan kebutuhan penting bagi manusia, khususnya energi listrik, energi listrik terus meningkat seiring dengan bertambahnya jumlah populasi manusia

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN Pada penelitian ini, penggerak generator adalah dari kayuhan sepeda untuk menghasilkan listrik yang disimpan dalam akumulator 12 Volt 10Ah yang akan digunakan sebagai sumber

Lebih terperinci

Desain Turbin Angin Sumbu Horizontal

Desain Turbin Angin Sumbu Horizontal Desain Turbin Angin Sumbu Horizontal A. Pendahuluan Angin merupakan sumberdaya alam yang tidak akan habis.berbeda dengan sumber daya alam yang berasal dari fosil seperti gas dan minyak. Indonesia merupakan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Di era modern ini tingkat pengembangan teknologi sangat penting terutama pada pemanfaatan energi listrik untuk kebutuhan listrk. Penggunaan tenaga listrik sangat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Pembangkit Listrik Tenaga Angin Pembangkit Listrik Tenaga Angin memberikan banyak keuntungan seperti bersahabat dengan lingkungan (tidak menghasilkan emisi gas), tersedia dalam

Lebih terperinci

1. BAB I PENDAHULUAN

1. BAB I PENDAHULUAN 1. BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini, listrik merupakan kebutuhan primer masyarakat pada umumnya. Faktor yang paling berpengaruh pada peningkatan kebutuhan listrik adalah majunya teknologi

Lebih terperinci

PERANCANGAN MINI GENERATOR TURBIN ANGIN 200 W UNTUK ENERGI ANGIN KECEPATAN RENDAH. Jl Kaliurang km 14,5 Sleman Yogyakarta

PERANCANGAN MINI GENERATOR TURBIN ANGIN 200 W UNTUK ENERGI ANGIN KECEPATAN RENDAH. Jl Kaliurang km 14,5 Sleman Yogyakarta PERANCANGAN MINI GENERATOR TURBIN ANGIN 200 W UNTUK ENERGI ANGIN KECEPATAN RENDAH Wahyudi Budi Pramono 1*, Warindi 2, Achmad Hidayat 1 1 Program Studi Teknik Elektro, Fakultas Teknologi Industri, Universitas

Lebih terperinci

ANALISIS POTENSI ANGIN DI PANTAI BARU PANDANSIMO KABUPATEN BANTUL

ANALISIS POTENSI ANGIN DI PANTAI BARU PANDANSIMO KABUPATEN BANTUL Dita Anggraini Departemen Teknik Nuklir dan Teknik Fisika, Fakultas Teknik, Universitas Gadjah Mada Jl. Grafika 12 Indonesia NIM : 13/348512/TK/4949 Email : dita.anggraini@mail.ugm.ac.id Abstract Konsumsi

Lebih terperinci

BAB 1 PENDAHULUAN 1.1.Latar Belakang

BAB 1 PENDAHULUAN 1.1.Latar Belakang BAB 1 PENDAHULUAN 1.1.Latar Belakang Energi angin merupakan salah satu sumber daya yang berlimpah, ramah lingkungan dan bersifat renewable sehingga berpotensi untuk dikembangkan. Secara keseluruhan potensi

Lebih terperinci

Standby Power System (GENSET- Generating Set)

Standby Power System (GENSET- Generating Set) DTG1I1 Standby Power System (- Generating Set) By Dwi Andi Nurmantris 1. Rectifiers 2. Battery 3. Charge bus 4. Discharge bus 5. Primary Distribution systems 6. Secondary Distribution systems 7. Voltage

Lebih terperinci

PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK

PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK PENGUJIAN PERFORMANCE MOTOR LISTRIK AC 3 FASA DENGAN DAYA 3 HP MENGGUNAKAN PEMBEBANAN GENERATOR LISTRIK Zainal Abidin, Tabah Priangkoso *, Darmanto Jurusan Teknik Mesin Fakultas Teknik Universitas Wahid

Lebih terperinci

SEMINAR TUGAS AKHIR. Dosen Pembimbing: Imam Abadi, ST, MT Dr. Ir.Ali Musyafa MSc

SEMINAR TUGAS AKHIR. Dosen Pembimbing: Imam Abadi, ST, MT Dr. Ir.Ali Musyafa MSc SEMINAR TUGAS AKHIR RANCANG BANGUN APLIKASI KONTROL PID SISTEM PENJEJAK MATAHARI UNTUK PANEL SURYA PADA SISTEM TEKNOLOGI HYBRID KONVERSI ENERGI SURYA & ANGIN Disusun Oleh : Uqud Adyat Ade Wijaya NRP. 2410

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Dalam bab ini akan dibahas mengenai tempat serta waktu dilakukannya penelitian, alat dan bahan yang digunakan dalam penelitian, apa saja yang menjadi variable dalam penelitian,

Lebih terperinci

BAB IV DATA DAN PEMBAHASAN. melakukan pengambilan data yang berupa daya yang dihasilkan dari PLTH dan

BAB IV DATA DAN PEMBAHASAN. melakukan pengambilan data yang berupa daya yang dihasilkan dari PLTH dan 66 BAB IV DATA DAN PEMBAHASAN 4.1 Analisis Data Pada penelitian ini telah dilakukan dengan tujuan untuk pengambilan data primer selama waktu yang ditentukan. Penelitian dan pengambilan data ini dilakukan

Lebih terperinci

BAB I PENDAHULUAN. maka semakin maju suatu negara, semakin besar energi listrik yang dibutuhkan.

BAB I PENDAHULUAN. maka semakin maju suatu negara, semakin besar energi listrik yang dibutuhkan. BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan suatu kebutuhan utama yang sangat dibutuhkan pada zaman modern ini. Jika dilihat dari kebutuhan energi listrik tiap negara, maka semakin maju

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3.

BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN. yang penulis rancang ditunjukkan pada gambar 3.1. Gambar 3. 29 BAB III METODE PERANCANGAN PEMBANGKIT LISTRIK TENAGA ANGIN 3.1 Konsep Perancangan Sistem Adapun blok diagram secara keseluruhan dari sistem keseluruhan yang penulis rancang ditunjukkan pada gambar 3.1.

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN ALAT

BAB IV ANALISA DAN PENGUJIAN ALAT BAB IV ANALISA DAN PENGUJIAN ALAT 4.1. Metodologi Pengujian Alat Dengan mempelajari pokok-pokok perancangan yang sudah di buat, maka diperlukan suatu pengujian terhadap perancangan ini. Pengujian dimaksudkan

Lebih terperinci

DASAR TEORI. Kata kunci: grid connection, hybrid, sistem photovoltaic, gardu induk. I. PENDAHULUAN

DASAR TEORI. Kata kunci: grid connection, hybrid, sistem photovoltaic, gardu induk. I. PENDAHULUAN PERANCANGAN HYBRID SISTEM PHOTOVOLTAIC DI GARDU INDUK BLIMBING-MALANG Irwan Yulistiono 1, Teguh Utomo, Ir., MT. 2, Unggul Wibawa, Ir., M.Sc. 3 ¹Mahasiswa Teknik Elektro, ² ³Dosen Teknik Elektro, Universitas

Lebih terperinci

BAB 2 TEORI DASAR Jaringan Listrik Mikro

BAB 2 TEORI DASAR Jaringan Listrik Mikro 2.3. Jaringan Listrik Mikro BAB 2 TEORI DASAR Jaringan listrik mikro merupakan jaringan penyedia sumber daya dengan kapasitas kecil, yang dihasilkan oleh pembangkit energi terbarukan. Daya yang dihasilkan

Lebih terperinci

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse

Lebih terperinci

SIMULASI PHOTOVOLTAIC DAN KINCIR ANGIN SAVONIUS SEBAGAI SUMBER ENERGI PENGGERAK MOTOR KAPAL NELAYAN

SIMULASI PHOTOVOLTAIC DAN KINCIR ANGIN SAVONIUS SEBAGAI SUMBER ENERGI PENGGERAK MOTOR KAPAL NELAYAN SIMULASI PHOTOVOLTAIC DAN KINCIR ANGIN SAVONIUS SEBAGAI SUMBER ENERGI PENGGERAK MOTOR KAPAL NELAYAN Adam Daniary Ibrahim (2410105003) Dosen Pembimbing : Dr. Ridho Hantoro, ST, MT & Dr. Gunawan Nugroho,

Lebih terperinci

SISTEM PEMBANGKIT LISTRIK TENAGA ANGIN SKALA KECIL PADA BANGUNAN BERTINGKAT

SISTEM PEMBANGKIT LISTRIK TENAGA ANGIN SKALA KECIL PADA BANGUNAN BERTINGKAT SISTEM PEMBANGKIT LISTRIK TENAGA ANGIN SKALA KECIL PADA BANGUNAN BERTINGKAT Ibrahim Nawawi 1), Bagus Fatkhurrozi 2) 1 Fakultas Teknik, Universitas Tidar email: ibn.elektro@yahoo.com 2 Fakultas Teknik,

Lebih terperinci

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH )

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) Naif Fuhaid 1) ABSTRAK Kebutuhan listrik bagi masyarakat masih menjadi permasalahan penting di Indonesia, khususnya

Lebih terperinci

Penyusun: Tim Laboratorium Energi

Penyusun: Tim Laboratorium Energi Penyusun: Tim Laboratorium Energi Prodi D-IV Teknik Otomasi Listrik Industri Jurusan Teknik Elektro Politeknik Negeri Jakarta-Tahun 2013 DAFTAR ISI BAB Pokok Bahasan Halaman 1 Pengujian Pembangkit Listrik

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Metode Penelitian Mulai Perumusan Masalah Studi Pustaka Validasi Pengumpulan data Pemodelan & Simulasi PLTH secara Off-Grid Pemodelan & Simulasi PLTH secara

Lebih terperinci

Penerapan Teknologi Genertor Magnet Permanen Putaran Rendah Pembangkit Listrik Tenaga Bayu Kapasitas 2,5 kw Dalam Sistem Energi Hibrida

Penerapan Teknologi Genertor Magnet Permanen Putaran Rendah Pembangkit Listrik Tenaga Bayu Kapasitas 2,5 kw Dalam Sistem Energi Hibrida logo lembaga Penerapan Teknologi Genertor Magnet Permanen Putaran Rendah Pembangkit Listrik Tenaga Bayu Kapasitas 2,5 kw Dalam Sistem Energi Hibrida Peneliti/Perekayasa: 1. Gunawan, Ir, MM 2. Agus Basuki,

Lebih terperinci

GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG PEMBANGKITAN ENERGI BARU DAN TERBARUKAN

GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG PEMBANGKITAN ENERGI BARU DAN TERBARUKAN GLOSSARY GLOSSARY STANDAR KOMPETENSI TENAGA TEKNIK KETENAGALISTRIKAN BIDANG PEMBANGKITAN ENERGI BARU DAN TERBARUKAN Bangunan Sipil Adalah bangunan yang dibangun dengan rekayasa sipil, seperti : bangunan

Lebih terperinci

Novitasari, et al., Optimalisasi Daya Output Sistem Pembangkit Listrik Tenaga Angin...

Novitasari, et al., Optimalisasi Daya Output Sistem Pembangkit Listrik Tenaga Angin... 1 OPTIMALISASI DAYA OUTPUT SISTEM PEMBANGKIT LISTRIK TENAGA ANGIN MENGGUNAKAN PERMANENT MAGNET SYNCRHONOUS GENERATOR BERBASIS NEURAL NETWORK (OUTPUT POWER OPTIMIZATION OF WIND POWER PLANT SYSTEM USING

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo

BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo BAB I PENDAHULUAN 1.1. Latar Belakang Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo adalah pulau kecil dengan pesona alam yang mengagumkan. Terletak disebelah utara Kota Probolinggo sekitar

Lebih terperinci

PEMANFAATAN ENERGI MATAHARI MENGGUNAKAN SOLAR CELL SEBAGAI ENERGI ALTERNATIF UNTUK MENGGERAKKAN KONVEYOR

PEMANFAATAN ENERGI MATAHARI MENGGUNAKAN SOLAR CELL SEBAGAI ENERGI ALTERNATIF UNTUK MENGGERAKKAN KONVEYOR PEMANFAATAN ENERGI MATAHARI MENGGUNAKAN SOLAR CELL SEBAGAI ENERGI ALTERNATIF UNTUK MENGGERAKKAN KONVEYOR M. Helmi F. A. P. 1, Epyk Sunarno 2, Endro Wahjono 2 Mahasiswa Teknik Elektro Industri 1, Dosen

Lebih terperinci

ANALISIS POTENSI ENERGI ANGIN DALAM MENDUKUNG KELISTRIKAN KAWASAN PERBATASAN STUDI KASUS : DESA TEMAJUK KECAMATAN PALOH KABUPATEN SAMBAS

ANALISIS POTENSI ENERGI ANGIN DALAM MENDUKUNG KELISTRIKAN KAWASAN PERBATASAN STUDI KASUS : DESA TEMAJUK KECAMATAN PALOH KABUPATEN SAMBAS ANALISIS POTENSI ENERGI ANGIN DALAM MENDUKUNG KELISTRIKAN KAWASAN PERBATASAN STUDI KASUS : DESA TEMAJUK KECAMATAN PALOH KABUPATEN SAMBAS M. Husni Tambrin D0110702 Jurusan Teknik Elektro Fakultas Teknik

Lebih terperinci

Air menyelimuti lebih dari ¾ luas permukaan bumi kita,dengan luas dan volumenya yang besar air menyimpan energi yang sangat besar dan merupakan sumber

Air menyelimuti lebih dari ¾ luas permukaan bumi kita,dengan luas dan volumenya yang besar air menyimpan energi yang sangat besar dan merupakan sumber PEMBANGKIT LISTRIK TENAGA AIR DENGAN MENGGUNAKAN DINAMO SEPEDA YOGI SAHFRIL PRAMUDYA PEMBIMBING 1. Dr. NUR SULTAN SALAHUDDIN 2. BAMBANG DWINANTO, ST.,MT Jurusan Teknik Elektro, Fakultas Teknologi Industri,

Lebih terperinci

Pembangkit Listrik Tenaga Angin dengan Memanfaatkan Kecepatan Angin Rendah

Pembangkit Listrik Tenaga Angin dengan Memanfaatkan Kecepatan Angin Rendah Pembangkit Listrik Tenaga Angin dengan Memanfaatkan Kecepatan Angin Rendah Ayub Subandi Jurusan Teknik Komputer, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia * ayub.subandi@email.unikom.ac.id

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Perancangan Alat Perancangan merupakan suatu tahap yang sangat penting dalam pembuatan suatu alat, sebab dengan menganalisa komponen yang digunakan maka alat yang akan dibuat

Lebih terperinci

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT

BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT 38 BAB III PERANCANGAN SISTEM DAN PEMBUATAN ALAT Bab ini membahas rancangan diagram blok alat, rancangan Konstruksi Kumparan Stator dan Kumparan Rotor, rancangan Konstruksi Magnet Permanent pada Rotor

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Kebutuhan akan energi, khususnya energi listrik di Indonesia, merupakan bagian tak terpisahkan dari kebutuhan hidup masyarakat sehari-hari seiring dengan pesatnya

Lebih terperinci

PEMODELAN PEMBANGKIT LISTRIK TENAGA ANGIN 1kW BERBANTUAN SIMULINK MATLAB

PEMODELAN PEMBANGKIT LISTRIK TENAGA ANGIN 1kW BERBANTUAN SIMULINK MATLAB PEMODELAN PEMBANGKIT LISTRIK TENAGA ANGIN 1kW BERBANTUAN SIMULINK MATLAB Subrata Program Studi Teknik Elektro Jurusan Teknik Elektro Fakultas Teknik Universitas Tanjungpura Pontianak, 2014 E-mail : artha.elx@gmail.com

Lebih terperinci

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah

BAB I PENDAHULUAN 1.1 L atar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pembangkit-pembangkit tenaga listrik yang ada saat ini sebagian besar masih mengandalkan kepada sumber energi yang tidak terbarukan dalam arti untuk mendapatkannya

Lebih terperinci

2. Tinjauan Pustaka. konversi dari energi kinetik angin. Turbin angin awalnya dibuat untuk

2. Tinjauan Pustaka. konversi dari energi kinetik angin. Turbin angin awalnya dibuat untuk 2. Tinjauan Pustaka 2.1 Turbin Angin Turbin angin adalah elemen utama dari sebuah pembangkit listrik tenaga angin dan digunakan untuk memproduksi energi listrik yang merupakan hasil konversi dari energi

Lebih terperinci

BAB 3 PERANCANGAN PEMBANGKIT LISTRIK ENERGI TERBARUKAN DAN MODEL JARINGAN LISTRIK MIKRO ARUS SEARAH

BAB 3 PERANCANGAN PEMBANGKIT LISTRIK ENERGI TERBARUKAN DAN MODEL JARINGAN LISTRIK MIKRO ARUS SEARAH 16 BAB 3 PERANCANGAN PEMBANGKIT LISTRIK ENERGI TERBARUKAN DAN MODEL JARINGAN LISTRIK MIKRO ARUS SEARAH Model jaringan listrik mikro arus searah dirancang menggunakan dua pembangkit energi terbarukan, yaitu

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Di era saat ini energi baru dan terbarukan mulai mendapat perhatian sejak terjadinya krisis energi dunia yaitu pada tahun 70-an dan salah satu energi itu adalah energi

Lebih terperinci

Hubungan Antara Tegangan dan RPM Pada Motor Listrik

Hubungan Antara Tegangan dan RPM Pada Motor Listrik 1 Hubungan Antara Tegangan dan RPM Pada Motor Listrik Pada motor DC berlaku persamaan-persamaan berikut : V = E+I a Ra, E = C n Ф, n =E/C.Ф Dari persamaan-persamaan diatas didapat : n = (V-Ra.Ra) / C.Ф

Lebih terperinci

Fakultas Teknik Elektro, Universitas Telkom

Fakultas Teknik Elektro, Universitas Telkom RANCANG BANGUN SISTEM PEMBANGKIT LISTRIK TENAGA ANGIN DENGAN VERTICAL-AXIS WIND TURBINE DESIGN AND IMPLEMENTATION OF WIND POWER PLANT USING VERTICAL-AXIS WIND TURBINE Dion Satya Prayoga 1, Mas Sarwoko

Lebih terperinci

MAKALAH PERANCANGAN PEMBANGKIT LISTRIK TIPE HORISONTAL DUA KIPAS DELAPAN BILAH DENGAN GENRATOR AXIAL. Disusun Oleh : WAHYU SETIAWAN D

MAKALAH PERANCANGAN PEMBANGKIT LISTRIK TIPE HORISONTAL DUA KIPAS DELAPAN BILAH DENGAN GENRATOR AXIAL. Disusun Oleh : WAHYU SETIAWAN D MAKALAH PERANCANGAN PEMBANGKIT LISTRIK TIPE HORISONTAL DUA KIPAS DELAPAN BILAH DENGAN GENRATOR AXIAL Disusun Oleh : WAHYU SETIAWAN D 400 080 005 FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO UNIVERSITAS MUHAMMADIYAH

Lebih terperinci

STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012

STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012 STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012 Nur Aklis, H mim Syafi i, Yunika Cahyo Prastiko, Bima Mega Sukmana Teknik Mesin, Universitas Muhammadiyah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 16 BAB 1 PENDAHULUAN 1.1 Latar Belakang Listrik pada saat ini merupakan sumber energi yang sangat dibutuhkan dalam kelangsungan hidup. Dengan berkembangnya teknologi yang ada di dunia berbanding lurus

Lebih terperinci

NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN

NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN NASKAH PUBLIKASI PEMANFAATAN SEL SURYA UNTUK KONSUMEN RUMAH TANGGA DENGAN BEBAN DC SECARA PARALEL TERHADAP LISTRIK PLN Diajukan Oleh: ABDUR ROZAQ D 400 100 051 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

MODEL PEMBANGKIT LISTRIK TENAGA ANGIN DAN SURYA SKALA KECIL UNTUK DAERAH PERBUKITAN

MODEL PEMBANGKIT LISTRIK TENAGA ANGIN DAN SURYA SKALA KECIL UNTUK DAERAH PERBUKITAN MODEL PEMBANGKIT LISTRIK TENAGA ANGIN DAN SURYA SKALA KECIL UNTUK DAERAH PERBUKITAN Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Semarang Email: isdiyarto@yahoo.co.id Abstrak. Energi terbarukan

Lebih terperinci

Bab 1 Pendahuluan 1.1 Latar Belakang

Bab 1 Pendahuluan 1.1 Latar Belakang Bab 1 Pendahuluan 1.1 Latar Belakang Pada saat ini, penggunaan sumber energi fosil tak pelak lagi merupakan sumber energi utama yang digunakan oleh umat manusia. Dalam penggunaan energi nasional di tahun

Lebih terperinci

MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT. Mujiburrahman

MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT. Mujiburrahman MEMBUAT SISTEM PEMBANGKIT LISTRIK GABUNGAN ANGIN DAN SURYA KAPASITAS 385 WATT Mujiburrahman Fakultas Teknik Universitas Islam Kalimantan MAAB Jl. Adhyaksa No 2 Kayu Tangi Banjarmasin Email : Mujiburrahman.4646@gmail.com

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 PENDAHULUAN Seperti kita ketahui bahwa dalam instalasi suatu motor listrik harus mempunyai pengetahuan dasar yang baik mengenai cara instalasi itu sendiri. Hal Ini akan sangat

Lebih terperinci

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA

NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA NASKAH PUBLIKASI DESAIN SISTEM PARALEL ENERGI LISTRIK ANTARA SEL SURYA DAN PLN UNTUK KEBUTUHAN PENERANGAN RUMAH TANGGA Diajukan oleh: FERI SETIA PUTRA D 400 100 058 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK

Lebih terperinci

TURBIN ANGIN 1. Energi Angin

TURBIN ANGIN 1. Energi Angin TURBIN ANGIN 1. Energi Angin Angin merupakan udara yang bergerak disebabkan beberapa adanya perbedaan tekanan pada atmosfer bumi (Napitupulu dkk, 2013: 49). Energi angin merupakan sumber energi penting

Lebih terperinci

Makalah Mata Kuliah Penggunaan Mesin Listrik

Makalah Mata Kuliah Penggunaan Mesin Listrik Makalah Mata Kuliah Penggunaan Mesin Listrik KARAKTERISTIK MOTOR UNIVERSAL DAN MOTOR COMPOUND Tatas Ardhy Prihanto (21060110120039) Tatas_ap@yahoo.co.id Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

Simulasi Photovoltaic dan Kincir Angin Savonius Sebagai Sumber Energi Penggerak Motor Kapal Nelayan

Simulasi Photovoltaic dan Kincir Angin Savonius Sebagai Sumber Energi Penggerak Motor Kapal Nelayan 1 Simulasi Photovoltaic dan Kincir Angin Savonius Sebagai Sumber Energi Penggerak Motor Kapal Nelayan Adam Daniary Ibrahim, Ridho Hantoro Jurusan Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi

Lebih terperinci

MONITORING KINERJA BATERAI BERBASIS TIMBAL UNTUK SISTEM PHOTOVOLTAIC

MONITORING KINERJA BATERAI BERBASIS TIMBAL UNTUK SISTEM PHOTOVOLTAIC JURUSAN TEKNIK ELEKTRO Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2013 LOGO MONITORING KINERJA BATERAI BERBASIS TIMBAL UNTUK SISTEM PHOTOVOLTAIC 1 Alief Prisma Bayu Segara

Lebih terperinci

RANGKAIAN INVERTER DC KE AC

RANGKAIAN INVERTER DC KE AC RANGKAIAN INVERTER DC KE AC 1. Latar Belakang Masalah Inverter adalah perangkat elektrik yang digunakan untuk mengubah arus searah (DC) menjadi arus bolak-balik (AC). Inverter mengkonversi DC dari perangkat

Lebih terperinci

BAB I PENDAHULUAN. adanya tambahan sumber pembangkit energi listrik baru untuk memenuhi

BAB I PENDAHULUAN. adanya tambahan sumber pembangkit energi listrik baru untuk memenuhi BAB I PENDAHULUAN 1.1 Latar Belakang Seiring meningkatnya kebutuhan listrik oleh masyarakat maka diperlukan adanya tambahan sumber pembangkit energi listrik baru untuk memenuhi kebutuhan energi listrik

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN 45 BAB IV ANALISIS DAN PEMBAHASAN 4.1. Pembangkit Listrik Tenaga Hibrid Bayu Baru Pandansimo PLTH Bayu Baru merupakan realisasi dari Sistem Inovasi Daerah (SIDA) yang diprakarsai oleh Kementrian Riset

Lebih terperinci

ANALISIS PERBANDINGAN REGULASI TEGANGAN GENERATOR INDUKSI PENGUATAN SENDIRI TANPA MENGGUNAKAN KAPASITOR KOMPENSASI DAN DENGAN MENGGUNAKAN KAPASITOR

ANALISIS PERBANDINGAN REGULASI TEGANGAN GENERATOR INDUKSI PENGUATAN SENDIRI TANPA MENGGUNAKAN KAPASITOR KOMPENSASI DAN DENGAN MENGGUNAKAN KAPASITOR ANALISIS PERBANDINGAN REGULASI TEGANGAN GENERATOR INDUKSI PENGUATAN SENDIRI TANPA MENGGUNAKAN KAPASITOR KOMPENSASI DAN DENGAN MENGGUNAKAN KAPASITOR KOMPENSASI (Aplikasi pada Laboratorium Konversi Energi

Lebih terperinci

I. PENDAHULUAN. dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya.

I. PENDAHULUAN. dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya. I. PENDAHULUAN A. Latar Belakang Turbin angin pada awalnya dibuat untuk mengakomodasi kebutuhan para petani dalam melakukan penggilingan padi, keperluan irigasi, dan kegiatan yang lainnya. Turbin angin

Lebih terperinci

PENGARUH VARIASI SUDUT BLADE ALUMINIUM TIPE FALCON TERHADAP UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbines (HAWT) DENGAN KAPASITAS 500 WATT

PENGARUH VARIASI SUDUT BLADE ALUMINIUM TIPE FALCON TERHADAP UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbines (HAWT) DENGAN KAPASITAS 500 WATT ENGARUH ARIASI SUDUT BLADE ALUMINIUM TIE FALCON TERHADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbines (HAWT) DENGAN KAASITAS 500 WATT Erwin ratama 1,a,Novi Caroko 1,b, Wahyudi 1,c, Universitas

Lebih terperinci

ALAT PEMBAGI TEGANGAN GENERATOR

ALAT PEMBAGI TEGANGAN GENERATOR ALAT PEMBAGI TEGANGAN GENERATOR 1. Pendahuluan Listrik seperti kita ketahui adalah bentuk energi sekunder yang paling praktis penggunaannya oleh manusia, di mana listrik dihasilkan dari proses konversi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sudu Sudu adalah baling baling pada turbin angin. Sudu pada turbin angin sendiri biasanya dihubungkan dengan rotor pada turbin angin. Sudu merupakan salah satu bagian dari turbin

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

BAB II TINJAUAN PUSTAKA. relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed

BAB II TINJAUAN PUSTAKA. relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed BAB II TINJAUAN PUSTAKA 2.1 Kajian Pustaka Dalam tugas akhir ini, penulis memaparkan empat penelitian terdahulu yang relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed Drive

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. : Airfoil Clark Y Flat Bottom. : Bolam lampu 360 Watt

BAB IV HASIL DAN PEMBAHASAN. : Airfoil Clark Y Flat Bottom. : Bolam lampu 360 Watt BAB IV HASIL DAN PEMBAHASAN 4.1 Spesifikasi kincir angin Jenis kincir angin Kapasitas generator Jumlah blade Jenis blade Diameter kincir angin Tinggi tiang kincir angin Variasi sudut blade Beban Spesifikasi

Lebih terperinci

II. Tinjauan Pustaka. A. State of the Art Review

II. Tinjauan Pustaka. A. State of the Art Review Perbandingan Penggunaan Motor DC Dengan AC Sebagai Penggerak Pompa Air Yang Disuplai Oleh Sistem Pembangkit Listrik Tenaga Surya (PLTS) Agus Teja Ariawan* Tjok. Indra. P, I. W. Arta. Wijaya. Jurusan Teknik

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Profil Objek Penelitian Pembangkit Listrik Tenaga Hibrid (PLTH) Pantai Baru Pandansimo (Kincir Angin dan Panel Surya) merupakan realisasi dari Sistem Inovasi Daerah (SIDa)

Lebih terperinci

BAB I PENDAHULUAN. bahan bakar fosil sebagai bahan bakar pembangkitannya. meningkat. Untuk memenuhi kebutuhan energi yang terus-menerus meningkat

BAB I PENDAHULUAN. bahan bakar fosil sebagai bahan bakar pembangkitannya. meningkat. Untuk memenuhi kebutuhan energi yang terus-menerus meningkat 1 BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan energi yang tersimpan dalam arus listrik, dimana energi listrik ini sangat dibutuhkan untuk menghidupkan peralatan elektronik yang menggunakan

Lebih terperinci

Maximum Power Point Tracking (MPPT) Pada Variable Speed Wind Turbine (VSWT) Dengan Permanent Magnet Synchronous Generator

Maximum Power Point Tracking (MPPT) Pada Variable Speed Wind Turbine (VSWT) Dengan Permanent Magnet Synchronous Generator Maximum Power Point Tracking (MPPT) Pada Variable Speed Wind Turbine (VSWT) Dengan Permanent Magnet Synchronous Generator (PMSG) menggunakan Switch Mode Rectifier (SMR) Armaditya T.M.S. 2210 105 019 Dosen

Lebih terperinci