BAB II DASAR KOMUNIKASI SERAT OPTIK

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II DASAR KOMUNIKASI SERAT OPTIK"

Transkripsi

1 BAB II DASAR KOMUNIKASI SERAT OPTIK Komunikasi telah menjadi kebutuhan pokok dalam dunia modern. Kata komunikasi dapat diartikan sebagai cara untuk menyampaikan atau menyebarluaskan data, informasi, berita, pikiran, dan pendapat dalam berbagai bentuk. Manusia dapat melakukan berbagai cara untuk melakukan komunikasi. Bila informasi harus dikirim melewati suatu jarak maka diperlukan sistem komunikasi. Dengan sistem komunikasi, transfer informasi dapat berlangsung seperti misalnya dengan berbicara, berbisik, memukul kentongan sampai pada berkirim surat dengan bantuan kantor pos dan sebagainya. Maraknya transfer data dalam jumlah yang besar seperti aplikasi multimedia, turut mengundang penggunaan teknologi serat optik sampai ke pengguna. Aplikasi ini tentunya sangat membutuhkan media transmisi yang dapat diandalkan dari segi kualitas sinyal, waktu akses, keamanan data, daerah cakupan penerima yang luas, maupun harga jual yang kompetitif. Oleh karena tuntutan akan kebutuhan kualitas layanan komunikasi terutama dari sisi jaringan akses maka penggunaan kabel tembaga dan jenis lainnya mulai digantikan oleh teknologi serat optik sebagai media transmisi. 2.1 Pengertian dan Sejarah Serat Optik Pada tahun 1880 Alexander Graham Bell menciptakan sebuah sistem komunikasi cahaya yang disebut photo-phone dengan menggunakan cahaya matahari yang dipantulkan dari sebuah cermin suara-termodulasi tipis untuk membawa percakapan, pada penerima cahaya matahari termodulasi mengenai sebuah foto-kondukting sel-selenium, yang merubahnya menjadi arus listrik, sebuah penerima telepon melengkapi sistem. Photophone tidak pernah mencapai sukses komersial, walaupun sistem tersebut bekerja cukup baik. Penerobosan besar yang membawa pada teknologi komunikasi serat optik dengan kapasitas tinggi adalah penemuan Laser pada tahun 1960, namun pada tahun tersebut kunci utama di dalam sistem serat praktis belum ditemukan yaitu serat yang efisien. Baru pada tahun 1970 serat dengan loss yang rendah dikembangkan dan komunikasi serat optik menjadi praktis (Serat optik yang digunakan berbentuk silinder seperti kawat pada umumnya, terdiri dari inti serat (core) yang dibungkus oleh kulit (cladding) dan keduanya dilindungi oleh jaket pelindung (buffer coating)). Ini terjadi hanya 100 tahun setelah John Tyndall, seorang fisikawan Inggris, mendemonstrasikan kepada Royal

2 Society bahwa cahaya dapat dipandu sepanjang kurva aliran air. Dipandunya cahaya oleh sebuah serat optik dan oleh aliran air adalah peristiwa dari fenomena yang sama yaitu total internal reflection. Teknologi serat optik selalu berhadapan dengan masalah bagaimana caranya agar lebih banyak informasi yang dapat dibawa, lebih cepat dan lebih jauh penyampaiannya dengan tingkat kesalahan yang sekecil-kecilnya. Informasi yang dibawa berupa sinyal digital, digunakan besaran kapasitas transmisi diukur dalam 1 Gb.km/s yang artinya 1 milyar bit dapat disampaikan tiap detik melalui jarak 1 km. Berikut adalah beberapa tahap sejarah perkembangan teknologi serat optik : Generasi Pertama ( mulai tahun 1970) - Sistem masih sederhana dan menjadi dasar bagi sistem generasi berikutnya terdiri dari: o Encoding : Mengubah input (misal suara) menjadi sinyal listrik. o Transmitter : Mengubah sinyal listrik menjadi gelombang cahaya termodulasi, berupa LED dengan panjang gelombang 0,87 µm. o Serat Silika : Sebagai pengantar gelombang cahaya. o Repeater : Sebagai penguat gelombang cahaya yang melemah di jalan. o Receiver : Mengubah gelombang cahaya termodulasi menjadi sinyal listrik, berupa foto-detektor. o Decoding : Mengubah sinyal listrik menjadi ouput (misal suara). - Repeater bekerja dengan merubah gelombang cahaya menjadi sinyal listrik kemudian diperkuat secara elektronik dan diubah kembali menjadi gelombang cahaya. - Pada tahun 1978 dapat mencapai kapasitas transmisi 10 Gb.km/s. Generasi Ke- Dua ( mulai tahun 1981) - Untuk mengurangi efek dispersi, ukuran inti serat diperkecil. - Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias inti. - Menggunakan diode laser, panjang gelombang yang dipancarkan 1,3 µm. - Kapasitas transmisi menjadi 100 Gb.km/s. Generasi Ke- Tiga ( mulai tahun 1982) - Penyempurnaan pembuatan serat silika. - Pembuatan chip diode laser berpanjang gelombang 1,55 µm. - Kemurnian bahan silika ditingkatkan sehingga transparansinya dapat dibuat untuk panjang gelombang sekitar 1,2 µm sampai 1,6 µm.

3 - Kapasitas transmisi menjadi beberapa ratus Gb.km/s Generasi Ke- Empat ( mulai tahun 1984) - Dimulainya riset dan pengembangan sistem koheren, modulasinya bukan modulasi intensitas melainkan modulasi frekuensi, sehingga sinyal yang sudah lemah intensitasnya masih dapat dideteksi, maka jarak yang dapat ditempuh, juga kapasitas transmisinya, ikut membesar. - Pada tahun 1984 kapasitasnya sudah dapat menyamai kapasitas sistem deteksi langsung (modulasi intensitas). - Terhambat perkembangannya karena teknologi piranti sumber dan deteksi modulasi frekuensi masih jauh tertinggal. Generasi Ke- Lima ( mulai tahun 1989) - Dikembangkan suatu penguat optik yang menggantikan fungsi repeater pada generasigenerasi sebelumnya. - Pada awal pengembangannya kapasitas transmisi hanya dicapai 400 Gb.km/s tetapi setahun kemudian kapasitas transmisinya sudah menembus Gb.km/s. Generasi Ke- Enam - Pada tahun 1988 Linn F. Mollenauer mempelopori sistem komunikasi optic soliton. Soliton adalah pulsa gelombang yang terdiri dari banyak komponen, panjang gelombang yang berbeda hanya sedikit dan juga bervariasi dalam intensitasnya. - Panjang soliton hanya detik dan dapat dibagi menjadi beberapa komponen yang saling berdekatan, sehingga sinyal-sinyal yang berupa soliton merupakan informasi yang terdiri dari beberapa saluran sekaligus (wavelength division multiplexing). - Eksperimen menunjukkan bahwa soliton minimal dapat membawa 5 saluran yang masing-masing membawa informasi dengan laju 5 Gb/s. Kapasitas transmisi yang telah diuji mencapai Gb.km/s. - Cara kerja sistem soliton ini adalah efek Kerr, yaitu sinar-sinar yang panjang gelombangnya sama akan merambat dengan laju yang berbeda di dalam suatu bahan jika intensitasnya melebihi suatu harga batas. Efek ini kemudian digunakan untuk menetralisir efek dispersi, sehingga soliton tidak melebar pada waktu sampai di receiver. Hal ini sangat menguntungkan karena tingkat kesalahan yang ditimbulkannya amat kecil bahkan dapat diabaikan.

4 2.2 Konstruksi Kabel Serat Optik Struktur Dasar Sebuah Serat Optik Untuk jelasnya, secara lengkap penampang melintang serat optik dapat dilihat pada Gambar 2.1. Gambar 2.1 Penampang Serat Optik Dari Gambar 2.1, tampak bahwa serat optik tersusun atas tiga lapisan utama yakni inti serat (core), cladding dan coating. 1. Core adalah Inti serat terbuat dari bahan silika (SiO 2 ), biasanya diberi doping dengan germanium dioksida (GeO 2 ) atau fosfor pentaoksida (P 2 O 5 ) untuk menaikkan indeks biasnya. Pada lapisan inilah sinyal informasi di bawa dalam bentuk gelombang cahaya dari ujung serat yang satu ke ujung lainnya dengan cara pemantulan dalam total.

5 2. Cladding adalah lapisan yang mengelilingi inti serat yang terbuat dari bahan yang transparan yakni Fluoro doped silika atau Titan coated silika. Pada lapisan ini, indeks biasnya lebih kecil dibandingkan dengan indeks bias pada teras. Walaupun cahaya merambat sepanjang inti serat tanpa lapisan material kulit, namun kulit memiliki beberapa fungsi: - Mengurangi cahaya yang loss dari inti ke udara sekitar. - Mengurangi loss hamburan pada permukaan inti. - Melindungi serat dari kontaminasi penyerapan permukaan. - Menambah kekuatan mekanis. Jika perbedaan indeks bias inti dan kulit dibuat drastis disebut serat optik Step Indeks (SI), selisih antara indek bias kulit dan inti disimbolkan dengan dimana : 2 n1 n n1 n 2n n Sedangkan jika perbedaan indek bias inti dan kulit dibuat secara perlahan-lahan disebut Graded Indeks (GI), bagaimana turunnya indeks bias dari inti ke kulit ditentukan oleh indeks profile, α. 1 2 Gambar 2.2 Profile Indeks untuk Step Indeks dan Graded Indeks 3. Coating yaitu mantel (buffer) untuk melindungi serat optik dari kerusakan fisik. Buffer bersifat elastis, mencegah abrasi dan mencegah loss hamburan akibat microbending.

6 2.2.2 Jenis Serat Optik Berdasarkan sifat karakteristiknya serat optik dibedakan menjadi dua jenis, yaitu : 1. Multimode Jenis serat optik ini dengan rambatan cahaya dari satu ujung ke ujung lainnya terjadi melalui beberapa lintasan cahaya, karena itu disebut multimode. Diameter inti sesuai dengan rekomendasi dari CCITT G.651 sebesar 50 µm dan dilapisi oleh jaket selubung dengan diameter 125 µm. Sedangkan berdasarkan susunan indeks biasnya serat optik multimode memiliki dua profil yaitu graded index dan step index. Pada serat graded index, serat optik mempunyai indeks bias cahaya yang merupakan fungsi dari jarak terhadap sumbu atau poros serat optik. Dengan demikian cahaya yang menjalar melalui beberapa lintasan pada akhirnya akan sampai pada ujung lainnya pada waktu bersamaan. Sedang pada serat optik step index, indeks bias antara inti dan lapisan inti berbeda sehingga sinar yang menjalar pada sumbu memiliki jarak tempuh yang berbeda-beda. Akibatnya sinar tersebut tiba di ujung seberang pada waktu yang tidak sama pula. Sebagai hasilnya terjadi pelebaran pulsa yang akan menurunkan laju transmisi datanya. Oleh karena itu secara praktis hanya serat optik graded index sajalah yang dipergunakan sebagai saluran transmisi serat optik multimode. 2. Single Mode Serat optik single mode atau monomode mempunyai diameter inti yang sangat kecil 8 10 µm, sehingga hanya satu berkas cahaya saja yang dapat melaluinya. Oleh karena hanya satu berkas cahaya maka tidak ada pengaruh indeks bias terhadap perjalanan cahaya atau pengaruh perbedaan waktu sampainya cahaya dari ujung satu sampai ke ujung yang lainnya (tidak terjadi dispersi). Dengan demikian serat optik single mode sering dipergunakan pada sistem transmisi serat optik jarak jauh atau luar kota (long haul transmission system). Sedangkan graded index dipergunakan untuk jaringan telekomunikasi lokal (local network). Untuk lebih jelasnya, dapat dilihat pada Gambar 2.3.

7 Gambar 2.3. Perbedaan Single Mode Serat dan Multimode Serat 2.3 Penggunaan Kabel Serat Optik Sebagai Media Transmisi Penggunaan serat sebagai media transmisi memberikan pilihan bagi pengguna jasa telekomunikasi untuk dapat berkomunikasi langsung tanpa dibatasi oleh jarak dan waktu. Transmisi dengan media serat memiliki kelebihan dan kekurangan terhadap kualitas sistem layanan terutama dari sisi jaringan akses antar pengguna jasa layanan informasi dengan posisi HUT yang berbeda dan terpisah. Sebagai contoh implementasi jaringan dengan menggunakan media transmisi serat optik ini adalah aplikasi penggelaran akses transmisi SKSO Kranji, Mega Kuningan dan Lenteng Agung. Mengapa sistem serat optik dikatakan merevolusi dunia telekomunikasi? ini karena jika dibandingkan dengan sistem konvensional menggunakan kabel logam (tembaga) biasa, serat optik memiliki beberapa keuntungan di antaranya: Thinner Serat optik dapat dibuat dengan diameter lebih kecil (ukuran diameter kulit dari serat sekitar 100 µm dan total diameter ditambah dengan jaket pelindung sekitar 1 2 mm) daripada kabel tembaga, dan juga karena serat optik membawa light (cahaya) maka tentunya memiliki light weight (berat yang ringan). Maka kabel serat optik mengambil tempat yang lebih kecil di dalam tanah. Higher carrying capacity Karena serat optik lebih tipis dari kabel tembaga maka kebanyakan serat optik dapat dibundel ke dalam sebuah kabel dengan diameter tertentu maka beberapa jalur telepon dapat berada pada kabel yang sama atau lebih banyak saluran televisi pada TV cable

8 dapat melalui kabel. Serat optik juga memiliki bandwidth yang besar ( 1 dan 100 GHz, untuk multimode dan single-mode sepanjang 1 Km). Less signal degradation Sinyal yang loss pada serat optik lebih kecil ( kurang dari 1 db/km pada rentang panjang gelombang yang lebar) dibandingkan dengan kabel tembaga. Light signals Tidak seperti sinyal listrik pada kabel tembaga, sinyal cahaya dari satu serat optik tidak berinterferensi dengan sinyal cahaya pada serat optik yang lainnya di dalam kabel yang sama, juga tidak ada interferensi elektromagnetik. Ini berarti meningkatkan kualitas percakapan telepon atau penerimaan TV. Low Power Karena sinyal pada serat optik mengalami loss yang rendah, transmitter dengan daya yang rendah dapat digunakan dibandingkan dengan sistem kabel tembaga yang membutuhkan tegangan listrik yang tinggi, hal ini jelas dapat mengurangi biaya yang dibutuhkan. Digital signals Serat optik secara ideal cocok untuk membawa informasi digital dimana berguna secara khsusus pada jaringan komputer. Non-flammable Karena tidak ada arus listrik yang melalui serat optik, maka tidak ada resiko bahaya api. Flexibile Karena serat optik sangat fleksibel dan dapat mengirim dan menerima cahaya, maka digunakan pada kebanyakan kamera digital fleksibel untuk tujuan : - Medical Imaging pada bronchoscopes, endoscopes, laparoscope, colonoseratscope (dapat dimasukkan ke dalam tubuh manusia (misal usus) sehingga citranya dapat dilihat langsung dari luar tubuh). - Mechanical imaging memeriksa pengelasan didalam pipa dan mesin. - Plumbing memeriksa sewer lines. Kelebihan lain diantaranya adalah : Adanya isolasi antar transmitter dan receiver, tidak ada ground loop serta tidak akan terjadi bunga api pada saat kontak atau terputusnya serat optik. Dengan demikian sangat aman dipasang di tempat tempat yang mudah terbakar seperti pada industri minyak, kimia, dan sebagainya. Meskipun serat optik dikatakan memiliki kelebihan, namun dilain hal juga terdapat kekurangan yang dapat berpengaruh terhadap kualitas transmisi. Untuk lebih jelasnya akan diuraikan beberapa alasan seperti pada penjelasan berikut :

9 1. Tidak dapat menyalurkan energi listrik. 2. Relatif sulit pada saat instalasi dan konstruksi serat optik cukup lemah. 3. Teknisi yang menginstalasi harus dilengkapi dengan proteksi dengan mata. 4. Karakteristik transmisi dapat berubah bila terjadi tekanan dari luar secara berlebih. 2.4 Sistem Komunikasi Serat Optik Gambar 2.4 merupakan dasar sistem komunikasi terdiri dari sebuah transmitter, sebuah recevier, dan sebuah information channel. Pada transmitter informasi dihasilkan dan mengolahnya menjadi bentuk yang sesuai untuk di kirimkan sepanjang information channel, informasi ini berjalan dari transmitter ke receiver melalui information channel ini. Information channels dapat dibagi menjadi 2 kategori : Unguided channel dan Guided channel. Atmosphere adalah sebuah contoh Unguided channel, sistem yang menggunakan atmospheric channel adalah radio, televisi dan microwave relay links. Guided channels mencakup berbagai variasi struktur tranmisi konduksi, seperti two-wire line, coaxial cable, twisted pair Gambar 2.4 Diagram Blok dasar Sistem Komunikasi Gambar 2.5 merupakan blok diagram sistem komunikasi serat optik secara umum, dimana fungsi-fungsi dari setiap bagian adalah sebagai berikut : Message Origin - Message origin bisa berupa besaran fisik non-listrik (suara atau gambar), sehingga diperlukan transduser (sensor) yang merubah message dari bentuk non-listrik ke bentuk listrik. - Contoh yang umum adalah microphone merubah gelombang suara menjadi arus listrik dan Video camera (CCD) merubah gambar menjadi arus listrik. Modulator dan Carrier Source - Memiliki 2 fungsi utama, pertama merubah message elektrik ke dalam bentuk yang sesuai, kedua menumpangkan sinyal ini pada gelombang yang dibangkitkan oleh carrier source. - Format modulasi dapat dibedakan menjadi modulasi analog dan digital.

10 - Pada modulasi digital untuk menumpangkan sinyal data digital pada gelombang carrier, modulator cukup hanya meng-on kan atau meng-off kan carrier source sesuai dengan sinyal data-nya Gambar 2.5 diagram blok sistem komunikasi serat optik secara umum - Carrier source membangkitkankan gelombang cahaya dimana padanya informasi ditransmisikan, yang umum digunakan Laser Diode (LD) atau Light Emitting Diode (LED.

11 Gambar 2.6 carrier source

12 Gambar 2.7 carrier source Channel Coupler - Untuk menyalurkan power gelombang cahaya yang telah termodulasi dari carrier source ke information channel (serat optik). - Merupakan bagian penting dari desain sistem komunikasi serat optik sebab kemungkinan loss yang tinggi. Information Channel (Serat Optic) - Karakteristik yang diinginkan dari serat optik adalah atenuasi yang rendah dan sudut light-acceptance-cone yang besar. - Amplifier dibutuhkan pada sambungan yang sangat panjang (ratusan atau ribuan kilometer) agar didapatkan power yang cukup pada receiver. - Repeater hanya dapat digunakan untuk sistem digital, dimana berfungsi merubah sinyal optik yang lemah ke bentuk listrik kemudian dikuatkan dan dikembalikan ke bentuk sinyal optik untuk transmisi berikutnya. - Waktu perambatan cahaya di dalam serat optik bergantung pada frekuensi cahaya dan pada lintasan yang dilalui, sinyal cahaya yang merambat di dalam serat optik memilki frekuensi berbeda-beda dalam rentang tertentu (lebar spektrum frekuensi) dan kekuatannya terbagi-bagi sepanjang lintasan yang berbeda-beda, hal ini menyebabkan distorsi pada sinyal. - Pada sistem digital distorsi ini berupa pelebaran (dispersi) pulsa digital yang merambat di dalam serat optik, pelebaran ini makin bertambah dengan bertambahnya jarak yang ditempuh dan pelebaran ini akan tumpang tindih dengan pulsa-pulsa yang lainnya, hal ini

13 akan menyebabkan kesalahan pada deteksi sinyal. Adanya dispersi membatasi kecepatan informasi (pada sistem digital kecepatan informasi disebut data rate diukur dalam satuan bit per second (bps) ) yang dapat dikirimkan. - Pada fenomena optical soliton, efek dispersi ini diimbangi dengan efek nonlinier dari serat optik sehingga pulsa sinyal dapat merambat tanpa mengalami perubahan bentuk (tidak melebar). Detector dan Amplifier - Digunakan foto-detektor (photo-diode, photo transistor dsb) yang berfungsi merubah sinyal optik yang diterima menjadi sinyal listrik. Signal Processor - Untuk transmisi analog, sinyal prosesor terdiri dari penguatan dan filtering sinyal. Filtering bertujuan untuk memaksimalkan rasio dari daya sinyal terhadap power sinyal yang tidak diinginkan. Fluktuasi acak yang ada pada sinyal yang diterima disebut sebagai noise. Bagaimana pengaruh noise ini terhadap sistem komunikasi ditentukan oleh besaran SNR (Signal to Noise Ratio), yaitu perbandingan daya sinyal dengan daya noise, biasanya dinyatakan dalam desi- Bell (db), semakin besar SNR maka semakin baik kualitas sistem komunikasi tersebut terhadap gangguan noise. - Untuk sistem digital, sinyal prosesor terdiri dari penguatan dan filtering sinyal serta rangkaian pengambil keputusan. - Rangkaian pengambil keputusan ini memutuskan apakah sebuah bilangan biner 0 atau 1 yang diterima selama slot waktu dari setiap individual bit. Karena adanya noise yang tak dapat dihilangkan maka selalu ada kemungkinan kesalahan dari proses pengambilan keputusan ini, dinyatakan dalam besaran Bit Error Rate (BER) yang nilainya harus kecil pada komunikasi. - Jika data yang dikirim adalah analog (misalnya suara), namun ditransmisikan melalui serat optik secara digital (pada transmitter dibutuhkan Analog to Digital Converter (ADC) sebelum sinyal masuk modulator) maka dibutuhkan juga Digital to Analog Converter (DAC) pada sinyal prosesor, untuk merubah data digital menjadi analog, sebelum dikeluarkan ke output (misalnya speaker).

14 Message Output - Jika output yang dihasilkan di presentasikan langsung ke manusia, yang mendengar atau melihat informasi tersebut, maka output yang masih dalam bentuk sinyal listrik harus dirubah menjadi gelombang suara atau visual image. Transduser (actuator) untuk hal ini adalah speaker untuk audio message dan tabung sinar katoda (CRT) (atau yang lainnya seperti LCD, OLED dsb) untuk visual image. - Pada beberapa situasi misalnya pada sistem dimana komputer-komputer atau mesinmesin lainnya dihubungkan bersama-sama melalui sebuah sistem serat optik, maka output dalam bentuk sinyal listrik langsung dapat digunakan. Hal ini juga jika sistem serat optik hanya bagian dari jaringan yang lebih besar, seperti pada sebuah serat link antara telephone exchange atau sebuah serat trunk line membawa sejumlah progam televisi, pada kasus ini processing mencakup distribusi dari sinyal listrik ke tujuan-tujuan tertentu yang diinginkan. Peralatan pada message ouput secara sederhana hanya berupa sebuah konektor elektrik dari prosesor sinyal ke sistem berikutnya. 2.5 Prinsip Kerja Transmisi Serat Optik Berlainan dengan telekomunikasi yang mempergunakan gelombang elektromagnetik maka pada serat optik gelombang cahayalah yang bertugas membawa sinyal informasi. Pertama tama microphone merubah sinyal suara menjadi sinyal listrik. Kemudian sinyal listrik ini dibawa oleh gelombang pembawa cahaya melalui serat optik dari pengirim menuju alat penerima yang terletak pada ujung lainnya dari serat. Modulasi gelombang cahaya ini dapat dilakukan dengan merubah sinyal listrik termodulasi menjadi gelombang cahaya pada transmitter dan kemudian merubahnya kembali menjadi sinyal listrik pada receiver. Pada receiver sinyal listrik dapat dirubah kembali manjadi gelombang suara. Dalam perjalanannya dari transmitter menuju ke receiver akan terjadi redaman cahaya di sepanjang kabel serat optik dan konektor-konektornya (sambungan). Sinyal data selalu melemah dalam perjalanannya karena berbagai efek seperti hamburan dan serapan bahan yang dilaluinya. Karena itu bila jarak ini terlalu jauh akan diperlukan sebuah atau beberapa repeater yang bertugas untuk memperkuat gelombang cahaya yang telah mengalami redaman.

15 2.5.1 Optik Cahaya LED (light Emitting Dioda) Dioda pancar cahaya (LED) adalah bahan semi konduktor khusus yang dirancang untuk memancarkan cahaya apabila arus melaluinya (Gambar 2.8). Apabila diberi bias maju, energi elektron yang mengalir melewati tahanan sambungan diubah langsung menjadi energi cahaya. Karena LED adalah dioda, maka arus hanya akan mengalir apabila LED dihubungkan dengan bias maju. LED harus dioperasikan di dalam ukuran kerja tegangan dan arus yang tertentu untuk mencegah kerusakan yang tidak dapat diubah lagi. Sebagian besar LED membutuhkan 1,5 sampai 2,2 volt untuk memberi bias maju dan dapat mengatasi dengan aman arus sebesar 20 sampai 30 ma. LED biasanya dihubungkan seri dengan tahanan yang membatasi tegangan dan arus pada nilai yang dikehendaki. Gambar 2.8 Dioda Yang Memancarkan Cahaya (LED) Gambar 2.9 Spektrm emisi dan Fraksi Al mole (LED) Sinar inframerah tidak terlihat oleh mata manusia. Dengan menambahkan bahan gallium arsenida disertai berbagai bahan, dapat dibuat LED dengan output yang dapat dilihat, seperti sinar merah, hijau, kuning, atau biru. Dioda yang memancarkan cahaya (LED) umumnya digunakan sebagai lampu indikator.

16 Laser Dioda (LD) Dioda laser adalah LED yang dibentuk khusus untuk dapat beroperasi sebagai laser. Laser singkatan dari light amplifications by stimulated emission of radiation. Tidak seperti LED, dioda laser mempunyai lubang optis yang diperlukan untuk produksi laser. Lubang optis dibentuk dengan melapisi bahan pemantul pada sisi yang berlawanan dari chip untuk menghasilkan dua permukaan pemantulan yang tinggi. Seperti LED, dioda laser adalah dioda sambungan PN yang pada level arus tertentu akan memancarkan cahaya. Gambar 2.10 Spektrm emisi dan level arus (LD) Cahaya yang teremisi dipantulkan bolak-balik antara dua permukaan pemantul. Pemantulan gelombang cahaya secara bolak-balik menyebabkan intensitasnya bertambah kuat. Akibatnya adalah sorotan cahaya frekuensi tunggal yang sangat cemerlang dipancarkan dari sambungan. Dioda laser digunakan pada aplikasi komunikasi serat optik Sifat Optik di Bidang Batas Cahaya yang merambat pada bidang batas dua zat (medium) yang berbeda akan mengalami peristiwa refleksi dan refraksi seperti diperlihatkan pada Gambar 2.11 Medium 1 n 1 Medium 2 n Sinar bias Garis normal Sinar datang Bidang batas Gambar 2.11 Refraksi Cahay

17 Refleksi Refleksi merupakan peristiwa pemantulan cahaya karena ada perbedaan indeks bias antara medium pertama dengan medium kedua. Indeks bias adalah perbandingan kecepatan cahaya di udara dan di dalam medium (bahan). Indeks bias dinyatakan oleh : C vac n (2.1) C mat dimana, n = Indeks bias C vac = Kecepatan cahaya ruang vakum (m/det) C mat = Kecepatan cahaya dalam medium (m/det) Sinar datang dan garis normal terletak pada satu bidang datar (Gambar 2.11) yang tegak lurus terhadap bidang batas antara kedua medium. Jika sinar datang dari indeks bias n dengan n < n maka gejalanya disebut pantulan luar dan jika n > n gejalanya disebut pantulan dalam. Refraksi Refraksi adalah peristiwa pembiasan cahaya yang disebabkan oleh perbedaan kecepatan cahaya di kedua medium. Cepat rambat cahaya dipengaruhi oleh medium tempat cahaya itu merambat. Cahaya yang mengalami refraksi akan mengikuti hukum Snellius yang dirumuskan sebagai berikut : n sin 1 = n sin 1 (2.2) dimana, n = Indeks bias di udara n = Indeks bias di dalam bahan 1 = Besar sudut masuk 1 = Besar sudut keluaran pada bahan Jika sinar merambat dari medium rapat (n 1 ) ke medium kurang rapat (n 2 ), maka sinar terbias menjauhi garis normal.

18 Garis normal n 2 n 1 c Gambar 2.12 Sudut Datang Dimana Sinar dibias 90 o Bila sudut masuk diperbesar, suatu saat seluruh sinar akan dibiaskan dengan sudut 90 o. Sudut datang dimana sudut bias 90 o disebut sudut kritis ( c). n 1 c = n 2 sin 90 o c = sin -1 n2 (2.3) n1 Bila sudut datang lebih besar dari c, seluruh sinar dipantulkan kembali yang disebut pemantulan dalam total. Syarat pemantulan dalam total adalah : c i < 90 o Prinsip tersebut digunakan untuk menyalurkan cahaya sepanjang sebuah batang bening dengan indeks bias yang lebih tinggi pada bagian inti, misalnya batang gelas yang dikelilingi udara. Di sepanjang batang terjadi pemantulan dalam total yang berulangulang. Dengan cara ini cahaya dapat disalurkan meskipun batang dilengkungkan, dengan syarat sudut datang pada dinding harus selalu lebih besar dari sudut kritisnya. Pada kenyataannya batang optik yang dipakai untuk menyalurkan cahaya dibuat dalam bentuk serat tipis dengan indeks bias n dan dikelilingi bukan oleh udara, tetapi oleh selubung dari bahan lain dengan indeks bias n, dengan ketentuan n>n. Agar berkas cahaya yang memasuki serat optik mengalami pemantulan dalam total disepanjang serat optik maka sudut penyebaran berkas cahaya tersebut harus memenuhi kriteria sudut penerimaan serat optik. Sudut penerimaan menyatakan kemampuan serat untuk menampung cahaya yang didefinisikan sebagai apertur numerik.

19 Pada Gambar 2.13, sinar meridional (sinar yang memotong sumbu serat optik) memasuki inti serat optik dari medium dengan indeks bias n o dan sudut masuk a terhadap sumbu serat, mengenai bidang batas inti-selubung dengan sudut c terhadap normal bidang batas. Jika sinar yang masuk memenuhi batasan apertur numerik, maka sinar meridional tersebut akan mengalami pantulan dalam total dan dirambatkan sepanjang serat dalam jalur zig-zag memotong sumbu serat dengan setiap kali mengalami pantulan. Bila sinar tidak memenuhi syarat apertur numerik maka cahaya yang mengenai bidang batas inti-selubung sinar akan dibiaskan keluar inti serat. n 0 Konis a c Core / teras (n 1 ) Cladding (n 2 ) Gambar 2.13 Penampang Memanjang Serat Dan Sudut Masukan Cahaya. Dari hukum Snellius pada permukaan masukan diperoleh [1] : n o sin a = n 1 sin = n 1 cos c (2.4) NA = n2 n NA = n o sin a = n2 n (2.5) Pada permukaan masukan dan keluaran serat optik terdapat rugi yang disebabkan pantulan Fresnel. Faktor refleksi intensitas diberikan oleh : n n R F (2.6) n1 n0 dengan n 0 dan n 1 adalah indeks bias udara dan inti serat optik. Dengan demikian komponen faktor intensitas transmisi oleh pantulan tersebut adalah : T F = (1 - R F ) 2 (2.7)

20 2.6 Parameter Serat Optik Parameter-parameter berikut ini sangat diperlukan untuk memahami serat optik dan dasar sistem komunikasi serat optik : Panjang Gelombang Panjang gelombang pada Komunikasi Optik mulai dari near infrared sampai far infrared mencakup juga panjang gelombang cahaya tampak (0,4 µm 0,7 µm). Dimana, c f = Panjang gelombang (m) c = Kecepatan cahaya dalam ruang hampa : 3 x 10 8 m/det f = Frekuensi (Hz) Panjang gelombang untuk komunikasi optik saat ini adalah : Pendek : 0,85 µm Panjang : 1,3 µm Terpanjang : 1,55 µm Contoh perhitungan : Suatu sumber cahaya dengan berikut : C Redaman (Attenuation) (2.8) sebesar 1,3 µm, maka frekuensinya dapat dihitung sebagai 8 3x10 m / s 1,3 x10 m F 6 2,31 x Hz Redaman adalah istilah untuk menunjukkan penurunan daya sinyal yang timbul sebagai akibat alamiah dari transmisi sinyal pada jarak yang jauh dan pada jenis media transmisi. Pada sistem serat optik, redaman biasanya dinyatakan dalam desibel per kilometer (db/km) pada panjang gelombang tertentu. Pi Redaman...dB Po Faktor penguatan didefinisikan sebagai berikut : Po A db = 10 log Pi (2.9)

21 Dimana : A db Pi Po = Penguatan = Daya input = Daya output Bila Po > Pi artinya pada saluran terjadi penguatan dan sebaliknya bila Po < Pi maka dalam saluran terjadi redaman. Sinyal yang dikirim melalui serat kadang-kadang diredamkan. Kejadian seperti ini umumnya berhubungan dengan berbagai hal seperti ketidakmurnian di dalam serat, penghamburan di dalam serat dan pembengkokan skala mikro, dimana pancaran cahaya lepas oleh karena tekukan kecil yang tajam (bending) yang boleh terjadi di dalam serat. Persamaan 2.10 dapat digunakan untuk mengetahui besarnya Daya yang dipancarkan melalui serat. Di mana : P T = Po e Po = Daya ke dalam serat, L = Panjang serat, dan persamaan : dimana : serat optik. L 10 L (2.10) = Koefisien redaman, yang biasanya dikenal sebagai rugi-rugi serat. Rugi-rugi serat diukur dalam desibel per kilometer (db/km) dengan menggunakan db = - log PT P db adalah rugi rugi dalam desibel. o (2.11) Redaman pada serat optik dipengaruhi oleh faktor internal dan faktor eksternal dari Penyebab Timbulnya Redaman Redaman Intrinsik Redaman Ekstrinsik Penghamburan Penyerapan Pembengkokan Faktor instalasi (Scattering) (Absorption) (Bending)

22 A. Redaman Intrinsik Redaman intrinsik merupakan kerugian (loss) yang diakibatkan oleh sesuatu dari dalam serat optik yaitu ketidakmurnian (impurity) gelas pada proses produksi. Apabila suatu sinyal cahaya menumbuk ketidakmurnian di dalam serat maka salah satu kerugian dapat saja terjadi yakni dihamburkan (scattering) atau sinyal akan diserap (absorbed). 1. Rugi-Rugi Penghamburan Rayleigh Scattering memberikan konstribusi kerugian yang terbesar (kira-kira 96 %) pada serat optik. Cahaya yang merambat di dalam teras akan berinteraksi dengan atom-atom gelas. Reyleigh scattering merupakan hasil dari tumbukan elastis antara gelombang cahaya dengan atom-atom di dalam serat. Apabila cahaya yang terhambur tersebut memiliki sudut yang mendukung rambatan maju di dalam inti serat, maka tidak akan terjadi redaman. Sebaliknya bila cahaya terhambur pada sudut yang tidak mendukung rambatan maju, maka cahaya tersebut akan dialihkan arahnya keluar inti (teras) sehingga timbul redaman. Gambar 2.14 Penghamburan Cahaya Pada Serat Sebagian dari sinyal cahaya yang terhambur akan dipantulkan ke arah sumber cahaya (ujung input). Sifat ini diuji dengan alat ukur OTDR (Optical Time Domain Reflectometer). 2. Rugi-Rugi Penyerapan (Absorbsi) Rugi-rugi penyerapan disebabkan karena adanya kotoran-kotoran pada bahan gelas serat optik. Kotoran tersebut dapat berupa logam (besi, tembaga, chrom) atau air dalam

23 bentuk ion-ion yang dapat menyerap sinar atau cahaya yang lewat. Berbeda dengan efek penghamburan, sifat penyerapan ini dapat dikurangi dengan cara mengontrol jumlah ketidakmurnian selama proses produksi. B. Redaman Ekstrinsik Gambar 2.15 Penyerapan Cahaya Pada Inti Serat Redaman ekstrinsik merupakan kerugian yang diakibatkan oleh sesuatu dari luar serat. Secara garis besar dapat dibedakan menjadi dua bagian yakni : 1. Rugi-Rugi Yang Disebabkan Oleh Karena Kelengkungan (Bending) Rugi-rugi ini terjadi pada saat sinar melalui serat optik yang dilengkungkan. Pada titik kelengkungan, sudut datang sinar menjadi lebih kecil dari pada sudut kritis sehingga sinar tidak dipantulkan sempurna melainkan dibiaskan keluar. Di dalam kasus produksi serat optik, oleh beberapa perusahaan telah melakukan pengujian yaitu dengan memutar serat pada suatu media berbentuk lingkaran untuk mengetahui pengaruh bending serta rugi-rugi transmisi serat optik. Hasil dari pengujian, menjelaskan bahwa ada batasan minimum kelengkungan kabel serat optik yang diijinkan. Ketika serat dibengkokkan (dilengkungkan) di sekitar suatu media, maka tekanan pada serat akibat pembengkokkan dapat dinyatakan dengan persamaan : Dimana, f = ED 2R (2.12) R = R m { 1 + (P/2 R m ) 2 } (2.13) R = Jari-jari kelengkungan/pembengkokkan serat E = Konstanta elastisitas

24 d = Diameter serat D = Diameter dari tengah inti ditambahkan dengan ketebalan lapisan coating P = Jarak antara (lapisan) D d R m = (2.14) 2 Persamaan 2.12 dan 2.13, digunakan untuk mempelajari perilaku dari serat optik di dalam pabrikasi kabel. Bagaimanapun, jarak antara yang selalu diinginkan adalah mempunyai jarijari (radius) lengkung lebih besar untuk mengurangi rugi-rugi akibat macrobending pada serat. Rumusan lain yang lebih sederhana untuk menjelaskan banyaknya gangguan karena ketegangan akibat pembengkokkan (bending) pada serat dinyatakan dalam persamaan [1] : dimana, R 2r s = 1 R r x 100 % (2.15) s = Persentase ketegangan relatif pada porosnya karena kelenturan disekitar permukaan yang mengalami bending. R = Jari-jari kelengkungan/pembengkokkan r = Jari-jari cladding (lapisan inti). Jenis kelengkungan pada serat optik dapat dibedakan menjadi dua bagian, yakni : a) Macrobending Macrobending adalah pelengkungan serat optik sebagai akibat dari kegiatan instalasi atau pemasangan serat optik. Jika suatu serat optik dilengkungkan, maka tegangan (strain) akan terjadi pada sekitar lengkungan. Tegangan tersebut akan mempengaruhi indeks bias dan sudut kritis dari cahaya pada area tertentu. Akibatnya, cahaya yang merambat di dalam inti serat akan terbias keluar dari inti dan terjadi rugirugi.

25 Gambar 2.16 Rugi-Rugi Karena Macrobending Secara empiris, rugi-rugi (loss) akibat makrobending pada kabel jenis single mode adalah Loss = exp [ 8,5 519 x D mm dengan, 1 xmac# 3 ] db/m (2.16) Mac# (Macrobending Number) adalah merupakan fungsi dari MFR (Mode Field Radius) dan panjang gelombang pemutusan efektif yang dinyatakan dalam persamaan [2] : Mac# = 2xMFR ce (2.17) Dengan menggunakan rumus di atas, maka di peroleh Grafik Loss terhadap Jari-jari kelengkungan (bending) untuk jenis serat optik singlemode sebagai berikut :

26 Gambar 2.17 Grafik Macrobending Loss terhadap jari-jari kelengkungan b) Microbending Microbending merupakan kerusakan skala kecil yang kasat mata yang terjadi pada serat. Timbulnya distorsi semacam ini sangat mungkin diakibatkan oleh suhu, beban tegang (tensile stress) dan beban tumbuk (crushing stress) selama proses produksi atau kegiatan instalasi. Seperti halnya macrobending, maka pada microbending akan mengakibatkan ketidak sempurnaan permukaan pantul serat optik sehingga sebagian sinar akan dibiaskan keluar. Akibatnya terjadi penurunan daya optis di dalam gelas. Oleh karena sifatnya kasat mata, microbeding ini sulit ditemukan pada tahap pemeriksaan dan pengujian. Pada proses pembuatan serat optik, microbending ini masih dapat diperbaiki. Gambar 2.18 Pelengkungan Akibat Tekanan

27 2. Rugi-Rugi Karena Faktor Instalasi. Instalasi kabel serat lebih membutuhkan ketelitian yang tinggi bila dibandingkan dengan instalasi kabel jenis tembaga pada jaringan telepon yang lama. Hal ini disebabkan oleh karena kesalahan serta instalasi yang tidak sempurna dapat mengakibatkan rugi-rugi pada sistem transmisi. Berikut akan dijelaskan beberapa faktor penyebab timbulnya rugi-rugi akibat instalasi yang dikelompokan sebagai berikut : a) Rugi-Rugi Karena Penyambungan Penyambungan kabel serat optik berpengaruh terhadap kualitas transmisi sinyal optik, oleh karena itu penyambungan harus dilaksanakan sesempurna mungkin agar batasan loss transmisi tidak terlampaui. Dalam setiap kegiatan penyambungan akan diakhiri dengan pengukuran nilai redaman. Batasan loss maksimum setelah penyambungan adalah 0,2 db per titik sambung. Dengan ketentuan bila hasil pengukuran melebihi batas redaman maka penyambungan akan diulang. Untuk mendapatkan panjang serat optik yang diinginkan, seringkali harus dilakukan penyambungan, baik dengan menggunakan fusion splicer maupun konektor. Tiap sambungan akan memberikan tambahan rugi-rugi atau redaman. b) Rugi-Rugi Penyambungan dan Konektor Pada saluran-saluran transmisi serat optik, setiap serat pada salah satu ujungnya harus berakhir pada transmiter sedangkan satu ujung yang lainnya pada receiver. Untuk memenuhi kebutuhan tersebut maka setiap peralatan transmiter ataupun receiver dapat dilengkapi dengan serat ekor babi (pig tail) yang terpasang secara permanen dengan rugirugi yang timbul dibuat seminimal mungkin, atau diakhiri dengan konektor-konektor yang dapat dibongkar pasang sehingga transmiter dan receiver dapat dilepas dengan mudah untuk keperluan perawatan. Selain itu jika jangkauan serat optik pada sistem cukup panjang, lebih panjang daripada panjang maksimum serat yang tersedia, maka serat harus disambung beberapa kali di sepanjang rutenya. Juga bila selama masa kerjanya sebuah hubungan (link) serat mungkin mengalami patah dan harus diperbaiki maka kerusakan jenis ini dapat diatasi dengan membuat sambungan-sambungan permanen (splice).

28 Ada beberapa faktor yang mempengaruhi besarnya rugi-rugi yang ditimbulkan oleh sebuah konektor atau sambungan pada suatu serat, yakni : Ketidaksesuaian Ukuran Teras Pengendalian diameter teras yang tidak teliti dalam pembuatan serat dapat mengakibatkan sebagian cahaya di dalam teras akan hilang. Hal ini disebabkan oleh teras yang keluaran lebih kecil daripada teras masukan sehingga akan memperbesar rugi-rugi total dari serat. Hal ini dilukiskan pada Gambar 2.19, terlihat suatu kerucut cahaya yang terlepas dari keliling teras keluaran yang lebih kecil. Teras masukan Teras masukan Teras keluaran Cahaya yang hilang Teras keluaran (lebih kecil) Gambar 2.19 Ketidaksesuaian Ukuran Teras Kesalahan Penjajaran Teras Lateral Jika pemilihan ukuran teras serat sudah tepat tetapi letaknya tidak tepat pada satu sumbu yang sama, terjadi tanjakan menyisi (lateral displacement) maka sinar akan keluar dari bagian yang terbuka pada permukaan teras seperti yang terlihat pada Gambar Cahaya yang hilang Teras masukan Teras Gambar 2.20 Kesalahan Penjajaran Teras Lateral (Lateral Core Misalgnment)

29 Kesalahan penjajaran (missaligment) disebabkan oleh : 1. Posisi konektor yang tidak tepat pada kedua diameter serat yang disambungkan. 2. Diameter-diameter pelapis luar tidak tepat sama. 3. Teras dari salah satu atau kedua serat tidak tepat berada di tengah-tengah pelapis itu sendiri (teras-teras tidak konsentris). Penyiapan Ujung Serat Yang Tidak Sempurna Ada beberapa macam bentuk potongan serat untuk penyambungan, yaitu : 1. Pada Gambar 2.21, memperlihatkan sepasang serat yang dipersiapkan dengan sempurna dan disesuaikan untuk penyambungan. Kedua serat dipotong dengan rapi dan tegak lurus pada sumbu teras dan mempunyai permukaan pasangan yang rata dan halus. Teras masukan Teras keluaran Gambar 2.21 Sambungan Yang Dipotong Dengan Sempurna 2. Pada Gambar 2.22 memperlihatkan sebuah serat yang dipotong membentuk suatu sudut dengan sumbu sedemikian rupa sehingga bila cahaya dari serat pasangannya tiba pada permukaan yang miring tersebut, sebagian cahaya itu akan hilang karena pantulan. 3. Teras masukan Teras keluaran Gambar 2.22 Sambungan Dengan Salah Satu Seratnya Dipotong Membentuk Sebuah Sudut Dengan Sumbu 4. Pada Gambar 2.23, memperlihatkan sebuah serat yang tidak rata pemotongannya, karena penggunaan tekanan pemotongan yang tidak semestinya. Ujung serat mempunyai permukaan terpotong yang tidak teratur yang akan menyebarkan cahaya yang jatuh padanya.

30 Teras masukan Teras keluaran Gambar 2.23 Sambungan Dengan Salah Satu Seratnya Dipotong Tidak Rata Kotoran Setiap kotoran atau benda asing yang masuk ke dalam konektor atau sambungan selama atau setelah proses pemasangan dapat memperbesar rugi-rugi bahkan dapat menutup sama sekali sambungan. Untuk mencegah masuknya kotoran maka instalasi harus dilakukan dengan sangat hati-hati. c) Rugi-Rugi Penyambungan Dengan Fusion Splicer Sambungan serat optik pada jaringan lokal biasanya mempergunakan sambungan tetap (permanent). Teknik dasar penyambungannya adalah dengan peleburan dua serat atau pengikatan dua serat dengan bahan perekat dalam struktur penjajaran. Persyaratan yang harus dipenuhi dalam membuat sambungan antara lain : 1. Sambungan harus dapat dibuat dengan mudah. 2. Sambungan harus memberikan rugi-rugi yang seminimal mungkin. 3. Sambungan harus bermanfaat. 4. Waktu penyambungan yang dibutuhkan harus seminimal mungkin. Pada jaringan lokal dipergunakan sambungan-sambungan lebur (fusion splice) untuk memperoleh hasil yang terbaik, karena sambungan lebur mempunyai rugi-rugi yang kecil, kira-kira 0,1 db per sambungan. 2.7 Perhitungan Power Budget Pada Sistem Transmisi Optik Hal utama yang harus diperhatikan dalam merancang sistem telekomunikasi serat optik adalah panjang maksimum dari jaringan hubung yang akan dibangun. Perhitungan ini dilakukan dengan memperhatikan parameter dari sistem transmisi dan receiver optik termasuk didalamnya spesifikasi modul yang akan digunakan Parameter Elektrik Ke Optik (Transmitter) Pada bagian peralatan transmitter, parameter utama yang harus diperhatikan adalah daya keluaran yang disalurkan dan panjang gelombang dari sinyal optik. Dengan

31 mengetahui kedua parameter tersebut maka daya keluaran dan kualitas dari sistem transmisi yang dibangun dapat diperkirakan. Panjang gelombang dari sinyal optik menentukan rugi-rugi kabel di dalam sistem yang akan beroperasi. Kerugian yang ditunjukkan dengan grafik panjang gelombang di dalam Gambar 2.23, menjelaskan bahwa pada 1310 nm rugi-rugi pada kabel adalah 0.50 db/km dan pada 1550 nm rugi-rugi kabel adalah 0.20 db/km. Gambar 2.23 Rugi-Rugi Pada Panjang Gelombang Serat Optik Link Power Budget adalah perbedaan/selisih antara Daya tranmisi terhadap Daya terima (nilai power minimum yang di butuhkan) yang melewati jaringan serat optik. PT PS dbm PR dbm (2.18) PR mw PT 10 Log (2.19) P mw P T = Link Power Budget (Rugi Transmisi daya) P S = Daya Tranmisi P R = Daya Terima S

32 Metode perhitungan yang dapat dipergunakan dalam merancang suatu sistem transmisi harus memperhatikan parameter dari pemancar dan pengirim pada sistem telekomunikasi serat optik dapat di sederhanakan dengan metode berikut : Daya keluaran pemancar :...dbm Kepekaan (sensitivity) penerima :...-.dbm Rugi-rugi maksimum yang diijinkan :...=...db Rugi-rugi serat (serat)* :...(Km) x Redaman :...(db/km)...db Rugi-rugi konektor :...Konektor x Rugi konektor...(db).+...db Rugi-rugi perangkat pasif : db Batas Aman (Safety Margin) : db Total rugi-rugi pada sistem :...=...db Jika total rugi-rugi pada sistem lebih kecil dari rugi-rugi maksimum yang diijinkan maka sistem tersebut memberikan hasil yang baik (normal). Sebagai standar konservatif industri, dijelaskan bahwa batas aman (Safety Margin) adalah 3 db, dan 1 db per konektor.

Sejarah dan Perkembangan Sistem Komunikasi Serat Optik

Sejarah dan Perkembangan Sistem Komunikasi Serat Optik Sejarah dan Perkembangan Sistem Komunikasi Serat Optik OLEH: ENDI SOPYANDI Email: endi_sopyandi@yahoo.com Pada tahun 1880 Alexander Graham Bell menciptakan sebuah sistem komunikasi cahaya yang disebut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Dasar Sistem Komunikasi Serat Optik Sistem komunikasi optik adalah suatu sistem komunikasi yang media transmisinya menggunakan serat optik. Pada prinsipnya sistem komunikasi serat

Lebih terperinci

TUGAS. : Fitrilina, M.T OLEH: NO. INDUK MAHASISWA :

TUGAS. : Fitrilina, M.T OLEH: NO. INDUK MAHASISWA : TUGAS NAMA MATA KULIAH DOSEN : Sistem Komunikasi Serat Optik : Fitrilina, M.T OLEH: NAMA MAHASISWA : Fadilla Zennifa NO. INDUK MAHASISWA : 0910951006 JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

11/9/2016. Jenis jenis Serat Optik. Secara umum blok diagram transmisi komunikasi fiber optik. 1. Single Mode Fiber Diameter core < Diameter cladding

11/9/2016. Jenis jenis Serat Optik. Secara umum blok diagram transmisi komunikasi fiber optik. 1. Single Mode Fiber Diameter core < Diameter cladding TT 1122 PENGANTAR TEKNIK TELEKOMUNIKASI Information source Electrical Transmit Optical Source Optical Fiber Destination Receiver (demodulator) Optical Detector Secara umum blok diagram transmisi komunikasi

Lebih terperinci

SISTEM KOMUNIKASI SERAT OPTIK

SISTEM KOMUNIKASI SERAT OPTIK SISTEM KOMUNIKASI SERAT OPTIK Submitted by Dadiek Pranindito ST, MT,. SEKOLAH TINGGI TEKNOLOGI TELEMATIKA TELKOM LOGO PURWOKERTO Topik Pembahasan Chapter 1 Overview SKSO Pertemuan Ke -2 SKSO dan Teori

Lebih terperinci

PEMBAGIAN SERAT OPTIK

PEMBAGIAN SERAT OPTIK FIBER OPTIC CABLE Fiber Optik (Serat optic) adalah saluran transmisi yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Cahaya yang

Lebih terperinci

REVOLUSI DUNIA TELEKOMUNIKASI DENGAN SERAT OPTIK. Hasanah Dosen Jurusan Teknik Elektronika Fakultas Teknik Universitas Negeri Makassar

REVOLUSI DUNIA TELEKOMUNIKASI DENGAN SERAT OPTIK. Hasanah Dosen Jurusan Teknik Elektronika Fakultas Teknik Universitas Negeri Makassar Revolusi Dunia Telekomunikasi dengan Serat Optik [Hasanah] REVOLUSI DUNIA TELEKOMUNIKASI DENGAN SERAT OPTIK Hasanah Dosen Jurusan Teknik Elektronika Fakultas Teknik Universitas Negeri Makassar ABSTRAK

Lebih terperinci

BAB IV PERHITUNGAN DAN PENGUKURAN MENGGUNAKAN OTDR SERTA ANALISA HASIL PERHITUNGAN DAN PENGGUKURAN TERHADAP RUGI-RUGI TRANSMISI

BAB IV PERHITUNGAN DAN PENGUKURAN MENGGUNAKAN OTDR SERTA ANALISA HASIL PERHITUNGAN DAN PENGGUKURAN TERHADAP RUGI-RUGI TRANSMISI BAB IV PERHITUNGAN DAN PENGUKURAN MENGGUNAKAN OTDR SERTA ANALISA HASIL PERHITUNGAN DAN PENGGUKURAN TERHADAP RUGI-RUGI TRANSMISI 4.1 Analisa Perencanaan Instalasi Penentuan metode instalasi perlu dipertimbangkan

Lebih terperinci

PERKEMBANGAN JARINGAN KOMPUTER DENGAN MENGGUNAKAN FIBER OPTIK

PERKEMBANGAN JARINGAN KOMPUTER DENGAN MENGGUNAKAN FIBER OPTIK Abstrak Kemajuan teknologi sekarang ini semakin pesat sehingga kebutuhan akan komunikasi data antara dua komputer atau lebih dibutuhkan alat agar dapat terhubung. Komunikasi data itu dapat terhubung dengan

Lebih terperinci

BAB II SISTEM KOMUNIKASI SERAT OPTIK

BAB II SISTEM KOMUNIKASI SERAT OPTIK BAB II SISTEM KOMUNIKASI SERAT OPTIK 2.1 Dasar Sistem Komunikasi Serat Optik Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang sangat halus dan lebih kecil dari sehelai rambut,

Lebih terperinci

Fiber Optics (serat optik) Oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber)

Fiber Optics (serat optik) Oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Fiber Optics (serat optik) Oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Bahan fiber optics (serat optik) Serat optik terbuat dari bahan dielektrik berbentuk seperti kaca (glass). Di dalam serat

Lebih terperinci

BAB II DASAR TEORI. yang biasanya berbentuk sinyal listrik menjadi sinyal cahaya dan kemudian

BAB II DASAR TEORI. yang biasanya berbentuk sinyal listrik menjadi sinyal cahaya dan kemudian BAB II DASAR TEORI 2.1 Umum Teknologi serat optik merupakan suatu teknologi komunikasi yang sangat bagus pada zaman modern saat ini. Pada teknologi ini terjadi perubahan informasi yang biasanya berbentuk

Lebih terperinci

SISTEM KOMUNIKASI SERAT OPTIK DATA SATELIT

SISTEM KOMUNIKASI SERAT OPTIK DATA SATELIT Berita Dirgantara Vol. 15 No. 2 Desember 2014:58-63 SISTEM KOMUNIKASI SERAT OPTIK DATA SATELIT Muh. Sulaiman 1 Nur Ubay, Suhata Peneliti Pusat Teknologi Satelit, LAPAN 1e-mail: sulaiman_itb@yahoo.com RINGKASAN

Lebih terperinci

Faktor Rate data. Bandwidth Ganguan transmisi(transmission impairments) Interferensi Jumlah receiver

Faktor Rate data. Bandwidth Ganguan transmisi(transmission impairments) Interferensi Jumlah receiver Version 1.1.0 Faktor Rate data Bandwidth Ganguan transmisi(transmission impairments) Interferensi Jumlah receiver Kecepatan Transmisi Bit : Binary Digit Dalam transmisi bit merupakan pulsa listrik negatif

Lebih terperinci

Overview Materi. Redaman/atenuasi Absorpsi Scattering. Dispersi Rugi-rugi penyambungan Tipikal karakteristik kabel serat optic

Overview Materi. Redaman/atenuasi Absorpsi Scattering. Dispersi Rugi-rugi penyambungan Tipikal karakteristik kabel serat optic Overview Materi Redaman/atenuasi Absorpsi Scattering Rugi-rugi bending Dispersi Rugi-rugi penyambungan Tipikal karakteristik kabel serat optic Redaman/Atenuasi Redaman mempunyai peranan yang sangat

Lebih terperinci

Sistem Transmisi Telekomunikasi. Kuliah 8 Pengantar Serat Optik

Sistem Transmisi Telekomunikasi. Kuliah 8 Pengantar Serat Optik TKE 8329W Sistem Transmisi Telekomunikasi Kuliah 8 Pengantar Serat Optik Indah Susilawati, S.T., M.Eng. Program Studi Teknik Elektro Program Studi Teknik Informatika Fakultas Teknik dan Ilmu Komputer Universitas

Lebih terperinci

TEKNIK KOMUNIKASI SERAT OPTIK SI STEM KOMUNIKASI O P TIK V S KO NVENSIONAL O LEH : H ASANAH P UTRI

TEKNIK KOMUNIKASI SERAT OPTIK SI STEM KOMUNIKASI O P TIK V S KO NVENSIONAL O LEH : H ASANAH P UTRI TEKNIK KOMUNIKASI SERAT OPTIK SI STEM KOMUNIKASI O P TIK V S KO NVENSIONAL O LEH : H ASANAH P UTRI REFERENSI BUKU 1. Keiser, Gerd; Optical Fiber Communications, Mc Graw-Hill International. 2. Agrawal,

Lebih terperinci

BAB II ISI MAKALAH A. PENGIRIM OPTIK

BAB II ISI MAKALAH A. PENGIRIM OPTIK BAB II ISI MAKALAH A. PENGIRIM OPTIK Pada prinsipnya fiber optik memantulkan dan membiaskan sejumlah cahaya yang merambat di dalamnya. Efisiensi dari serat optik ditentukan oleh kemurnian dari bahan penyusun

Lebih terperinci

ANALISA RUGI-RUGI PELENGKUNGAN PADA SERAT OPTIK SINGLE MODE TERHADAP PELEMAHAN INTENSITAS CAHAYA

ANALISA RUGI-RUGI PELENGKUNGAN PADA SERAT OPTIK SINGLE MODE TERHADAP PELEMAHAN INTENSITAS CAHAYA ANALISA RUGI-RUGI PELENGKUNGAN PADA SERAT OPTIK SINGLE MODE TERHADAP PELEMAHAN INTENSITAS CAHAYA Yovi Hamdani, Ir. M. Zulfin, MT Konsentrasi Teknik Telekomunikasi, Departemen Teknik Elektro Fakultas Teknik

Lebih terperinci

4. Karakteristik Transmisi pd Fiber Optik

4. Karakteristik Transmisi pd Fiber Optik 4. Karakteristik Transmisi pd Fiber Optik Anhar, MT. 1 Outline : Pengantar Redaman (Attenuation) Penyerapan Material (Absorption) Rugi-rugi hamburan (Scattering Losses) Rugi-rugi pembengkokan Dispersi

Lebih terperinci

BAB III TEORI PENUNJANG. Perambatan cahaya dalam suatu medium dengan 3 cara : Berikut adalah gambar perambatan cahaya dalam medium yang ditunjukkan

BAB III TEORI PENUNJANG. Perambatan cahaya dalam suatu medium dengan 3 cara : Berikut adalah gambar perambatan cahaya dalam medium yang ditunjukkan BAB III TEORI PENUNJANG Bab tiga berisi tentang tentang teori penunjang kerja praktek yang telah dikerjakan. 3.1. Propagasi cahaya dalam serat optik Perambatan cahaya dalam suatu medium dengan 3 cara :

Lebih terperinci

BAB II SERAT OPTIK. komunikasi cahaya yang disebut photo-phone dengan menggunakan cahaya matahari

BAB II SERAT OPTIK. komunikasi cahaya yang disebut photo-phone dengan menggunakan cahaya matahari BAB II SERAT OPTIK 2.1 Umum Pada tahun 1880 Alexander Graham Bell menciptakan sebuah sistem komunikasi cahaya yang disebut photo-phone dengan menggunakan cahaya matahari yang dipantulkan dari sebuah cermin

Lebih terperinci

MEDIA TRANSMISI. 25/03/2010 Komunikasi Data/JK 1

MEDIA TRANSMISI. 25/03/2010 Komunikasi Data/JK 1 MEDIA TRANSMISI Media Guided - Twisted Pair - Coaxial cable - Serat Optik Media Unguided - Gelombang mikro terrestrial - Gelombang mikro Satelit - Radio broadcast - Infra merah 25/03/2010 Komunikasi Data/JK

Lebih terperinci

TEKNOLOGI SERAT OPTIK

TEKNOLOGI SERAT OPTIK TEKNOLOGI SERAT OPTIK Staf Pengajar Departemen Teknik Elektro, Fakultas Teknik USU Abstrak: Serat optik merupakan salah satu alternatif media transmisi komunikasi yang cukup handal, karena memiliki keunggulan

Lebih terperinci

Endi Dwi Kristianto

Endi Dwi Kristianto Fiber Optik Atas Tanah (Part 1) Endi Dwi Kristianto endidwikristianto@engineer.com http://endidwikristianto.blogspot.com Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Pengukuran dan pengecekan rugi-rugi fiber optic berdasarkan nilai data

BAB IV HASIL DAN PEMBAHASAN. Pengukuran dan pengecekan rugi-rugi fiber optic berdasarkan nilai data BAB IV HASIL DAN PEMBAHASAN Pengukuran dan pengecekan rugi-rugi fiber optic berdasarkan nilai data yang diperoleh dari hasil kerja praktek di PT. TELEKOMUNIKASI INDONESIA area Gresik, divisi Infrastruktur

Lebih terperinci

Sejarah singkat komunikasi optic dan perkembangan fiber optic Spektrum elektromagnetik

Sejarah singkat komunikasi optic dan perkembangan fiber optic Spektrum elektromagnetik Overview Materi Sejarah singkat komunikasi optic dan perkembangan fiber optic Spektrum elektromagnetik Kelebihan fiber optic Elemen utama system komunikasi optic Contoh-contoh system aplikasi optik Pendahuluan

Lebih terperinci

TEKNOLOGI KOMUNIKASI

TEKNOLOGI KOMUNIKASI Modul ke: TEKNOLOGI KOMUNIKASI Media Transmisi Dengan Kabel Fakultas FIKOM Krisnomo Wisnu Trihatman S.Sos M.Si Program Studi Periklanan www.mercubuana.ac.id Kabel Koaksial Kabel koaksial ditemukan oleh

Lebih terperinci

SERAT OPTIK oleh : Sugata Pikatan

SERAT OPTIK oleh : Sugata Pikatan Kristal no.8/april/1993 1 SERAT OPTIK oleh : Sugata Pikatan Sudah sering kita mendengar istilah komunikasi serat optik. Sebetulnya apa serat optik itu? Penggunaanya bahkan sampai ke bidang kedokteran,

Lebih terperinci

Oleh : Asep Supriyadi. Pendahuluan

Oleh : Asep Supriyadi. Pendahuluan Oleh : Asep Supriyadi Pendahuluan Tiga dekade belakangan ini, telah dikembangkan sebuah teknologi baru yang menawarkan kecepatan data yang lebih besar sepanjang jarak yang lebih jauh dengan harga yang

Lebih terperinci

Jaringan Lokal Akses (Jarlok) Eka Setia Nugraha,S.T. M.T Uke Kurniawan Usman,MT

Jaringan Lokal Akses (Jarlok) Eka Setia Nugraha,S.T. M.T Uke Kurniawan Usman,MT Jaringan Lokal Akses (Jarlok) Eka Setia Nugraha,S.T. M.T Uke Kurniawan Usman,MT Saluran / Jaringan Lokal Saluran yang menghubungkan pesawat pelanggan dengan Main Distribution Point disentral telepon. Panjang

Lebih terperinci

JARINGAN KOMPUTER MODEL ANALISIS EL Oleh : Darmansyah Deva Sani of 6 ABSTRAK

JARINGAN KOMPUTER MODEL ANALISIS EL Oleh : Darmansyah Deva Sani of 6 ABSTRAK JARINGAN KOMPUTER MODEL ANALISIS EL - 670 Oleh : Darmansyah Deva Sani 232 98 502 1 of 6 ABSTRAK Sistem komunikasi fiber optik telah berkembang pesat akhir-akhir ini, berupa komunikasi suara, vidio dan

Lebih terperinci

ASSESMENT CLO 3 - RMG PENGENALAN TEKNIK TELEKOMUNIKASI

ASSESMENT CLO 3 - RMG PENGENALAN TEKNIK TELEKOMUNIKASI ASSESMENT CLO 3 - RMG PENGENALAN TEKNIK TELEKOMUNIKASI A. SOAL PILIHAN : 1. Proses untuk mengubah sinyal baseband menjadi sinyal bandpass dinamakan a. Converter b. Modulasi c. Conversi d. Modulator 2.

Lebih terperinci

Mode Transmisi. Transmisi Data

Mode Transmisi. Transmisi Data Transmisi Data Mode Transmisi Transmisi Data Pengiriman data yang dilakukan oleh dua perangkat (komputer atau non-komputer) atau lebih dengan menggunakan suatu media komunikasi tertentu. Klasifikasi Transmisi

Lebih terperinci

Media Transmisi. Klasifikasi Media Transmisi. Dibagi 2 jenis Guided - wire Unguided wireless

Media Transmisi. Klasifikasi Media Transmisi. Dibagi 2 jenis Guided - wire Unguided wireless Dibagi 2 jenis Guided - wire Unguided wireless Media Transmisi Karakteristik dan kualitas ditentukan oleh medium dan sinyal Untuk guided, adalah koneksi dengan kabel atau kawat Untuk unguided, tanpa kabel

Lebih terperinci

DASAR TELEKOMUNIKASI. Kholistianingsih, S.T., M.Eng

DASAR TELEKOMUNIKASI. Kholistianingsih, S.T., M.Eng DASAR TELEKOMUNIKASI Kholistianingsih, S.T., M.Eng KONTRAK PEMBELAJARAN UAS : 35% UTS : 35% TUGAS : 20% KEHADIRAN : 10% KEHADIRAN 0 SEMUA KOMPONEN HARUS ADA jika ada satu komponen yang kosong NILAI = E

Lebih terperinci

BAB I P E N D A H U L U A N

BAB I P E N D A H U L U A N BAB I P E N D A H U L U A N Tujuan Instruksional Umum Pada bab ini akan didefinisikan pokok dari komunikasi serat optik dan juga akan dijelaskan pendekatannya pada pokok bahasan tersebut. Setelah mempelajari

Lebih terperinci

Pengenalan Sistem Komunikasi Serat Optik

Pengenalan Sistem Komunikasi Serat Optik Pengenalan Sistem Komunikasi Serat Optik Abstrak Pada 30 tahun belakangan ini, telah dikembangkan sebuah teknologi baru yang menawarkan kecepatan data yang lebih besar sepanjang jarak yang lebih jauh dengan

Lebih terperinci

BAB II SISTEM KOMUNIKASI SERAT OPTIK. informasi pada gelombang elektromagnetik yang bertindak sebagai pembawa

BAB II SISTEM KOMUNIKASI SERAT OPTIK. informasi pada gelombang elektromagnetik yang bertindak sebagai pembawa BAB II SISTEM KOMUNIKASI SERAT OPTIK 2.1 Umum Komunikasi dapat diartikan sebagai pengiriman informasi dari satu pihak ke pihak yang lain. Pengiriman informasi ini dilakukan dengan memodulasikan informasi

Lebih terperinci

MAKALAH SEMINAR KERJA PRAKTEK PENGUKURAN REDAMAN PADA KABEL SERAT OPTIK DENGAN OTDR

MAKALAH SEMINAR KERJA PRAKTEK PENGUKURAN REDAMAN PADA KABEL SERAT OPTIK DENGAN OTDR MAKALAH SEMINAR KERJA PRAKTEK PENGUKURAN REDAMAN PADA KABEL SERAT OPTIK DENGAN OTDR Rini Indah S. 1, Sukiswo,ST, MT. 2 ¹Mahasiswa dan ²Dosen Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro

Lebih terperinci

BAB II ISI MAKALAH A. PENGIRIMAN OPTIK

BAB II ISI MAKALAH A. PENGIRIMAN OPTIK BAB II ISI MAKALAH A. PENGIRIMAN OPTIK Pada prinsipnya fiber optik memantulkan dan membiaskan sejumlah cahaya yang merambat di dalamnya. Efisiensi dari serat optik ditentukan oleh kemurnian dari bahan

Lebih terperinci

BAB II GELOMBANG ELEKTROMAGNETIK. walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik

BAB II GELOMBANG ELEKTROMAGNETIK. walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik BAB II GELOMBANG ELEKTROMAGNETIK 2.1 Umum elektromagnetik adalah gelombang yang dapat merambat walaupun tidak ada medium dan terdiri dari medan listrik dan medan magnetik seperti yang diilustrasikan pada

Lebih terperinci

Overview Materi. Panduan gelombang fiber optik Struktur Serat Optik Tipe-tipe serat optik. Kabel Optik

Overview Materi. Panduan gelombang fiber optik Struktur Serat Optik Tipe-tipe serat optik. Kabel Optik Overview Materi Panduan gelombang fiber optik Struktur Serat Optik Tipe-tipe serat optik Material serat optik Kabel Optik Struktur Serat Optik Struktur Serat Optik (Cont..) Core Terbuat dari bahan kuarsa

Lebih terperinci

Sistem Telekomunikasi

Sistem Telekomunikasi Sistem Telekomunikasi Pertemuan ke,5 Media transmisi Taufal hidayat MT. email :taufal.hidayat@itp.ac.id ; blog : catatansangpendidik.wordpress.com 1 10/12/2015 Skema umum telekomunikasi Informasi encoder

Lebih terperinci

LABORATORIUM SISTEM TRANSMISI

LABORATORIUM SISTEM TRANSMISI LABORATORIUM SISTEM TRANSMISI NOMOR PERCOBAAN : 01 JUDUL PERCOBAAN : FIBER OPTIK SINYAL ANALOG KELAS / KELOMPOK : TT - 5A / KELOMPOK 4 NAMA PRAKTIKAN : 1. SOCRATES PUTRA NUSANTARA (1315030082) NAMA KELOMPOK

Lebih terperinci

BAB II JARINGAN AKSES TEMBAGA DAN SERAT OPTIK

BAB II JARINGAN AKSES TEMBAGA DAN SERAT OPTIK BAB II JARINGAN AKSES TEMBAGA DAN SERAT OPTIK 2.1 Umum Jaringan lokal akses tembaga kapasitasnya sangat terbatas untuk memberikan layanan multimedia, karena kabel tembaga memiliki keterbatasan bandwidth

Lebih terperinci

KOMUNIKASI DATA Data, Sinyal & Media Transmisi. Oleh: Fahrudin Mukti Wibowo, S.Kom., M.Eng

KOMUNIKASI DATA Data, Sinyal & Media Transmisi. Oleh: Fahrudin Mukti Wibowo, S.Kom., M.Eng KOMUNIKASI DATA Data, Sinyal & Media Transmisi Oleh: Fahrudin Mukti Wibowo, S.Kom., M.Eng Data 10110111 sinyal Untuk dapat ditransmisikan, data harus ditransformasikan ke dalam bentuk gelombang elektromagnetik

Lebih terperinci

Design Faktor. Bandwidth. Gangguan transmisi. Interferensi Jumlah receiver. bandwidth lebih tinggi bermuatan data lebih banyak.

Design Faktor. Bandwidth. Gangguan transmisi. Interferensi Jumlah receiver. bandwidth lebih tinggi bermuatan data lebih banyak. Media Transmisi Pendahuluan Guide - kabel Unguide - tanpa kabel Karakteristik dan kualitas ditentukan oleh signal dan media Untuk guide, media lebih penting Untuk unguide, bandwidth yang dihasilkan oleh

Lebih terperinci

ROMARIA NIM :

ROMARIA NIM : ANALISIS PENGARUH DISPERSI TERHADAP RUGI-RUGI DAYA TRANSMISI PADA SERAT OPTIK SINGLE MODE REKOMENDASI ITU-T SERI G.655 Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan sarjana

Lebih terperinci

DAN KONSENTRASI SAMPEL

DAN KONSENTRASI SAMPEL PERANCANGAN SENSOR ph MENGGUNAKAN FIBER OPTIK BERDASARKAN VARIASI KETEBALAN REZA ADINDA ZARKASIH NRP. 1107100050 DAN KONSENTRASI SAMPEL DOSEN PEMBIMBING : DRS. HASTO SUNARNO,M.Sc Jurusan Fisika Fakultas

Lebih terperinci

Sinyal analog. Amplitudo : ukuran tinggi rendah tegangan Frekuensi : jumlah gelombang dalam 1 detik Phase : besar sudut dari sinyal analog

Sinyal analog. Amplitudo : ukuran tinggi rendah tegangan Frekuensi : jumlah gelombang dalam 1 detik Phase : besar sudut dari sinyal analog PHYSICAL LAYER Lapisan Fisik Fungsi : untuk mentransmisikan sinyal data (analog dan digital) Pada Lapisan Transmitter : menerapkan fungsi elektris, mekanis, dan prosedur untuk membangun, memelihara, dan

Lebih terperinci

BAB II SERAT OPTIK. cepat, jaringan serat optik sebagai media transmisi banyak digunakan dan

BAB II SERAT OPTIK. cepat, jaringan serat optik sebagai media transmisi banyak digunakan dan BAB II SERAT OPTIK 2.1 Umum Dalam sistem perkembangan informasi dan komunikasi yang demikian cepat, jaringan serat optik sebagai media transmisi banyak digunakan dan dipercaya dapat memenuhi kebutuhan

Lebih terperinci

BAB III DASAR DASAR GELOMBANG CAHAYA

BAB III DASAR DASAR GELOMBANG CAHAYA BAB III DASAR DASAR GELOMBANG CAHAYA Tujuan Instruksional Umum Pada bab ini akan dijelaskan mengenai perambatan gelombang, yang merupakan hal yang penting dalam sistem komunikasi serat optik. Pembahasan

Lebih terperinci

ANALISIS RUGI-RUGI SERAT OPTIK DI PT.ICON+ REGIONAL SUMBAGUT

ANALISIS RUGI-RUGI SERAT OPTIK DI PT.ICON+ REGIONAL SUMBAGUT ANALISIS RUGI-RUGI SERAT OPTIK DI PT.ICON+ REGIONAL SUMBAGUT Winarni Agil (1), Ir. M. Zulfin, M.T (2) Kosentrasi Teknik Telekomunikasi, Departemen Teknik Elektro Fakultas Teknik Universitas Sumatera Utara

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Trafik Secara umum trafik dapat diartikan sebagai perpindahan informasi dari satu tempat ke tempat lain melalui jaringan telekomunikasi. Besaran dari suatu trafik telekomunikasi

Lebih terperinci

BAB II SISTEM KOMUNIKASI SERAT OPTIK

BAB II SISTEM KOMUNIKASI SERAT OPTIK BAB II SISTEM KOMUNIKASI SERAT OPTIK 2.1 Umum Dalam sistem komunikasi dewasa ini, komunikasi serat optik semakin banyak digunakan. Bukan hanya sebagai pengganti dari jenis sistem transmisi sebelumnya,

Lebih terperinci

MEDIA TRANSMISI. Sumber: Bab 4 Data & Computer Communications William Stallings. Program Studi Teknik Telekomunikasi Sekolah Tinggi Teknologi Telkom

MEDIA TRANSMISI. Sumber: Bab 4 Data & Computer Communications William Stallings. Program Studi Teknik Telekomunikasi Sekolah Tinggi Teknologi Telkom Jaringan Komputer I 1 MEDIA TRANSMISI Sumber: Bab 4 Data & Computer Communications William Stallings Program Studi Teknik Telekomunikasi Sekolah Tinggi Teknologi Telkom Spektrum Elektromagnetik Jaringan

Lebih terperinci

Teknologi Jaringan Komunikasi data dan Media Transmisi

Teknologi Jaringan Komunikasi data dan Media Transmisi Teknologi Jaringan Komunikasi data dan Media Transmisi Setelah kita mempelari tentang teori dasar kominukasi data dan telah juga mempelajari tranmisi dan media tranmisi, sekarang kita akan membahas soal

Lebih terperinci

KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER DOSEN : SUSMINI I. LESTARININGATI, M.T

KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER DOSEN : SUSMINI I. LESTARININGATI, M.T KOMUNIKASI DATA PROGRAM STUDI TEKNIK KOMPUTER 3 GANJIL 2017/2018 DOSEN : SUSMINI I. LESTARININGATI, M.T Sinyal Digital Selain diwakili oleh sinyal analog, informasi juga dapat diwakili oleh sinyal digital.

Lebih terperinci

BAB II SISTEM KOMUNIKASI SERAT OPTIK. banyak digunakan. Bukan hanya sebagai pengganti dari jenis sistem transmisi

BAB II SISTEM KOMUNIKASI SERAT OPTIK. banyak digunakan. Bukan hanya sebagai pengganti dari jenis sistem transmisi BAB II SISTEM KOMUNIKASI SERAT OPTIK 2.1 Umum Dalam sistem komunikasi dewasa ini, komunikasi serat optik semakin banyak digunakan. Bukan hanya sebagai pengganti dari jenis sistem transmisi sebelumnya,

Lebih terperinci

Menyebutkan prinsip umum sinyal bicara dan musik Mengetahui Distorsi Mengetahui tentang tranmisi informasi Mengetahui tentang kapasitas kanal

Menyebutkan prinsip umum sinyal bicara dan musik Mengetahui Distorsi Mengetahui tentang tranmisi informasi Mengetahui tentang kapasitas kanal Menyebutkan prinsip umum sinyal bicara dan musik Mengetahui Distorsi Mengetahui tentang tranmisi informasi Mengetahui tentang kapasitas kanal dua macam sumber informasi, yaitu ide-ide yang bersumber dari

Lebih terperinci

PENENTUAN RUGI-RUGI BENGKOKAN SERAT OPTIK JENIS SMF-28. Syahirul Alim Fisika FMIPA Universitas Sebelas Maret Surakarta

PENENTUAN RUGI-RUGI BENGKOKAN SERAT OPTIK JENIS SMF-28. Syahirul Alim   Fisika FMIPA Universitas Sebelas Maret Surakarta PENENTUAN RUGI-RUGI BENGKOKAN SERAT OPTIK JENIS SMF-8 Syahirul Alim Email: arul_alim@yahoo.com Fisika FMIPA Universitas Sebelas Maret Surakarta Abstrak Telah dilakukan penelitian tentang Rugi-rugi bengkokan

Lebih terperinci

MEDIA TRANSMISI KOMUNIKASI DATA

MEDIA TRANSMISI KOMUNIKASI DATA Hal. 1 MEDIA TRANSMISI KOMUNIKASI DATA Beberapa media beberapa media transmisi dapat digunakan sebagai channel (jalur) transmisi atau carrier dari data yang dikirimkan. Secara fisik, media transmisi dapat

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 12 BAB III LANDASAN TEORI 3.1 Sistem Komunikasi Serat Optik Sistem Komunikasi secara umum terdiri dari pemancar sebagai sumber pengirim informasi, detektor penerima informasi, dan media transmisi sebagai

Lebih terperinci

Jenis media transmisi

Jenis media transmisi Media Transmisi Media transmisi adalah media yang menghubungkan antara pengirim dan penerima informasi (data), karena jarak yang jauh, maka data terlebih dahulu diubah menjadi kode/isyarat, dan isyarat

Lebih terperinci

LAPISAN FISIK. Pengertian Dasar. Sinyal Data

LAPISAN FISIK. Pengertian Dasar. Sinyal Data LAPISAN FISIK Pengertian Dasar Lapisan Fisik (physical layer) adalah lapisan terbawah dari model referensi OSI, lapisan ini berfungsi untuk menentukan karekteristik dari kabel yang digunakan untuk menghubungkan

Lebih terperinci

PADA UNIT SISTEM KOMUNIKASI SERAT OPTIK (SKSO)

PADA UNIT SISTEM KOMUNIKASI SERAT OPTIK (SKSO) Makalah Seminar Kerja Praktek FUSION SPLICING PADA UNIT SISTEM KOMUNIKASI SERAT OPTIK (SKSO) Diah Eka Puspitasari (L2F008024) Jurusan Teknik Elektro Fakultas Teknik Universitas Diponegoro Abstrak - Pada

Lebih terperinci

Jaringan Komputer. Transmisi Data

Jaringan Komputer. Transmisi Data Jaringan Komputer Transmisi Data Terminologi (1) Transmitter Receiver Media Transmisi Guided media Contoh; twisted pair, serat optik Unguided media Contoh; udara, air, ruang hampa Terminologi (2) Hubungan

Lebih terperinci

BAB III WAVEGUIDE. Gambar 3.1 bumbung gelombang persegi dan lingkaran

BAB III WAVEGUIDE. Gambar 3.1 bumbung gelombang persegi dan lingkaran 11 BAB III WAVEGUIDE 3.1 Bumbung Gelombang Persegi (waveguide) Bumbung gelombang merupakan pipa yang terbuat dari konduktor sempurna dan di dalamnya kosong atau di isi dielektrik, seluruhnya atau sebagian.

Lebih terperinci

SISTEM TRANSMISI DIGITAL

SISTEM TRANSMISI DIGITAL SISTEM TRANSMISI DIGITAL Ref : Keiser Fakultas Teknik 1 Link Optik Dijital point to point Persyaratan utama sistem link : Jarak transmisi yg diinginkan Laju data atau lebar pita kanal BER USER USER SUMBER

Lebih terperinci

PRODI D3 TEKNIK TELEKOMUNIKASI 2014 YUYUN SITI ROHMAH, ST., MT

PRODI D3 TEKNIK TELEKOMUNIKASI 2014 YUYUN SITI ROHMAH, ST., MT PRODI D3 TEKNIK TELEKOMUNIKASI 2014 YUYUN SITI ROHMAH, ST., MT Message Input Sinyal Input Sinyal Kirim Message Output TI Transducer Input Message Signal Transducer Output TO Sinyal Output Tx Transmitter

Lebih terperinci

4. Karakteristik Transmisi pd Fiber Optik

4. Karakteristik Transmisi pd Fiber Optik 4. Karakteristik Transmisi pd Fiber Optik Anhar, MT. 1 Kompetensi Mahasiswa dapat menjelaskan rugi-rugi dan dispersi yang terjadi pada fiber optik dan menghitung besarnya rugi-rugi dan dispersi tsb. 2

Lebih terperinci

BAB 2 KAJIAN PUSTAKA DAN LANDASAN TEORI

BAB 2 KAJIAN PUSTAKA DAN LANDASAN TEORI BAB 2 KAJIAN PUSTAKA DAN LANDASAN TEORI 2.1 Kajian Pustaka Menurut sepengetahuan peneliti bahwa kabel serat optik sangat kurang dalam pengetahuannya terhadap masyarakat. Bahkan terhadap pegawai telkom

Lebih terperinci

Bab 3. Transmisi Data

Bab 3. Transmisi Data Bab 3. Transmisi Data Bab 3. Transmisi Data 1/34 Outline Terminologi dan Konsep Transmisi Data Media Transmisi Konsep Domain Waktu Konsep Domain Frekuensi Transmisi Analog Transmisi Digital Gangguan Transmisi

Lebih terperinci

Oleh : Akbar Sujiwa Pembimbing : Endarko, M.Si., Ph.D

Oleh : Akbar Sujiwa Pembimbing : Endarko, M.Si., Ph.D Oleh : Akbar Sujiwa Pembimbing : Endarko, M.Si., Ph.D Serat optik FTP 320-10 banyak digunakan Bagaimana karakter makrobending losses FTP 320-10 terhadap pembebanan Bagaimana kecepatan respon FTP 320-10

Lebih terperinci

DASAR TEKNIK TELEKOMUNIKASI

DASAR TEKNIK TELEKOMUNIKASI DTG1E3 DASAR TEKNIK TELEKOMUNIKASI Klasifikasi Sistem Telekomunikasi By : Dwi Andi Nurmantris Dimana Kita? Dimana Kita? BLOK SISTEM TELEKOMUNIKASI Message Input Sinyal Input Sinyal Kirim Message Output

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan

BAB 1 PENDAHULUAN 1.1 Latar Belakang Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan BAB 1 PENDAHULUAN 1.1 Latar Belakang Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Cahaya

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN 1 BAB I PENDAHULUAN 1.1 Latar Belakang Kecepatan pengiriman dan bandwidth untuk jarak jauh dalam komunikasi sudah menjadi kebutuhan tersendiri. Masalah ini dapat diatasi dengan sebuah teknologi dengan

Lebih terperinci

SISTEM TRANSMISI DIGITAL. Ref : Keiser

SISTEM TRANSMISI DIGITAL. Ref : Keiser SISTEM TRANSMISI DIGITAL Ref : Keiser 1 Link Optik Dijital point to point Persyaratan utama sistem link : Jarak transmisi yg diinginkan Laju data atau lebar pita kanal BER USER USER SUMBER OPTIK SINYAL

Lebih terperinci

SISTEM TRANSMISI DIGITAL. Ref : Keiser

SISTEM TRANSMISI DIGITAL. Ref : Keiser SISTEM TRANSMISI DIGITAL Ref : Keiser 1 Link Optik Dijital point to point Persyaratan utama sistem link : Jarak transmisi yg diinginkan Laju data atau lebar pita kanal BER USER USER SUMBER OPTIK SINYAL

Lebih terperinci

Xpedia Fisika. Optika Fisis - Soal

Xpedia Fisika. Optika Fisis - Soal Xpedia Fisika Optika Fisis - Soal Doc. Name: XPFIS0802 Version: 2016-05 halaman 1 01. Gelombang elektromagnetik dapat dihasilkan oleh. (1) muatan listrik yang diam (2) muatan listrik yang bergerak lurus

Lebih terperinci

ANALISA RUGI DAYA MAKROBENDING SERAT OPTIK MODA TUNGGAL TERHADAP PENGARUH PEMBEBANAN DENGAN VARIASI JUMLAH DAN DIAMETER LILITAN

ANALISA RUGI DAYA MAKROBENDING SERAT OPTIK MODA TUNGGAL TERHADAP PENGARUH PEMBEBANAN DENGAN VARIASI JUMLAH DAN DIAMETER LILITAN ANALISA RUGI DAYA MAKROBENDING SERAT OPTIK MODA TUNGGAL TERHADAP PENGARUH PEMBEBANAN DENGAN VARIASI JUMLAH DAN DIAMETER LILITAN Henry Prasetyo 1109100060 Pembimbing : Endarko, M.Si., Ph.D Department of

Lebih terperinci

PHYSICAL LAYER. By J Kusnendar

PHYSICAL LAYER. By J Kusnendar PHYSICAL LAYER By J Kusnendar MEDIA TRANSMISI Fungsi dari media transmisi Membawa aliran raw bit dari satu mesin ke mesin yang lain Media transmisi mempunyai berbagai karakteristik tergantung dari fisik

Lebih terperinci

KONSEP PERAMBATAN CAHAYA

KONSEP PERAMBATAN CAHAYA AGENDA : 1 KONSEP PERAMBATAN CAHAYA 2 JENIS SERAT OPTIK 3 STRUKTUR SERAT OPTIK 4 JENIS KABEL DAN KODE WARNA 5 PARAMETER KABEL OPTIK 6 FUNGSI ELEMEN SKSO MENU OAN Page : 1 Cahaya merambat dalam suatu medium

Lebih terperinci

ANALISIS PENGARUH PEMBENGKOKAN PADA ALAT UKUR TINGKAT KEKERUHAN AIR MENGGUNAKAN SISTEM SENSOR SERAT OPTIK

ANALISIS PENGARUH PEMBENGKOKAN PADA ALAT UKUR TINGKAT KEKERUHAN AIR MENGGUNAKAN SISTEM SENSOR SERAT OPTIK ANALISIS PENGARUH PEMBENGKOKAN PADA ALAT UKUR TINGKAT KEKERUHAN AIR MENGGUNAKAN SISTEM SENSOR SERAT OPTIK Mardian Peslinof 1, Harmadi 2 dan Wildian 2 1 Program Pascasarjana FMIPA Universitas Andalas 2

Lebih terperinci

Karakteristik Serat Optik

Karakteristik Serat Optik Karakteristik Serat Optik Kecilnya..? Serat optik adalah dielectric waveguide yang dioperasikan pada frekuensi optik 10 14-10 15 Hz Struktur serat optik Indeks bias core > cladding n 1 > n Fungi cladding:

Lebih terperinci

BAB I PENDAHULUAN. pada abad ini. Dengan adanya telekomunikasi, orang bisa saling bertukar

BAB I PENDAHULUAN. pada abad ini. Dengan adanya telekomunikasi, orang bisa saling bertukar BAB I PENDAHULUAN 1.1 Latar Belakang Telekomunikasi adalah salah satu bidang yang memiliki peranan penting pada abad ini. Dengan adanya telekomunikasi, orang bisa saling bertukar informasi satu dengan

Lebih terperinci

Modul : 13 Penerapan Sistem Serat Optik

Modul : 13 Penerapan Sistem Serat Optik PENGENALAN TEKNIK TELEKOMUNIKASI Modul : 13 Penerapan Sistem Serat Optik Faculty of Electrical Engineering BANDUNG, 2015 PengTekTel-Modul:13 Serat Optik Serat optik adalah sebuah serat gelas atau serat

Lebih terperinci

Perangkat Keras jaringan pengkabelan dan konektor. Untuk Kalangan sendiri SMK Muh 6 Donomulyo

Perangkat Keras jaringan pengkabelan dan konektor. Untuk Kalangan sendiri SMK Muh 6 Donomulyo Perangkat Keras jaringan pengkabelan dan konektor Perangkat Keras Jaringan Komputer 1. NIC (Network Interface Card) NIC (Network Interface Card) atau yang biasa disebut LAN card ini adalah sebuah kartu

Lebih terperinci

Kabel Serat Optik. Agiska Bayudin /TTL S1 Ekstensi. Jurusan Teknik Tenaga Listrik Fakultas Teknik Universitas Jederal Ahmad Yani

Kabel Serat Optik. Agiska Bayudin /TTL S1 Ekstensi. Jurusan Teknik Tenaga Listrik Fakultas Teknik Universitas Jederal Ahmad Yani Kabel Serat Optik Agiska Bayudin 2212122114/TTL S1 Ekstensi Jurusan Teknik Tenaga Listrik Fakultas Teknik Universitas Jederal Ahmad Yani Jl. Ters. Jend. Sudirman PO. BOX 148 Cimahi, Jabar, Indonesia. Telp.

Lebih terperinci

Jaringan Lokal Akses

Jaringan Lokal Akses Jaringan Lokal Akses Macam macam Media Transmisi Media Transmisi Kabel : Pasangan Kabel Tembaga Kabel Coaxial / bawah laut Fiber Optik Media Transmisi Radio : Radio Jarak Pendek Radio Troposcater Radio

Lebih terperinci

Media Transmisi Jaringan

Media Transmisi Jaringan Media Transmisi Jaringan Medium Transmisi pada Telekomunikasi Medium transmisi digunakan untuk mengirimkan informasi, baik voice maupun data dari pengirim ke penerima atau dari TX ke RX. Pada dasarnya

Lebih terperinci

PEMANFAATAN PENGUKURAN REDAMAN SERAT OPTIK MENGGUNAKAN OTDR UNTUK MENDETEKSI KADAR GLUKOSA DALAM AIR

PEMANFAATAN PENGUKURAN REDAMAN SERAT OPTIK MENGGUNAKAN OTDR UNTUK MENDETEKSI KADAR GLUKOSA DALAM AIR PEMANFAATAN PENGUKURAN REDAMAN SERAT OPTIK MENGGUNAKAN OTDR UNTUK MENDETEKSI KADAR GLUKOSA DALAM AIR Intan Pamudiarti, Sami an, Pujiyanto Departemen Fisika, Fakultas Sains dan Teknologi, Universitas Airlangga

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

DESAIN FIBER SENSOR BERBASIS RUGI-RUGI KARENA BENDING UNTUK STRAIN GAUGE

DESAIN FIBER SENSOR BERBASIS RUGI-RUGI KARENA BENDING UNTUK STRAIN GAUGE DESAIN FIBER SENSOR BERBASIS RUGI-RUGI KARENA BENDING UNTUK STRAIN GAUGE Widya Carolina Dwi Prabekti, Ahmad Marzuki, Stefanus Adi Kristiawan Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

ANALISIS RUGI-RUGI PADA SISTEM TRANSMISI SERAT OPTIK

ANALISIS RUGI-RUGI PADA SISTEM TRANSMISI SERAT OPTIK ANALISIS RUGI-RUGI PADA SISTEM TRANSMISI SERAT OPTIK Diajukan untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan Sarjana (S-I) pada Departemen Teknik Elektro Oleh : FIRMAN PANE 080422047

Lebih terperinci

± voice bandwidth)

± voice bandwidth) BAB I PENDAHULUAN I. LATAR BELAKANG Kebutuhan user akan mutu, kualitas, dan jenis layanan telekomunikasi yang lebih baik serta perkembangan teknologi yang pesat memberikan dampak terhadap pemilihan media

Lebih terperinci

Teknik Sistem Komunikasi 1 BAB I PENDAHULUAN

Teknik Sistem Komunikasi 1 BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Model Sistem Komunikasi Sinyal listrik digunakan dalam sistem komunikasi karena relatif gampang dikontrol. Sistem komunikasi listrik ini mempekerjakan sinyal listrik untuk membawa

Lebih terperinci

Pertemuan 2 DASAR-DASAR SISTEM KOMUNIKASI

Pertemuan 2 DASAR-DASAR SISTEM KOMUNIKASI Pertemuan 2 DASAR-DASAR SISTEM KOMUNIKASI Tujuan Menyebutkan elemen dasar sistem komunikasi dengan diagramnya Membedakan antara bentuk komunikasi analog dan komunikasi digital Menjelaskan pentingnya keberadaan

Lebih terperinci

Transmisi Data. Media Transmisi Sumber/ Tujuan

Transmisi Data. Media Transmisi Sumber/ Tujuan Transmisi Data Priyanto E-mail: priyanto@uny.ac.id Yahoo_ID: pri_uny KomDat 02 Transmisi Data Sumber/ Tujuan Media Transmisi Sumber/ Tujuan Transmisi data terjadi antara pengirim dan penerima melalui media

Lebih terperinci