Statistik + konsep mekanika. Hal-hal yang diperlukan dalam menggambarkan keadaan sistem partikel adalah:

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "Statistik + konsep mekanika. Hal-hal yang diperlukan dalam menggambarkan keadaan sistem partikel adalah:"

Transkripsi

1 Bab 4 Deskripsi Statistik Sistem Partikel

2 Bagaimana gambaran secara statistik dari sistem partikel? Statistik + konsep mekanika Hal-hal yang diperlukan dalam menggambarkan keadaan sistem partikel adalah: 1. Spesifikasi keadaan sistem.. nsamble statistik. 3. Postulat statistik. 4. Perhitungan probabilitas

3 1. Spesifikasi keadaan sistem Bagaimana menentukan keadaan suatu sistem partikel? mengetahui gambaran keadaan partikelnya mekanika kuantum Partikel-partikel penyusun sistem (atom dan molekul) dijelaskan dengan baik oleh hukum mekanika kuantum

4 Contoh 1. Sistem spin tunggal Sebuah partikel yang memiliki spin ½ dan besar momen magnetik µ 0 ditempatkan dalam medan magnetik luar B. Apa yang terjadi! B +µ 0 σ µ o B -µ o σ - 1 _ µ o B R (keadaan) σ (bil.kuantum) M (momen magnetik) (nergi) µ o - µ o B -1 -µ o µ o B Hanya ada dua kemungkinan keadaan!

5 Contoh. Sistem N spin ideal N buah partikel memiliki spin ½ dan besar momen magnetik µ 0 ditempatkan dalam medan magnetik luar B. Apa yang terjadi! Tinjau untuk N4 Isi tabel berikut! R (keadaan) σ 1 σ σ 3 σ 4 (bil.kuantum) M (momen magnetik) (energi) dst Ada 16 kemungkinan keadaan!

6 Contoh 3. Sebuah partikel dalam kotak 1-D X0 L XL??? nerginya: π h m Dengan nilai n (bil.kuatum) 1,, 3, n L Ada berapa keadaan yang energinya: 1. π h ml (Satu keadaan) π ml h (tidak ada keadaan). 4 π h ml (Satu keadaan) 4. < 10 π ml h (3 keadaan)

7 Contoh 4. Sebuah partikel dalam kotak 3-D z??? nerginya: x L x L y L z y π h m n L x x + n L y y + n L z z Dengan nilai n x, n y, n z 1,, 3, 4, Bila L x L y L z L, maka energinya: ( n + n + n ) ml Berapa nilai energi terrendah (ground state)! Berapa nilai energi pada keadaan eksitasi pertama (tingkat 1)! Ada berapa keadaan energi pada tingkat 1 tersebut! Berapa nilai energi pada keadaan eksitasi kedua (tingkat )! Ada berapa keadaan energi pada tingkat tersebut! π h x y z

8 Contoh 5. Gas Ideal terdiri dari N Partikel dalam kotak 3-D Berapa energi total gas ()! nergi total gas adalah jumlah dari energi tiap partikel penyusun ε 1 + ε + ε ε N Keadaan tiap partikel dispesifikasi oleh 3 bilangan kuantum n ix, n iy, n iz yang berkaitan dengan energi ε i (contoh 4) Sehingga untuk N partikel, jumlah bilangan kuantum yang muncul berjumlah 3N (n 1x, n 1y, n 1z, n x, n y, n z,.., n Nx, n Ny, n Nz )

9 Apa yang dapat anda simpulkan dari contoh 1 - contoh 5 di atas! Contoh 1. Sistem spin tunggal: bilangan kuantumnya: σ Jumlah keadaan yang mungkin: Contoh. Sistem N spin ideal: bilangan kuantumnya (N4): σ 1 σ σ 3 σ 4 Jumlah keadaan yang mungkin: 16 Contoh 3. Sebuah partikel dalam kotak 1-D: bilangan kuantumnya: n Jumlah keadaan yang mungkin: tak berhingga Contoh 4. Sebuah partikel dalam kotak 3-D: bilangan kuantumnya: n x, n y, n z Jumlah keadaan yang mungkin: tak berhingga Contoh 5. Gas Ideal terdiri dari N Partikel dalam kotak 3-D bilangan kuantumnya: n 1x, n 1y, n 1z, n x, n y, n z,, n Nx, n Ny, n Nz Jumlah keadaan yang mungkin: tak berhingga

10 Kesimpulan Setiap keadaan kuantum yang mungkin dari sebuah sistem dapat dispesifikasi oleh sejumlah f buah bilangan kuantum. Jumlah f ini dinamakan derajat kebebasan yaitu jumlah koordinat yang independen yang diperlukan untuk menjelaskan sistem. Keadaan mikroskopik dari sebuah sistem dapat dijelaskan oleh keadaan kuantum tertentu dimana sistem ditemukan

11 . nsambel Statistik Sejumlah keadaan kuantum yang diijinkan dari suatu sistem kuantum dengan syarat tertentu Contoh 1 Tinjau sebuah sistem yang terdiri dari empat buah partikel berspin ½ (harga momen magnetiknya µ 0 ) ditempatkan dalam medan magnet luar B. Jika sistem terisolasi dan energi totalnya -µ µ 0 B, ada berapa keadaan yang diijinkan yang mungkin dimiliki sistem tersebut! Contoh Tinjau sebuah sisten A* yang terdiri dari dua sub sistem A dan A. Sub sistem A terdiri dari tiga pertikel berspin ½ (harga momen magnetiknya µ 0 ) dan sub sistem A terdiri dari dua partikel berspin ½ (harga momen magnetiknya µ 0 ). Apabila sistem A* tersebut terisolasi dan ditempatkan dalam medan magnet luar B, ada berapa keadaan yang diijinkan untuk nilai energi total sisten A* tersebut bernilai -3µ 0 B!

12 3. Postulat Statistik Membuat prediksi secara teoritis dari suatu sistem berkaitan dengan nilai probabilitas atau nilai rata-rata Keseimbangan Postulat Statistik : 1. Jika dalam sistem terisolasi ditemukan harga probabilitas yang sama untuk setiap keadaan, maka sistem tersebut berada dalam keadaan setimbang.. Jika dalam sistem yang terisolasi tidak ditemukan harga probabilitas yang sama untuk setiap keadaan, maka sistem tersebut tidak berada dalam keadaan setimbang dan akan mengalami perubahan hingga kesetimbangan tercapai, dimana setiap keadaannya memiliki probabilitas yang sama.

13 4. Perhitungan Probabilitas Tinjau sebuah sistem terisolasi berada dalam kesetimbangan dan jumlah total keadaan yang diijinkan dinyatakan dengan Ω. Maka probabilitas menemukan kedaanω i adalah P i Ω i Ω Untuk menentukan nilai rata-rata dari suatu parameter y (misalnya momen magnetik) maka n n Contoh y i P i y i Ω Tinjau kembali sistem yang terdiri empat partikel berspin ½ dan berenergi -µ 0 B. Jika sistem dalam keadaan setimbang, berapa probabilitas P + yaitu momen magnetik berarah up! Berapa momen magnetik rata-ratanya yang searah medan magnet! 1 i Ω i y i

14 Jumlah keadaan yang diijinkan dari sebuah sistem makroskopik Tinjau sebuah sistem makroskopik dengan energi totalnya. Untuk menghitung jumlah keadaan total yang diijinkan, kita akan kelompokkan keadaan-keadaaan energi dengan membagi skala energi dengan interval yang kecil yang besarnya tetap yaitu δ dimana: δ sangat kecil pada skala makroskopik (sangat kecil dibanding energi total sistem), δ cukup besar pada skala mikroskopik (lebih besar dari energi partikel tunggal dari sistem) dan pada interval δ terdapat banyak keadaan kuantum dari sistem Perkenalkan Notasi berikut: Ω () Jumlah keadaan yang energinya antara dan + δ Φ () Jumlah total keadaan yang energinya kurang dari Maka dφ Ω( ) Φ( + δ) Φ() δ d

15 Contoh 1 Partikel tunggal dalam kotak 1-D π h m n L Φ() n L πh m L m Ω( ) δ πh Contoh Partikel tunggal dalam kotak 3-D π h n x + ny + ml ( n ) z L n x + ny + nz πh ( m) R π L Φ( ) πr πh 3 3 / ( m) R L πh m Ω() L 4π 3 h 3 3 / 1/ ( m) δ

16 Tugas 3 Buku Reif no 3.6, 3.7 dan 3.8

2. Deskripsi Statistik Sistem Partikel

2. Deskripsi Statistik Sistem Partikel . Deskripsi Statistik Sistem Partikel Formulasi statistik Interaksi antara sistem makroskopis.1. Formulasi Statistik Dalam menganalisis suatu sistem, kombinasikan: ide tentang statistik pengetahuan hukum-hukum

Lebih terperinci

3. Termodinamika Statistik

3. Termodinamika Statistik 3. Termodinamika Statistik Pada bagian ini akan dibahas pemanfaatan postulat statistik yang berdasarkan sistem dalam keadaan keseimbangan untuk menjelaskan besaran makroskopis. Disiplin ini disebut Mekanika

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron PENDAHUUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

Fungsi Gelombang Radial dan Tingkat Energi Atom Hidrogen

Fungsi Gelombang Radial dan Tingkat Energi Atom Hidrogen Fungsi Gelombang adial dan Tingkat Energi Atom Hidrogen z -e (r, Bilangan kuantum r atom hidrogenik Ze y x Fungsi gelombang atom hidrogenik bergantung pada tiga bilangan kuantum: nlm nl Principal quantum

Lebih terperinci

FISIKA MODERN. Pertemuan Ke-7. Nurun Nayiroh, M.Si.

FISIKA MODERN. Pertemuan Ke-7. Nurun Nayiroh, M.Si. FISIKA MODERN Pertemuan Ke-7 Nurun Nayiroh, M.Si. Efek Zeeman Gerakan orbital elektron Percobaan Stern-Gerlach Spin elektron Pieter Zeeman (1896) melakukan suatu percobaan untuk mengukur interaksi antara

Lebih terperinci

DESKRIPSI, SILABUS DAN SAP MATA KULIAH FI-472 FISIKA STATISTIK

DESKRIPSI, SILABUS DAN SAP MATA KULIAH FI-472 FISIKA STATISTIK DESKRIPSI, SILABUS DAN SAP MATA KULIAH FI-472 FISIKA STATISTIK I. DESKRIPSI Mata kuliah ini merupakan mata kuliah wajib. Kompetensi yang diharapkan adalah mahasiswa dapat memiliki pemahaman terhadap hubungan

Lebih terperinci

Mekanika Kuantum. Orbital dan Bilangan Kuantum

Mekanika Kuantum. Orbital dan Bilangan Kuantum Standar Kompetensi Kompetensi Dasar Mendeskripsikan struktur atom dan sifat-sifat periodik serta struktur molekul dan sifat-sifatnya. Menerapkan teori atom mekanika kuantum untuk menuliskan konfigurasi

Lebih terperinci

VIII. Termodinamika Statistik

VIII. Termodinamika Statistik VIII. Termodinamika Statistik 8.1. Pendahuluan Mereka yang mengembangkan termodinamika statistik: - Boltzmann - Gibbs dan setelah kemauan teori kuantum: - Satyendra Bose - lbert Einstein - Enrico Fermi

Lebih terperinci

KB 1. Usaha Magnetik Dan Pendinginan Magnetik

KB 1. Usaha Magnetik Dan Pendinginan Magnetik KB 1. Usaha Magnetik Dan Pendinginan Magnetik 1.1 Usaha Magnetik. Interaksi magnetik merupakan hal yang menarik dalam bidang Fisika. Interaksi magnetik ini merupakan hal yang sangat penting dalam mempelajari

Lebih terperinci

Teori Ensambel. Bab Rapat Ruang Fase

Teori Ensambel. Bab Rapat Ruang Fase Bab 2 Teori Ensambel 2.1 Rapat Ruang Fase Dalam bagian sebelumnya, kita telah menghitung sifat makroskopis dari suatu sistem terisolasi dengan nilai E, V dan N tertentu. Sekarang kita akan membangun suatu

Lebih terperinci

Efek de Haas-Van Alphen

Efek de Haas-Van Alphen Efek de Haas-Van Alphen Diagmagnetisasi Landau pada suhu rendah menimbulkan efek osilasi dari susceptibilitas magnetik ketika medan magnet luar diturunkan, efek ini disebut efek de Haas-Van Alphen. Secara

Lebih terperinci

Elektron Bebas. 1. Teori Drude Tentang Elektron Dalam Logam

Elektron Bebas. 1. Teori Drude Tentang Elektron Dalam Logam Elektron Bebas Beberapa teori tentang panas jenis zat padat yang telah dibahas dapat dengan baik menjelaskan sifat-sfat panas jenis zat padat yang tergolong non logam, akan tetapi untuk golongan logam

Lebih terperinci

BAB II DASAR TEORI. A. Kemagnetan Bahan. Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet. seperti terlihat pada Gambar 2.

BAB II DASAR TEORI. A. Kemagnetan Bahan. Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet. seperti terlihat pada Gambar 2. BAB II DASAR TEORI A. Kemagnetan Bahan Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet seperti terlihat pada Gambar 2. Gambar 2: Diagram pengelompokan bahan magnet (Stancil &

Lebih terperinci

Setelah Anda mempelajari KB-1 di atas, simaklah dan hafalkan beberapa hal penting di. dapat dihitung sebagai beriktut: h δl l'

Setelah Anda mempelajari KB-1 di atas, simaklah dan hafalkan beberapa hal penting di. dapat dihitung sebagai beriktut: h δl l' Rangkuman: bawah ini! Setelah Anda mempelajari KB-1 di atas, simaklah dan hafalkan beberapa hal penting di 1. Elemen-elemen matrik L lm,l'm' = h l ( l +1) δ ll' L l m, l 'm' dapat dihitung sebagai beriktut:

Lebih terperinci

Chap 7a Aplikasi Distribusi. Fermi Dirac (part-1)

Chap 7a Aplikasi Distribusi. Fermi Dirac (part-1) Chap 7a Aplikasi Distribusi Fermi Dirac (part-1) Teori Bintang Katai Putih Apakah bintang Katai Putih Bintang yg warnanya pudar/pucat krn hanya memancarkan sedikit cahaya krn supply hidrogennya sudah tinggal

Lebih terperinci

PELATIHAN OSN JAKARTA 2016 LISTRIK MAGNET (BAGIAN 1)

PELATIHAN OSN JAKARTA 2016 LISTRIK MAGNET (BAGIAN 1) PLATIHAN OSN JAKATA 2016 LISTIK MAGNT (AGIAN 1) 1. Partikel deuterium (1 proton, 1 neutron) dan partikel alpha (2 proton, 2 neutron) saling mendekat dari jarak yang sangat jauh dengan energi kinetik masing-masing

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 1.4. Hipotesis 1. Model penampang hamburan Galster dan Miller memiliki perbedaan mulai kisaran energi 0.3 sampai 1.0. 2. Model penampang hamburan Galster dan Miller memiliki kesamaan pada kisaran energi

Lebih terperinci

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu:

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu: KB.2 Fisika Molekul 2.1 Prinsip Pauli. Konsep fungsi gelombang-fungsi gelombang simetri dan antisimetri berlaku untuk sistem yang mengandung partikel-partikel identik. Ada perbedaan yang fundamental antara

Lebih terperinci

BA B B B 2 Ka K ra r kt k eri r s i tik i k S is i tem Ma M kr k o r s o ko k p o i p k i Oleh Endi Suhendi

BA B B B 2 Ka K ra r kt k eri r s i tik i k S is i tem Ma M kr k o r s o ko k p o i p k i Oleh Endi Suhendi BAB Karakteristik Sistem Makroskopik Dalam termodinamika dibahas perilaku dan dinamika temperatur sistem makroskopik. Sistem diparameterisasi oleh volume, tekanan, temperatur dan kapasitas panas jenis

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

DAFTAR SIMBOL. : permeabilitas magnetik. : suseptibilitas magnetik. : kecepatan cahaya dalam ruang hampa (m/s) : kecepatan cahaya dalam medium (m/s)

DAFTAR SIMBOL. : permeabilitas magnetik. : suseptibilitas magnetik. : kecepatan cahaya dalam ruang hampa (m/s) : kecepatan cahaya dalam medium (m/s) DAFTAR SIMBOL n κ α R μ m χ m c v F L q E B v F Ω ħ ω p K s k f α, β s-s V χ (0) : indeks bias : koefisien ekstinsi : koefisien absorpsi : reflektivitas : permeabilitas magnetik : suseptibilitas magnetik

Lebih terperinci

PB = Psgan elektron bebas Dari BK dan PB atom pusat dpt diramalkan struktur molekul dng teori VSEPR

PB = Psgan elektron bebas Dari BK dan PB atom pusat dpt diramalkan struktur molekul dng teori VSEPR Pasangan elektron valensi mempunyai gaya tolak menolak Pasangan elektron bebas menempati ruang sesuai jenisnya BK = Bilangan Koordinasi = Jumlah atom / substituen yang terikat pada atom pusat PB = Psgan

Lebih terperinci

Pendahuluan. Setelah mempelajari bab 1 ini, mahasiswa diharapkan

Pendahuluan. Setelah mempelajari bab 1 ini, mahasiswa diharapkan 1 Pendahuluan Tujuan perkuliahan Setelah mempelajari bab 1 ini, mahasiswa diharapkan 1. Mengetahui gambaran perkuliahan. Mengerti konsep dari satuan alamiah dan satuan-satuan dalam fisika partikel 1.1.

Lebih terperinci

Bilangan Kuantum Utama (n)

Bilangan Kuantum Utama (n) Bilangan Kuantum Utama (n) Menyatakan nomer kulit tempat elektron berada atau bilangan ini juga menyatakan ukuran orbital/ jarak/ jari-jari atom. Dinyatakan dengan bilangan bulat positif. Mempunyai dua

Lebih terperinci

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya

BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya 1 BAB III OPERATOR 3.1 Pengertian Operator Dan Sifat-sifatnya Perhatikan persamaan Schrodinger satu dimensi bebas waktu yaitu: d + V (x) ( x) E( x) m dx d ( x) m + (E V(x) ) ( x) 0 dx (3-1) (-4) Suku-suku

Lebih terperinci

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5 Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani Program Studi Pendidikan Fisika FKIP Universitas Jember email: schrodinger_risma@yahoo.com

Lebih terperinci

PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay" + b Y' + cy = 0

PARTIKEL DALAM BOX. Bentuk umum persamaan orde dua adalah: ay + b Y' + cy = 0 1 PARTIKEL DALAM BOX Elektron dalam atom dan molekul dapat dibayangkan mirip partikel dalam box. daerah di dalam box tempat partikel tersebut bergerak berpotensial nol, sedang daerah diluar box berpotensial

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Potensial Coulomb untuk Partikel yang Bergerak Dalam bab ini, akan dikemukakan teori-teori yang mendukung penyelesaian pembahasan pengaruh koreksi relativistik potensial Coulomb

Lebih terperinci

S I L A B U S. Kegiatan Pembelajaran

S I L A B U S. Kegiatan Pembelajaran S I L A B U S MATA PELAJARAN KELAS/SEMESTER : KIMIA : XI/ I (SATU) Standar Kompetensi Kompetensi Dasar Materi Pembelajaran Kegiatan Pembelajaran Indikator Penilaian Alokasi Waktu Sumber / Bahan / Alat

Lebih terperinci

IX. Aplikasi Mekanika Statistik

IX. Aplikasi Mekanika Statistik IX. Aplikasi Mekanika Statistik 9.1. Gas Ideal Monatomik Sebagai test case termodinamika statistik, kita coba terapkan untuk gas ideal monatomik. Mulai dengan fungsi partisi: ε j Z = g j exp j k B T Energi

Lebih terperinci

VI. Teori Kinetika Gas

VI. Teori Kinetika Gas VI. Teori Kinetika Gas 6.1. Pendahuluan dan Asumsi Dasar Subyek termodinamika berkaitan dengan kesimpulan yang dapat ditarik dari hukum-hukum eksperimen tertentu, dan memanfaatkan kesimpulan ini untuk

Lebih terperinci

model atom mekanika kuantum

model atom mekanika kuantum 06/05/014 FISIKA MODERN Pertemuan ke-11 NURUN NAYIROH, M.Si Werner heinsberg (1901-1976), Louis de Broglie (189-1987), dan Erwin Schrödinger (1887-1961) merupakan para ilmuwan yang menyumbang berkembangnya

Lebih terperinci

Teori Ensambel. Bab Rapat Ruang Fase

Teori Ensambel. Bab Rapat Ruang Fase Bab 2 Teori Ensambel 2. Rapat Ruang Fase Dalam bagian sebelumnya, kita telah menghitung sifat makroskopis dari suatu sistem terisolasi dengan nilai E, V dan N tertentu. Sekarang kita akan membangun suatu

Lebih terperinci

I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu

I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu 1 Muatan Listrik Contoh klassik: Penggaris digosok-gosok pada kain kering tarik-menarik dengan

Lebih terperinci

BAB II DASAR TEORI. dibuat melingkar (loop) dengan luasan sebesar da, maka arus I dalam luasan yang

BAB II DASAR TEORI. dibuat melingkar (loop) dengan luasan sebesar da, maka arus I dalam luasan yang BAB II DASAR TEORI A. Momen Magnet Di sekitar kawat berarus listrik terdapat medan magnet. Jika kawat tersebut dibuat melingkar (loop) dengan luasan sebesar da, maka arus I dalam luasan yang ditutup loop

Lebih terperinci

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford.

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford. 1 BAB FISIKA ATOM Perkembangan teori atom Model Atom Dalton 1. Atom adalah bagian terkecil dari suatu unsur yang tidak dapat dibagi-bagi 2. Atom-atom suatu unsur semuanya serupa dan tidak dapat berubah

Lebih terperinci

BAGIAN 1 PITA ENERGI DALAM ZAT PADAT

BAGIAN 1 PITA ENERGI DALAM ZAT PADAT 1.1. Partikel bermuatan BAGIAN 1 PITA ENERGI DALAM ZAT PADAT - Muatan elektron : -1,6 x 10-19 C - Massa elektron : 9,11 x 10-31 kg - Jumlah elektron dalam setiap Coulomb sekitar 6 x 10 18 buah (resiprokal

Lebih terperinci

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi JURNAL FISIKA DAN APLIKASINYA VOLUME 6, NOMOR 1 JANUARI,010 Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi Yohanes Dwi Saputra dan Agus Purwanto Laboratorium Fisika

Lebih terperinci

HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI

HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI HAND OUT FISIKA KUANTUM MEKANISME TRANSISI DAN KAIDAH SELEKSI Disusun untuk memenuhi tugas mata kuliah Fisika Kuantum Dosen Pengampu: Drs. Ngurah Made Darma Putra, M.Si., PhD Disusun oleh kelompok 8:.

Lebih terperinci

4. 1 Spesifikasi Keadaan dari Sebuah Sistem

4. 1 Spesifikasi Keadaan dari Sebuah Sistem Dalam pembahasan terdahulu ita telah mempelajari penerapan onsep dasar probabilitas untu menggambaran sistem dengan jumlah partiel ang cuup besar (N). Pada bab ini, ita aan menggabungan antara statisti

Lebih terperinci

Pembimbing : Agus Purwanto, D.Sc.

Pembimbing : Agus Purwanto, D.Sc. Oleh : YOHANES DWI SAPUTRA 1105 100 051 Pembimbing : Agus Purwanto, D.Sc. JURUSAN FISIKA Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 010 PENDAHULUAN Latar

Lebih terperinci

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1]

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1] BAB II TINJAUAN PUSTAKA 2.1. Momen Magnet Sifat magnetik makroskopik dari material adalah akibat dari momen momen magnet yang berkaitan dengan elektron-elektron individual. Setiap elektron dalam atom mempunyai

Lebih terperinci

Penyusun bagian-bagian atom sangat menentukan sifat benda/materi. Untuk mengetahui bagaimana atom bergabung sehingga dapat mengubah bahan sesuai

Penyusun bagian-bagian atom sangat menentukan sifat benda/materi. Untuk mengetahui bagaimana atom bergabung sehingga dapat mengubah bahan sesuai Struktur Atom Mengapa atom dipelajari? Penyusun bagian-bagian atom sangat menentukan sifat benda/materi. Untuk mengetahui bagaimana atom bergabung sehingga dapat mengubah bahan sesuai dengan kebutuhan.

Lebih terperinci

Lampiran 1. Beberapa Definisi dan Lema Teknis

Lampiran 1. Beberapa Definisi dan Lema Teknis Lampiran 1. Beberapa Definisi dan Lema Teknis Ruang Contoh, Kejadian dan Peluang Suatu percobaan yang dapat diulang dalam kondisi yang sama, yang hasilnya tidak dapat diprediksi dengan tepat tetapi kita

Lebih terperinci

PERCOBAAN EFEK ZEEMAN. Kusnanto Mukti W/ M Jurusan Fisika, FMIPA, Universitas Sebelas Maret Surakarta

PERCOBAAN EFEK ZEEMAN. Kusnanto Mukti W/ M Jurusan Fisika, FMIPA, Universitas Sebelas Maret Surakarta PERCOBAAN EFEK ZEEMAN Kusnanto Mukti W/ M009031 Jurusan Fisika, FMIPA, Universitas Sebelas Maret Surakarta ABSTRAK Efek Zeeman adalah gejala tambahan garis-garis spektrum jika atom-atom tereksitasi diletakan

Lebih terperinci

MATERI II TINGKAT TENAGA DAN PITA TENAGA

MATERI II TINGKAT TENAGA DAN PITA TENAGA MATERI II TINGKAT TENAGA DAN PITA TENAGA A. Tujuan 1. Tujuan Umum Mahasiswa memahami konsep tingkat tenaga dan pita tenaga untuk menerangkan perbedaan daya hantar listrik.. Tujuan Khusus a. Mahasiswa dapat

Lebih terperinci

FI-5002 Mekanika Statistik SEMESTER/ Sem /2017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan :

FI-5002 Mekanika Statistik SEMESTER/ Sem /2017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan : ISTITUT TEKOLOGI BADUG FAKULTAS MATEMATIKA DA ILMU PEGETAHUA ALAM PROGRAM STUDI FISIKA FI-500 Mekanika Statistik SEMESTER/ Sem. - 016/017 PR#1 : Review of Thermo & Microcanonical Ensemble Dikumpulkan :

Lebih terperinci

LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 12-6)

LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 12-6) LAPORAN PENELITIAN KAJIAN KOMPUTASI KUANTISASI SEMIKLASIK VIBRASI MOLEKULER SISTEM DIBAWAH PENGARUH POTENSIAL LENNARD-JONES (POTENSIAL 1-6) Oleh : Warsono, M.Si Supahar, M.Si Supardi, M.Si FAKULTAS MATEMATIKA

Lebih terperinci

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM POKOK-POKOK MATERI FISIKA KUANTUM PENDAHULUAN Dalam Kurikulum Program S-1 Pendidikan Fisika dan S-1 Fisika, hampir sebagian besar digunakan untuk menelaah alam mikro (= alam lelembutan micro-world): Fisika

Lebih terperinci

ENERGI TOTAL KEADAAN DASAR ATOM BERILIUM DENGAN TEORI GANGGUAN

ENERGI TOTAL KEADAAN DASAR ATOM BERILIUM DENGAN TEORI GANGGUAN Jurnal Ilmu dan Inovasi Fisika Vol. 0, No. 02 (207) 28 33 Departemen Fisika FMIPA Universitas Padjadjaran ENERGI TOTAL KEADAAN DASAR ATOM BERILIUM DENGAN TEORI GANGGUAN LIU KIN MEN *, SETIANTO, BAMBANG

Lebih terperinci

Pendahuluan Fisika Inti. Oleh: Lailatul Nuraini, S.Pd, M.Pd

Pendahuluan Fisika Inti. Oleh: Lailatul Nuraini, S.Pd, M.Pd Pendahuluan Fisika Inti Oleh: Lailatul Nuraini, S.Pd, M.Pd Biodata Email: lailatul.fkip@unej.ac.id No hp: 085 236 853 668 Terdapat 6 bab. Produk matakuliah berupa bahan ajar. Tugas mandiri 20%, tugas terstruktur

Lebih terperinci

GENTA GROUP in PLAY STORE. Kode Aktivasi Aplikasi: 74DSM. Kode Aktivasi Aplikasi: P859 FPM KIMIA

GENTA GROUP in PLAY STORE. Kode Aktivasi Aplikasi: 74DSM. Kode Aktivasi Aplikasi: P859 FPM KIMIA GENTA GROUP in PLAY STORE CBT UN SMA IPA Aplikasi CBT UN SMA IPA android dapat di download di play store dengan kata kunci genta group atau gunakan qr-code di bawah. CBT Psikotes Aplikasi CBT Psikotes

Lebih terperinci

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1 FI-1101: Kuliah 13 TEORI KINETIK GAS Teori Kinetik Gas Suhu Mutlak Hukum Boyle-Gay y Lussac Gas Ideal Teori Kinetik & Interpretasi molekular dari Suhu FI-1101: Teori Kinetik Gas, Hal 1 FISIKA TERMAL Cabang

Lebih terperinci

2.7 Ensambel Makrokanonik

2.7 Ensambel Makrokanonik 22 BAB 2. TEORI ENSAMBEL 2.7 Ensambel Makrokanonik Dalam bagian ini kita akan menjabarkan rapat ruang fase untuk sistem terbuka, sistem yang berada dalam keadaan kesetimbangan termal dengan lingkungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Atom Pion Atom pion sama seperti atom hidrogen hanya elektron nya diganti menjadi sebuah pion negatif. Partikel ini telah diteliti sekitar empat puluh tahun yang lalu, tetapi

Lebih terperinci

BAB I PENDAHULUAN (1-1)

BAB I PENDAHULUAN (1-1) BAB I PENDAHULUAN Penelitian tentang analisis system fisis vibrasi molekuler yang berada dalam pengaruh medan potensial Lenard-Jones atau dikenal pula dengan potensial 6-2 sudah dilakukan. Kajian tentang

Lebih terperinci

SOAL LATIHAN CHEMISTRY OLYMPIAD CAMP 2016 (COC 2016)

SOAL LATIHAN CHEMISTRY OLYMPIAD CAMP 2016 (COC 2016) SOAL LATIHAN CHEMISTRY OLYMPIAD CAMP 2016 (COC 2016) Bagian I: Pilihan Ganda 1) Suatu atom yang mempunyai energi ionisasi pertama bernilai besar, memiliki sifat/kecenderungan : A. Afinitas elektron rendah

Lebih terperinci

BAB II PEMODELAN MATEMATIS SISTEM INVERTED PENDULUM

BAB II PEMODELAN MATEMATIS SISTEM INVERTED PENDULUM BAB II PEMODELAN MATEMATIS SISTEM INVERTED PENDULUM Model matematis diturunkan dari hubungan fisis sistem. Model tersebut harus dapat menggambarkan karakteristik dinamis sistem secara memadai. Tujuannya

Lebih terperinci

INFORMASI PENTING. m e = 9, kg Besar muatan electron. Massa electron. e = 1, C Bilangan Avogadro

INFORMASI PENTING. m e = 9, kg Besar muatan electron. Massa electron. e = 1, C Bilangan Avogadro PETUNJUK UMUM 1. Tuliskan NAMA dan ID peserta di setiap lembar jawaban dan lembar kerja. 2. Tuliskan jawaban akhir di kotak yang disediakan untuk di lembar Jawaban. Lembar kerja dapat digunakan untuk melakukan

Lebih terperinci

Apa itu Atom? Miftachul Hadi. Applied Mathematics for Biophysics Group. Physics Research Centre, Indonesian Institute of Sciences (LIPI)

Apa itu Atom? Miftachul Hadi. Applied Mathematics for Biophysics Group. Physics Research Centre, Indonesian Institute of Sciences (LIPI) Apa itu Atom? Miftachul Hadi Applied Mathematics for Biophysics Group Physics Research Centre, Indonesian Institute of Sciences (LIPI) Kompleks Puspiptek, Serpong, Tangerang 15314, Banten, Indonesia E-mail:

Lebih terperinci

TEORI PERKEMBANGAN ATOM

TEORI PERKEMBANGAN ATOM TEORI PERKEMBANGAN ATOM A. Teori atom Dalton Teori atom dalton ini didasarkan pada 2 hukum, yaitu : hukum kekekalan massa (hukum Lavoisier), massa total zat-zat sebelum reaksi akan selalu sama dengan massa

Lebih terperinci

DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Alamat: Karangmalang, Yogyakarta 55281

DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Alamat: Karangmalang, Yogyakarta 55281 DEPARTEMEN PENDIDIKAN NASIONAL UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM Alamat: Karangmalang, Yogyakarta 55281 RENCANA PERKULIAHAN SEMESTER (Silabus) Fakultas : FMIPA

Lebih terperinci

Pendahuluan. Bab Keadaan mikro dan keadaan makro. 1.2 Ruang Fase

Pendahuluan. Bab Keadaan mikro dan keadaan makro. 1.2 Ruang Fase Bab 1 Pendahuluan 1.1 Keadaan mikro dan keadaan makro Kuantitas makro keadaan fisis suatu sistem merupakan perwujudan rerata kuantitas mikro sistem tersebut. Sebagai contoh, tekanan dari suatu gas merupakan

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron PENDAHULUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

BAB III SISTEM DAN PERSAMAAN KEADAAN

BAB III SISTEM DAN PERSAMAAN KEADAAN BAB III SISTEM DAN PERSAMAAN KEADAAN 3.1 Keadaan keseimbangan dan persamaannya 3.2 Perubahan infinit pada keadaan keseimbangan 3.3 Mencari persamaan keadaan 3.1 KEADAAN KESEIMBANGAN DAN PERSAMAANNYA Keadaan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Fenomena optik dapat mendeskripsikan sifat medium dalam interaksinya dengan gelombang elekromagnetik. Hal tersebut ditentukan oleh beberapa parameter optik, yaitu indeks

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

BAB VII NUCLEAR MAGNETIC RESONANCE (RESONANSI

BAB VII NUCLEAR MAGNETIC RESONANCE (RESONANSI BAB VII NUCLEAR MAGNETIC RESONANCE (RESONANSI INTl MAGNIT) 1. Pendahuluan Pada tahun 1945, dua group saijana fisika Purcell, Tony dan Pound (Harvard University) dan Bloch, Hansen dan Packard (Stanford

Lebih terperinci

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF BAB II PROSES-PROSES PELURUHAN RADIOAKTIF 1. PROSES PROSES PELURUHAN RADIASI ALPHA Nuklida yang tidak stabil (kelebihan proton atau neutron) dapat memancarkan nukleon untuk mengurangi energinya dengan

Lebih terperinci

ε = tegangan imbas (volt)

ε = tegangan imbas (volt) BAB NUKTANS PAA KONUKTOR SELNER. nduktansi Pada Penghantar Berarus Adanya flu magnet pada saluran dφ (.) ε dt engan permeabilitas μ yang konstan maka: di dφ φ Li e L L (.) dt di dimana: ε tegangan imbas

Lebih terperinci

Daerah radiasi e.m: MHz (75-0,5 m)

Daerah radiasi e.m: MHz (75-0,5 m) NMR = NUCLEAR MAGNETIC RESONANCE = RESONANSI MAGNET INTI PENEMU: PURCELL, DKK (1945-1950), Harvard Univ. BLOCH, DKK, STANFORD. UNIV. Guna: - Gambaran perbedaan sifat magnet berbagai inti. - Dugaan letak

Lebih terperinci

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008

UJIAN NASIONAL TAHUN PELAJARAN 2007/2008 UJIAN NASIONAL TAHUN PELAJARAN 007/008 PANDUAN MATERI SMA DAN MA F I S I K A PROGRAM STUDI IPA PUSAT PENILAIAN PENDIDIKAN BALITBANG DEPDIKNAS KATA PENGANTAR Dalam rangka sosialisasi kebijakan dan persiapan

Lebih terperinci

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda 1 Benda tegar Pada pembahasan mengenai kinematika, dinamika, usaha dan energi, hingga momentum linear, benda-benda yang bergerak selalu kita pandang sebagai benda titik. Benda yang berbentuk kotak misalnya,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Logam-logam yang bernilai ekonomi sangat tinggi, diantaranya emas, perak, platina, dan paladium, dikenal sebagai logam-logam yang berharga. Platina sangat berguna

Lebih terperinci

BAB 2 STRUKTUR ATOM PERKEMBANGAN TEORI ATOM

BAB 2 STRUKTUR ATOM PERKEMBANGAN TEORI ATOM BAB 2 STRUKTUR ATOM PARTIKEL MATERI Bagian terkecil dari materi disebut partikel. Beberapa pendapat tentang partikel materi :. Menurut Democritus, pembagian materi bersifat diskontinyu ( jika suatu materi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Alam tersusun atas empat jenis komponen materi yakni padat, cair, gas, dan plasma. Setiap materi memiliki komponen terkecil yang disebut atom. Atom tersusun atas inti

Lebih terperinci

PENDAHULUAN RADIOAKTIVITAS TUJUAN

PENDAHULUAN RADIOAKTIVITAS TUJUAN PENDAHULUAN RADIOAKTIVITAS TUJUAN Maksud dan tujuan kuliah ini adalah memberikan dasar-dasar dari fenomena radiaktivitas serta sumber radioaktif Diharapkan agar dengan pengetahuan dasar ini kita akan mempunyai

Lebih terperinci

JURNAL PEMBELAJARAN FISIKA

JURNAL PEMBELAJARAN FISIKA Volume 1, Nomor 3, Desember 2012 ISSN : 2301-9794 JURNAL PEMBELAJARAN FISIKA Diterbitkan Oleh: Program Studi Pendidikan Fisika FKIP Universitas Jember JURNAL PEMBELAJARAN FISIKA (JPF) Terbit empat kali

Lebih terperinci

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD. BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD hanisantosa@gmail.com 2 BAB 1 PENDAHULUAN Atom, Interaksi Fundamental, Syarat Matematika, Syarat Fisika, Muatan Listrik, Gaya Listrik, Pengertian

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Sekolah Mata Pelajaran Kelas/ Semester Materi Pokok Alokasi Waktu : SMAN 1 SANDEN : Kimia : X / Ganjil : Struktur Atom : 3 x 45 menit A. Kompetensi Inti KI 1 : Menghayati

Lebih terperinci

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas Teori Relativitas Mirza Satriawan December 7, 2010 Fluida Ideal dalam Relativitas Khusus Quiz 1 Tuliskan perumusan kelestarian jumlah partikel dengan memakai vektor-4 fluks jumlah partikel. 2 Tuliskan

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII

SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII 1. Tumbukan dan peluruhan partikel relativistik Bagian A. Proton dan antiproton Sebuah antiproton dengan energi kinetik = 1,00 GeV menabrak proton

Lebih terperinci

BAB IV OSILATOR HARMONIS

BAB IV OSILATOR HARMONIS Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =

Lebih terperinci

Atom netral. Ion bermuatan listrik positif : melepas elektron negatif ; menerima elektron Atom Inti atom o proton o neutron Elektron Contoh:

Atom netral. Ion bermuatan listrik positif : melepas elektron negatif ; menerima elektron Atom Inti atom o proton o neutron Elektron Contoh: Atom netral Ion bermuatan listrik positif : melepas elektron negatif ; menerima elektron Atom Inti atom o proton o neutron Elektron Contoh: 11 23 Na p = 11 e = 11 n = 12 Percobaan Lempeng emas Oleh Rutherford

Lebih terperinci

Perumusan Ensembel Mekanika Statistik Kuantum. Part-1

Perumusan Ensembel Mekanika Statistik Kuantum. Part-1 Perumusan Ensembel Mekanika Statistik Kuantum Part-1 Latar Belakang Untuk system yang distinguishable maka teori ensemble mekanika statistic klasik dapat dipergunakan. Tetapi bilamana system partikel bersifat

Lebih terperinci

Fisika Panas 2 SKS. Adhi Harmoko S

Fisika Panas 2 SKS. Adhi Harmoko S Fisika Panas SKS Adhi Harmoko S Balon dicelupkan ke Nitrogen Cair Balon dicelupkan ke Nitrogen Cair Bagaimana fenomena ini dapat diterangkan? Apa yang terjadi dengan molekul-molekul gas di dalam balon?

Lebih terperinci

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALAM STATISTIKA HARGA HARAPAN Definisi Misalkan X variabel random. Bila X variabel random kontinu dengan f.k.p. f (x) dan maka harga harapan X adalah

Lebih terperinci

STRUKTUR ATOM. Perkembangan Teori Atom

STRUKTUR ATOM. Perkembangan Teori Atom STRUKTUR ATOM Perkembangan Teori Atom 400 SM filsuf Yunani Demokritus materi terdiri dari beragam jenis partikel kecil 400 SM dan memiliki sifat dari materi yang ditentukan sifat partikel tersebut Dalton

Lebih terperinci

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron

tak-hingga. Lebar sumur adalah 4 angstrom. Berapakah simpangan gelombang elektron Tes Formatif 1 Petunjuk: Jawablah semua soal di bawah ini pada lembar jawaban yang disediakan! =============================================================== 1. Sebuah elektron ditempatkan dalam sebuah

Lebih terperinci

Silabus dan Rencana Perkuliahan

Silabus dan Rencana Perkuliahan Silabus dan Rencana Perkuliahan Mata kuliah : PEND.FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Team Dosen Pend fisika Kuantum Yuyu R.T, Parlindungan S. dan Asep S Standar Kompetensi : Setelah mengikuti

Lebih terperinci

SIFAT SIFAT ATOM DAN TABEL BERKALA

SIFAT SIFAT ATOM DAN TABEL BERKALA SIFAT SIFAT ATOM DAN TABEL BERKALA 1. Hukum Berkala dan Tabel Berkala SIFAT SIFAT HUKUM BERKALA Sifat - sifat hukum berkala melibatkan sifat yang di kenal sebagai volume atom yang dimana bobot atom suatu

Lebih terperinci

BAB II MODEL EVAPORASI DALAM INTI MAJEMUK

BAB II MODEL EVAPORASI DALAM INTI MAJEMUK BAB II MODL VAPORASI DALAM INTI MAJMUK. Model Weiskof-wing Pada akhir dari taha re-equilibrium, recidual nucleus seharusnya tertinggal ada taha equilibrium., dimana energi eksitasi * terbagi oleh banyaknya

Lebih terperinci

DAFTAR LAMPIRAN...xi

DAFTAR LAMPIRAN...xi DAFTAR ISI ABSTRAK... i KATA PENGANTAR... ii DAFTAR ISI... v DAFTAR TABEL... viii DAFTAR GAMBAR... ix DAFTAR LAMPIRAN...xi BAB I PENDAHULUAN 1.1 Latar Belakang... 1 1.2 Rumusan Masalah... 3 1.3 Batasan

Lebih terperinci

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini.

1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1. Diameter suatu benda diukur dengan jangka sorong seperti gambar berikut ini. 1 Diameter maksimum dari pengukuran benda di atas adalah. A. 2,199 cm B. 2,275 cm C. 2,285 cm D. 2,320 cm E. 2,375 cm 2.

Lebih terperinci

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi)

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi) Gerak Rotasi Momen Inersia Terdapat perbedaan yang penting antara masa inersia dan momen inersia Massa inersia adalah ukuran kemalasan suatu benda untuk mengubah keadaan gerak translasi nya (karena pengaruh

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 200 Mata Pelajaran : Fisika Kelas : XII IPA Alokasi Waktu : 20 menit

Lebih terperinci

6. Mekanika Lagrange. as 2201 mekanika benda langit

6. Mekanika Lagrange. as 2201 mekanika benda langit 6. Mekanika Lagrange as 2201 mekanika benda langit 6.1 Pendahuluan Bab ini menjelaskan tentang reformulasi mekanika Newtonian yang dipelopori oleh ilmuwan asal Perancis-Italia Joseph Louis Lagrange. Khususnya,

Lebih terperinci

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai

W = p V= p(v2 V1) Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai Termodinamika Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut

Lebih terperinci