UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

Ukuran: px
Mulai penontonan dengan halaman:

Download "UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU"

Transkripsi

1 UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bernardus Lumban Gaol 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas Sumatera Utara, Jl. Almamater, Kampus USU Medan Medan Indonesia bernarduslumbangaol@yahoo.co.id ABSTRAK Penelitian ini bertujuan untuk meneliti Turbin Pelton untuk Sistem Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) dengan variasi bentuk sudu dan variasi bukaan katup pada head 5,21 meter. Variasi bentuk sudu yang digunakan adalah bentuk sudu mangkok dan bentuk sudu setengah silinder sedangkan variasi bukaan katupnya adalah 60o, 75o, 90o. Langkah-langkah yang dilakukan dalam penelitian ini meliputi perancangan, pembuatan, dan pengujian menggunakan dinamometer untuk mengetahui efisiensi dan karakteristik turbin. Turbin yang diuji memiliki nosel tunggal, dengan jumlah sudu 24 buah. Dari data pengujiaan pada sudu mangkok maupun sudu setengah silinder memiliki kecenderungan yang sama pada karakteristik grafiknya. Tetapi daya dan efisiensi yang dihasilkan turbin pada sudu mangkok lebih besar dibandingkan dengan sudu setengah silinder yaitu sebesar 111,20 Watt dan 58,94 % di bukaan katup 90 pada sudu mangkok dan sebesar 96,20 Watt dan 50,99 % di bukaan katup 90 pada sudu setengah silinder. Kata kunci : Turbin Pelton, sudu mangkok, sudu setengah silinder. 1. Pendahuluan Kebutuhan akan energi hampir semua negara meningkat secara sinigfikan. Tetapi jika dilihat dari energi yang dapat dihasilkan sangat terbatas dan juga masih sangat mahal untuk mendapatkannya. Hal ini mengakibatkan krisis energi yang melanda dunia dewasa ini telah menarik perhatian para ahli untuk menemukan sumber-sumber energi baru yang lebih murah,yang tersedia dalam jumlah yang besar. Hal ini berkaitan dengan semakin banyak dan meningkatnya pemakaian penggunaan energi. Sumber energi yang sudah lazim dipergunakan adalah sumber energi minyak bumi, gas alam dan batubara, sedangkan sumber energi air, panas bumi, panas matahari dan nuklir maasih terus dikembangkan. Sebagaimana yang telah kita ketahui bahwa persedian sumber energi minyak bumi, gas alam dan batu bara sangat terbatas yang demikian apabila secara terus menerus kita gunakan sumber energi tersebut, maka suatu saat sumber energi tersebut akan habis [1]. Dapat dimengerti bahwa jika banyak kasus tersedianya energi dengan harga murah telah mengakibatkan pemakaian yang tidak efisien dan dibeberapa tempat menyebabkan terjadinya kerusakan lingkungan (ekologi). Dari penelitianpenelitian yang telah dilakukan dapatlah disimpulkan bahwa salah satu sumber energi yang dapat memenuhi harapan terhadap tantangan di atas adalah air, dimana air dipergunakan dengan sistem- sistem dan peralatan-peralatan tertentu akan menghasilkan energi dalam jumlah yang besar dengan biaya yang rendah dan mempunyai dampak lingkungan (ekologi) yang minimal [1]. Berdasarkan keseluruhan uraian di atas menunjukkan bahwa pembangkit listrik tenaga mikro hidro sangat sesuai digunakan di Indonesia. Potensi ini sangat banyak dan tidak digunakan 126

2 dengan maksimal. Oleh karena itu, untuk mendapatkan manfaat dari sumber energi yang terbuang ini sangat dibutuhkan pengembangan teknologi PLTMH. Karena melihat potensi yang ada pengembangan teknologi ini bisa menjadi salah satu terobosan dalam memenuhi kebutuhan listrik di pedesaan dan desa terpencil [1].. 2. Tinjauan Pustaka Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi energi mekanis atau sebaliknya. Mesin ini berfungsi untuk merubah energi fluida menjadi energi mekanis pada poros. misalnya : turbin air, turbin uap, turbin gas, kincir air, kincir angin dan lainnya. Pompa, kompresor, blower, fan dan lainlain berfungsi untuk mengubah energi mekanis pada poros menjadi energi fluida (energi potensial dan energi kinetis) [2]. Menurut Sejarahnya turbin-turbin air yang sekarang berasal dari kincirkincir air pada zaman abad pertengahan yang dipakai untuk memecah batubara dan pabrik gandum. Salah satu kincir air tersebut dapat dilihat di Aungrabad, India yang telah berumur 400-an tahun [3]. Turbin air dapat dikelompokkan dengan berbagai cara. Jenis turbin dapat digolongkan menjadi tiga sesuai dengan range dari head-nya, yaitu : Turbin dengan head rendah. Turbin dengan head medium. Turbin dengan head tinggi [2]. Sedangkan menurut cara kerjanya, maka terdapat dua jenis turbin yaitu : 1. Turbin Impuls (aksi). 2. Turbin Reaksi [2]. 1. Turbin Impuls (aksi). Turbin impuls adalah turbin air yang cara kerjanya dengan merubah seluruh energi air (yang teridiri dari energi potensial-tekanan-kecepatan) yang tersedia menjadi energi kinetik untuk memutar turbin, sehingga menghasilkan energi mekanik dalam bentuk putaran poros. Atau dengan kata lain, energi potensial air diubah menjadi energi kinetik. Contoh turbin impuls adalah turbin Pelton dan turbin Cross Flow [4]. 2. Turbin Reaksi Turbin reaksi adalah turbin air yang cara bekerjanya dengan merubah seluruh energi air yang tersedia menjadi energi puntir dalam bentuk putaran. Sudu pada turbin reaksi mempunyai profil khusus yang menyebabkan terjadinya penurunan tekanan air selama melalui sudu. Turbin ini terdiri dari sudu pengarah dan sudu jalan dan kedua sudu tersebut semuanya terendam di dalam air. Air dialirkan ke dalam sebuah terusan atau dilewatkan ke dalam sebuah cincin yang berbentuk spiral (rumah keong). Perubahan energi seluruhnya terjadi di dalam sudu gerak. Contoh turbin reaksi adalah turbin Francis dan turbin Propeler (Kaplan) [4]. TURBIN PELTON Pemilihan jenis turbin umumnya didasarkan pada besarnya kecepatan spesifik dari kondisi kerjanya. Kecepatan spesifik adalah kecepatan turbin model (turbin dengan bentuk sama tetapi skalanya berlainan). Kecepatan spesifik dipakai sebagai tanda batasan untuk membedakan tipe roda turbin dan dipakai sebagai suatu besaran yang penting dalam merencanakan turbin air [5]. Persamaan kecepatan spesifik dinyatakan sebagai : [5] dimana : n = Kecepatan turbin (rpm) P = Daya Turbin, (kw) Ns = Putaran spesifik, (rpm) H = Tinggi air jatuh, (meter) Turbin Pelton termasuk dalam kelompok jenis turbin Impuls. Karakteristik umumnya adalah pemasukan sebagian aliran air ke dalam runner pada tekanan atmosfir. Pada turbin Pelton puntiran terjadi akibat pembelokan pancaran air pada 127

3 mangkok ganda runner. Oleh karena itu maka turbin Pelton juga disebut Turbin Pancaran Bebas. Penyempurnaan terbesar yang dilakukan Pelton (sebagai penemu turbin) yakni dengan menerapkan mangkok ganda simetris. Pada dasarnya turbin terdiri atas bagian bagian : Runner, Nosel dan Rumah Turbin [7].. Karakteristik Grafik Turbin Pelton Adapun karateristik grafik turbin pelton dibagi dalam 2 jenis yaitu: 1. Karakteristik Grafik Turbin Untuk Head Tetap a. Grafik Rasio Kecepatan vs Efisiensi Maksimal (φ vs ɳ) a. Grafik Kecepatan Turbin vs Daya Turbin (rpm vs P) Gambar 2.3 Grafik Kecepatan Turbin vs Daya Turbin (rpm vs P) [7] Pada grafik ini dijelaskan bahwa daya turbin akan semakin naik jika rpm juga naik. Dan variasi bukaan katub penuh menjadi daya tertinggi dan rpm tertinggi. b. Grafik Kecepatan Turbin vs Efisiensi (rpm vs ɳ) Gambar 2.1 Grafik Rasio Kecepatan vs Efisiensi Maksimal (φ vs ɳ) [7] Pada grafik ini dijelaskan bahwa pada nilai efisiensi maksimal terdapat pada Φ = 0,46, setelahnya mengalami penurunan nilai efisiensi. b. Grafik Daya Turbin vs Efisiensi (P vs ɳ) Gambar 2.2 Grafik Daya Turbin vs Efisiensi (P vs ɳ) [7] Pada grafik ini dijelaskan bahwa semakin tinggi efisiensi semakin tinggi juga daya yang dihasilkan. 2. Karakteristis Grafik Turbin Untuk Variasi Bukaan Katup Gambar 2.4 Grafik Kecepatan Turbin vs Efisiensi (rpm vs ɳ) [7] Pada grafik ini dijelaskan bahwa nilai efisiensi turbin akan semakin naik jika rpm juga naik. Dan variasi bukaan katub penuh menjadi daya tertinggi dan rpm tertinggi. DINAMOMETER Dinamometer adalah instrumen untuk mengukur daya, kerja atau daya yang dilakukan oleh manusia, mesin dan hewan. Dinamometer tidak mengukur daya secara langsung, tetapi dinamometer memberikan cara menentukan besarnya torsi yang mampu dihasilkan oleh suatu motor atau mesin. Torsi ditentukan sebagai hasil dari penggunaan suatu beban dengan dinamometer. Unit beban yaitu bagian dari dinamometer yang menyediakan beban, harus dapat bebas bergerak pada arah putaran poros. Panjang lengan torsi diukur dari pusat poros hingga dimana lengan torsi memberikan gaya pada timbangan. Sedangkan 128

4 kecepatan poros unit daya yang diuji ditentukan menggunakan alat yang dinamakan tachometer [9]. EFISIENSI TURBIN ( ) Efisiensi turbin dapat dihitung dengan mengunakan rumus: [6] = x 100 % Dimana daya air dapat dihitung dengan rumus :[8] Pair = ρ g Q dimana: ρ = massa jenis air (1000 kg/m3) g = gaya gravitasi (9,81 m/s2) = head efektif (m) Q = kapasitas air (m3/s) Daya turbin dapat dihitung dengan rumus :[6] PT = Т ω Dimana ; PT = Daya Turbin (Watt) Т = Torsi (Nm) ω = Kecepatan Sudut ( rad/s) 3. Metodologi Penelitian Uji performansi turbin Pelton pada head 5,21 meter, 24 buah sudu, dan analisa perbandingan menggunakan variasi bentuk sudu (mangkuk dan setengah silinder) dilakukan di Laboratorium Mesin Fluida, Departemen Teknik Mesin, Fakultas Teknik Universitas Sumatera Utara. Sebagai simulasi atau pengkondisian dari air terjun yang berada di alam. Adapun beberapa pekerjaan yang dilakukan dalam uji performansi turbin pelton ini adalah: Pembuatan sudu (bucket) dari bahan kuningan scrap. Pembuatan runner untuk 24 sudu dan 26 sudu dari bahan stell 42. Pembuatan poros dari bahan stell 42. Pembuatan dudukan turbin dari bahan besi siku. Pembuatan dudukan dinamometer dari bahan besi siku. Pembuatan rumah turbin (casing) dari bahan acrylic. Ditambah beberapa instalasi yang telah ada pada lantai dua dengan ketinggian 5,21 meter dan lantai tiga laboratorium dengan ketinggian 9,41 meter. Adapun penambahan beberapa instalasi yang dilakukan adalah: Instalasi saluran perpipaan untuk lantai dua. Instalasi saluran perpipaan untuk lantai tiga. Instalasi dudukan nosel. Instalasi Flowmeter Digital pada pipa di lantai dua. Instalasi dudukan pengujian Turbin Pelton. Instalasi saluran buangan air pada Turbin Pelton. Instalasi dinamometer. Adapun prosedur pengujian uji eksperimental turbin pelton dengan jumlah sudu 24 sudu dan 26 sudu ini adalah sebagai berikut: 1. Pengujian pertama dilakukan dengan jumlah 24 sudu (bucket). 2. Katup pada sisi masuk nosel dibuka 60, 75 dan Sebelum pompa pengumpan dihidupkan, terlebih dahulu keran pengatur (gate valve) dibuka supaya umur pemakaian pompa pengumpan lebih lama. 4. Dilakukan monitoring terhadap ketinggian air di dalam TPA sesuai dengan data pengujian yang dibutuhkan (80 cm). 5. Setelah ketinggian air di TPA dan aliran air pada pipa pengumpan konstan, maka dilakukan pengujian serta pengambilan data terhadap: a. Pengukuran torsi (Nm) dengan Dinamo Meter. b. Pengukuran debit (L/s) dengan Flow Meter Digital. c. Pengukuran putaran (rpm) pada poros Turbin Pelton dan poros generator dengan Hand Tachometer. 6. Pengukuran terhadap beberapa variabel di atas dilakukan terhadap 129

5 beban ; masing-masing 1 Newton sampai poros turbin berhenti (0 rpm) 7. Melakukan kembali pengukuran seperti prosedur pengujian sebelumnya berulang-ulang sebanyak tiga kali untuk mendapatkan data pengujian yang lebih akurat. Setelah pengukuran pada turbin pelton dengan jumlah dua puluh enam sudu mangkok selesai, maka dilakukan penggantian runner dan penggantian sudu menjadi dua puluh enam buah sudu setengah silinder. Kemudian dilakukan pengujian kembali seperti prosedur diatas. 4. Hasil dan Pembahasan Hasil pengujian percobaan turbin Pelton head 5,21 meter mengunakan satu buah nosel, 26 buah sudu Mangkok bukaan katup 60, 75 dan 90 adalah sebagai berikut: Gambar 4.2 Putaran Turbin vs Beban Turbin Dari grafik Putaran Turbin vs Beban, di dapat hubungan antara putaran turbin dengan beban pada bukaan katup 60º, 75º, 90º, dimana beban (N) yang digunakan mulai dari 0 N sampai turbin berhenti. Sehinga didapat hasil dari grafik diatas adalah semakin besar beban (N) yang digunakan semakin kecil putaran turbin (rpm) yang di peroleh. Dan sebaliknya semakin kecil beban (N) yang digunakan semakin putaran turbin (rpm) yang diperoleh baik pada bukaan katup 60º, 75º, dan 90º. Gambar 4.1 Efisiensi vs Beban Turbin Dari grafik Efisiensi vs Beban di dapat perbandingan antara efisiensi dengan beban pada bukaan katup 60º, 75º, dan 90º. Dari grafik di atas di dapat data bahwa efisiensi maksimum pada percobaan turbin pelton head 5,21 meter mengunakan satu buah nosel 26 buah sudu berbentuk mangkok adalah saat beban yang digunakan 14 N, pada bukaan katup 90º. Dikarenakan atas perhitungan daya yang keluar dari dinamo meter pada beban 14 N adalah yang paling besar sebesar 111,20 Watt. Gambar 4.3 Putaran Turbin vs Daya Turbin Dari grafik putaran turbin vs daya turbin di dapat hubungan antara putarn turbin (rpm) dengan daya turbin (Watt) pada bukaan katup 60º, 75º, dan 90º. Dari grafik di atas di dapat data bahwa daya turbin maksimum didapat pada bukaan katup 90º putaran 265,6 rpm dengan besar daya 111,20 watt. Hasil pengujian percobaan turbin Pelton head 5,21 meter mengunakan satu buah nosel, 26 buah sudu Setengah Silinder bukaan katup 60, 75 dan 90 adalah sebagai berikut: 130

6 Gambar 4.4 Efisiensi vs Beban Turbin Dari grafik Efisiensi vs Beban didapat perbandingan antara efisiensi dengan beban pada bukaan katup 60º, 75º, dan 90º. Dari grafik di atas didapat data bahwa efisiensi maksimum pada percobaan turbin pelton head 5,21 meter mengunakan satu buah nosel, 26 buah sudu berbentuk setengah silinder adalah saat beban yang digunakan 14 N, pada bukaan katup 90º. Dikarenakan atas perhitungan daya yang keluar dari dinamo meter pada beban 14 N adalah yang paling besar sebesar 96,20 Watt. Gambar 4.6 Putaran Turbin vs Daya Turbin Dari grafik putaran turbin vs daya turbin di dapat hubungan antara putaran turbin (rpm) dengan daya turbin (Watt) pada bukaan katup 60º, 75º, dan 90º. Dari grafik di atas di dapat data bahwa daya turbin maksimum didapat pada bukaan katup 90º putaran 262,6 rpm dengan besar daya 96,20 watt. Grafik Karakteristik Turbin Pelton Sudu Mangkok 1) Grafik Karakteristik Tubin Pelton Untuk Head Tetap a. Rasio Kecepatan vs Efisiensi Maksimal Gambar 4.5 Putaran Turbin vs Beban Turbin Dari grafik Putaran Turbin vs Beban, di dapat hubungan antara putaran turbin dengan beban pada bukaan katup 60º, 75º, 90º, dimana beban (N) yang digunakan mulai dari 0 N sampai turbin berhenti. Sehinga di dapat hasil dari grafik di atas adalah semakin besar beban (N) yang digunakan semakin kecil putaran turbin (rpm) yang di peroleh. Dan sebaliknya semakin kecil beban (N) yang digunakan semakin putaran turbin (rpm) yang di peroleh baik pada bukaan katup 60º, 75º, dan 90º. Gambar 4.7 Perbandingan Rasio Kecepatan vs Efisiensi Maksimal Aktual, Teori 131

7 Dari grafik Rasio kecepatan vs efisiensi turbin maksimum didapat hubungan antara rasio kecepatan (φ) dengan efisiensi maksimal turbin (%) pada bukaan katup 60º, 75º, dan 90º. Dari grafik diatas didapat data bahwa efisiensi maksimum turbin tertinggi sebesar 58,94 % pada bukaan katup 90º dan rasio kecepatan (φ) sebesar 0,56, efisiensi 56,79 % pada bukaan 75º dan rasio kecepatan (φ) sebesar 0,60 dan efisiensi 58,51 % pada bukaan 600 dan rasio kecepatan (φ) sebesar 0,62 maka sesuai dengan grafik karakteristik turbin pelton. b. Daya Turbin vs Efisiensi Gambar 4.9 Perbandingan Kecepatan Turbin vs Daya Turbin Aktual, Teori Jika dilihat dari gambar grafik yaitu Daya vs Putaran Turbin pada bukaan katub 60o,75o, dan 90o menunjukkan bahwa pada bukaan katub 90o yang mendapatkan daya yang tertinggi sebesar 111,20 Watt. b. Kecepatan Turbin vs Efisiensi Gambar 4.8 Perbandingan Daya Turbin vs Efisiensi Aktual, Teori Dari gambar didapatkan bahwa efisiensi ada pada bukaan 90º yaitu sebesar 58,94 %, pada bukan 750 sebesar 56,79% dan pada bukaan 600 sebesar 58,51% maka sesuai dengan karakteristik turbin pelton. 2) Grafik Karakteristik Turbin Pelton Untuk Variasi Bukaan Katup a. Kecepatan Turbin vs Daya Turbin Gambar 4.10 Perbandingan Kecepatan Turbin vs Efisiensi Aktual, Teori 132

8 Dari grafik Kecepatan turbin vs efisiensi turbin pada bukaan 600, 750, dan 900 di dapat bahwa efisiensi turbin maksimal sebesar 58,94% pada bukan katup 900. Hal ini tidak sesuai dengan karakteristik grafik turbin Pelton dimana nilai efisiensi turbin akan semakin naik jika rpm juga naik. Dan variasi bukaan katub penuh menjadi daya tertinggi dan rpm tertinggi. kecepatan (φ) sebesar 0,44 maka sesuai dengan karakteristik turbin pelton. b. Daya vs Efisiensi Grafik Karakteristik Turbin Pelton Sudu Setengah Silinder 1) Grafik Karakteristik Tubin Pelton Untuk Head Tetap a. Rasio Kecepatan vs Efisiensi Maksimal Gambar 4.11 Perbandingan Rasio Kecepatan vs Efisiensi Maksimal Aktual, Teori Dari grafk Rasio Kecepatan vs Efisiensi Turbin didapat hbungan antara rasio kecepatan (φ) dengan efisiensi turbin (%) pada bukaan katup 600, 750, dan 900. Dari grafik diatas didapat data efisiensi maksimum adalah yang tertinggi sebesar 50,99% pada bukaan katup 900 dan rasio kecepatan (φ) sebesar 0,56, efisiensi sebesar 49,32% pada bukaan 750 dan rasio kecepatan (φ) sebesar 0,52, dan sebesar 42,22% pada bukaan katup 600 dan rasio Gambar 4.12 Perbandingan aktual vs teori Rasio Daya vs Efisiensi Aktual, Teori Dari gambar grafik karakteristik daya turbin vs efisiensi turbin didapat bahwa efisiensi ada pada bukaan 90º yaitu sebesar 50,99 %, bukaan 750 sebesar 49,32% dan bukaan 600 sebesar 42,22% maka sesuai dengan karakteristik turbin pelton. 2) Grafik Karakteristik Turbin Pelton Untuk Variasi Bukaan Katup a. Kecepatan Turbin vs Daya Turbin 133

9 Gambar 4.13 Perbandingan Kecepatan Turbin vs Daya Turbin Aktual, Teori Dari grafik kecepatan vs daya turbin pada bukan katup 600, 750, dan 900 didapat data semakin besar katup dibuka semakin besar daya yang diperoleh. Dan sebaliknya semakin kecil katup yang di buka semakin kecil daya yang diperoleh. Pada grafik diatas tampak daya yang tertinggi diperoleh adalah sebesar 96,20 Watt pada bukaan katup 900. b. Kecepatan Turbin vs Efisiensi Gambar 4.14 Perbandingan Kecepatan Turbin vs Efisiensi Aktual, Teori Dari grafik Kecepatan turbin vs efisiensi turbin pada bukaan 600, 750, dan 900 di dapat bahwa efisiensi turbin maksimal sebesar 50,99% pada bukan katup 900. Hal ini tidak sesuai dengan karakteristik grafik turbin Pelton dimana nilai efisiensi turbin akan semakin naik jika rpm juga naik. Dan variasi bukaan katub penuh menjadi daya tertinggi dan rpm tertinggi. Ketidaksesuaian ini terjadi karena efisiensi tidak hanya dipengaruhi oleh kecepatan saja, tetapi dipengaruhi juga oleh beban. 5. Kesimpulan dan Saran Dari uji eksperimental pembangkit listrik mikro hidro menggunakan turbin pelton head (H) 5,21 m, didapat kesimpulan bahwa Efisiensi yang dihasilkan turbin Pelton pada sudu mangkok lebih besar dibandingkan dengan sudu setengah silinder yaitu sebesar 111,20 Watt dan 58,94 % di bukaan katup 90 pada sudu mangkok dan sebesar 96,20 Watt dan 50,99 % di bukaan katup 90 pada sudu setengah silinder. Dan karakteristik grafik turbin Pelton aktual dan teori memiliki karakteristik yang sama. Kecuali pada karakteristik grafik Kecepatan Turbin vs Efisiensi, perbedaan karakteristik grafik aktual dan teori disebabkan karena efisiensi tidak hanya dipengaruhi oleh kecepatan saja tetapi juga dipengaruhi oleh beban yang dialami tubin. Untuk rancang bangun pembangkit listrik mikro hidro menggunakan turbin pelton (dengan spesifikasi : head (H) 9,41 meter, kapasitas (Q) 0,0058 m3/sekon, dan menggunakan satu nosel) berikutnya di harapkan melakukan penelitian terhadap jumlah sudu yang lebih akurat. Misalnya dengan membandingkan data yang di hasilkan dengan mengunakan 21 sudu sampai dengan 31 sudu. Juga melakukan penelitian terhadap jumlah nosel yang lebih akurat. Misalnya dengan membandingkan data yang di hasilkan dengan mengunakan 1 nosel sampai dengan 4 nosel. Daftar Pustaka 134

10 [1]Firdaus Muhammad, Mangara Tambunan Perkembangan Konsumsi dan Penyediaan Energi Dalam Perekonomian Indonesia. Bogor : Indonesian Jurnal of Agricultutal Econonics/IJAE. [2] L. V. Steeter dan Wylie B Mekanika Fluida. Edisi Kedelapan. Jakarta: Erlangga [3] Husain, Zoeb Basic Fluid Mechanic and Hidraulyc Machines. Hyderabad: BS Publications [4] Munson, Bruce Mekanika Fluida, Edisi Keempat Jilid 2. Jakarta: Erlangga [5] Bono dan Indarto, Karakterisasi Daya Turbin Pelton Mikro. Yogyakarta: UGM [6]Hermani, Bambang Analisa Pengujian Simulator Turbin Air Skala Mikro. Semarang: Untag. [7] Khurmi, R.E A Text Book Of Hydraulic Machine. Ram Nagar, Newdelhi: S. Chand and Company LTD. [8] 11/01/03/cara-mengukurhorsepower-hp/ 135

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bona Halasan Nababan 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG BAB I PENDAHULUAN 1.1 LATAR BELAKANG Kebutuhan akan energi hampir semua negara meningkat secara sinigfikan. Tetapi jika dilihat dari energi yang dapat dihasilkan sangat terbatas dan juga masih sangat mahal

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH JUMLAH SUDU DAN LAJU ALIRAN TERHADAP PERFORMA TURBIN KAPLAN Ari Rachmad Afandi 421204156

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON Ali Thobari, Mustaqim, Hadi Wibowo Faculty of Engineering, Universitas Pancasakti Tegal Jl. Halmahera KM. 1 Kota Tegal 52122 Telp./Fax.

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Turbin Air Secara sederhana turbin air adalah suatu alat penggerak mula dengan air sebagai fluida kerjanya yang berfungsi mengubah energi hidrolik dari aliran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN NASKAH PUBLIKASI Disusun oleh : ANDI SUSANTO NIM : D200 080

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO Oleh Bambang hermani bang2hermani@gmail.com. TM-Untag-Crb ABSTRAK Pengkajian rancang bangun simulator turbin air skala mikro dimaksudkan untuk penanding

Lebih terperinci

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat BAB I PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan energi yang mempunyai peranan penting bagi masyarakat. Salah satu manfaatnya adalah untuk penerangan. Keadaan kelistrikan di Indonesia sekarang

Lebih terperinci

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah...

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah... i DAFTAR ISI Halaman DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... i iv v viii I. PENDAHULUAN A. Latar Belakang... 1 B. Tujuan dan Manfaat... 2 C. Batasan Masalah... 2 D. Sistematika

Lebih terperinci

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU Bono 1) dan Indarto ) 1) Mahsiswa Program Pascasarjana Teknik Mesin dan Industri, Fakultas Teknik Universitas Gadjah Mada, Jalan Grafika

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU PKMT-2-16-1 RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU Pamungkas Irwan N, Franciscus Asisi Injil P, Karwanto, Samodra Wasesa Jurusan Teknik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Air Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik.

Lebih terperinci

Jurnal e-dinamis, Volume 3, No.3 Desember 2012 ISSN

Jurnal e-dinamis, Volume 3, No.3 Desember 2012 ISSN SIMULASI NUMERIK ALIRAN FLUIDA DI DALAM RUMAH POMPA SENTRIFUGAL YANG DIOPERASIKAN SEBAGAI TURBIN PADA PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH)MENGGUNAKAN CFD DENGAN HEAD (H) 9,29 M DAN 5,18 M RIDHO

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

Deni Rafli 1, Mulfi Hazwi 2. Universitas Sumatera Utara (USU) Jl. Almamater, Kampus USU Medan INDONESIA

Deni Rafli 1, Mulfi Hazwi 2. Universitas Sumatera Utara (USU) Jl. Almamater, Kampus USU Medan INDONESIA SIMULASI NUMERIK PENGGUNAAN POMPA SEBAGAI TURBIN PADA PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO (PLTMH) DENGAN HEAD 9,29 M DAN 5,18 M MENGGUNAKAN PERANGKAT LUNAK CFD PADA PIPA BERDIAMETER 10,16 CM Deni Rafli

Lebih terperinci

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air

Lebih terperinci

ANALISIS KINERJA RODA AIR ALIRAN BAWAH SUDU LENGKUNG 180 o UNTUK PEMBANGKIT LISTRIK

ANALISIS KINERJA RODA AIR ALIRAN BAWAH SUDU LENGKUNG 180 o UNTUK PEMBANGKIT LISTRIK PROS ID I NG 2 0 1 3 HASIL PENELITIAN FAKULTAS TEKNIK ANALISIS KINERJA RODA AIR ALIRAN BAWAH SUDU LENGKUNG 180 o UNTUK PEMBANGKIT LISTRIK Jurusan Teknik Mesin Fakultas Teknik Universitas Hasanuddin Jl.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Mikrohidro atau biasa disebut dengan Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Penelitian Terdahulu Menurut Muhammad As ad Abidin, Rudy Soenoko, Djoko Sutikno [2], pada penelitiannya mengenai pengaruh besar sudut kelengkungan sudu terhadap unjuk kerja

Lebih terperinci

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

BAB II DASAR TEORI 2.1. Tinjauan Pustaka BAB II DASAR TEORI 2.1. Tinjauan Pustaka Chen, dkk (2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan power generation untuk aliran air dalam pipa. Tujuannya

Lebih terperinci

RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12

RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12 RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12 SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik DONALD SUPRI

Lebih terperinci

KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32

KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32 KAJI EKSPERIMENT PERFORMA TURBIN PELTON TYPE FM 32 Sahran Fauji, Suryadimal, M.T 1), Burmawi, M.Si 2) Program Studi Teknik Mesin-Fakultas Teknologi Industri-Universitas Bung Hatta Jl. Gajah Mada No.19

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Tinjauan Umum Praktikan sangat membantu dalam mendapatkan gambaran yang nyata tentang alat/mesin yang telah dipelajari di bangku kuliah. Dengan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Analisa. Dari hasil pengambilan data performasi turbin air dari modifikasi blower angin sentrifugal yang dilakukan di Belik (pemandian sumber air) yang beralamat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG

PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG PROTOTYPE TURBIN PELTON SEBAGAI ENERGI ALTERNATIF MIKROHIDRO DI LAMPUNG Dwi Irawan Jurusan Teknik Mesin Universitas Muhammadiyah Metro Jl. Ki Hajar Dewantara No. 116 Kota Metro (0725) 42445-42454 Email

Lebih terperinci

KARAKTERISASI DAYA TURBIN PELTON MIKRO SUDU SETENGAH SILINDER DENGAN VARIASI BENTUK PENAMPANG NOSEL

KARAKTERISASI DAYA TURBIN PELTON MIKRO SUDU SETENGAH SILINDER DENGAN VARIASI BENTUK PENAMPANG NOSEL KARAKTERISASI DAYA TURBIN PELTON MIKRO SUDU SETENGAH SILINDER DENGAN VARIASI BENTUK PENAMPANG NOSEL Bono Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. H. Sudarto, S.H., Tembalang, Kotak Pos

Lebih terperinci

PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR

PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR PERFORMANSI POMPA AIR DAB TYPE DB-125B YANG DIFUNGSIKAN SEBAGAI TURBIN AIR Adi Ramadhani Muhammad Arief, G. D. Soplanit, I Nyoman Gede Fakultas Teknik, Jurusan Teknik Mesin, Universitas Sam Ratulangi Manado

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013 UJI PERFORMANSI TURBIN VORTEX MENGGUNAKAN VARIASI DIMENSI SUDU 2 DAN 3 DAN LUAS SALURAN BUANG SERTA KETINGGIAN DARI DASAR CASING SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA SESSION 8 HYDRO POWER PLANT 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA 6. Kelebihan dan Kekurangan PLTA 1. POTENSI PLTA Teoritis Jumlah potensi tenaga air di permukaan

Lebih terperinci

KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK. *Luther Sule

KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK. *Luther Sule KINERJA YANG DIHASILKAN OLEH KINCIR AIR ARUS BAWAH DENGAN SUDU BERBENTUK MANGKOK *Luther Sule *Kompleks Perumahan Dosen Unhas EB.17 Tamalanrea, Jurusan Mesin Fakultas Teknik Universitas Hasanuddin, Jl.

Lebih terperinci

PENGARUH JUMLAH SUDU DAN VARIASI KEMIRINGAN PADA SUDUT SUDU TERHADAP DAYA YANG DIHASILKAN PADA TURBIN KINETIK POROS HORIZONTAL SKRIPSI

PENGARUH JUMLAH SUDU DAN VARIASI KEMIRINGAN PADA SUDUT SUDU TERHADAP DAYA YANG DIHASILKAN PADA TURBIN KINETIK POROS HORIZONTAL SKRIPSI Artikel Skripsi PENGARUH JUMLAH SUDU DAN VARIASI KEMIRINGAN PADA SUDUT SUDU TERHADAP DAYA YANG DIHASILKAN PADA TURBIN KINETIK POROS HORIZONTAL SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh

Lebih terperinci

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan)

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan) TURBO Vol. 5 No. 1. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN

Lebih terperinci

PENGUJIAN TURBIN AIR FRANCIS

PENGUJIAN TURBIN AIR FRANCIS PENGUJIAN TURBIN AIR FRANCIS BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam bidang

Lebih terperinci

ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5

ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5 ANALISIS TEKANAN POMPA TERHADAP DEBIT AIR Siswadi 5 Abstrak: Dengan ketersediannya ilmu mekanika fluida maka spesifikasi teknis yang berkaitan dengan aplikasi tekanan pompa terhadap debit air sangat langka,

Lebih terperinci

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal II. TINJAUAN PUSTAKA A. Pengertian Mikrohidro Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal sejak lama, mulai dengan teknologi sederhana seperti kincir air ( water wheel),

Lebih terperinci

Makalah Pembangkit listrik tenaga air

Makalah Pembangkit listrik tenaga air Makalah Pembangkit listrik tenaga air Di susun oleh : Muhamad Halfiz (2011110031) Robi Wijaya (2012110003) Alhadi (2012110093) Rari Ranjes Noviko (2013110004) Sulis Tiono (2013110008) Jurusan Teknik Mesin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka (Chen, J., et al., 2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan Power Generation untuk aliran air dalam

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN Rancang Bangun Turbin Vortex Dengan Casing Berpenampang Lingkaran Yang Menggunakan Sudu Diameter 46cm Pada 3 Variasi Jarak Antara Sudu Dan Saluran Keluar SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

LEMBAR PENGESAHAN TUGAS AKHIR KAJIAN EKSPERIMENTAL KINERJA BLOWER ANGIN SENTRIFUGAL YANG DIGUNAKAN SEBAGAI TURBIN AIR

LEMBAR PENGESAHAN TUGAS AKHIR KAJIAN EKSPERIMENTAL KINERJA BLOWER ANGIN SENTRIFUGAL YANG DIGUNAKAN SEBAGAI TURBIN AIR LEMBAR PENGESAHAN TUGAS AKHIR KAJIAN EKSPERIMENTAL KINERJA BLOWER ANGIN SENTRIFUGAL YANG DIGUNAKAN SEBAGAI TURBIN AIR Disusun Oleh: ADITYA YOGA PRATAMA 20110130082 Telah Depertahankan Di Depan Tim Penguji

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO B.11. Kaji eksperimental kinerja turbin air hasil modifikasi... KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Gatot Suwoto Program

Lebih terperinci

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar.

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Turbin Air 117 Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Contoh soal Sebuah turbin reaksi aliran keluar mempunyai diameter dalam dan diameter luar berturut-turut 1 meter dan 2 meter.

Lebih terperinci

ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER

ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER ANALISIS DAYA DAN EFISIENSI TURBIN AIR KINETIS AKIBAT PERUBAHAN PUTARAN RUNNER Arief Muliawan 1, Ahmad Yani 2 1) Teknik Elektro, Sekolah Tinggi Teknologi Bontang Jalan Ir. H. Juanda No. 73 RT.36 Bontang

Lebih terperinci

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL

PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI POMPA SENTRIFUGAL JENIS TUNGGAL TURBO Vol. 4 No. 2. 2015 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/ummojs/index.php/turbo PENGARUH KECEPATAN SUDUT TERHADAP EFISIENSI

Lebih terperinci

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur *

Jurusan Fisika, Fakultas MIPA Universitas Negeri Jakarta Jl. Pemuda No.10, Rawamangun, Jakarta Timur * Pengujian Prototipe Model Turbin Air Sederhana Dalam Proses Charging 4 Buah Baterai 1.2 Volt Yang Disusun Seri Pada Sistem Pembangkit Listrik Alternatif Tenaga Air Fitrianto Nugroho *, Iwan Sugihartono,

Lebih terperinci

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o

Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Pengaruh Variasi Ketinggian Aliran Sungai Terhadap Kinerja Turbin Kinetik Bersudu Mangkok Dengan Sudut Input 10 o Asroful Anam Jurusan Teknik Mesin S-1 FTI ITN Malang, Jl. Raya Karanglo KM 02 Malang E-mail:

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR Ridwan Arief Subekti 1, Anjar Susatyo 2 1 Pusat Penelitian Tenaga Listrik dan Mekatronik, LIPI, Bandung ridw001@lipi.go.id 2

Lebih terperinci

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air BAB II 2 LANDASAN TEORI 2.1 Turbin Air Turbin air atau pada mulanya kincir air adalah suatu alat yang sudah sejak lama digunakan untuk keperluan industri. Pada mulanya yang dipertimbangkan adalah ukuran

Lebih terperinci

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2014

PROGRAM PENDIDIKAN SARJANA EKSTENSI DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2014 PRESTASI RANCANG BANGUN TURBIN VORTEX DENGAN CASING BERPENAMPANG LINGKARAN PADA SUDU BERDIAMETER 32 CM UNTUK 3 VARIASI JARAK SUDU DENGAN SALURAN KELUAR SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL

ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL ANALISA KETINGGIHAN DAN DEBIT AIR PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO PADA DAERAH TERPENCIL Purnomo 1 Efrita Arfah Z 2 Edi Suryanto 3 Jurusan Teknik Mesin Institut Teknologi Adhi Tama Surabaya Jl.

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik MARULITUA SIDAURUK NIM

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik MARULITUA SIDAURUK NIM ANALISIS DAN SIMULASI VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS YANG DIHASILKAN TURBIN SEBAGAI PEMBANGKIT TENAGA UAP PADA PKS KAPASITAS 30 TON TBS/JAM SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH )

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) Naif Fuhaid 1) ABSTRAK Kebutuhan listrik bagi masyarakat masih menjadi permasalahan penting di Indonesia, khususnya

Lebih terperinci

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi

Kata Kunci : PLTMH, Sudut Nozzle, Debit Air, Torsi, Efisiensi ABSTRAK Ketergantungan pembangkit listrik terhadap sumber energi seperti solar, gas alam dan batubara yang hampir mencapai 75%, mendorong dikembangkannya energi terbarukan sebagai upaya untuk memenuhi

Lebih terperinci

III.METODOLOGI PENELITIAN. Penelitian ini dilakukan mulai 26 Januari sampai 14 mei 2012 di Laboraorium

III.METODOLOGI PENELITIAN. Penelitian ini dilakukan mulai 26 Januari sampai 14 mei 2012 di Laboraorium III.METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan mulai 26 Januari sampai 14 mei 2012 di Laboraorium Mekanika Fluida Teknik Mesin Universitas Lampung. B. Penyiapan Bahan

Lebih terperinci

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi Turbin Uap 71 1. Rumah turbin (Casing). Merupakan rumah logam kedap udara, dimana uap dari ketel, dibawah tekanan dan temperatur tertentu, didistribusikan disekeliling sudu tetap (mekanisme pengarah) di

Lebih terperinci

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI Skripsi Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

Turbin Reaksi Aliran Ke Luar

Turbin Reaksi Aliran Ke Luar Turbin Reaksi Aliran Ke Luar Turbin reaksi aliran keluar adalah turbin reaksi dimana air masuk di tengah roda dan kemudian mengalir ke arah luar melalui sudu (gambar 8). Gambar 8. Turbin reaksi aliran

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Turbin Air Turbin air termasuk dalam kelompok mesin fluida yaitu, mesin yang berfungsi untuk mengubah energi fluida (energi potensial dan energi kinetis air) menjadi energi

Lebih terperinci

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Eksergi Jurnal Teknik Energi Vol 8 No. 1 Januari 2012; 14-19 KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Bono Prodi Teknik Konversi Energi, Jurusan Teknik Mesin, Politeknik Negeri Semarang

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 RANCANGAN NOSEL DENGAN KATUP PENGATURAN DEBIT AIR PENGGERAK TURBIN OSSBEGER DAYA TURBIN = 2,6 KW HEAD = 12 METER SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana H E R D Y

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat pembangkit listrik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM Franciscus Manuel Sitompul 1,Mulfi Hazwi 2 Email:manuel_fransiskus@yahoo.co.id 1,2, Departemen

Lebih terperinci

PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL

PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL PEMODELAN TURBIN CROSS-FLOW UNTUK DIAPLIKASIKAN PADA SUMBER AIR DENGAN TINGGI JATUH DAN DEBIT KECIL Oleh: Mokhamad Tirono ABSTRAK : Telah dilakukan suatu upaya memodifikasi dan rekayasa turbin jenis cross-flow

Lebih terperinci

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi II. TINJAUAN PUSTAKA.1. Potensi Pemanfaatan Mikrohidro Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi kebutuhan yang mendasar saat ini, namun penyebarannya tidak merata terutama

Lebih terperinci

TUGAS SKRIPSI SISTEM PEMBANGKIT TENAGA

TUGAS SKRIPSI SISTEM PEMBANGKIT TENAGA TUGAS SKRIPSI SISTEM PEMBANGKIT TENAGA ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN SEBAGAI PEMBANGKIT TENAGA UAP PADA PKS KAPASITAS 30 TON TBS/JAM OLEH ISKANDAR PERANGIN

Lebih terperinci

REKAYASA BENTUK SUDU TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO

REKAYASA BENTUK SUDU TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO Rekayasa Bentuk Sudu Turbin Pelton (Bono) REKAYASA BENTUK SUDU TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO HIDRO Bono Prodi Teknik Konversi Energi, Jurusan Teknik Mesin, Politeknik Negeri

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat listrik tenaga air.

Lebih terperinci

ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP

ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP ANALISIS VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS TURBIN UNTUK PEMBANGKIT LISTRIK TENAGA UAP SKRIPSI Skripsi ini Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik OLEH

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir Penelitian ini di peruntukan untuk tugas akhir dengan judul Studi Analisis Pengaruh Sudu Turbin Pada Pembangkit Listrik Tenaga Mikro Hidro.Penelitian ini mengacu

Lebih terperinci

Prosiding Seminar Nasional Sains dan Teknologi ke-2 Tahun 2011 Fakultas Teknik Universitas Wahid Hasyim Semarang A.13

Prosiding Seminar Nasional Sains dan Teknologi ke-2 Tahun 2011 Fakultas Teknik Universitas Wahid Hasyim Semarang A.13 KARAKTERISASI DAYA TURBIN PELTON SUDU SETENGAH SILINDER DENGAN VARIASI PERBANDINGAN LEBAR SUDU DENGAN DIAMETER NOSEL PADA HARGA PERBANDINGAN JET SEBESAR 18 Bono dan Gatot Suwoto Jurusan Teknik Mesin Politeknik

Lebih terperinci

Rancang Bangun Model Turbin Crossflow sebagai Penggerak Mula Generator Listrik Memanfaatkan Potensi Pikohidro

Rancang Bangun Model Turbin Crossflow sebagai Penggerak Mula Generator Listrik Memanfaatkan Potensi Pikohidro Rancang Bangun Model Turbin Crossflow sebagai Penggerak Mula Generator Listrik Memanfaatkan Potensi Pikohidro Ilyas Rochani, Sahid, Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. Sudarto, SH

Lebih terperinci

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL Yudi Setiawan, Irfan Wahyudi, Erwin Nandes Jurusan Teknik Mesin, Universitas Bangka Belitung Jl.Merdeka no. 04 Pangkalpinang

Lebih terperinci

BAB III METODE PENELITIAN. Bahan yang digunakan pada penelitian ini adalah :

BAB III METODE PENELITIAN. Bahan yang digunakan pada penelitian ini adalah : BAB III METODE PENELITIAN 3.1. Bahan dan Alat 3.1.1. Bahan Penelitian Bahan yang digunakan pada penelitian ini adalah : Air 3.1.2. Alat Penelitian Alat yang digunakan dalam penelitian ini dapat dilihat

Lebih terperinci

BAB I PENDAHULUAN. masyarakat dewasa ini dalam menunjang kemajuan masyarakat. Mudah

BAB I PENDAHULUAN. masyarakat dewasa ini dalam menunjang kemajuan masyarakat. Mudah BAB I PENDAHULUAN 1.1. LATAR BELAKANG Kebutuhan akan energi listrik amat vital dalam kehidupan masyarakat dewasa ini dalam menunjang kemajuan masyarakat. Mudah diamati listrik sangat diperlukan dalam kehidupan

Lebih terperinci

Jl. Banda Aceh-Medan Km. 280 Buketrata - Lhokseumawe Abstrak

Jl. Banda Aceh-Medan Km. 280 Buketrata - Lhokseumawe   Abstrak Pengembangan dan Penerapan Teknologi Turbin Air Propeller Dalam Mendukung Penyediaan Energi Listrik Alternative Di Desa Darul Makmur Kotamadya Subulussalam Provinsi Aceh Pribadyo 1, Dailami 2 1) Jurusan

Lebih terperinci

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar:

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar: LAMPIRAN Panduan Manual Alat Peraga PLTMH Dengan Turbin Pelton 1. Bagian Bagian Alat Gambar 1.1 Bagian Alat Keterangan gambar: 1. Turbin Pelton 2. Rumah Turbin 3. Bagian Display 4. Pompa Air 5. Sensor

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan kebutuhan yang sangat penting bagi manusia dalam berbagai sektor, baik dalam rumah tangga maupun dalam perindustrian. Di Indonesia, penggunaan

Lebih terperinci

Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. 6 No. 3, Juli 2017 ( )

Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. 6 No. 3, Juli 2017 ( ) Jurnal Ilmiah TEKNIK DESAIN MEKANIKA Vol. 6 No. 3, Juli 2017 (294 298) Pengaruh Variasi Sudut Sudu Segitiga Terhadap Performansi Kincir Air Piko Hidro Budiartawan K. 1, Suryawan A. A. A. 2, Suarda M. 3

Lebih terperinci

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU Muhammad Suprapto Program Studi Teknik Mesin, Universitas Islam Kalimantan MAB Jl. Adhyaksa No.2 Kayutangi Banjarmasin Email : Muhammadsuprapto13@gmail.com

Lebih terperinci

Pembangkit Listrik Tenaga Air. BY : Sulistiyono

Pembangkit Listrik Tenaga Air. BY : Sulistiyono Pembangkit Listrik Tenaga Air BY : Sulistiyono Pembangkit listrik tenaga air Tenaga air bahasa Inggris: 'hydropower' adalah energi yang diperoleh dari air yang mengalir. Air merupakan sumber energi yang

Lebih terperinci