BAB II LANDASAN TEORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Air Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik. Energi listrik yang dibangkitkan ini biasa disebut sebagai hidroelektrik. Bentuk utama dari pembangkit listrik jenis ini adalah Generator yang dihubungkan ke turbin yang digerakkan oleh tenaga kinetik dari air. Namun, secara luas, pembangkit listrik tenaga air tidak hanya terbatas pada air dari sebuah waduk atau air terjun, melainkan juga meliputi pembangkit listrik yang menggunakan tenaga air dalam bentuk lain seperti tenaga ombak Prinsip Kerja Prinsip dasar mikrohidro adalah memanfaatkan energi potensial yang dimiliki oleh aliran air pada jarak ketinggian tertentu dari tempat instalasi pembangkit listrik. Sebuah skema mikrohidro memerlukan dua hal yaitu, debit air dan ketinggian jatuh (head) untuk menghasilkan tenaga yang dapat dimanfaatkan.hal ini adalah sebuah sistem konversi energi dari bentuk ketinggian dan aliran (energi potensial) ke dalam bentuk energi mekanik dan energi listrik. Daya yang masuk (Pgross) merupakan penjumlahan dari daya yang dihasilkan (Pnet) ditambah dengan faktor kehilangan energi (loss) dalam bentuk suara atau panas. Daya yang dihasilkan merupakan perkalian dari daya yang masuk dikalikan dengan efisiensi konversi (Eo). Pnet = Pgross Eo kw pers 2.1 Daya kotor adalah head kotor (Hgross) yang dikalikan dengan debit air (Q) dan juga dikalikan dengan sebuah faktor gravitasi (g = 9.8), sehingga persamaan dasar dari pembangkit listrik adalah : Pnet = g Hgross Q Eo kw pers 2.2 Dimana head dalam meter (m), dan debit air dalam meter kubik per detik (m/s 3 ). 4

2 5 2.2 Turbin Air Turbin air atau pada mulanya kincir air adalah suatu alat yang sudah sejak lama digunakan untuk keperluan industri. Pada mulanya yang dipertimbangkan adalah ukuran kincirnya, yang membatasi debit dan head yang dapat dimanfaatkan. Perkembangan kincir air menjadi turbin modern membutuhkan jangka waktu yang cukup lama. Perkembangan yang dilakukan dalam waktu revolusi industri menggunakan metode dan prinsip ilmiah. Mereka juga mengembangkan teknologi material dan metode produksi baru pada saat itu. Kata "turbine" ditemukan oleh seorang insinyur Perancis yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa Latin dari kata "whirling" (putaran) atau "vortex" (pusaran air). Perbedaan dasar antara turbin air awal dengan kincir air adalah komponen putaran air yang memberikan energi pada poros yang berputar. Komponen tambahan ini memungkinkan turbin dapat memberikan daya yang lebih besar dengan komponen yang lebih kecil. Turbin dapat memanfaatkan air dengan putaran lebih cepat dan dapat memanfaatkan head yang lebih tinggi. (Untuk selanjutnya dikembangkan turbin impulse yang tidak membutuhkan putaran air). Dalam Perkembanganya turbin air mengalami beberapa perubahan sebagai berikut: 1. Arah Arus air lewat sudu berubah dari tangensial (Pelton) menjadi radial (Francis) lalu mengalami perubahan lagi menjadi aksial (Turbin Kaplan) 2. Cincin Bawah (Pada Turbin Francis) makin lama menghilang (menjadi turbin Propplere) 3. Jumlah Sudu makin Berkurang (Turbin Pelton : Banyak Sudu menjadi Turbin Francis lalu Propeller dengan jumlah sudu 2 s.d 3 buah sudu. 2.3 Jenis Jenis Turbin Air Pada prinsipnya aliran air yang menuju turbin diarahkan langsung menuju sudusudu melalui pengarah, sehingga menghasilkan daya pada sirip. Selama sudu berputar, gaya yang dihasilkan bekerja melalui suatu jarak, sehingga menghasilkan kerja. Dalam proses ini, energi ditransfer dari aliran air ke turbin.turbin air dibedakan menjadi dua kelompok, yaitu turbin reaksi dan turbin impuls.

3 Turbin reaksi Yang dimaksud dengan turbin reaksi adalah turbin yang prinsip kerjanya dilakukan dengan merubah seluruh energi air menjadi energi puntir.turbin reaksi digerakkan dengan air, akan merubah tekanan sehingga melewati turbin danmenaikkan energi. Turbin reaksi harus menutup untuk mengisi tekanan air (pengisap) atau mereka harus sepenuhnya terendam dalam aliran air.hukum ketiga Newton menggambarkan transfer energi untuk turbin reaksi. Beberapa contoh turbin reaksi diantaranya : Francis Kaplan, Propeller, Bulb, Tube, Straflo Tyson Kincir air Turbin Impuls Turbin impuls merupakan turbin yang merubah aliran semburan air. Semburan air akan membentuk sudut yang membuat aliran putaran pada turbin. Hasil perubahan momentum (impuls) disebabkan tekanan pada sudu turbin. Sebelum mengenai sudu turbin, tekanan air (energi potensial) dikonversi menjadi energi kinetik oleh sebuah nosel dan difokuskan pada turbin. Tidak ada tekanan yang dirubah pada sudu turbin, dan turbin tidak memerlukan rumahan untuk operasinya. Turbin impuls ini paling sering digunakan pada aplikasi turbin dengan tekanan yang sangat tinggi. Hukum kedua Newton menggambarkan transfer energi untuk turbin impuls.beberapa contoh dari turbin impuls adalah : Pelton Turgo Michell-Banki (juga dikenal sebagai turbin crossflow atau ossberger). Tabel 2.1 Perbandingan Impuls dan Reaksi Jenis Turbin Keunggulan Kelemahan Turbin Impulse Efisien pada head tingi Tidak terpengaruh oleh pengotor air Tidak optimal pada head yang rendah Turbin Reaksi Hasil lebih besar Efisiean pada head rendah Perawatan susah dan mahal

4 Kecepatan Spesifik Kecepatan spesifik (n s ), menunjukkan bentuk dari turbin itu dan tidak berhubungan dengan ukurannya. Hal ini menyebabkan desain turbin baru yang diubah skalanya dari desain yang sudah ada dengan performa yang sudah diketahui. Kecepatan spesifik merupakan kriteria utama yang menunjukkan pemilihan jenis turbin yang tepat berdasarkan karakteristik sumber air. Kecepatan spesifik dari sebuah turbin juga dapat diartikan sebagai kecepatan ideal, persamaan geometris turbin, yang menghasilkan satu satuan daya tiap satu satuan head. Kecepatan spesifik tubin diberikan oleh perusahaan (dengan penilaian yang lainnya) dan dan selalu dapat diartikan sebagai titik efisiensi maksimum. Perhitungan tepat ini menghasilkan performa turbin dalam jangkauan head dan debit tertentu. (Luktanto, 1999). n = rpm P pers 2.3 ns n 5/ 4 H P / Ns 5/ 4 gh Ω = kecepatan sudut (radian/detik) pers 2.4 Kecepatan spesifik merupakan titik awal dari analisis desain dari sebuah turbin baru. Sekali kecepatan spesifik yang diinginkan diketahui, dimensi dasar dari bagianbagian turbin dapat dihitung dengan mudah. Hukum Affinity mengijinkan keluaran turbin dapat diperkirakan berdasarkan dari test permodelan. Replika miniatur dari desain yang diusulkan, diameter sekitar satu kaki (0,3 m), dapat diuji dan hasil pengukuran laboratorium dapat digunakan sebagai kesimpulan dengan tingkat keakuratan yang tinggi. Hukum Affinity didapatkan dari penurunan yang membutuhkan persamaan antara test permodelan dan penggunaanya. Debit yang melalui turbin dikendalikan dengan katub yang besar atau pintu gerbang yang disusun diluar sekeliling pengarah turbin. Perubahan head dan debit dapat dilakukan dengan variasi bukaan pintu, akan menghasilkan diagram yang menunjukkan efisiensi turbin dengan kondisi yang berubah-ubah.

5 8 2.4 Turbin Pelton Turbin ini merupakan jenis impuls karena energi potensial air mengalir melalui penstock diubah menjadi energi kinetik melalui sebuah jet air. Turbin jenis ini juga disebut turbin tekanan sama karena aliran air yang ke luar dari nosel, tekanannya adalah sama dengan tekanan atmosfer. Bentuk sudu terbelah menjadi dua bagian yang simetris, dengan maksud adalah agar dapat membalikan pancaran air dengan baik dan membebaskan sudu dari gaya-gaya samping Tidak semua sudu menerima pancaran air, hanya sebagaian jarum katup air tekanan tinggi bagaian saja scara bergantian bergantung posisi sudut tersebut. Jumlah noselnya bergantung kepada besarnya kapasitas air, tiap roda turbin dapat dilengkapi dengan nosel 1 sampai 6.Ukuran-ukuran utama turbin pelton adalah diameter lingkar sudu yang kena pancaran air, disingkat diameter lingkaran pancar dan diameter pancaran air. Pengaturan nosel akan menentukan kecepatan dari turbin. Gambar 2.1 Runner Turbin Pelton Gambar 2.2 Bucket Turbin Pelton

6 Tipe Turbin Pelton Turbin poros horizontal, Turbin ini digunakan untuk head terkecil hingga menengah makin banyak nozel yang digunakan makin tinggi pula kecepatan turbin, Sedangkan makin cepat putaran turbin makin murah juga harga generatornya. Untuk dapat menghasilkan daya yang sama 1 grup turbin dengan 2 roda akan lebih murah dibanding dengan 2 buah turbin dengan masing masing roda. Gambar 2.3 Tipe Poros Horizontal Tipe turbin pelton poros vertikal, dengan bertambahnya daya yang harus dihasilkan turbin, maka untuk turbin pelton dilengkapi dengan 4 s/d 6 buah nozel, sedangkan penggunaan 1 atau 2 buah pipa saluran utama tergantung pada keadaan tempat dan keterbatasan biaya. Gambar 2.4 Tipe poros Vertikal

7 Nozel Dalam Turbin Pelton, Nosel merupakan hal penting dalam proses kerjanya, karena nozel mempunya prinsip utama dalam meningkatkan daya turbin karena turbin pelton memperoleh daya hidrolis dari pancaran air dari nozel tersebut, Seperti yang telah dijelaskan sebelumnya semakin banyak nozel akan dapat meingkatkan daya yang dihasilkan turbin tersebut.suatu nozel mempunyai ukuran tertentu (diameter). Dalam hal ini diameter nozel sangat berpengaruh pada konstruksi turbin pelton itu sendiri secara umum rumus nozel adalah sebagai berikut d = 0.54 pers 2.5 Dimana : d = Diameter Nozel (mm) Q = debit air (m3/detik ) H = efektif head ( m ) Gambar 2.5 Nozzle dan Bucket 2.5 Parameter Perhitungan Parameter Perhitungan adalah besaran yang digunakan untuk mengetahui performansi turbin. Berikut adalah parameter-parameter yang digunakan untuk mengetahui performansi turbin. 1. Debit Air Debit air adalah jumlah air yang mengalir dari suatu penampang tertentu (sungai, saluran, mata air) persatuan waktu (ltr/dtk, m 3 /dtk, dm 3 /dtk). Debit air dapat diketahui dengan persamaan : Q = v x A pers.2,6

8 11 Dimana : Q = debit air (m3/detik ) v = Kecepatan air (m/s) A = Luas Penampang (A = πr ) (m ) 2. Kecepatan Air Kecepatan air adalah perpindahan molekul air per satuan waktu, untuk menentukan kecepatan air dapat menggunakan beberapa persamaan sebagai berikut : v =....pers Head atau v = 2 g H..pers 2.8 Head Total dibutuhkan untuk mengalirkan air pada pipa, Head total pompa dapat diketahui dengan menggunakan persamaan : H = Z Hloss..pers 2.9 Dimana untuk mengetahui Head total dibutuhkan beberapa parameter seperti pada persamaan diatas diantaranya adalah Head Statis Head statis adalah penjumlahan dari head elevasi dengan head tekanan. Head statis terdiri dari head statis sisi masuk (head statis hisap) dan sisi ke luar (head statis hisap). Persamaanya adalah sebagai berikut : H = Z2 + Z1 +..pers 2.10

9 12 Dimana : Z1 Z2 = Beda tinggi permukaan ( m ) p = Tekanan g = gravitasi ( m / s ) ρ = massa jenis air (kg/m ) Head Kerugian (Loss) Head kerugian yaitu head untuk mengatasi kerugian kerugian yang terdiri dari kerugian gesek aliran di dalam perpipaan, dan head kerugian di dalam belokan-belokan (elbow), percabangan, dan perkatupan (valve) h loss = Hgesekan + Hsambungan Head kerugian gesek di dalam pipa [Hgesekan ] Aliran fluida cair yang mengalir di dalam pipa adalah fluida viskos sehingga faktor gesekan fluida dengan dinding pipa tidak dapat diabaikan, untuk menghitung kerugian gesek dapat menggunakan perumusan sebagai berikut : hf = γ..pers 2.11 Dimana: v = kecapatan rata-rata aliran di dalam pipa (m/s) C,p,q = Koefesien koefesien λ = Koefesien kerugian gesek g = Percepatan gravitasi (m/s2) L = Panjang pipa (m) D = Diameter dalam pipa (m) Kerugian head dalam jalur pipa [Hsambungan] Kerugian head jenis ini terjadi karena aliran fluida mengalami gangguan aliran sehingga mengurangi energi alirnya, secara umum rumus kerugian head ini adalah: Hf = f...pers 2.12

10 13 4. Daya Hidrolik Daya Hidrolik adalah Daya/kemampuan air yang mengalir pada penstock atau sungai yang mampu menggerakan turbin. Untuk menentukan daya masukan/hidrolik ditentukan dengan persamaan sebagai berikut. Ph = ρ x g x H x Q..pers 2.13 Dimana : P = Daya Hidrolik (watt) Q = debit air, (m3/detik ) H = head total, ( m ) g = Gravitasi ( m / s ) ρ = massa jenis air (N/m ) 5. Kecepatan Keliling Kecepatan keliling merupakan kecepatan putaran suatu roda yang dicapai dalam satuan meter per detik. Untuk menentukan kecepatan keliling turbin digunakan persamaan sebagai berikut: U = ϕ 2 g H..pers 2.14 ϕ = 0,43 sampai dengan 0,48 (Finnemore dan Franzini,2006). Dimana : U = Kecepatan Keliling (m/s) 6. Kecepatan Sudut Selain kecepatan keliling, Untuk menghitung daya turbin perlu diketahui kecepatan sudut yang dihasilkan oleh turbin, ω adalah sudut suatu objek berputar dimana 1 rad = 1 Phi = 180' = 180'/360' putaran = 1/2 putaran = 1/2 rotasi Dapat ditentukan dengan persamaan berikut. ω =..pers 2.15

11 14 7. Torsi Konsep torsi dalam fisika, juga disebut momen, diawali dari kerja Archimedes. Analogi rotational dari gaya, masa, dan percepatan adalah torsi, momen inersia dan percepatan. Gaya yang bekerja dikalikan dengan jarak dari titik tengah roda, adalah torsi. Torsi bisa diketahui dengan persamaan sebagai berikut. T = r x F..pers 2.16 Dimana : r = jari jari roda F = vektor gaya 8. Daya Turbin Daya turbin dapat diketahui dengan persamaan : Pt = T x ω..pers 2.17 Dimana : T = Torsi (Nm) ω = kecepatan sudut (rad/s) Pt = Daya Turbin (watt) 9. Effisiensi Efisiensi adalah perbandingan antar input dan output, untuk Pembangkit listrik tenaga air daya hidrolik adalah daya input dan daya turbin adalah daya turbin. Untuk mneghitung efisensi dapat digunakan dengan persamaan sebagai berikut. Ƞ = x 100 %..pers 2.18 Dimana : Ƞ = Efisiensi (%) Ph = Daya Hidrolik (watt) Pt = Daya Turbin (watt)

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air BAB II 2 LANDASAN TEORI 2.1 Turbin Air Turbin air atau pada mulanya kincir air adalah suatu alat yang sudah sejak lama digunakan untuk keperluan industri. Pada mulanya yang dipertimbangkan adalah ukuran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat listrik tenaga air.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Potensi Tenaga Air Air merupakan sumber energi yang murah dan relatif mudah didapat, karena pada air tersimpan energi potensial (pada air jatuh) dan energi kinetik (pada air

Lebih terperinci

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal II. TINJAUAN PUSTAKA A. Pengertian Mikrohidro Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal sejak lama, mulai dengan teknologi sederhana seperti kincir air ( water wheel),

Lebih terperinci

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air

Lebih terperinci

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 69-74 KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO Mulyono, Suwarti Program Studi Teknik Konversi Energi,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Turbin Air Secara sederhana turbin air adalah suatu alat penggerak mula dengan air sebagai fluida kerjanya yang berfungsi mengubah energi hidrolik dari aliran

Lebih terperinci

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA SESSION 8 HYDRO POWER PLANT 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA 6. Kelebihan dan Kekurangan PLTA 1. POTENSI PLTA Teoritis Jumlah potensi tenaga air di permukaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Mikrohidro atau biasa disebut dengan Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik

Lebih terperinci

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK Perangkat elektro mekanik merupakan salah satu komponen utama yang diperlukan oleh suatu PLTMH untuk menghasilkan energi listrik Proses

Lebih terperinci

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi II. TINJAUAN PUSTAKA.1. Potensi Pemanfaatan Mikrohidro Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi kebutuhan yang mendasar saat ini, namun penyebarannya tidak merata terutama

Lebih terperinci

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi II. TINJAUAN PUSTAKA A. Energi Secara global telah diketahui bersama bahwa sumber energi tak terbaharui semakin berkurang keberadaannya maka sudah selayaknya untuk dicari dan digalakan penemuan-penemuan

Lebih terperinci

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar.

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Turbin Air 117 Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Contoh soal Sebuah turbin reaksi aliran keluar mempunyai diameter dalam dan diameter luar berturut-turut 1 meter dan 2 meter.

Lebih terperinci

TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian.

TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian. MESIN-MESIN FLUIDA TURBIN AIR TURBIN AIR Turbin air mengubah energi kinetik dan potensial dari air menjadi tenaga mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara energi

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir Penelitian ini di peruntukan untuk tugas akhir dengan judul Studi Analisis Pengaruh Sudu Turbin Pada Pembangkit Listrik Tenaga Mikro Hidro.Penelitian ini mengacu

Lebih terperinci

PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR

PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR PEMBUATAN TURBIN MIKROHIDRO TIPE CROSS-FLOW SEBAGAI PEMBANGKIT LISTRIK DI DESA BUMI NABUNG TIMUR Mafrudin 1), Dwi Irawan 2). 1, 2) Jurusan Teknik Mesin Universitas Muhammadiyah Metro Jl. Ki Hajar Dewantara

Lebih terperinci

Turbin Reaksi Aliran Ke Luar

Turbin Reaksi Aliran Ke Luar Turbin Reaksi Aliran Ke Luar Turbin reaksi aliran keluar adalah turbin reaksi dimana air masuk di tengah roda dan kemudian mengalir ke arah luar melalui sudu (gambar 8). Gambar 8. Turbin reaksi aliran

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah...

DAFTAR ISI DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... A. Latar Belakang B. Tujuan dan Manfaat C. Batasan Masalah... i DAFTAR ISI Halaman DAFTAR ISI... DAFTAR TABEL... DAFTAR GAMBAR... DAFTAR SIMBOL... i iv v viii I. PENDAHULUAN A. Latar Belakang... 1 B. Tujuan dan Manfaat... 2 C. Batasan Masalah... 2 D. Sistematika

Lebih terperinci

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU UJI PERFORMANSI TURBIN PELTON DENGAN 26 SUDU PADA HEAD 9,41 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bona Halasan Nababan 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 RANCANGAN NOSEL DENGAN KATUP PENGATURAN DEBIT AIR PENGGERAK TURBIN OSSBEGER DAYA TURBIN = 2,6 KW HEAD = 12 METER SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana H E R D Y

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat pembangkit listrik

Lebih terperinci

UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU

UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU UJI PERFORMANSI TURBIN PELTON DENGAN 24 SUDU PADA HEAD 5,21 METER DAN ANALISA PERBANDINGAN MENGGUNAKAN VARIASI BENTUK SUDU Bernardus Lumban Gaol 1,Tekad Sitepu 2 1,2, Departemen Teknik Mesin, Universitas

Lebih terperinci

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar:

LAMPIRAN. Panduan Manual. Alat Peraga PLTMH Dengan Turbin Pelton. 1. Bagian Bagian Alat. Gambar 1.1 Bagian Alat. Keterangan gambar: LAMPIRAN Panduan Manual Alat Peraga PLTMH Dengan Turbin Pelton 1. Bagian Bagian Alat Gambar 1.1 Bagian Alat Keterangan gambar: 1. Turbin Pelton 2. Rumah Turbin 3. Bagian Display 4. Pompa Air 5. Sensor

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu

BAB II TINJAUAN PUSTAKA. Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu 23 BAB II TINJAUAN PUSTAKA Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu peralatan utama selain generator. Turbin air adalah alat untuk mengubah energi air menjadi energi puntir. Energi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12

RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12 RANCANG BANGUN DAN PENGUJIAN TURBIN PELTON MINI BERTEKANAN 7 BAR DENGAN DIAMETER RODA TURBIN 68 MM DAN JUMLAH SUDU 12 SKRIPSI Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik DONALD SUPRI

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Tenaga Uap Pada mesin uap dan turbin uap, air sebagai benda kerja mengalami deretan peubahan keadaan. Untuk merubah air menjadi uap digunakan suatu alat dinamakan boiler

Lebih terperinci

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

BAB II DASAR TEORI 2.1. Tinjauan Pustaka BAB II DASAR TEORI 2.1. Tinjauan Pustaka Chen, dkk (2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan power generation untuk aliran air dalam pipa. Tujuannya

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Pengertian PLTMH Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) adalah suatu instalasi pembangkit listrik skala kecil yang menggunakan energi air sebagai tenaga penggeraknya seperti

Lebih terperinci

PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON. Dr. Sri Poernomo Sari, ST., MT.

PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON. Dr. Sri Poernomo Sari, ST., MT. PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON Dr. Sri Poernomo Sari, ST., MT.*), Ryan Fasha**) *) Dosen Teknik Mesin Universitas Gunadarma **) Mahasiswa

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

Potensi Tenaga Air di Indonesia Selama ini telah beberapa kali dilakukan studi potensi tenaga air di negara kita. Pada tahun 1968 Lembaga Masalah Ketenagaan- PLN (LMK) mencatat potensi tenaga air sebesar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Turbin Air Turbin air termasuk dalam kelompok mesin fluida yaitu, mesin yang berfungsi untuk mengubah energi fluida (energi potensial dan energi kinetis air) menjadi energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pembangkit Listrik Tenaga Mikrohidro. Pembangkit listrik kecil yang dapat menggunakan tenaga air pada saluran

BAB II DASAR TEORI. 2.1 Pembangkit Listrik Tenaga Mikrohidro. Pembangkit listrik kecil yang dapat menggunakan tenaga air pada saluran BAB II DASAR TEORI 2.1 Pembangkit Listrik Tenaga Mikrohidro Mikrohidro adalah istilah yang digunakan untuk instalasi pembangkit listrik yang mengunakan energi air. Kondisi air yang bisa dimanfaatkan sebagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Turbin air dikembangkan pada abad 19 dan digunakan secara luas untuk tenaga industri untuk jaringan listrik. Sekarang lebih umum dipakai untuk generator listrik. Turbin kini dimanfaatkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI digilib.uns.ac.id BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka Eksplorasi intensif dari berbagai alternatif dan sumber daya energi terbarukan saat ini sedang dilakukan di seluruh dunia. Listrik pico hydro

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Tinjauan Umum Praktikan sangat membantu dalam mendapatkan gambaran yang nyata tentang alat/mesin yang telah dipelajari di bangku kuliah. Dengan

Lebih terperinci

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump). BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH )

PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) PENGARUH SUDUT PIPA PESAT TERHADAP EFISIENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO ( PLTMH ) Naif Fuhaid 1) ABSTRAK Kebutuhan listrik bagi masyarakat masih menjadi permasalahan penting di Indonesia, khususnya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat

BAB I PENDAHULUAN. penting bagi masyarakat. Salah satu manfaatnya adalah untuk. penerangan. Keadaan kelistrikan di Indonesia sekarang ini sangat BAB I PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan energi yang mempunyai peranan penting bagi masyarakat. Salah satu manfaatnya adalah untuk penerangan. Keadaan kelistrikan di Indonesia sekarang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka (Chen, J., et al., 2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan Power Generation untuk aliran air dalam

Lebih terperinci

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL Yudi Setiawan, Irfan Wahyudi, Erwin Nandes Jurusan Teknik Mesin, Universitas Bangka Belitung Jl.Merdeka no. 04 Pangkalpinang

Lebih terperinci

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU

ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU ANALISA PERANCANGAN TURBIN VORTEX DENGAN CASING BERPENAMPANG SPIRAL DAN LINGKARAN DENGAN 3 VARIASI DIMENSI SUDU SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik INDRA

Lebih terperinci

TUGAS AKHIR. Rancang Bangun Kincir Air Irigasi. Sebagai Pembangkit Listrik di Desa Talawaan

TUGAS AKHIR. Rancang Bangun Kincir Air Irigasi. Sebagai Pembangkit Listrik di Desa Talawaan TUGAS AKHIR Rancang Bangun Kincir Air Irigasi Sebagai Pembangkit Listrik di Desa Talawaan Diajukan Untuk Memenuhi Salah Satu Persyaratan Dalam Menyelesaikan Pendidikan Diploma IV Program Studi Teknik Listrik

Lebih terperinci

II. TINJAUAN PUSTAKA. Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro

II. TINJAUAN PUSTAKA. Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro II. TINJAUAN PUSTAKA A. Tinjauan Umum PLTMH Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro artinya air. Dalam prakteknya istilah ini tidak merupakan sesuatu yang baku namun Mikro

Lebih terperinci

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU Bono 1) dan Indarto ) 1) Mahsiswa Program Pascasarjana Teknik Mesin dan Industri, Fakultas Teknik Universitas Gadjah Mada, Jalan Grafika

Lebih terperinci

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR

PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN DAYA TURBIN AIR TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI DIAMETER NOSEL TERHADAP TORSI DAN

Lebih terperinci

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN

Lebih terperinci

Perancangan Turbin Pelton

Perancangan Turbin Pelton Perancangan Turbin Pelton Anjar Susatyo, Lukman Hakim Puslit Tenaga Listrik dan Mekatronik-LIPI ABSTRAK Turbin Pelton adalah turbin reaksi di mana satu atau lebih pancaran air menumbuk roda yang terdapat

Lebih terperinci

BAB II DASAR TEORI 2.1 PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

BAB II DASAR TEORI 2.1 PEMBANGKIT LISTRIK TENAGA MIKROHIDRO BAB II DASAR TEORI 2.1 PEMBANGKIT LISTRIK TENAGA MIKROHIDRO 2.1.1 Gambaran Umum Mikrohidro Air merupakan salah satu sumber energi yang terbarukan yang sudah sejak lama dipergunakan. Pada dasarnya, air

Lebih terperinci

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU

RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU PKMT-2-16-1 RANCANG BANGUN TURBIN PELTON UNTUK SISTEM PEMBANGKIT LISTRIK TENAGA MIKRO-HIDRO DENGAN VARIASI BENTUK SUDU Pamungkas Irwan N, Franciscus Asisi Injil P, Karwanto, Samodra Wasesa Jurusan Teknik

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik GIBRAN Rancang Bangun Turbin Vortex Dengan Casing Berpenampang Lingkaran Yang Menggunakan Sudu Diameter 46cm Pada 3 Variasi Jarak Antara Sudu Dan Saluran Keluar SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Penelitian Terdahulu Menurut Muhammad As ad Abidin, Rudy Soenoko, Djoko Sutikno [2], pada penelitiannya mengenai pengaruh besar sudut kelengkungan sudu terhadap unjuk kerja

Lebih terperinci

Makalah Pembangkit listrik tenaga air

Makalah Pembangkit listrik tenaga air Makalah Pembangkit listrik tenaga air Di susun oleh : Muhamad Halfiz (2011110031) Robi Wijaya (2012110003) Alhadi (2012110093) Rari Ranjes Noviko (2013110004) Sulis Tiono (2013110008) Jurusan Teknik Mesin

Lebih terperinci

Pembangkit Listrik Tenaga Air. BY : Sulistiyono

Pembangkit Listrik Tenaga Air. BY : Sulistiyono Pembangkit Listrik Tenaga Air BY : Sulistiyono Pembangkit listrik tenaga air Tenaga air bahasa Inggris: 'hydropower' adalah energi yang diperoleh dari air yang mengalir. Air merupakan sumber energi yang

Lebih terperinci

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 1.1 KETERSEDIAAN DEBIT AIR PLTM CILEUNCA

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 1.1 KETERSEDIAAN DEBIT AIR PLTM CILEUNCA 42 BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 1.1 KETERSEDIAAN DEBIT AIR PLTM CILEUNCA Sebelum melakukan perhitungan maka alangkah baiknya kita mengetahui dulu ketersediaan debit air di situ Cileunca

Lebih terperinci

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20 PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20 Muhammad tohari *), Ir. Husin Ibrahim Lubis, MT Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan 2015 *) E-mail :hari_boy03@yahoo.co.id

Lebih terperinci

BAB II LANDASAN TEORI. semakin populer sebagai alternatif sumber energi, terutama di wilayah yang

BAB II LANDASAN TEORI. semakin populer sebagai alternatif sumber energi, terutama di wilayah yang BAB II LANDASAN TEORI 2.1. Pengertian PLTMH Dan Perbedaan PLTA Pembangkit energi air skala mikro atau pembangkit tenaga mikrohidro semakin populer sebagai alternatif sumber energi, terutama di wilayah

Lebih terperinci

NASKAH PUBLIKASI. Disusun untuk Memenuhi Tugas dan Syarat-syarat Guna Memperoleh. Gelar Sarjana Strata-satu Jurusan Teknik Elektro Fakultas Teknik

NASKAH PUBLIKASI. Disusun untuk Memenuhi Tugas dan Syarat-syarat Guna Memperoleh. Gelar Sarjana Strata-satu Jurusan Teknik Elektro Fakultas Teknik NASKAH PUBLIKASI APLIKASI GENERATOR MAGNET PERMANEN KECEPATAN RENDAH PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO (PLTMH) MENGGUNAKAN KINCIR AIR TIPE PELTON Disusun untuk Memenuhi Tugas dan Syarat-syarat

Lebih terperinci

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24 PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24 Armansyah Munthe *), Rahmawaty, ST, MT Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan 2015 *) E-mail : arman.munthe@yahoo.com

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO B.11. Kaji eksperimental kinerja turbin air hasil modifikasi... KAJI EKSPERIMENTAL KINERJA TURBIN AIR HASIL MODIFIKASI POMPA SENTRIFUGAL UNTUK PEMBANGKIT LISTRIK TENAGA MIKROHIDRO Gatot Suwoto Program

Lebih terperinci

BAB II TINJAUAN PUSTAKA. relatif tinggi menuju tempat yang relatif lebih rendah. Fluida cair pada tekanan

BAB II TINJAUAN PUSTAKA. relatif tinggi menuju tempat yang relatif lebih rendah. Fluida cair pada tekanan BAB II TINJAUAN PUSTAKA 2.1 PENGERTIAN POMPA Gaya gravitasi menyebabkan fluida cair mengalir dari satu tempat yang relatif tinggi menuju tempat yang relatif lebih rendah. Fluida cair pada tekanan tinggi

Lebih terperinci

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI Skripsi Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA. BAB II LANDASAN TEORI 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro Pembangkit Listrik Tenaga Mikrohydro atau biasa disebut PLTMH adalah pembangkit listrik tenaga air sama halnya dengan PLTA, hanya

Lebih terperinci

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR

PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR PENGUJIAN PROTOTIPE TURBIN HEAD SANGAT RENDAH PADA SUATU SALURAN ALIRAN AIR Ridwan Arief Subekti 1, Anjar Susatyo 2 1 Pusat Penelitian Tenaga Listrik dan Mekatronik, LIPI, Bandung ridw001@lipi.go.id 2

Lebih terperinci

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi Turbin Uap 71 1. Rumah turbin (Casing). Merupakan rumah logam kedap udara, dimana uap dari ketel, dibawah tekanan dan temperatur tertentu, didistribusikan disekeliling sudu tetap (mekanisme pengarah) di

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Potensi Energi Air Air merupakan sumber energi yang murah dan relatif mudah didapat, karena pada air tersimpan energi potensial (pada air jatuh) dan energi kinetik (pada air

Lebih terperinci

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan)

PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN AIR KINETIK (Sebagai Alternatif Pembangkit Listrik Daerah Pedesaan) TURBO Vol. 5 No. 1. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo PENGARUH VARIASI BENTUK SUDU TERHADAP KINERJA TURBIN

Lebih terperinci

BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA AIR SKALA PIKO

BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA AIR SKALA PIKO BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA AIR SKALA PIKO 2.1. Pengertian PLTA Skala Piko Berdasarkan output yang dihasilkan, pembangkit listrik tenaga air dibedakan atas : 1. Large-hydro : lebih dari

Lebih terperinci

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

BAB II DASAR TEORI. dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut. BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatut empat ketempat lain dengan cara menaikkan tekanan cairan tersebut.

Lebih terperinci

BAB II TINJAUAN PUSTAKA Pengertian dan Klasifikasi Pembangkit Listrik Tenaga Air

BAB II TINJAUAN PUSTAKA Pengertian dan Klasifikasi Pembangkit Listrik Tenaga Air 5 BAB II TINJAUAN PUSTAKA 2.1 PEMBANGKIT LISTRIK TENAGA AIR 2.1.1 Pengertian dan Klasifikasi Pembangkit Listrik Tenaga Air Tenaga air merupakan sumberdaya terpenting setelah tenaga uap/panas, pemanfaatan

Lebih terperinci

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN

PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN PERANCANGAN DAN PENGUJIAN TURBIN KAPLAN PADA KETINGGIAN (H) 4 M SUDUT SUDU PENGARAH 30 DENGAN VARIABEL PERUBAHAN DEBIT (Q) DAN SUDUT SUDU JALAN NASKAH PUBLIKASI Disusun oleh : ANDI SUSANTO NIM : D200 080

Lebih terperinci

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON Ali Thobari, Mustaqim, Hadi Wibowo Faculty of Engineering, Universitas Pancasakti Tegal Jl. Halmahera KM. 1 Kota Tegal 52122 Telp./Fax.

Lebih terperinci

2. TINJAUAN LITERATUR

2. TINJAUAN LITERATUR 2. TINJAUAN LITERATUR 2.1. Pemodelan Sistem Model merupakan representasi suatu sistem dan dipergunakan sebagai alat peramalan dan pengendalian. Fungsi utama suatu model adalah kemampuannya untuk menjelaskan

Lebih terperinci

II. TINJAUAN PUSTAKA. mekanis maupun energi listrik. Besarnya tenaga air yang tersedia dari suatu

II. TINJAUAN PUSTAKA. mekanis maupun energi listrik. Besarnya tenaga air yang tersedia dari suatu 5 II. TINJAUAN PUSTAKA A. Hydropower Tenaga air (Hydropower) adalah energi yang diperoleh dari air yang mengalir. Energi yang dimiliki air dapat dimanfaatkan dan digunakan dalam wujud energi mekanis maupun

Lebih terperinci

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut:

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut: B. TURBIN REAKSI Pada turbin reaksi, uap masuk ke roda dengan tekanan tertentu dan mengalir pada sudu. Uap ketika meluncur, memutar sudu dan membuatnya bergerak. Kenyataannya, runner turbin berotasi karena

Lebih terperinci

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO

ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO ANALISIS PENGUJIAN SIMULATOR TURBIN AIR SKALA MIKRO Oleh Bambang hermani bang2hermani@gmail.com. TM-Untag-Crb ABSTRAK Pengkajian rancang bangun simulator turbin air skala mikro dimaksudkan untuk penanding

Lebih terperinci

Gambar 2.1 Aliran Vorteks

Gambar 2.1 Aliran Vorteks BAB II TINJAUAN PUSTAKA 2.1 Vorteks Dalam Dinamika Fluida, Vorteks adalah sebuah daerah di dalam fluida dimana aliran sebagian besar bergerak memutar pada terhadap sumbu yang imajiner. Pola gerakan disebut

Lebih terperinci

BAB V STUDI POTENSI. h : ketinggian efektif yang diperoleh ( m ) maka daya listrik yang dapat dihasilkan ialah :

BAB V STUDI POTENSI. h : ketinggian efektif yang diperoleh ( m ) maka daya listrik yang dapat dihasilkan ialah : BAB V STUDI POTENSI 5.1 PERHITUNGAN MANUAL Dari data-data yang diperoleh, dapat dihitung potensi listrik yang dapat dihasilkan di sepanjang Sungai Citarik. Dengan persamaan berikut [23]: P = ρ x Q x g

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik MARULITUA SIDAURUK NIM

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik MARULITUA SIDAURUK NIM ANALISIS DAN SIMULASI VARIASI SUDUT SUDU-SUDU TURBIN IMPULS TERHADAP DAYA MEKANIS YANG DIHASILKAN TURBIN SEBAGAI PEMBANGKIT TENAGA UAP PADA PKS KAPASITAS 30 TON TBS/JAM SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB 2 LANDASAN TEORI. 1. Pembangkit Listrik Tenaga Surya (PLTS), 2. Pembangkit Listrik Tenaga Diesel (PLTD), 3. Pembangkit Listrik Tenaga Angin,

BAB 2 LANDASAN TEORI. 1. Pembangkit Listrik Tenaga Surya (PLTS), 2. Pembangkit Listrik Tenaga Diesel (PLTD), 3. Pembangkit Listrik Tenaga Angin, BAB 2 LANDASAN TEORI Pusat listrik memiliki berbagai macam sumber tenaga, diantaranya adalah: 1. Pembangkit Listrik Tenaga Surya (PLTS), 2. Pembangkit Listrik Tenaga Diesel (PLTD), 3. Pembangkit Listrik

Lebih terperinci

BAB IV TURBIN UAP. Secara umum, sebuah turbin uap secara prinsip terdiri dari dua komponen berikut:

BAB IV TURBIN UAP. Secara umum, sebuah turbin uap secara prinsip terdiri dari dua komponen berikut: BAB IV TURBIN UAP Turbin uap adalah penggerak mula dimana gerak putar diperoleh dengan perubahan gradual dari momentum uap. Pada turbin uap, gaya dibangkitkan pada sudu (blade) karena kecepatan uap. Ini

Lebih terperinci

PERANCANGAN DAN PEMBUATAN TURBIN AIR KAPLAN SEBAGAI PEMBANGKIT LITRIK TENAGA MIKROHIDRO (BERTITIK BERAT PADA DIMENSI GUIDE VANE)

PERANCANGAN DAN PEMBUATAN TURBIN AIR KAPLAN SEBAGAI PEMBANGKIT LITRIK TENAGA MIKROHIDRO (BERTITIK BERAT PADA DIMENSI GUIDE VANE) PERANCANGAN DAN PEMBUATAN TURBIN AIR KAPLAN SEBAGAI PEMBANGKIT LITRIK TENAGA MIKROHIDRO (BERTITIK BERAT PADA DIMENSI GUIDE VANE) Oleh : NASRUL SAIYIDIN 2107030045 Dosen Pembimbing : Dr. Ir. HERU MIRMANTO,

Lebih terperinci

58. Pada tail race masih terdapat kecelakaan air 1m/det serta besarnya K = 0,1. Hitung : 1) Hidrolik Losses!

58. Pada tail race masih terdapat kecelakaan air 1m/det serta besarnya K = 0,1. Hitung : 1) Hidrolik Losses! TURBIN AIR 1. Jelaskan secara singkat tentang sejarah diketemukannya turbin air sebagai tenaga penggerak mula? 2. Jelaskan perbedaan antara pembangkit tenaga listrik dengan tenaga air dan tenaga diesel?

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TINJAUAN UMUM Pembangkit Listrik Tenaga Mikro Hidro adalah bentuk Pembangkit Listrik Tenaga Air dalam skala kecil dimana daya yang dihasilkan < 1 Mega Watt, yang merupakan bentuk

Lebih terperinci