BAB II LANDASAN TEORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI"

Transkripsi

1 7 BAB II LANDASAN TEORI 2.1. Destilasi Destilasi merupakan suatu cara yang digunakan untuk memisahkan dua atau lebih komponen cairan berdasarkan perbedaan titik didihnya. Uap yang dibentuk selama destilasi makin lama makin dijenuhi dan makin banyak mengandung komponen yang lebih mudah menguap (yaitu komponen yang titik didihnya lebih rendah). Sehingga akan terjadi pemisahan uap yang terbentuk dan mengandung komponen yang sama seperti campuran semula. Tetapi pada proses yang berbeda, cara pemisahan dengan destilasi ini mudah dilakukan apabila perbedaan polaritas antar komponen cukup besar. Namun untuk mendapatkan komponen murni sulit dicapai. Prinsip destilasi adalah penguapan dan pengembunan kembali uapnya, pada tekanan dan suhu tertentu. Tujuan destilasi adalah pemurnian zat cair pada titik didihnya, dan memisahkan cairan dari zat padat atau memisahkan zat cair dari

2 8 campurannya yang mempunyai titik didih yang berbeda. Komponen yang mempunyai titik didih lebih rendah akan terpisah lebih dahulu. Beberapa contoh penggunaan teknik destilasi adalah dalam industri minuman beralkohol, yaitu untuk memperoleh kadar alkohol yang dikehendaki. Dalam industri farmasi untuk mengisolasi zat-zat yang berguna sebagai obat yang terdapat dalam akar, batang, dan daun tumbuh-tumbuhan. Selain itu destilasi digunakan untuk memisahkan dan memurnikan etanol dari air dimana etanol mempunyai titik didih 78,6 0 C akan menguap dan mengembun melalui pendinginan. Konsep pemisahan dengan cara destilasi merupakan sintesa pengetahuan dan peristiwa- peristiwa: 1. Kesetimbangan fase, suatu proses yang dinamis reversible dan arah kesetimbangannya dapat dicapai dari 2 arah 2. Perpindahan massa, Perpindahan panas, Perpindahan momentum,adalah berbagai mekanisme di mana partikel atau kuantitas fisik berpindah dari satu tempat ke tempat lain 3. Penguapan, proses perpindahan molekul dari dalam keadaan cair dengan spontan menjadi gas

3 Unit destilasi Suatu unit destilasi terdiri dari ; kolom distillasi ( menara) reboiler, overhead condenser, dan reflux drum. 1. Kolom destilasi (menara) adalah sebuah menara tinggi dimana dipasang sejumlah baki-baki dengan jarak cm. dalam kolom itu terjadi pemisahan antara destilat dan produk dasar karena perbedaan titik didih kedua komponen umpan 2. Reboiler digunakan untuk memanaskan cairan yang mengalir keluar dari dasar kolom dan menguapkanya. pemanasan akan menghasilkan uap yang cukup untuk pemisahan. Suatu penukar panas vertical jenis rongga dan tabung (shell and tube) dengan perangkai tabung tetap (fixed tubesheet) digunakan sebagai reboiler. Sebagai medium pemanas biasanya digunakan uap air. 3. Overhead condenser adalah alat penukar panas untuk mendinginkan dan mengembunkan uap yang keluar dari puncak kolom dan lebih banyak mengandung komponen bertitik didih rendah. Untuk overhead condenser sering digunakan penukaran panas jenis rogga dan tabung (shell and tube) untuk medium pendingin dapat digunakan refrigerant atau air karena biaya lebih murah, biasanya air pendingin sering digunakan

4 10 4. Reflux drum Sebagai pencampur dari reflux drum di kembalikan ke kolom destilasi (disebut reflux), dan sisanya di kirim ke tangki produk. Pompa yang digunakan untuk pengembalian disebut reflux pump (pompa reflux) Untuk menjamin kemantapan operasi pompa, harus ada cairan yang cukup dalam reflux drum itu Gambar II.1 skema alat destilasi etanol (Ref. 7) 2.2. PERPINDAHAN KALOR Perpindahan kalor dari suatu zat ke zat lain sering sekali terjadi dalam kehidupan sehari-hari baik penyerapan atau pelepasan kalor, untuk mencapai dan mempertahankan keadaan yang dibutuhkan sewaktu proses berlangsung. Kalor sendiri adalah salah satu bentuk dari energi.

5 11 Hukum kekekalan energi menyatakan bahwa energi tidak musnah, contohnya hukum kekekalan massa dan momentum, ini artinya kalor tidak hilang. Energi hanya berubah bentuk dari bentuk yang pertama ke bentuk yang kedua. Kalor dapat berpindah dengan 3 cara yaitu: 1. Pancaran, sering juga dinamakan radiasi. 2. Hantaran, sering juga dinamakan konduksi 3. Aliran, sering juga disebut konveksi Pancaran (Radiasi) Yang dimaksud dengan pancaran atau radiasi adalah perpindahan kalor melalui gelombang dari suatu zat ke zat lain. Semua benda memancarkan kalor, keadaan ini terbukti setelah suhu meningkat. Pada dasarnya proses perpindahan kalor secara radiasi terjadi dengan perantaraan foton dan juga gelombang elektromagnet. Apabila sejumlah energi kalor menimpa suatu permukaan, sebagian akan dipantulkan, sebagian akan diserap kedalam bahan dan sebagian akan menembusi bahan dan terus keluar. Jadi dalam mempelajari perpindahan kalor radiasi akan dilibatkan suatu fisik permukaan. Ciri-ciri radiasi yaitu: Kalor radiasi merambat lurus. Perambatannya tidak memerlukan medium (misal zat cair atau gas).

6 12 Menurut hukum Stefan Boltzmann tentang radiasi panas dan berlaku hanya untuk benda hitam, bahwa kalor yang dipancarkan (dari benda hitam) dengan laju yang sebanding dengan pangkat empat temperatur absolut benda itu dan berbanding langsung dengan luas permukaan benda. Berdasarkan Ref.8 yaitu Artono Koestoer, q pancaran =.....(II.1) ( Lit. 5 hal. 138) Dimana : = konstanta proporsionalitas ( tetapan Stefan boltzmann ) = 5, W / m2. K4 A = luas permukaan bidang benda hitam (m 2 ) T = temperatur absolut benda hitam (K) Hantaran (Konduksi) Yang dimaksud hantaran (konduksi) adalah pengangkutan kalor melalui satu jenis zat, sehingga perpindahan kalor secara hantaran atau konduksi merupakan suatu proses dalam karena proses perpindahan kalor ini hanya terjadi didalam bahan. Arah aliran energi kalor adalah dari titik bersuhu tinggi ke titik bersuhu rendah. Dalam aliran panas konduksi, perpindahan energi terjadi karena hubungan molekul secara langsung tanpa adanya perpindahan molekul yang cukup besar. Secara umum laju aliran kalor secara konduksi dapat dihitung dengan rumus sebagai berikut :...(II.2) ( Lit.5 hal.135)

7 13 Dimana : q = laju perpindahan kalor (W) dt/dx = gradient suhuu terhadap penampang tersebut, yaitu laju perubahan suhu T terhadap jarak dalam arah aliran panas x. k A = konduktivitas termal (W/m 2. C) = luas permukaan bidang hantaran (m²) Alasan pemberian tanda minus (-) pada rumus konduksi hukum Fourier, seperti diilustrasikan sebagai berikut : Jika temperatur menurun pada arah-x positif, dt/dx adalah negatif; kemudian Q x menjadi nilai positif dikarenakan kehadiran dari tanda negatif, sehingga laju kalor berada pada arah-x positif. Gambar II.2 Temperatur konduksi menurun pada arah X-positif (Ref. 5 hal. 135) Jika temperatur meningkat pada arah-x positif, dt/dx adalah positif, Q x berubah menjadi negatif, dan aliran kalor berada pada arah-x adalah negatif, sebagaimana diilustrasikan pada gambar berikut. Q x merupakan nilai positif, aliran kalor berada

8 14 pada arah-x positif, dan sebaliknya. Gambar II.3 Temperatur konduksi meningkat pada arah X-positif (Ref. 5 hal. 135) Menurut teori kinetik, suhu elemen suatu zat sebanding dengan energi kinetik rata-rata molekul-molekul yang membentuk elemen itu. Energi yang dimiliki suatu elemen zat yang disebabkan oleh kecepatan dan posisi relatif molekul-molekulnya disebut energi dalam. Jadi, semakin cepat molekul-molekul bergerak, semakin tinggi suhu maupun energi-dalam elemen zat. Bila molekul-molekul disuatu daerah memperoleh energi kinetik rata-rata yang lebih besar daripada yang dimilikii oleh molekul-molekul disuatu daerah yang berdekatan, sebagaimana yang telah diwujudkan oleh adanya beda suhu, maka molekul-molekul yang memiliki energi yang lebih besar itu akan memindahkan sebagian energinya kepadaa molekul-molekul di daerah yang bersuhu lebih rendah.

9 15 Gambar II.4 Perpindahan panas konduksi dan difusi energi akibat efektivitas molekul (Ref. 5 hal. 135) Konduksi adalah satu-satunya mekanisme dimana panas dapat mengalir pada zat padat yang tidak tembus cahaya. Konduksi penting pula dalam fluida, tetapi di dalam medium yang bukan padat biasanya tergabung dengan konveksi, dan dalam beberapa hal juga dengan radiasi Aliran (Konveksi) Yang dimaksud dengan aliran atau konveksi adalah perpindahan kalor oleh gerak suatu zat yang dipanaskan. Proses perpindahan kalor secara aliran/konveksi merupakan satu fenomena permukaan. Proses konveksi hanya terjadi di permukaan bahan jadi dalam proses ini struktur bagian dalam bahan kurang penting. Keadaan permukaan dan keadaan sekelilingnya serta kedudukan permukaan itu adalah utama. Lazimnya keadaan kesetimbangan termodinamik di dalam bahan akibat proses konduksi, suhu permukaan bahan akan berbeda dengan suhu sekelilingnya. Dalam hal ini terdapat keadaan suhu tidak setimbang diantara bahan dengan sekelilingnya.

10 16 Konveksi sangat penting sebagai mekanisme perpindahan energi antara permukaan benda padat dan cair atau gas. Perpindahan kalor secara konveksi dari suatu permukaan yang suhunya di atas suhu fluida disekitarnya berlangsung dalam beberapa tahap. Pertama, kalor akan mengalir dengan cara konduksi dari permukaan ke partikel-partikel fluida yang berbatasan. Energi yang berpindah dengan cara demikian akan menaikkan suhu dan energi dalam partikel-partikel fluida tersebut. Kedua, partikel-partikel tersebut akan bergerak ke daerah suhu yang lebih rendah dimana partikel tersebut akan bercampur dengan partikelpartikel fluida lainnya. Gambar II.5 Perpindahan kalor secara konveksi pada suatu plat (Ref. 5 hal. 136) Perpindahan kalor secara konveksi dapat dikelompokkan menurut gerakan alirannya, yaitu konveksi bebas (free convection) dan konveksi paksa (forced convection). Apabila gerakan fluida tersebut terjadi sebagai akibat dari perbedaan densitas (kerapatan) yang disebabkan oleh gradient suhu maka disebut konveksi bebas atau konveksi alamiah (natural convection). Bila gerakan fluida tersebut disebabkan oleh penggunaan alat dari luar, seperti pompa atau kipas, maka prosesnya disebut konveksi paksa.

11 17 Keefektifan perpindahan panas dengan cara konveksi tergantung sebagian besarnya pada gerakan mencampur fluida. Akibatnya studi perpindahan panas konveksi didasarkan pada pengetahuan tentang cirri-ciri aliran fluida. Kalor yang dipindahkan secara konveksi dinyatakan dengan persamaan Newton tentang pendinginan [Holman, 1986 ]. qc = -hc A T...(II.3) (Lit. 5 hal. 136) Dimana: qc hc A = Laju perpindahan kalor secara konveksi (W) = Koefisien perpindahan kalor konveksi (W/m 2.K) = Luas perpindahan kalor (m²) T = Beda antara suhu permukaan Tw dan suhu fluida T~ Tanda minus ( - ) digunakan untuk memenuhi hukum II thermodinamika, sedangkan panas yang dipindahkan selalu mempunyai tanda positif ( + ). 2.3 Sistem aliran penukar panas Proses pertukaran panas antara dua fluida dengan temperatur yang berbeda, baik bertujuan memanaskan atau mendinginkan fluida banyak diaplikasikan secara teknik dalam berbagai proses thermal di industri. Terdapat berbagai jenis penukar panas menurut ukuran, efektifitas, perpindahan panas, aliran, jenis konstruksi. Namun berdasar sistem kerja yang digunakan, penukar panas dapat digolongkan menjadi dua system utama, yaitu :

12 Pertukaran panas secara langsung Materi yang akan dipanaskan atau didinginkan dikontakkan langsung dengan media pemanas atau pendingin ( missal : kontak langsung antara fluida dengan kukus, es ). Metode ini hanya dapat digunakan untuk hal hal tertentu yang khusus Pertukaran panas secara tidak langsung Pertukaran panas secara tidak langsung memungkinkan terjadinya perpindahan panas dari suatu fluida ke fluida lain melalui dinding pemisah. Berdasarkan arah aliran fluida, pertukaran panas dapat dibedakan : Pertukaran panas aliran searah (current / paralel flow ) Pertukaran panas jenis ini, kedua fluida ( dingin dan panas ) masuk pada sisi penukar panas yang sama, mengalir dengan arah yang sama, dan keluar pada sisi yang sama pula. Karakter penukar panas jenis ini, temperatur fluida dingin yang keluar dari alat penukar panas ( Tcb ) tidak dapat melebihi temperatur fluida panas yang keluar dari alat penukar panas (Thb), sehingga diperlukan media pendingin atau media pemanas yang banyak. Neraca panas yang terjadi : (II.4) (Lit. 5 hal. 136)

13 19 Gambar II.6 Profil temperatur pada aliran co current (Ref. 5 hal. 137) Dengan assumsi nilai kapasitas panas spesifik ( cp ) fluida dingin dan panas konstan, tidak ada kehilangan panas ke lingkungan serta keadaan steady state, maka kalor yang dipindahkan :. (II.5) (Lit. 5 hal. 138) Dimana : U = koefisien perpindahan panas secara keseluruhan ( W / m 2. 0 C ) A = luas perpindahan panas ( m2 ) T2 = Thb Tcb T1 = Tha Tca ( log mean temperature diffrensial )

14 Pertukaran panas aliran berlawanan arah ( counter flow ) Penukar panas jenis ini, kedua fluida ( panas dan dingin ) masuk penukar panas dengan arah berlawanan, mengalir dengan arah berlawanan dan keluar pada sisi yang berlawanan. Temperatur fluida dingin yang keluar penukar panas ( Tcb ) lebih tinggi dibandingkan temperatur fluida panas yang keluar penukar panas ( Thb ), sehingga dianggap lebih baik dari alat penukar panas aliran searah (Co- Current). Gambar II.7 Profil temperatur pada aliran counter current (Ref. 5 hal. 138) Kalor yang dipindahkan pada aliran counter current mempunyai persamaan yang sama dengan persamaan aliran searah atau current flow, dengan perbedaan nilai TLMTD, dengan pengertian beda T1 dan T2, yaitu:

15 Alat Penukar Panas (Heat Exchanger) Alat penukar kalor adalah suatu alat untuk memindahkan panas dari fluida ke fluida yang lain. Sebagian besar industri-industri yang berkaitan dengan pemrosesan selalu menggunakan alat ini, sehingga alat penukar kalor mempunyai peranan yang sangat penting dalam suatu proses produksi atau operasi diantaranya adalah pada proses heating ventilation and air conditioning (HVAC) system, sistem radiator dan lain-lain. Satu bagian terpenting dari heat exchanger adalah permukaan kontak panas. Pada permukaan inilah terjadi perpindahan panas dari satu zat ke zat yang lain. Semakin luas bidang kontak total yang dimiliki oleh heat exchanger tersebut, maka akan semakin tinggi nilai efisiensi perpindahan panasnya Alat penukar kalor tipe Shell & Tube Heat exchanger tipe shell & tube menjadi satu tipe yang paling mudah dikenal. Tipe ini melibatkan tube sebagai komponen utamanya. Salah satu fluida mengalir di dalam tube, sedangkan fluida lainnya mengalir di luar tube. Pipa-pipa tube didesain berada di dalam sebuah ruang berbentuk silinder yang disebut dengan shell, sedemikian rupa sehingga pipa-pipa tube tersebut berada sejajar dengan sumbu shell.

16 22 Gambar II.8 heat exchanger tipe shell & tube (a) satu jalur shell, satu jalur tube (b) satu jalur shell, dua jalur tube (Ref. 10) Komponen-komponen utama dari heat exchanger tipe shell & tube adalah sebagai berikut: Tube. Pipa tube berpenampang lingkaran menjadi jenis yang paling banyak digunakan pada heat exchanger tipe ini. Desain rangkaian pipa tube dapat bermacammacam sesuai dengan fluida kerja yang dihadapi.

17 23 Gambar II.9 macam-macam rangkaian pipa tube (Ref. 10) Shell. Bagian ini menjadi tempat mengalirnya fluida kerja yang lain selain yang mengalir di dalam tube. Umumnya shell didesain berbentuk silinder dengan penampang melingkar. Material untuk membuat shell ini adalah pipa silindris jika diameter desain dari shell tersebut kurang dari 0,6 meter. Sedangkan jika lebih dari 0,6 meter, maka digunakan bahan plat metal yang dibentuk silindris dan disambung dengan proses pengelasan.

18 24 Gambar II.10 tipe-tipe desain front-end head, shell, dan rear-end head (Ref. 10)

19 25 Tipe-tipe desain dari shell ditunjukkan pada gambar di atas. Tipe E adalah yang paling banyak digunakan karena desainnya yang sederhana serta harga yang relatif murah. Shell tipe F memiliki nilai efisiensi perpindahan panas yang lbih tinggi dari tipe E, karena shell tipe didesain untuk memiliki dua aliran (aliran U). Aliran sisi shell yang dipecah seperti pada tipe G, H, dan J, digunakan pada kondisi-kondisi khusus seperti pada kondenser dan boiler thermosiphon. Shell tipe K digunakan pada pemanas kolam air. Sedangkan shell tipe X biasa digunakan untuk proses penurunan tekanan uap. Nozzle. Titik masuk fluida ke dalam heat exchanger, entah itu sisi shell ataupun sisi tube, dibutuhkan sebuah komponen agar fluida kerja dapat didistribusikan merata di semua titik. Komponen tersebut adalah nozzle. Nozzle ini berbeda dengan nozzle-nozzle pada umumnya yang digunakan pada mesin turbin gas atau pada berbagai alat ukur. Nozzle pada inlet heat exchanger akan membuat aliran fluida yang masuk menjadi lebih merata, sehingga didapatkan efisiensi perpindahan panas yang tinggi. Front-End dan Rear-End Head. Bagian ini berfungsi sebagai tempat masuk dan keluar dari fluida sisi pipa tubing. Selain itu bagian ini juga berfungsi untuk menghadapi adanya efek pemuaian. Berbagai tipe front-end dan rear-end head ditunjukkan pada gambar di atas. Buffle. Ada dua jenis buffle yang ada pada heat exchanger tipe shell & tube, yakni tipe longitudinal dan transversal. Keduanya berfungsi sebagai pengatur arah

20 26 aliran fluida sisi shell. Berikut contoh desain buffle. Gambar II.11 macam-macam bentuk baffle (Ref. 10) 2.5. Langkah- langkah perhitungan heat exchanger type shell and tube 1. mencari Q (beban panas) dari neraca panas =..... (II.6) (Lit.6) 2. Perkiraan jumlah tube (Nt) - Identifikasi laju aliran massa di tube, m (kg/s) - Pilih ukuran tube, di (m)

21 27 - Pilih kecepatan aliran di tube, v (m/s) Fluida air, Um = m/s Fluida proses, Um = m/s - Menghitung luas permukaan aliran fluida 1 tube, A1t (m²) A1t = π. ri²....(ii.7) (Lit. 6) - Menghitung jumlah tube ( ) = (II.8) (Lit. 6) = ρ.. - Menghitung luas total permukaan aliran fluida pada tube, Atotal (m²)!" =.. (II.9) (Lit. 6) 3. Koefisien konveksi di dalam tube (hi) - Menghitung bilangan Reynolds sisi tube (Re) #$ = ρ..% &... (II.10) (Lit. 6) µ - Menghitung koefisien gesek didalam tube (f) ' =(1,58.ln#$ 3, (II.11) (Lit. 6)

22 28 - Menghitung bilangan Nusselt (Nui) 5 6 = 78 9 :;<=3>>>)?@ A4,B :C,D ;?@ E3).. (II.12) (Lit.6) - Menghitung koefisien konveksi, hi (W/m² K) 5 6 = F &.% & G... (II.13) (Lit. 6) h 6 = IJ &. G % & 4. Menghitung koefisien konveksi di sisi shell, ho (W/m² K) - Menentukan susunan tube/tube lay out (CL) Gambar II.12 macam-macam tube lay out (Ref. 10) Profil 45 atau 90, CL=1 Profil 30 atau 60, CL=0,87

23 29 -Menentukan jumlah lintasan tube (CTP) 1 lintasan, CTP=0,93 2 lintasan, CTP=0,90 3 lintasan, CTP=085 - Menghitung Diameter Shell, Ds (m) K 4 L = I 9 9.MN.? O.%P...(II.14) (Lit. 6) >,BQRMS? - Menentukan pitch ratio (PR) PR dipilih antara 1.25 sampai Menghitung pitch tube, PT (m) T U =? V % P. (II.15) (Lit. 6) T W =T U.X WY = Z [? V - Menentukan jarak antar baffle, B (m) - Menghitung luas penampang aliran di sisi shell, As (m²) L =;K L WY.X )\ (II.16) (Lit. 6)

24 30 - Menghitung bilangan Reynolds sisi shell (Re) #$ = [. % P. (II.17) (Lit. 6) [. µ - Menghitung bilangan Nusselt (Nuo) 5 =0,20#$ >,^T_ >,` (II.18) (Lit. 6) - Menghitung koefisien konveksi di sisi shell, ho (W/m² K) 5 = F P.% P G a. (II.19) (Lit. 6) h = IJ P.G a % P 5. Koefisien perpindahan panas U=Uf - Menghitung koefisien Uc (clean) = b c d + + c d fg ; c b d 4i hd ) h b.... (II.20) (Lit. 6) - Menentukan prosentase harga Over design (OS) - Menghitung koefisien Uf j =... (II.21) (Lit. 6) A%lm

25 31 6. Perkiraan panjang tube, L (m) - Menghitung beda temperatur rata-rata logaritmik, nw ( K) = 6 4 = 6 opwq = S 3 S 9 (II.22) (Lit. 6) ) fg ; V V9 untuk 1-2 exchanger Fc > 0,75. jika Fc pada 1-2 Exchanger < 0,75 maka gunakan 2-4 Exchanger. Untuk 2-4 exchanger Fc > 0,9 untuk removable longitudinal baffle. Fc 0,85 untuk welded longitudinal baffle. Fc dihitung karena di dalam tube terjdi perubahan arah aliran. Sebagai contoh untuk 1-2 exchanger, lewatan merupakan gabungan antara aliran searah dan lawan arah. Dengan demikian dalam 1-2 exchanger tersebut jika dihitung LMTD untuk countercurrent maka harus dihitung faktor koreksi Fc nya. nw =Fc x T NvSZ. (II.23) (Lit. 6) - Menghitung luas total perpindahan panas, Atot (m²) = w. S xv (II.24) (Lit. 6)

26 32 - Menghitung panjang tube, L (m) =π.d z.l.n }. (II.25) (Lit. 6) ~ = P π. % P.I 2.6. Computational Fluid Dynamic (CFD) Computational Fluid Dynamics (CFD) adalah metode perhitungan dengan sebuah kontrol dimensi, luas dan volume dengan memanfaatkan bantuan komputasi komputer untuk melakukan perhitungan pada tiap-tiap elemen pembaginya. Prinsipnya adalah suatu ruang yang berisi fluida yang akan dilakukan penghitungan dibagi menjadi beberapa bagian, hal ini sering disebut dengan sel dan prosesnya dinamakan meshing. Bagian-bagian yang terbagi tersebut merupakan sebuah kontrol penghitungan yang akan dilakukan adalah aplikasi. CFD adalah penghitungan yang mengkhususkan pada fluida. Mulai dari aliran fluida, heat transfer dan reaksi kimia yang terjadi pada fluida. Atas prinsip-prinsip dasar mekanika fluida, konservasi energi, momentum, massa, serta species, penghitungan dengan CFD dapat dilakukian. Secara sederhana proses penghitungan yang dilakukan oleh aplikasi CFD adalah dengan kontrol-kontrol penghitungan yang telah dilakukan maka kontrol penghitungan tersebut akan melibatkan dengan memanfaatkan persamaan- persamaan yang terlibat. Persaman-persamaan ini adalah

27 33 persamaan yang membangkitkan dengan memasukan parameter apa saja yang terlibat dalam domain. Misalnya ketika suatu model yang akan dianalisis melibatkan temperatur berarti model tersebut melibatkan persamaan energi atau konservasi dari energi tersebut. Inisialisasi awal dari persaman adalah boundary condition. Boundary condition adalah kondisi di mana kontrol-kontrol perhitungan didefinisikan sebagai definisi awal yang akan dilibatkan kekontrol-kontrol penghitungan yang berdekatan dengannya melalui persaman-persamaan yang terlibat. Secara umum proses penghitungan CFD terdiri atas 3 bagian utama: Prepocessor Prepocessor adalah tahap dimana data diinput mulai dari pendefinisian domain serta pendefinisian kondisi batas atau boundary condition. Ditahap ini juga sebuah benda atau ruangan yang akan dianalisis dibagi-bagi dengan jumlah grid tertentu atau sering juga disebut dengan meshing. Processor Tahap selanjutnya adalah processor, pada tahap ini dilakukan proses penghitungan data-data input dengan persamaan yang terlibat secara iteratif. Artinya penghitungan dilakukan hingga hasil menuju error terkecil atau hingga mencapai nilai yang konvergen. Penghitungan dilakukan secara menyeluruh terhadap volume kontrol dengan proses integrasi persamaan diskrit.

28 34 Post processor Tahap akhir merupakan tahap post processor di mana hasil perhitungan diinterpretasikan ke dalam gambar, grafik bahkan animasi dengan pola warna tertentu. Hal yang paling mendasar mengapa konsep CFD (softwarecfd) banyak sekali digunakan dalam dunia industri adalah dengan CFD dapat dilakukan analisis terhadap suatu sistem dengan mengurangi biaya eksperimen dan tentunya waktu yang panjang dalam melakukan eksperimen tersebut. Atau dalam proses design enggineering tahap yang harus dilakukan menjadi lebih pendek. Hal ini yang mendasari pemakaian konsep CFD adalah pemahaman lebih dalam akan suatu masalah yang akan diselesaikan atau dalam hal ini pemahaman lebih dalam mengenai karakterisrik aliran fluida dengan melihat hasil berupa grafik, vektor, kontur dan bahkan animasi.

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Perpindahan Kalor Perpindahan panas adalah ilmu untuk memprediksi perpindahan energi yang terjadi karena adanya perbedaan suhu diantara benda atau material. Perpindahan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tujuan Dalam proses ini untuk menetukan hasil design oil cooler minyak mentah (Crude Oil) untuk jenis shell and tube. Untuk mendapatkan hasil design yang paling optimal untuk

Lebih terperinci

BAB lll METODE PENELITIAN

BAB lll METODE PENELITIAN BAB lll METODE PENELITIAN 3.1 Tujuan Proses ini bertujuan untuk menentukan hasil design oil cooler pada mesin diesel penggerak kapal laut untuk jenis Heat Exchager Sheel and Tube. Design ini bertujuan

Lebih terperinci

31 4. Menghitung perkiraan perpindahan panas, U f : a) Koefisien konveksi di dalam tube, hi b) Koefisien konveksi di sisi shell, ho c) Koefisien perpi

31 4. Menghitung perkiraan perpindahan panas, U f : a) Koefisien konveksi di dalam tube, hi b) Koefisien konveksi di sisi shell, ho c) Koefisien perpi BAB III METODE PENELITIAN 3.1 Tujuan Dalam proses ini untuk menetukan hasil design oil cooler minyak mentah (Crude Oil) untuk jenis shell and tube. Untuk mendapatkan hasil design yang paling optimal untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas/Kalor Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB I PENDAHULUAN. Destilasi merupakan suatu cara yang digunakan untuk memisahkan dua atau

BAB I PENDAHULUAN. Destilasi merupakan suatu cara yang digunakan untuk memisahkan dua atau 1 BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Destilasi merupakan suatu cara yang digunakan untuk memisahkan dua atau lebih komponen cairan berdasarkan perbedaan titik didihnya. Uap yang dibentuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Kalor Perpindahan kalor adalah ilmu yang mempelajari perpindahan energi karena perbedaan temperatur diantara benda atau material. Apabila dua benda yang berbeda

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN 4.1. Hot Water Heater Pemanasan bahan bakar dibagi menjadi dua cara, pemanasan yang di ambil dari Sistem pendinginan mesin yaitu radiator, panasnya di ambil dari saluran

Lebih terperinci

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat

BAB II DASAR TEORI. ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat BAB II DASAR TEORI 2.. Perpindahan Panas Perpindahan panas adalah proses berpindahnya energi dari suatu tempat ke tempat yang lain dikarenakan adanya perbedaan suhu di tempat-tempat tersebut. Perpindahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Landasan Teori 2.1.1 Pengertian Heat Exchanger (HE) Heat Exchanger (HE) adalah alat penukar panas yang memfasilitasi pertukaran panas antara dua cairan pada temperatur yang berbeda

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan

BAB II TINJAUAN PUSTAKA. Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas/Kalor Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Umum Mesin pendingin atau kondensor adalah suatu alat yang digunakan untuk memindahkan panas dari dalam ruangan ke luar ruangan. Adapun sistem mesin pendingin yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan panas adalah perpindahan energi karena adanya perbedaan temperatur. Perpindahan kalor meliputu proses pelepasan maupun penyerapan kalor, untuk

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192 JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: 2337-3539 (2301-9271 Print) B-192 Studi Numerik Pengaruh Baffle Inclination pada Alat Penukar Kalor Tipe Shell and Tube terhadap Aliran Fluida dan Perpindahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 HE Shell and tube Penukar panas atau dalam industri populer dengan istilah bahasa inggrisnya, heat exchanger (HE), adalah suatu alat yang memungkinkan perpindahan dan bisa berfungsi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini akan dijabarkan mengenai penukar panas (heat exchanger), mekanisme perpindahan panas pada heat exchanger, konfigurasi aliran fluida, shell and tube heat exchanger,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor adalah ilmu yang mempelajari berpindahnya suatu energi (berupa kalor) dari suatu sistem ke sistem lain karena adanya perbedaan temperatur.

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN MEDIUM AIR SEBAGAI FLUIDA PANAS DAN METHANOL SEBAGAI FLUIDA DINGIN

ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN MEDIUM AIR SEBAGAI FLUIDA PANAS DAN METHANOL SEBAGAI FLUIDA DINGIN ANALISIS EFEKTIFITAS ALAT PENUKAR KALOR SHELL & TUBE DENGAN MEDIUM AIR SEBAGAI FLUIDA PANAS DAN METHANOL SEBAGAI FLUIDA DINGIN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida

BAB II TINJAUAN PUSTAKA. Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida BAB II TINJAUAN PUSTAKA 2.1. Thermosiphon Reboiler Thermosiphon Reboiler adalah reboiler, dimana terjadi sirkulasi fluida yang akan didihkan dan diuapkan dengan proses sirkulasi almiah (Natural Circulation),

Lebih terperinci

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK

ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK ANALISA PERPINDAHAN KALOR PADA KONDENSOR PT. KRAKATAU DAYA LISTRIK Diajukan untuk memenuhi salah satu persyaratan menyelesaikan Program Strata Satu (S1) pada program Studi Teknik Mesin Oleh N a m a : CHOLID

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 10 BAB II LANDASAN TEORI 2.1 PSIKROMETRI Psikrometri adalah ilmu yang mengkaji mengenai sifat-sifat campuran udara dan uap air yang memiliki peranan penting dalam menentukan sistem pengkondisian udara.

Lebih terperinci

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR

ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR ANALISIS KEEFEKTIFAN ALAT PENUKAR KALOR TIPE SHELL AND TUBE SATU LALUAN CANGKANG DUA LALUAN TABUNG SEBAGAI PENDINGINAN OLI DENGAN FLUIDA PENDINGIN AIR SKRIPSI Skripsi yang Diajukan Untuk Melengkapi Syarat

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Panas atau kalor merupakan salah satu bentuk energi. Panas dapat berpindah dari suatu zat ke zat lain. Panas dapat berpndah melalui tiga cara yaitu : 2.1.1

Lebih terperinci

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN

LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN LAPORAN TUGAS AKHIR MODIFIKASI KONDENSOR SISTEM DISTILASI ETANOL DENGAN MENAMBAHKAN SISTEM SIRKULASI AIR PENDINGIN Disusun oleh: BENNY ADAM DEKA HERMI AGUSTINA DONSIUS GINANJAR ADY GUNAWAN I8311007 I8311009

Lebih terperinci

Satuan Operasi dan Proses TIP FTP UB

Satuan Operasi dan Proses TIP FTP UB Satuan Operasi dan Proses TIP FTP UB Pasteurisasi susu, jus, dan lain sebagainya. Pendinginan buah dan sayuran Pembekuan daging Sterilisasi pada makanan kaleng Evaporasi Destilasi Pengeringan Dan lain

Lebih terperinci

PENGANTAR PINDAH PANAS

PENGANTAR PINDAH PANAS 1 PENGANTAR PINDAH PANAS Oleh : Prof. Dr. Ir. Santosa, MP Guru Besar pada Program Studi Teknik Pertanian, Fakultas Teknologi Pertanian Universitas Andalas Padang, September 2009 Pindah Panas Konduksi (Hantaran)

Lebih terperinci

MAKALAH KOMPUTASI NUMERIK

MAKALAH KOMPUTASI NUMERIK MAKALAH KOMPUTASI NUMERIK ANALISA ALIRAN FLUIDA DALAM PIPA SIRKULAR DAN PIPA SPIRAL UNTUK INSTALASI SALURAN AIR DI RUMAH DENGAN SOFTWARE CFD Oleh : MARIO RADITYO PRARTONO 1306481972 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil

BAB II LANDASAN TEORI. panas. Karena panas yang diperlukan untuk membuat uap air ini didapat dari hasil BAB II LANDASAN TEORI II.1 Teori Dasar Ketel Uap Ketel uap adalah pesawat atau bejana yang disusun untuk mengubah air menjadi uap dengan jalan pemanasan, dimana energi kimia diubah menjadi energi panas.

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN 56 BAB IV ANALISA DAN PERHITUNGAN 4.1 Analisa Varian Prinsip Solusi Pada Varian Pertama dari cover diikatkan dengan tabung pirolisis menggunakan 3 buah toggle clamp, sehingga mudah dan sederhana dalam

Lebih terperinci

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah

Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah Karakteristik Perpindahan Panas dan Pressure Drop pada Alat Penukar Kalor tipe Pipa Ganda dengan aliran searah Mustaza Ma a 1) Ary Bachtiar Krishna Putra 2) 1) Mahasiswa Program Pasca Sarjana Teknik Mesin

Lebih terperinci

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor

BAB II TEORI DASAR 2.1 Perancangan Sistem Penyediaan Air Panas Kualitas Air Panas Satuan Kalor 4 BAB II TEORI DASAR.1 Perancangan Sistem Penyediaan Air Panas.1.1 Kualitas Air Panas Air akan memiliki sifat anomali, yaitu volumenya akan mencapai minimum pada temperatur 4 C dan akan bertambah pada

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

Kajian Performa Alat Penukar Panas Plate and Frame

Kajian Performa Alat Penukar Panas Plate and Frame Eksergi, Vol XI, No. 02. 2014 ISSN: 1410-394X Kajian Performa Alat Penukar Panas Plate and Frame : Pengaruh Laju Alir Massa, Temperatur Umpan dan Arah Aliran Terhadap Koefisien Perpindahan Panas Menyeluruh

Lebih terperinci

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02 MODUL PERKULIAHAN Perpindahan Panas Secara Konduksi Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh Teknik Teknik Mesin 02 13029 Abstract Salah satu mekanisme perpindahan panas adalah perpindahan

Lebih terperinci

LAPORAN KERJA PRAKTEK 1 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

LAPORAN KERJA PRAKTEK 1 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA BAB I PENDAHULUAN I.1. Latar Belakang Alat penukar kalor (Heat Exchanger) merupakan suatu peralatan yang digunakan untuk menukarkan energi dalam bentuk panas antara fluida yang berbeda temperatur yang

Lebih terperinci

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi. Syarat Memperoleh Gelar Sarjana Teknik BINSAR T. PARDEDE NIM DEPARTEMEN TEKNIK MESIN

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi. Syarat Memperoleh Gelar Sarjana Teknik BINSAR T. PARDEDE NIM DEPARTEMEN TEKNIK MESIN UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN AKIBAT PENGARUH LAJU ALIRAN UDARA PADA ALAT PENUKAR KALOR JENIS RADIATOR FLAT TUBE SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

1. BAB I PENDAHULUAN Latar Belakang

1. BAB I PENDAHULUAN Latar Belakang 1. BAB I PENDAHULUAN 1.1. Latar Belakang Sistem merupakan sekumpulan obyek yang saling berinteraksi dan memiliki keterkaitan antara satu obyek dengan obyek lainnya. Dalam proses perkembangan ilmu pengetahuan,

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pada bab ini akan dijabarkan mengenai penukar kalor, mekanisme perpindahan kalor pada penukar kalor, konfigurasi aliran fluida, shell and tube heat exchanger, bagian-bagian shell

Lebih terperinci

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu Konduksi Tunak-Tak Tunak, Persamaan Fourier, Konduktivitas Termal, Sistem Konduksi-Konveksi dan Koefisien Perpindahan Kalor Menyeluruh Marina, 006773263, Kelompok Kalor dapat berpindah dari satu tempat

Lebih terperinci

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor

BAB II DASAR TEORI 2.1 Pasteurisasi 2.2 Sistem Pasteurisasi HTST dan Pemanfaatan Panas Kondensor BAB II DASAR TEORI 2.1 Pasteurisasi Pasteurisasi ialah proses pemanasan bahan makanan, biasanya berbentuk cairan dengan temperatur dan waktu tertentu dan kemudian langsung didinginkan secepatnya. Proses

Lebih terperinci

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi

I. PENDAHULUAN. Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi I. PENDAHULUAN A. Latar Belakang Mesin pengering merupakan salah satu unit yang dimiliki oleh Pabrik Kopi Tulen yang berperan dalam proses pengeringan biji kopi untuk menghasilkan kopi bubuk TULEN. Biji

Lebih terperinci

LAMPIRAN I. Tes Hasil Belajar Observasi Awal

LAMPIRAN I. Tes Hasil Belajar Observasi Awal 64 LAMPIRAN I Tes Hasil Belajar Observasi Awal 65 LAMPIRAN II Hasil Observasi Keaktifan Awal 66 LAMPIRAN III Satuan Pembelajaran Satuan pendidikan : SMA Mata pelajaran : Fisika Pokok bahasan : Kalor Kelas/Semester

Lebih terperinci

Tugas Akhir. Perancangan Hydraulic Oil Cooler. bagi Mesin Injection Stretch Blow Molding

Tugas Akhir. Perancangan Hydraulic Oil Cooler. bagi Mesin Injection Stretch Blow Molding Tugas Akhir Perancangan Hydraulic Oil Cooler bagi Mesin Injection Stretch Blow Molding Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun Oleh:

Lebih terperinci

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48

Sujawi Sholeh Sadiawan, Nova Risdiyanto Ismail, Agus suyatno, (2013), PROTON, Vol. 5 No 1 / Hal 44-48 PENGARUH SIRIP CINCIN INNER TUBE TERHADAP KINERJA PERPINDAHAN PANAS PADA HEAT EXCHANGER Sujawi Sholeh Sadiawan 1), Nova Risdiyanto Ismail 2), Agus suyatno 3) ABSTRAK Bagian terpenting dari Heat excanger

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

Kajian Performa Alat Penukar Panas Plate and Frame

Kajian Performa Alat Penukar Panas Plate and Frame Eksergi, Vol XI, No. 02. 2014 ISSN: 1410-394X Kajian Performa Alat Penukar Panas Plate and Frame : Pengaruh Laju Alir Massa, Temperatur Umpan dan Arah Aliran Terhadap Koefisien Perpindahan Panas Menyeluruh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Kondensor Kondensor adalah suatu alat untuk terjadinya kondensasi refrigeran uap dari kompresor dengan suhu tinggi dan tekanan tinggi. Kondensor sebagai alat penukar

Lebih terperinci

Maka persamaan energi,

Maka persamaan energi, II. DASAR TEORI 2. 1. Hukum termodinamika dan sistem terbuka Termodinamika teknik dikaitkan dengan hal-hal tentang perpindahan energi dalam zat kerja pada suatu sistem. Sistem merupakan susunan seperangkat

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan Nama : Ahmad Sulaiman NIM : 5202414055 Rombel :2 PERPINDAHAN KALOR J.P. HOLMAN BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan energi yang berpindah antar

Lebih terperinci

PENDINGIN TERMOELEKTRIK

PENDINGIN TERMOELEKTRIK BAB II DASAR TEORI 2.1 PENDINGIN TERMOELEKTRIK Dua logam yang berbeda disambungkan dan kedua ujung logam tersebut dijaga pada temperatur yang berbeda, maka akan ada lima fenomena yang terjadi, yaitu fenomena

Lebih terperinci

INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD)

INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD) INVESTIGASI KARAKTERISTIK PERPINDAHAN PANAS PADA DESAIN HELICAL BAFFLE PENUKAR PANAS TIPE SHELL AND TUBE BERBASIS COMPUTATIONAL FLUID DYNAMICS (CFD) Mirza Quanta Ahady Husainiy 2408100023 Dosen Pembimbing

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian Radiator

BAB II DASAR TEORI. 2.1 Pengertian Radiator BAB II DASAR TEORI 2.1 Pengertian Radiator Radiator adalah alat penukar panas yang digunakan untuk memindahkan energi panas dari satu medium ke medium lainnya yang tujuannya untuk mendinginkan maupun memanaskan.radiator

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Siklus Absorpsi Siklus absorpsi adalah termodinamika yang dapat digunakan sebagai siklus refrigerasi dan pengkondisian udara yang digerakkan oleh energi dalam bentuk panas.

Lebih terperinci

ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA

ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA ANALISA KINERJA ALAT PENUKAR KALOR JENIS PIPA GANDA Oleh Audri Deacy Cappenberg Program Studi Teknik Mesin Universitas 17 Agustus 1945 Jakarta ABSTRAK Pengujian Alat Penukar Panas Jenis Pipa Ganda Dan

Lebih terperinci

PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA

PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA PENGARUH VARIASI KETEBALAN ISOLATOR TERHADAP LAJU KALOR DAN PENURUNAN TEMPERATUR PADA PERMUKAAN DINDING TUNGKU BIOMASSA Firmansyah Burlian, M. Indaka Khoirullah Jurusan Teknik Mesin Fakultas Teknik Universitas

Lebih terperinci

PENGARUH PERBANDINGAN TANPA SIRIP DENGAN SIRIP LURUS DENGAN ALIRAN AIR BERLAWANAN TERHADAP EFISIENSI PERPINDAHAN PANAS PADA HEAT EXCHANGER ABSTRAK

PENGARUH PERBANDINGAN TANPA SIRIP DENGAN SIRIP LURUS DENGAN ALIRAN AIR BERLAWANAN TERHADAP EFISIENSI PERPINDAHAN PANAS PADA HEAT EXCHANGER ABSTRAK PENGARUH PERBANDINGAN TANPA SIRIP DENGAN SIRIP LURUS DENGAN ALIRAN AIR BERLAWANAN TERHADAP EFISIENSI PERPINDAHAN PANAS PADA HEAT EXCHANGER Bayu Anggoro 1, Nova R. Ismail 2, Agus Suyatno 3 ABSTRAK Bagian

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

DAFTAR ISI. i ii iii iv v vi

DAFTAR ISI. i ii iii iv v vi DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN HALAMAN PERNYATAAN HALAMAN PERSEMBAHAN INTISARI KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAN SINGKATAN i ii iii iv v vi viii x xii

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perpindahan Panas Perpindahan panas adalah Ilmu termodinamika yang membahas tentang transisi kuantitatif dan penyusunan ulang energi panas dalam suatu tubuh materi. perpindahan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip dan Teori Dasar Perpindahan Panas Panas adalah salah satu bentuk energi yang dapat dipindahkan dari suatu tempat ke tempat lain, tetapi tidak dapat diciptakan atau dimusnahkan

Lebih terperinci

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE BES

DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE BES DESAIN DAN ANALISIS ALAT PENUKAR KALOR TIPE BES Tugas Akhir Diajukan Untuk Memenuhi Tugas dan Syarat-Syarat Guna Memperoleh Gelar Sarjana Teknik Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang BAB I PENDAHULUAN 1.1. Latar Belakang Proses pemanasan atau pendinginan fluida sering digunakan dan merupakan kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang elektronika. Sifat

Lebih terperinci

Analisis Koesien Perpindahan Panas Konveksi dan Distribusi Temperatur Aliran Fluida pada Heat Exchanger Counterow Menggunakan Solidworks

Analisis Koesien Perpindahan Panas Konveksi dan Distribusi Temperatur Aliran Fluida pada Heat Exchanger Counterow Menggunakan Solidworks Analisis Koesien Perpindahan Panas Konveksi dan Distribusi Temperatur Aliran Fluida pada Heat Exchanger Counterow Menggunakan Solidworks Dwi Arif Santoso Fakultas Teknologi Industri, Universitas Gunadarma

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sejarah dan Pengenalan Fenomena termoelektrik pertama kali ditemukan tahun 1821 oleh seorang ilmuwan Jerman, Thomas Johann Seebeck. Ia menghubungkan tembaga dan besi dalam sebuah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah mesin yang mengkonversikan energi mekanik menjadi energi tekanan. Menurut beberapa literatur terdapat beberapa jenis pompa, namun yang akan dibahas dalam perancangan

Lebih terperinci

Konsep Dasar Pendinginan

Konsep Dasar Pendinginan PENDAHULUAN Perkembangan siklus refrigerasi dan perkembangan mesin refrigerasi (pendingin) merintis jalan bagi pertumbuhan dan penggunaan mesin penyegaran udara (air conditioning). Teknologi ini dimulai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Pompa adalah suatu alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan cairan tersebut

Lebih terperinci

BAB II PENERAPAN HUKUM THERMODINAMIKA

BAB II PENERAPAN HUKUM THERMODINAMIKA BAB II PENERAPAN HUKUM THERMODINAMIKA 2.1 Konsep Dasar Thermodinamika Energi merupakan konsep dasar termodinamika dan merupakan salah satu aspek penting dalam analisa teknik. Sebagai gagasan dasar bahwa

Lebih terperinci

TINJAUAN PUSTAKA. 2.1 Iklim Mikro Rumah Tanaman Daerah Tropika Basah

TINJAUAN PUSTAKA. 2.1 Iklim Mikro Rumah Tanaman Daerah Tropika Basah II. TINJAUAN PUSTAKA 2.1 Iklim Mikro Rumah Tanaman Daerah Tropika Basah Iklim merupakan salah satu faktor yang mempengaruhi perancangan bangunan. Sebuah bangunan seharusnya dapat mengurangi pengaruh iklim

Lebih terperinci

HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL

HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL HEAT TRANSFER METODE PENGUKURAN KONDUKTIVITAS TERMAL KELOMPOK II BRIGITA O.Y.W. 125100601111030 SOFYAN K. 125100601111029 RAVENDIE. 125100600111006 JATMIKO E.W. 125100601111006 RIYADHUL B 125100600111004

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. PENGERINGAN Pengeringan adalah proses pengurangan kelebihan air yang (kelembaban) sederhana untuk mencapai standar spesifikasi kandungan kelembaban dari suatu bahan. Pengeringan

Lebih terperinci

LAPORAN TUGAS AKHIR ANALISA PERHITUNGAN ALAT PENUKAR PANAS TIPE SHEEL & TUBE PADA INDUSTRI ASAM SULFAT

LAPORAN TUGAS AKHIR ANALISA PERHITUNGAN ALAT PENUKAR PANAS TIPE SHEEL & TUBE PADA INDUSTRI ASAM SULFAT LAPORAN TUGAS AKHIR ANALISA PERHITUNGAN ALAT PENUKAR PANAS TIPE SHEEL & TUBE PADA INDUSTRI ASAM SULFAT DISUSUNOLEH : NAMA : AMRIH WIBOWO NIM : 41310110003 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK JAKARTA

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN BAB 3 METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Berikut adalah diagram alir penelitian konduksi pada arah radial dari pembangkit energy berbentuk silinder. Gambar 3.1 diagram alir penelitian konduksi

Lebih terperinci

PERPINDAHAN PANAS DAN MASSA

PERPINDAHAN PANAS DAN MASSA DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS DARMA PERSADA 009 DIKTAT KULIAH PERPINDAHAN PANAS DAN MASSA Disusun : ASYARI DARAMI YUNUS Jurusan Teknik Mesin,

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-321) Topik hari ini (minggu 15) Temperatur Skala Temperatur Pemuaian Termal Gas ideal Kalor dan Energi Internal Kalor Jenis Transfer Kalor Termodinamika Temperatur? Sifat Termometrik?

Lebih terperinci

PENGARUH KECEPATAN UDARA TERHADAP TEMPERATUR BOLA BASAH, TEMPERATUR BOLA KERING PADA MENARA PENDINGIN

PENGARUH KECEPATAN UDARA TERHADAP TEMPERATUR BOLA BASAH, TEMPERATUR BOLA KERING PADA MENARA PENDINGIN PENGARUH KECEPATAN UDARA. PENGARUH KECEPATAN UDARA TERHADAP TEMPERATUR BOLA BASAH, TEMPERATUR BOLA KERING PADA MENARA PENDINGIN A. Walujodjati * Abstrak Penelitian menggunakan Unit Aliran Udara (duct yang

Lebih terperinci

HALAMAN PERSETUJUAN. Laporan Tugas Akhir ini telah disetujui oleh pembimbing Tugas Akhir untuk

HALAMAN PERSETUJUAN. Laporan Tugas Akhir ini telah disetujui oleh pembimbing Tugas Akhir untuk HALAMAN PERSETUJUAN Laporan Tugas Akhir ini telah disetujui oleh pembimbing Tugas Akhir untuk dipertahankan di depan Dewan Penguji sebagai syarat untuk memperoleh gelar Sarjana Teknik (S-1) di Jurusan

Lebih terperinci

BAB III TUGAS KHUSUS

BAB III TUGAS KHUSUS BAB III TUGAS KHUSUS 3.1 Judul Menghitung Efisiensi Heat Exchanger E-108 A Crude Distiller III di Unit CD & GP PT. Pertamina (Persero) RU III Plaju Palembang. 3.2 Latar Belakang Heat Exchanger E-108 A

Lebih terperinci

SKRIPSI ALAT PENUKAR KALOR

SKRIPSI ALAT PENUKAR KALOR SKRIPSI ALAT PENUKAR KALOR PERANCANGAN HEAT EXCHANGER TYPE SHELL AND TUBE UNTUK AFTERCOOLER KOMPRESSOR DENGAN KAPASITAS 8000 m 3 /hr PADA TEKANAN 26,5 BAR OLEH : FRANKY S SIREGAR NIM : 080421005 PROGRAM

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG

SUMBER BELAJAR PENUNJANG PLPG SUMBER BELAJAR PENUNJANG PLPG 2016 MATA PELAJARAN/PAKET KEAHLIAN FISIKA BAB V PERPINDAHAN KALOR Prof. Dr. Susilo, M.S KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL GURU DAN TENAGA KEPENDIDIKAN

Lebih terperinci

SIMULASI EFEKTIFITAS ALAT KALOR TABUNG SEPUSAT DENGAN VARIASI KAPASITAS ALIRAN FLUIDA PANAS, FLUIDA DINGIN DAN SUHU MASUKAN FLUIDA PANAS DENGAN ALIRAN

SIMULASI EFEKTIFITAS ALAT KALOR TABUNG SEPUSAT DENGAN VARIASI KAPASITAS ALIRAN FLUIDA PANAS, FLUIDA DINGIN DAN SUHU MASUKAN FLUIDA PANAS DENGAN ALIRAN ANALISIS DAN SIMULASI EFEKTIFITAS ALAT PENUKAR KALOR TABUNG SEPUSAT DENGAN VARIASI KAPASITAS ALIRAN FLUIDA PANAS, FLUIDA DINGIN DAN SUHU MASUKAN FLUIDA PANAS DENGAN ALIRAN SEJAJAR SKRIPSI Skripsi Yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar BAB NJAUAN PUSAKA Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar 150.000.000 km, sangatlah alami jika hanya pancaran energi matahari yang mempengaruhi dinamika atmosfer

Lebih terperinci

BAB II DASAR TEORI. Elektroforesis adalah pergerakan molekul-molekul kecil yang dibawa oleh

BAB II DASAR TEORI. Elektroforesis adalah pergerakan molekul-molekul kecil yang dibawa oleh BAB II DASAR EORI 2.1 PROSES ELEKROFORESIS Elektroforesis adalah pergerakan molekul-molekul kecil yang dibawa oleh muatan listrik akibat adanya pengaruh medan listrik 3. Pergerakan ini dapat dijelaskan

Lebih terperinci

Pengaruh Variasi Putaran Dan Debit Air Terhadap Efektifitas Radiator

Pengaruh Variasi Putaran Dan Debit Air Terhadap Efektifitas Radiator Pengaruh Variasi Putaran Dan Debit Air Terhadap Efektifitas Radiator Nur Robbi Program Studi Teknik Mesin Fakultas Teknik Universitas Islam Malang Jl. MT Haryono 193 Malang 65145 E-mail: nurrobbift@gmail.com

Lebih terperinci

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2015

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2015 UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI ANALISIS SISTEM PENURUNAN TEMPERATUR JUS BUAH DENGAN COIL HEAT EXCHANGER Nama Disusun Oleh : : Alrasyid Muhammad Harun Npm : 20411527 Jurusan : Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 ALAT PENGKONDISIAN UDARA Alat pengkondisian udara merupakan sebuah mesin yang secara termodinamika dapat memindahkan energi dari area bertemperatur rendah (media yang akan

Lebih terperinci

Bab 1. PENDAHULUAN Latar Belakang

Bab 1. PENDAHULUAN Latar Belakang 1 Bab 1. PENDAHULUAN 1.1. Latar Belakang Perkembangan Industri kimia di Indonesia sudah cukup maju seiring dengan globalisasi perdagangan dunia. Industri pembuatan Nylon yang merupakan salah satu industri

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dibahas tentang dasar-dasar teori yang digunakan untuk mengetahui kecepatan perambatan panas pada proses pasteurisasi pengalengan susu. Dasar-dasar teori tersebut meliputi

Lebih terperinci

TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE

TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE TUGAS AKHIR ANALISIS PENGARUH KECEPATAN ALIRAN FLUIDA TERHADAP EFEKTIFITAS PERPINDAHAN PANAS PADA HEAT EXCHANGER JENIS SHELL AND TUBE Diajukan untuk Memenuhi Persyaratan Kurikulum Sarjana Strata Satu (S-1)

Lebih terperinci

UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN PENGARUH JARAK BAFFLE

UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN PENGARUH JARAK BAFFLE UJI EKSPERIMENTAL OPTIMASI LAJU PERPINDAHAN KALOR DAN PENURUNAN TEKANAN PENGARUH JARAK BAFFLE PADA ALAT PENUKAR KALOR TABUNG CANGKANG DENGAN SUSUNAN TABUNG SEGITIGA SKRIPSI Skripsi Yang Diajukan Untuk

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan

I. Pendahuluan. A. Latar Belakang. B. Rumusan Masalah. C. Tujuan I. Pendahuluan A. Latar Belakang Dalam dunia industri terdapat bermacam-macam alat ataupun proses kimiawi yang terjadi. Dan begitu pula pada hasil produk yang keluar yang berada di sela-sela kebutuhan

Lebih terperinci

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah

II. TINJAUAN PUSTAKA. seperti kulit binatang, dedaunan, dan lain sebagainya. Pengeringan adalah II. TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan metode pengawetan alami yang sudah dilakukan dari zaman nenek moyang. Pengeringan tradisional dilakukan dengan memanfaatkan cahaya matahari untuk

Lebih terperinci