PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI"

Transkripsi

1 PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI Gunawan 1, Fandi Halim 2, Tony Saputra Debataraja 3, Julianus Efrata Peranginangin 4 1,2 Program Studi S-1 Sistem Informasi, STMIK Mikroskil, Medan 3,4 Program Studi S-1 Teknik Informatika, STMIK Mikroskil, Medan Jl. Thamrin No. 140, Medan, , 2 ABSTRAKS Pada persaingan e-commerce saat ini, mengetahui item yang paling banyak dibeli konsumen adalah strategi yang tepat untuk meningkatkan keuntungan, namun akan sangat sulit bila dilakukan secara manual. Untuk itu diperlukan metode pencarian data item yang paling banyak dibeli konsumen. Clustering dan asosiasi merupakan tipe analisis data yang paling sering digunakan dalam dunia pemasaran. Teknik clustering digunakan untuk mengelompokkan sejumlah data atau objek sehingga setiap cluster akan berisi data yang semirip mungkin dan berbeda dengan objek dalam cluster lainnya, sedangkan asosiasi adalah teknik data mining yang menggunakan kriteria support dan confidence untuk mengidentifikasi kombinasi antar item. Hasil dari kedua analisis ini dapat digunakan sebagai strategi untuk menjalankan bisnis, seperti untuk mengetahui item yang paling sering dibeli konsumen. Jenis dari clustering dan asosiasi adalah k-means dan apriori. Tujuan dari penelitian ini untuk mengetahui item-item yang sering dibeli konsumen dan juga melihat waktu yang lebih cepat dalam melakukan analisis transaksi penjualan. Kata Kunci: apriori, asosiasi, clustering, k-means 1. PENDAHULUAN 1.1 Latar Belakang Strategi yang tepat tentunya mutlak diperlukan dalam persaingan bisnis e-commerce saat ini. Pengelola e-commerce tentunya telah mempunyai cara untuk meningkatkan keuntungan dan menjaga hubungan baik dengan konsumen mereka untuk dapat bersaing dalam persaingan bisnis e-commerce. Salah satu cara adalah mengetahui item (barang) yang paling sering dibeli oleh konsumen yang dapat menambah keuntungan e-commerce dan dapat menjaga hubungan baik dengan pelanggan mereka. Untuk mengetahui item apa saja yang paling sering dibeli oleh konsumen tentunya akan sulit diketahui bila dilakukan dengan pengamatan dan pencatatan secara manual. Oleh karena itu diperlukan suatu metode yang dapat membantu pihak pengelola e- commerce dalam menentukan item yang paling sering dibeli oleh konsumen. Metode yang dapat dipakai untuk menentukan item yang paling sering dibeli oleh konsumen adalah k-means dan apriori. K-means merupakan metode clustering dalam data mining, sedangkan apriori merupakan metode dengan aturan asosiasi dalam data mining. K-means adalah sebuah algoritma untuk mengklasifikasikan atau mengelompokkan objek-objek (dalam hal ini data) berdasarkan parameter tertentu ke dalam sejumlah grup, sehingga dapat berjalan lebih cepat daripada hierarchical clustering (jika k kecil) dengan jumlah variabel yang besar dan menghasilkan cluster yang lebih rapat (Kardi dan Barakbah, 2007). Apriori merupakan algoritma yang sering digunakan untuk menemukan aturan asosiasi di dalam aplikasi data mining dengan teknik aturan asosiasi. Dengan menggunakan metode k-means, data item yang telah dikelompokkan akan ditentukan pusat setiap kelompok dan dihitung menggunakan rumus k-means sehingga menghasilkan kesimpulan item yang yang paling banyak dibeli oleh konsumen, sedangkan pada apriori, data item yang telah dikelompokkan akan diseleksi sampai mendapatkan item dengan nilai support dan confidence yang telah ditetapkan, sehingga menghasilkan kesimpulan item yang paling banyak dibeli oleh konsumen. Dengan menggunakan kedua metode ini, pihak pengelola e- commerce dapat mengetahui barang yang paling banyak dibeli oleh konsumen, sehingga pihak pengelola e-commerce dapat menambah persediaan barang tersebut untuk menambah keuntungan mereka. Sesuai dengan uraian sebelumnya, maka yang menjadi masalah dalam penelitian ini adalah item yang paling banyak dibeli oleh konsumen sulit ditentukan bila dilakukan pencatatan data secara manual dan pengamatan secara langsung, sehingga diperlukan metode untuk menentukan item yang paling banyak dibeli oleh konsumen untuk meningkatkan daya saing e-commerce tersebut dan menambah keuntungan e-commerce. Tujuan dari penelitian ini adalah untuk memberikan rekomendasi barang yang paling banyak dibeli oleh konsumen kepada pihak pengelola e-commerce dengan menggunakan metode k-means dan apriori. Langkah-langkah yang ditempuh dalam penelitian ini adalah: 328

2 a. Tinjauan Pustaka: mengumpulkan buku, artikel, jurnal, dan makalah yang berhubungan dengan data mining serta menyaring referensi-referensi tersebut sehingga diperoleh data yang relevan. b. Analisis dan Perancangan: mempelajari dan menganalisis cara kerja algoritma k-means dan apriori, serta membuat rancangan aplikasi dengan metode yang dipilih. c. Pemrograman (Coding): melakukan pemrograman dengan menggunakan bahasa pemrograman Microsoft Visual Basic d. Pengujian: mengeksekusi program dengan tujuan menemukan kesalahan serta menguji sistem hasil implementasi algoritma. 1.2 Data Mining Data mining adalah serangkaian proses untuk menggali nilai tambah dari suatu kumpulan data berupa pengetahuaan yang selama ini tidak diketahui secara manual. Data mining digunakan untuk mengekstraksi dan mengidentifikasi informasi pengetahuan potensial dan berguna yang bermanfaat yang tersimpan di dalam database besar (Turban, 2005). Menurut Gartner Group, data mining adalah suatu proses menemukan hubungan yang berarti, pola, dan kecenderungan dengan memeriksa dalam sekumpulan besar data yang tersimpan dalam penyimpanan dengan menggunakan teknik pengenalan pola seperti teknik statistik dan matematika (Larose, 2005). Dengan definisi data mining yang luas, terdapat banyak jenis metode analisis yang dapat digolongkan dalam data mining, yaitu (Santosa, 2007): a. Association rules Association rules mining (aturan mining asosiasi) berfungsi untuk menemukan asosiasi antar variabel, korelasi atau suatu struktur di antara item atau objek-objek di dalam database transaksi, database relasional, maupun pada penyimpanan informasi lainnya. Aturan asosiasi ingin memberikan informasi tersebut dalam bentuk hubungan if-then atau jika-maka. Aturan ini dihitung dari data yang sifatnya probabilistik. b. Decision Tree Dalam decision tree tidak menggunakan vektor jarak untuk mengklasifikasikan objek. Seringkali data observasi mempunyai atributatribut yang bernilai nominal. Decision tree dapat diilustrasikan misalkan objeknya adalah sekumpulan buah-buahan yang bisa dibedakan berdasarkan atribut bentuk, warna, ukuran, dan rasa. Bentuk, warna, ukuran, dan rasa adalah besaran nominal, yaitu bersifat kategoris dan tiap nilai tidak bisa dijumlahkan atau dikurangkan. Dalam atribut warna terdapat beberapa nilai yang mungkin, yaitu hijau, kuning, dan merah. Dalam atribut ukuran terdapat nilai besar, sedang, dan kecil. Dengan nilai-nilai atribut ini, kemudian dibuat decision tree untuk menentukan suatu objek termasuk jenis buah apa jika nilai tiap-tiap atribut diberikan. c. Clustering Clustering termasuk metode yang sudah cukup dikenal dan banyak dipakai dalam data mining. Sampai sekarang para ilmuwan dalam bidang data mining masih melakukan berbagai usaha untuk melakukan perbaikan model clustering karena metode yang dikembangkan sekarang masih bersifat heuristik. Usaha-usaha untuk menghitung jumlah cluster yang optimal dan pengklasteran yang paling baik masih terus dilakukan. Dengan demikian menggunakan metode yang sekarang tidak bisa menjamin hasil pengklasteran sudah merupakan hasil yang optimal. 1.3 Algoritma K-Means Algoritma k-means merupakan algoritma yang relatif sederhana untuk mengklasifikasikan atau mengelompokkan sejumlah besar objek dengan atribut tertentu ke dalam kelompok-kelompok (cluster) sebanyak K. Pada algoritma k-means, jumlah cluster K sudah ditentukan terlebih dahulu. K-means adalah algoritma clustering untuk data mining yang diciptakan tahun 70-an dan berguna untuk melakukan clustering secara unsupervised learning (pembelajaran yang tidak terawasi) dalam suatu kumpulan data berdasarkan parameter tertentu. K-means adalah sebuah algoritma untuk mengklasifikasikan atau mengelompokkan objekobjek (dalam hal ini data) berdasarkan parameter tertentu ke dalam sejumlah grup, sehingga dapat berjalan lebih cepat daripada hierarchical clustering (jika kecil) dengan jumlah variabel yang besar dan menghasilkan cluster yang lebih rapat (Kardi dan Barakbah, 2007). K-means memiliki properti: selalu ada K cluster, paling tidak memiliki satu data dalam tiap cluster, cluster ini merupakan non-hierarki dan tidak akan terjadi overlap, dan setiap member dari sebuah cluster berdekatan di-cluster terhadap cluster lainnya karena kedekatan tidak selalu melibatkan pusat dari cluster itu. Kelebihan k-means adalah (Kardi dan Barakbah, 2007): a. Dengan jumlah variabel yang besar, k-means dapat berjalan lebih cepat daripada hierchical clustering (jika K kecil). b. K-means memungkinkan hasil yang lebih rapat daripada hierarchical clustering, terutama jika cluster berbentuk bola/lingkaran. Selain memiliki kelebihan, k-means juga memiliki kekurangan. Kekurangan dari algoritma k- means ini adalah (Kardi dan Barakbah, 2007): a. Kesulitan dalam membandingkan kualitas dari hasil cluster (seperti untuk perbedaan pembagian awal atau nilai dari K yang mempengaruhi hasil). b. Jumlah cluster yang tepat dapat membuat kesulitan dalam memprediksi berapakah K 329

3 seharusnya. c. Tidak akan bekerja dengan baik dengan cluster yang tidak berbentuk bulat. d. Pembagian awal yang berbeda dapat menghasilkan akhir cluster yang berbeda. Hal ini membantu untuk menjalankan kembali program menggunakan nilai K yang berbeda, untuk perbandingan hasil akhir yang diperoleh. Berikut adalah langkah-langkah dalam memproses algoritma k-means (Larose, 2005): a. Langkah Pertama: Buatlah dalam tabel item yang telah dikelompokkan. b. Langkah Kedua: Secara sembarang, pilihlah k buah pusat kelompok sebagai pusat-pusat kelompok awal. c. Langkah Ketiga: Untuk setiap item yang telah dikelompokkan, tentukan pusat kelompok terdekatnya dan tetapkan catatan tersebut sebagai anggota dari kelompok yang terdekat pusat kelompoknya. Hitung rasio antara besaran Between Cluster Variation dengan Within Cluster Variation, lalu bandingkan rasio tersebut dengan rasio sebelumnya (bila sudah ada). Jika rasio tersebut membesar, maka lanjutkan ke langkah keempat. Jika tidak, maka hentikan prosesnya. d. Langkah Keempat: Perbarui pusat-pusat kelompok (berdasarkan kelompok yang didapat dari langkah ketiga) dan kembalilah ke langkah ketiga. 1.4 Algoritma Apriori Algoritma apriori adalah suatu algoritma yang sudah sangat dikenal dalam melakukan pencarian frequent itemset dengan menggunakan teknik aturan asosiasi. Algoritma ini pertama kali diajukan oleh R. Agrawal dan R. Srikant pada tahun Algoritma apriori menggunakan knowledge untuk menentukan frequent itemset, setelah itu memproses hasil tersebut menjadi informasi yang digunakan untuk menghasilkan kandidat-kandidat yang mungkin berhubungan. Terdapat 2 proses utama yang dilakukan dalam algoritma apriori, yaitu (Han dan Kamber, 2001): a. Join (penggabungan): Pada proses ini, setiap item dikombinasikan dengan item yang lainnya sampai tidak terbentuk kombinasi lagi. b. Prune (pemangkasan): Pada proses ini, hasil dari item yang telah dikombinasikan tadi lalu dipangkas dengan menggunakan minimum support yang telah ditentukan oleh user. Algoritma apriori melakukan pendekatan iteratif yang dikenal dengan pencarian level-wise, dimana k- itemset digunakan untuk mengeksplorasi atau menemukan (k+1)-itemset. Oleh karena itu, algoritma apriori dibagi menjadi beberapa tahap yang disebut iterasi. Tiap iterasi menghasilkan pola frekuensi tinggi (frequent itemset). Sifat apriori adalah setiap subset frequent-itemset harus menjadi frequent-itemset. Algoritma apriori untuk menemukan frequent-itemset yang merupakan iterasi pada data. Pada iterasi ke-k ditemukan semua himpunan item-item yang mempunyai k item yang disebut k-itemset. Setiap iterasi terdiri dari dua tahap. Pertama, adalah tahap pembangkitan kandidat (candidate generation) dimana himpunan semua frequent(k 1)-itemset Fk-1 yang ditemukan pada pass ke-(k 1) digunakan untuk membangkitkan kandidat itemset Ck. Prosedur pembangkitan kandidat menjamin bahwa Ck adalah superset dari himpunan semua frequent k-itemset. Kemudian data di-scan dalam tahap Penghitungan Support (Support Counting). Pada akhir pass Ck diperiksa untuk menentukan kandidat mana yang sering muncul, menghasilkan Fk. Penghitungan support berakhir ketika Fk atau Ck+1 kosong. Untuk membangkitkan rule akan dibangkitkan lebih dahulu candidate rule. Candidate rule berisi semua kemungkinan rule yang memiliki support > minimum support, karena input candidate rule adalah frequent-itemset. Kemudian candidate rule akan di-join dengan tabel F untuk menemukan support antecedent. Confidence rule dihitung dengan cara membandingkan support rule dengan support antecedent rule. Hanya rule yang mempunyai confidence > minimum confidence yang disimpan dalam tabel rule (tabel R). 2. PEMBAHASAN 2.1 Analisis Pada tahapan analisis dilakukan analisis pada aplikasi yang akan dikembangkan, yaitu analisis proses dan analisis kebutuhan. Analisis proses menjelaskan cara kerja dari metode/algoritma yang akan digunakan dalam bentuk flowchart seperti Gambar 1 dan 2 berikut ini. Gambar 1. Flowchart Algoritma K-Means 330

4 berfungsi untuk menampilkan informasi tentang pembuat aplikasi. Tombol tutup berfungsi untuk menutup form secara keseluruhan. Gambar 4. Tampilan Form Utama Pada form update database, user dapat menambahkan data kode barang, nama barang, dan harga barang. Sebelum user memproses data, maka terlebih dahulu user harus meng-update data pada form update database, dengan tampilan seperti terlihat pada Gambar 5. Gambar 2. Flowchart Algoritma Apriori Analisis kebutuhan mendeskripsikan fitur-fitur yang harus dipenuhi oleh aplikasi dalam bentuk use case diagram seperti Gambar 3 berikut ini. Gambar 5. Tampilan Form Update Database Pada form proses, user dapat memulai proses perhitungan memakai algoritma k-means dan apriori. Melalui form proses, sistem akan secara otomatis memproses data dari database memakai algoritma k-means dan apriori dan menampilkan hasil dari perhitungan tersebut, dengan tampilan seperti terlihat pada Gambar 6. Gambar 3. Use Case Diagram 2.2 Hasil Rancangan Bagian ini menunjukkan tampilan antarmuka pada aplikasi yang dikembangkan. Pada form utama yang ditunjukkan pada Gambar 4 terdapat 4 tombol, yaitu Proses, Update Database, Info, dan Tutup. Tombol proses berfungsi untuk menampilkan proses perhitungan memakai algoritma k-means dan apriori. Tombol update database berfungsi untuk menampilkan proses mengubah, meng-update, dan menghapus data pada database. Tombol info Gambar 6. Tampilan Form Proses 331

5 2.3 Pengujian Pengujian terhadap aplikasi dilakukan dengan membandingkan algoritma k-means dan apriori dalam menentukan barang yang dibeli oleh konsumen, dimana parameternya dilihat dari kecepatan memproses data. Tabel 1 dan 2 merupakan data barang dan transaksi yang digunakan untuk melakukan pengujian aplikasi. Tabel 1. Daftar Barang Untuk Pengujian Kode Barang Nama Barang Harga N1 Kalung 30 N2 Gelang 20 N3 Topi 15 N4 T-shirt 80 N5 Kebaya 180 N6 Kemeja 150 N7 Celana Pendek 120 N8 Celana Panjang 140 N9 Jaket 170 N10 Jeans 160 Tabel 2. Data Transaksi Untuk Pengujian Kode T01 T02 T03 T04 T05 T06 T07 T08 T09 T10 Item N1, N2 N2, N4 N5 N7, N8, N3, N4 N9, N10, N1 N3, N4, N9 N8, N4, N2 N10, N5, N6, N1, N2 N6, N5, N1 N7, N6, N3 Langkah berikutnya akan dilakukan pengujian terhadap transaksi di Tabel 2 dengan menggunakan algoritma apriori. Hasilnya ditunjukkan pada Tabel 3 berikut ini. Tabel 3. Hasil Pengujian Apriori Iterasladat Jum- Kandi- Item Set Support 1 N Ya 1 N Ya 1 N Tidak 1 N Ya 1 N Tidak 1 N Tidak 1 N Tidak 1 N Tidak 1 N Tidak 1 N Tidak 2 N1, N Ya 2 N1, N Tidak 2 N2, N Ya 3 N1, N2, N Ya Kemudian dilakukan pengujian hasil confidence, dimana hasilnya ditunjukkan pada Tabel 4 berikut ini. Tabel 4. Pengujian Hasil Confidence X Y Confidence N1, N2 N4 0 N1, N4 N2 0 N2, N4 N1 0 Waktu yang dibutuhkan apriori dalam memproses data tersebut adalah 160 millisecond. Selanjutnya akan dilakukan pengujian dengan mengunakan algoritma k-means dengan hasilnya ditunjukkan pada Tabel 5 berikut ini. Tabel 5. Hasil Pengujian K-Means Iterasi Cluster Anggota Pusat 1 1 T1, T T T6, T7, T T4, T5, T T T1, T T T6, T7, T T4, T5, T T T1, T T T6, T7, T T4, T5, T T T1, T T T6, T7, T T4, T5, T T Kemudian dilakukan pengujian BCV/WCV, dimana hasilnya ditunjukkan pada Tabel 6 berikut ini. Tabel 6. Hasil Pengujian BCV/WCV Iterasi BCV/WCV Transaksi Terdekat T3, T8 Waktu yang dibutuhkan k-means dalam memproses data tersebut adalah 115 millisecond. Dari pengujian di atas diketahui bahwa algoritma k-means lebih cepat dibandingkan algoritma apriori dalam menentukan barang yang sering dibeli oleh konsumen. 332

6 3. KESIMPULAN Dari penelitian yang dilakukan, dapat disimpulkan bahwa algoritma k-means lebih cepat dalam menentukan barang yang sering dibeli oleh konsumen dibandingkan dengan algoritma apriori. Dari algoritma k-means dan apriori, user (pengelola e-commerce) bisa melihat item yang sama pada kedua algoritma, kemudian menambah item tersebut. Untuk penelitian selanjutnya, di dalam menentukan item yang paling banyak dibeli oleh pelanggan, diperlukan keterangan dari item tersebut untuk memudahkan pengelola e-commerce dalam mengindentifikasi item tersebut. Diperlukan perbaikan di kesimpulan item yang paling banyak dibeli yang di-input secara otomatis. PUSTAKA Han, J. and Kamber, M., Data Mining, Concepts and Technique. San Francisco: Morgan Kaufmann Punlishers. Kardi, A. and Barakbah, A. R., Hierarchical K-means: An Algorithm for Centroids Initialization for K-means. Journal of The Faculty of Science and Engineering, Vol. 36, No. 1 (pp ). Japan: Saga University. Larose, D. T., Discovering Knowledge in Data, An Introduction to Data Mining. John Willey & Son, Inc. Santosa, B., Data Mining, Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu. Turban, E., Decision Support System and Intelligent Systems. Yogyakarta: Andi Offset. 333

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA)

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) Harvei Desmon Hutahaean 1, Bosker Sinaga 2, Anastasya Aritonang Rajagukguk 2 1 Program

Lebih terperinci

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Gunawan 1), Alex Xandra Albert Sim 2), Fandi Halim 3), M. Hawari Simanullang 4), M. Firkhan

Lebih terperinci

APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang)

APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita Anggraeni, Ragil Saputra, Beta Noranita APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita

Lebih terperinci

2.2 Data Mining. Universitas Sumatera Utara

2.2 Data Mining. Universitas Sumatera Utara Basis data adalah kumpulan terintegrasi dari occurences file/table yang merupakan representasi data dari suatu model enterprise. Sistem basisdata sebenarnya tidak lain adalah sistem penyimpanan-record

Lebih terperinci

APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA

APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA APLIKASI DATA MINING UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA Yuli Asriningtias, Rodhyah Mardhiyah Program Studi Teknik Informatika Fakultas Bisnis & Teknologi Informasi, Universitas Teknologi

Lebih terperinci

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang 1 BAB I PENDAHULUAN Bab pendahuluan ini membahas tentang latar belakang masalah yaitu fenomena perkembangan data yang terus bertambah tetapi informasi yang dihasilkan monoton, sehingga diperlukan data

Lebih terperinci

Implementasi data mining menggunakan metode apriori (studi kasus transaksi penjualan barang)

Implementasi data mining menggunakan metode apriori (studi kasus transaksi penjualan barang) Implementasi data mining menggunakan metode apriori (studi kasus transaksi penjualan barang) Maya Suhayati,M.Kom. Jurusan Teknik Informatika, STMIK Sumedang mayasuh@stmik-sumedang.ac.id ABSTRAK Dalam suatu

Lebih terperinci

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA SKRIPSI Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam periode enam tahun terakhir (tahun 2007 2012), jumlah gerai ritel modern di Indonesia mengalami pertumbuhan rata-rata 17,57% per tahun. Pada tahun 2007, jumlah

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, perkembangan teknologi telah memberikan pengaruh yang sangat besar di dalam kehidupan manusia. Salah satu pengaruh tersebut di bidang informasi yaitu dalam

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 Sistem Informasi Manajemen Mcleod R dan Schell G, (2004) membagi sumber daya menjadi dua bagian yaitu sumberdaya fisikal dan sumberdaya konseptual. Sumber daya fisikal terdiri

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan 6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah proses yang menggunakan

Lebih terperinci

APLIKASI DATA MINING UNTUK POLA PERMINTAAN DARAH DI UDD ( UNIT DONOR DARAH ) PMI KOTA SURABAYA MENGGUNAKAN METODE APRIORI

APLIKASI DATA MINING UNTUK POLA PERMINTAAN DARAH DI UDD ( UNIT DONOR DARAH ) PMI KOTA SURABAYA MENGGUNAKAN METODE APRIORI APLIKASI DATA MINING UNTUK POLA PERMINTAAN DARAH DI UDD ( UNIT DONOR DARAH ) PMI KOTA SURABAYA MENGGUNAKAN METODE APRIORI Budanis Dwi Meilani, dan Dermawan Cahyo Utomo Jurusan Teknik Informatika, Fakultas

Lebih terperinci

PENERAPAN ALGORITMA APRIORI UNTUK TRANSAKSI PENJUALAN OBAT PADA APOTEK AZKA

PENERAPAN ALGORITMA APRIORI UNTUK TRANSAKSI PENJUALAN OBAT PADA APOTEK AZKA PENERAPAN ALGORITMA APRIORI UNTUK TRANSAKSI PENJUALAN OBAT PADA APOTEK AZKA Winda Aprianti 1), Jaka Permadi 2), Oktaviyani 3) 1)2)3) Teknik Informatika, Politeknik Negeri Tanah Laut Jl. A. Yani Km. 06

Lebih terperinci

PENERAPAN METODE ASOSIASI GSP DAN APRIORI UNTUK STOK DAN REKOMENDASI PRODUK

PENERAPAN METODE ASOSIASI GSP DAN APRIORI UNTUK STOK DAN REKOMENDASI PRODUK Konferensi Nasional Ilmu Sosial & Teknologi (KNiST) Maret 2017, pp. 412~416 412 PENERAPAN METODE ASOSIASI GSP DAN APRIORI UNTUK STOK DAN REKOMENDASI PRODUK Elly Muningsih AMIK BSI Yogyakarta e-mail : elly.emh@bsi.ac.id

Lebih terperinci

SKRIPSI TI S1 FIK UDINUS 1

SKRIPSI TI S1 FIK UDINUS 1 SKRIPSI TI S FIK UDINUS PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA TEKNIK INFORMATIKA S FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini membahas tentang landasan teori yang medukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Data Mining Data mining adalah kegiatan menemukan

Lebih terperinci

PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA

PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA PENERAPAN ALGORITMA APRIORI DALAM MEMPREDIKSI PERSEDIAAN BUKU PADA PERPUSTAKAAN SMA DWI TUNGGAL TANJUNG MORAWA Domma Lingga Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl. Sisingamangaraja

Lebih terperinci

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE Diki Arisandi 1, Nofriandi 2 Jurusan Teknik Informatika, FakultTeknik,Universitas Abdurrab

Lebih terperinci

DATA MINING UNTUK ANALISA PENJUALAN KERIPIK UD MARTOP PRATAMA MENGGUNAKAN ALGORITMA APRIORI

DATA MINING UNTUK ANALISA PENJUALAN KERIPIK UD MARTOP PRATAMA MENGGUNAKAN ALGORITMA APRIORI DATA MINING UNTUK ANALISA PENJUALAN KERIPIK UD MARTOP PRATAMA MENGGUNAKAN ALGORITMA APRIORI SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom) Pada Program Studi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Data mining adalah proses mencari pola atau informasi menarik dalam data terpilih dengan menggunakan teknik atau metode tertentu (Sensuse dan Gunadi, 2012). Pola-pola

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Data Mining Istilah data mining memiliki beberapa padanan, seperti knowledge discovery ataupun pattern recognition. Kedua istilah tersebut sebenarnya memiliki ketepatannnya masing-masing.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup banyak digunakan, antara lain

BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI. yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup banyak digunakan, antara lain BAB 2 TINJAUAN PUSTAKA DAN DASAR TEORI 2.1 Tinjauan Pustaka Penelitian ini menggunakan beberapa sumber pustaka yang berhubungan dengan kasus yang akan diteliti. Pemanfaatan algoritma apriori sudah cukup

Lebih terperinci

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.)

Lebih terperinci

Analisis Asosiasi pada Transaksi Obat Menggunakan Data Mining dengan Algoritma A Priori

Analisis Asosiasi pada Transaksi Obat Menggunakan Data Mining dengan Algoritma A Priori Jurnal Sistem dan Teknologi Informasi (JUSTIN) Vol. 1, No. 1, (2016) 1 Analisis Asosiasi pada Transaksi Obat Menggunakan Data Mining dengan Algoritma A Priori Despitaria 1, Herry Sujaini 2, Tursina 3 Program

Lebih terperinci

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN Pada bab ini berisi tentang latar belakang pembuatan dari aplikasi penentuan rekomendasi pencarian buku perpustakaan menggunakan algoritma fp-growth, rumusan masalah, tujuan, batasan

Lebih terperinci

PENERAPAN ALGORITMA APRIORI ASSOCIATION RULE UNTUK ANALISA NILAI MAHASISWA DI UNIVERSITAS GUNADARMA

PENERAPAN ALGORITMA APRIORI ASSOCIATION RULE UNTUK ANALISA NILAI MAHASISWA DI UNIVERSITAS GUNADARMA PENERAPAN ALGORITMA APRIORI ASSOCIATION RULE UNTUK ANALISA NILAI MAHASISWA DI UNIVERSITAS GUNADARMA Margi Cahyanti 1), Maulana Mujahidin 2), Ericks Rachmat Swedia 3) 1) Sistem Informasi Universitas Gunadarma

Lebih terperinci

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE Diki Arisandi 1, Nofriandi 2 Jurusan Teknik Informatika, FakultTeknik,Universitas Abdurrab

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perusahaan ritel yang menyediakan berbagai kebutuhan berkembang pesat bukan hanya di kota besar saja tetapi juga di kota-kota kecil. Untuk memperoleh keuntungan yang

Lebih terperinci

Lili Tanti. STMIK Potensi Utama, Jl. K.L. Yos Sudarso Km. 6,5 No. 3A Tj. Mulia Medan ABSTRACT

Lili Tanti.   STMIK Potensi Utama, Jl. K.L. Yos Sudarso Km. 6,5 No. 3A Tj. Mulia Medan ABSTRACT Lili, Penerapan Data Mining Untuk 35 PENERAPAN DATA MINING UNTUK MENENTUKAN JUMLAH MAHASISWA PADA SATU DAERAH DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Lili Tanti Email : lili@potensi-utama.ac.id STMIK

Lebih terperinci

RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang)

RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang) RANCANG BANGUN APLIKASI DATA MINING ANALISIS TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus Di Politeknik Negeri Malang) Naufal Farras Hilmy 1, Banni Satria Andoko 2 Program Studi Teknik

Lebih terperinci

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE Dewi Sibagariang 1), Karina Auliasari 2) 1.2) Jurusan Teknik Informatika, Institut Teknologi Nasional Malang Jalan

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENGANALISA POLA PEMBELIAN PRODUK PADA DATA TRANSAKSI PENJUALAN

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENGANALISA POLA PEMBELIAN PRODUK PADA DATA TRANSAKSI PENJUALAN IMPLEMENTASI ALGORITMA APRIORI UNTUK MENGANALISA POLA PEMBELIAN PRODUK PADA DATA TRANSAKSI PENJUALAN 1 Wendi Wirasta, 2 Zaki Prasasti 1 Program Studi Teknik Informatika, STMIK LPKIA Bandung 2 Program Studi

Lebih terperinci

Abstrak. Data Mining, Algoritma Apriori, Algoritma FP-Growth, Mata Pelajaran, Pemrograman, Web Programming, Matematika, Bahasa Inggris.

Abstrak. Data Mining, Algoritma Apriori, Algoritma FP-Growth, Mata Pelajaran, Pemrograman, Web Programming, Matematika, Bahasa Inggris. Penerapan Algoritma Apriori dan Algoritma FP-Growth Dalam Menemukan Hubungan Data Nilai Ijazah Matematika dan Bahasa Inggris Dengan Nilai Mata Pelajaran Pemrograman dan Web Programming (Studi Kasus SMK

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI

JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI JURNAL IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI HASIL PENJUALAN BARANG PADA TOKO SINAR BARU DENGAN MENGGUNAKAN ALGORITMA APRIORI IMPLEMENTATION OF DATA MINING TO PREDICT RESULTS OF SALES GOODS IN THE

Lebih terperinci

Timor Setiyaningsih, Nur Syamsiah Teknik Informatika Universitas Darma Persada. Abstrak

Timor Setiyaningsih, Nur Syamsiah Teknik Informatika Universitas Darma Persada. Abstrak DATA MINING MELIHAT POLA HUBUNGAN NILAI TES MASUK MAHASISWA TERHADAP DATA KELULUSAN MAHASISWA UNTUK MEMBANTU PERGURUAN TINGGI DALAM MENGAMBIL KEBIJAKAN DALAM RANGKA PENINGKATAN MUTU PERGURUAN TINGGI Timor

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Turban mendefinisikan Decision Support System sebagai sekumpulan

BAB II TINJAUAN PUSTAKA. Turban mendefinisikan Decision Support System sebagai sekumpulan BAB II TINJAUAN PUSTAKA 2.1 Decision Support System Turban mendefinisikan Decision Support System sebagai sekumpulan prosedur berbasis model untuk data pemrosesan dan penilaian guna membantu para pengambilan

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Kebutuhan akan teori dalam dunia pendidikan sangat besar. Teori banyak di tulis ke dalam sebuah buku maupun jurnal. Pada universitas potensi utama,

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI)

JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI) JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI) IMPLEMENTATION DATA MINING OF SALES TRANSACTION FRUIT SEEDLING WITH ALGORITHM APRIORI

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Pelaku bisnis saat ini dituntut selalu inovatif untuk dapat bersaing dengan kompetitor. Bisnis retail seperti Apotek merupakan bisnis dengan persaingan yang sangat

Lebih terperinci

Penerapan Association Rule Apriori dalam Aplikasi Business Analytic terhadap Data Kelulusan di UNIVERSITAS SEBELAS MARET (UNS)

Penerapan Association Rule Apriori dalam Aplikasi Business Analytic terhadap Data Kelulusan di UNIVERSITAS SEBELAS MARET (UNS) Penerapan Association Rule Apriori dalam Aplikasi Business Analytic terhadap Data Kelulusan di UNIVERSITAS SEBELAS MARET (UNS) Benny Arif Pratama Informatika, Fakultas MIPA, Universitas Sebelas Maret Jl.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database

Lebih terperinci

ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM)

ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM) ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM) Nurani 1, Hamdan Gani 2 1 nurani_nanni@yahoo.com, 2 hamdan.gani.inbox@gmail.com

Lebih terperinci

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO Rizky Mei Anggraeni Program Studi Teknik Informatika,

Lebih terperinci

TINJAUAN PUSTAKA Data Mining

TINJAUAN PUSTAKA Data Mining 25 TINJAUAN PUSTAKA 2.1. Data Mining Definisi sederhana dari data mining adalah ekstraksi informasi atau pola yang penting atau menarik dari data yang ada di database. Secara lengkap, Data mining merupakan

Lebih terperinci

Abidah Elcholiqi, Beta Noranita, Indra Waspada

Abidah Elcholiqi, Beta Noranita, Indra Waspada Abidah Elcholiqi, Beta Noranita, Indra Waspada PENENTUAN BESAR PINJAMAN DI KOPERASI SIMPAN PINJAM DENGAN ALGORITMA K-NEAREST NEIGHBOR (Studi Kasus di Koperasi Simpan Pinjam BMT Bina Insani Pringapus) Abidah

Lebih terperinci

PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna

PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom) Pada Program Studi

Lebih terperinci

Penerapan Metode Fuzzy C-Means dengan Model Fuzzy RFM (Studi Kasus : Clustering Pelanggan Potensial Online Shop)

Penerapan Metode Fuzzy C-Means dengan Model Fuzzy RFM (Studi Kasus : Clustering Pelanggan Potensial Online Shop) 157 Penerapan Metode Fuzzy C-Means dengan Model Fuzzy RFM (Studi Kasus : Clustering Pelanggan Potensial Online Shop) Elly Muningsih AMIK BSI Yogyakarta E-Mail : elly.emh@bsi.ac.id Abstrak Berkembangnya

Lebih terperinci

BAB III ANALISA DAN DESAIN SISTEM

BAB III ANALISA DAN DESAIN SISTEM 36 BAB III ANALISA DAN DESAIN SISTEM Tahapan ini merupakan tahapan utama dalam penelitian, dalam tahapan pengembangan sistem metode yang akan dipakai adalah Rapid Application Development dan tahapan Data

Lebih terperinci

BAB I PENDAHULUAN. yakni teknik mesin, teknik elektro dan teknik informatika. Namun bagi para calon

BAB I PENDAHULUAN. yakni teknik mesin, teknik elektro dan teknik informatika. Namun bagi para calon BAB I PENDAHULUAN I.1. Latar Belakang Sekolah Tinggi Teknologi Sinar Husni (STT. Sinar Husni) memiliki mahasiswa yang mayoritasnya adalah para pekerja, oleh karena itu banyak para pekerja yang melanjutkan

Lebih terperinci

BAB I PENDAHULUAN. efektivitas dan efisiensi kerja tercapai. STIKOM Surabaya merupakan salah

BAB I PENDAHULUAN. efektivitas dan efisiensi kerja tercapai. STIKOM Surabaya merupakan salah BAB I PENDAHULUAN 1.1 Latar belakang masalah Solusi pemanfaatan teknologi komputer sebagai alat bantu dalam mendukung kegiatan operasional suatu bidang usaha memudahkan manusia dalam mendapatkan data atau

Lebih terperinci

ANALISA DATA PENJUALAN OBAT DENGAN MENGGUNAKAN ALGORITMA APRIORI PADA RUMAH SAKIT UMUM DAERAH H. ABDUL MANAN SIMATUPANG KISARAN

ANALISA DATA PENJUALAN OBAT DENGAN MENGGUNAKAN ALGORITMA APRIORI PADA RUMAH SAKIT UMUM DAERAH H. ABDUL MANAN SIMATUPANG KISARAN ANALISA DATA PENJUALAN OBAT DENGAN MENGGUNAKAN ALGORITMA APRIORI PADA RUMAH SAKIT UMUM DAERAH H. ABDUL MANAN SIMATUPANG KISARAN Chintia Oktavia Simbolon (0911456) Mahasiswa Program Studi Teknik Informatika,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Tinjauan Perusahaan CV. Aldo Putra berlokasi di Jalan Pasar Induk Gedebage No. 89/104 Bandung, bergerak dibidang grosir pakaian jadi impor. Barang yang dijual di CV. Aldo Putra

Lebih terperinci

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI Fitri Nurchalifatun Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Jl.

Lebih terperinci

Klasifikasi Data Karyawan Untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree

Klasifikasi Data Karyawan Untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree Klasifikasi Data Karyawan Untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree Disusun oleh : Budanis Dwi Meilani Achmad dan Fauzi Slamat Jurusan Sistem Informasi Fakultas Teknologi Informasi.

Lebih terperinci

ANALISA ALGORITMA APRIORI UNTUK MENENTUKAN MEREK PAKAIAN YANG PALING DIMINATI PADA MODE FASHION GROUP MEDAN

ANALISA ALGORITMA APRIORI UNTUK MENENTUKAN MEREK PAKAIAN YANG PALING DIMINATI PADA MODE FASHION GROUP MEDAN ANALISA ALGORITMA APRIORI UNTUK MENENTUKAN MEREK PAKAIAN YANG PALING DIMINATI PADA MODE FASHION GROUP MEDAN Eka Novita Sari (0911010) Mahasiswa Program Studi Teknik Informatika STMIK Budidarma Medan Jl.

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING PADA PENJUALAN SEPATU DENGAN MENGGUNAKAN ALGORITMA APRIORI

JURNAL IMPLEMENTASI DATA MINING PADA PENJUALAN SEPATU DENGAN MENGGUNAKAN ALGORITMA APRIORI JURNAL IMPLEMENTASI DATA MINING PADA PENJUALAN SEPATU DENGAN MENGGUNAKAN ALGORITMA APRIORI IMPLEMENTATION OF DATA MINING ON THE SALE OF SHOES WITH ALGORITHMS USING APRIORI Oleh : VERNANDA NOVRINI BUDIYASARI

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Bagi para calon mahasiswa cenderung bingung memilih jurusan yang mana yang akan mereka geluti di dunia pendidikan. Sekolah Tinggi Teknologi Sinar

Lebih terperinci

Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p

Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p 22-28 http://ejournal-s1.undip.ac.id/index.php/joint APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA

Lebih terperinci

Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk

Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk Amrin Program Studi Teknik Komputer AMIK Bina Sarana Informatika Jakarta Jl. R.S Fatmawati no. 24 Pondok Labu,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam

BAB II TINJAUAN PUSTAKA. Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam 12 BAB II TINJAUAN PUSTAKA Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam melakukan penelitian data mining dengan metode asosiasi menggunakan algoritma apriori yang terdiri dari state

Lebih terperinci

Aplikasi Data Mining untuk Mengukur Tingkat Kelulusan Mahasiswa dengan Metode Apriori

Aplikasi Data Mining untuk Mengukur Tingkat Kelulusan Mahasiswa dengan Metode Apriori Aplikasi Data Mining untuk Mengukur Tingkat Kelulusan Mahasiswa dengan Metode Apriori dan k-mean Clustering (Studi Kasus: Jurusan Teknik Informatika Universitas Trunojoyo Madura) Mohammad Syarief Prodi

Lebih terperinci

BAB III ANALISA DAN DESAIN SISTEM

BAB III ANALISA DAN DESAIN SISTEM BAB III ANALISA DAN DESAIN SISTEM III.1. Analisis Masalah Dibutuhkannya ketelitian dalam Melihat hasil penjualan minuman pada kedai kopi Uleekareng & Gayo untuk menentukan minuman yang paling diminati

Lebih terperinci

PENERAPAN ALGORITMA K-MEANS PADA KUALITAS GIZI BAYI DI INDONESIA

PENERAPAN ALGORITMA K-MEANS PADA KUALITAS GIZI BAYI DI INDONESIA PENERAPAN ALGORITMA K-MEANS PADA KUALITAS GIZI BAYI DI INDONESIA Diajeng Tyas Purwa Hapsari Teknik Informatika STMIK AMIKOM Yogyakarta Jl Ring road Utara, Condongcatur, Sleman, Yogyakarta 55281 Email :

Lebih terperinci

PREDIKSI KEBUTUHAN PENOMORAN PADA JARINGAN TELEKOMUNIKASI MENGGUNAKAN METODE APRIORI

PREDIKSI KEBUTUHAN PENOMORAN PADA JARINGAN TELEKOMUNIKASI MENGGUNAKAN METODE APRIORI Prediksi Kebutuhan Penomoran Pada Jaringan Telekomunikasi. (Muztafid Khilmi) PREDIKSI KEBUTUHAN PENOMORAN PADA JARINGAN TELEKOMUNIKASI MENGGUNAKAN METODE APRIORI Mustafid Khilmi 1) Achmad Affandi 2) 1)

Lebih terperinci

BAB I PENDAHULUAN. dalam suatu sistem basis data melalui aplikasi sistem informasi manajemen. Dari

BAB I PENDAHULUAN. dalam suatu sistem basis data melalui aplikasi sistem informasi manajemen. Dari BAB I PENDAHULUAN I.1. Latar Belakang Persaingan yang semakin ketat dalam penjualan menuntut para pebisnis untuk menemukan suatu strategi yang dapat meningkatkan penjualan dan pemasaran produk yang dijual,

Lebih terperinci

Assocation Rule. Data Mining

Assocation Rule. Data Mining Assocation Rule Data Mining Association Rule Analisis asosiasi atau association rule mining adalah teknik data mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Aturan yang menyatakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Rekomendasi Sistem Rekomendasi (SR) merupakan model aplikasi dari hasil observasi terhadap keadaan dan keinginan pelanggan. Sistem Rekomendasi memanfaatkan opini seseorang

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Teknologi Elektro, Vol. 15, No.2, Juli - Desember 2016 27 IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Adie Wahyudi Oktavia Gama 1, I Ketut Gede Darma Putra 2,

Lebih terperinci

IDENTIFIKASI POLA PENYAKIT ANAK DIBAWAH 5 TAHUN (BALITA) DENGAN MENGGUNAKAN ALGORITMA APRIORI

IDENTIFIKASI POLA PENYAKIT ANAK DIBAWAH 5 TAHUN (BALITA) DENGAN MENGGUNAKAN ALGORITMA APRIORI IDENTIFIKASI POLA PENYAKIT ANAK DIBAWAH 5 TAHUN (BALITA) DENGAN MENGGUNAKAN ALGORITMA APRIORI Ismul Zamroni 1), Indah Werdiningsih 2), Purbandini 3) 1,2,3) Program Studi S1 Sistem Informasi, Fakultas Sains

Lebih terperinci

Decision Support on Supply Chain Management System Using Apriori Data Mining Algorithm

Decision Support on Supply Chain Management System Using Apriori Data Mining Algorithm Decision Support on Supply Chain Management System Using Apriori Data Mining Algorithm Eka Widya Sari, Ahmad Rianto, Siska Diatinari Andarawarih College Of Informatics And Computer Engineering Indonesia

Lebih terperinci

IMPLEMENTASI DATA MINING MENGGUNAKAN METODE APRIORI PADA TRANSAKSI PENJUALAN BARANG (STUDI KASUS DI CHORUS MINIMARKET)

IMPLEMENTASI DATA MINING MENGGUNAKAN METODE APRIORI PADA TRANSAKSI PENJUALAN BARANG (STUDI KASUS DI CHORUS MINIMARKET) Implementasi Data Mining Menggunakan Metode Apriori Pada Transaksi Penjualan Barang (Studi Kasus Di Chorus Minimarket) IMPLEMENTASI DATA MINING MENGGUNAKAN METODE APRIORI PADA TRANSAKSI PENJUALAN BARANG

Lebih terperinci

SISTEM REKOMENDASI PAKET MAKANAN DENGAN ALGORITMA FP-GROWTH PADA RESTORAN SEAFOOD XYZ

SISTEM REKOMENDASI PAKET MAKANAN DENGAN ALGORITMA FP-GROWTH PADA RESTORAN SEAFOOD XYZ SISTEM REKOMENDASI PAKET MAKANAN DENGAN ALGORITMA FP-GROWTH PADA RESTORAN SEAFOOD XYZ Pahridila Lintang 1),Muhammad Iqbal 2), Ade Pujianto 3) 1), 2, 3) Teknik Informatika STMIK AMIKOM Yogyakarta Jl Ring

Lebih terperinci

PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG

PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG Mohamad Fauzy 1, Kemas Rahmat Saleh W 2, Ibnu Asror 3 123 Fakultas Informatika Telkom University

Lebih terperinci

DATA MINING INFORMASI TINGKAT KELULUSAN MAHASISWA STMIK PELITA NUSANTARA MEDAN. Anita Sindar RM Sinaga

DATA MINING INFORMASI TINGKAT KELULUSAN MAHASISWA STMIK PELITA NUSANTARA MEDAN. Anita Sindar RM Sinaga DATA MINING INFORMASI TINGKAT KELULUSAN MAHASISWA STMIK PELITA NUSANTARA MEDAN Anita Sindar RM Sinaga Program Studi Teknik Informatika STIMIK Pelita Nusantara, Jl. Iskandar Muda No. 1 Medan, Indonesia

Lebih terperinci

BAB II TINJAUAN PUSTAKA 2.1 DASAR TEORI Business Analytic

BAB II TINJAUAN PUSTAKA 2.1 DASAR TEORI Business Analytic digilib.uns.ac.id BAB II TINJAUAN PUSTAKA 2.1 DASAR TEORI 2.1.1 Business Analytic 2.1.1.1 Pengertian Business Analytic (BA) Business Analytic adalah aplikasi dan teknik untuk mengumpulkan, menyimpan, menganalisis

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Ketika disodori sejumlah data dari suatu obyek atau kejadian, apa yang bisa dilakukan terhadap data untuk menindaklanjutinya? Data perlu diolah untuk mendapatkan

Lebih terperinci

Analisis Hasil Implementasi Data Mining Menggunakan Algoritma Apriori pada Apotek

Analisis Hasil Implementasi Data Mining Menggunakan Algoritma Apriori pada Apotek Analisis Hasil Implementasi Data Mining Menggunakan Algoritma Apriori pada Apotek Aris Wijayanti Jurusan Teknik Informatika Universitas PGRI Ronggolawe Tuban Jl. Manunggal No. 61 Tuban Ariswjy@yahoo.com

Lebih terperinci

DATA MINING DENGAN ALGORITMA APRIORI PADA RDBMS ORACLE

DATA MINING DENGAN ALGORITMA APRIORI PADA RDBMS ORACLE 1 DATA MINING DENGAN ALGORITMA APRIORI PADA RDBMS ORACLE Dana Sulistiyo Kusumo 1, Moch. Arief Bijaksana 2, Dhinta Darmantoro Jurusan Teknik Informatika Sekolah Tinggi Teknologi Telkom 1 dana@stttelkom.ac.id,

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan

Lebih terperinci

PERSYARATAN PRODUK. 1.1 Pendahuluan Latar Belakang Tujuan

PERSYARATAN PRODUK. 1.1 Pendahuluan Latar Belakang Tujuan BAB 1 PERSYARATAN PRODUK Bab ini membahas mengenai hal umum dari produk yang dibuat, meliputi tujuan, ruang lingkup proyek, perspektif produk, fungsi produk dan hal umum yang lainnya. 1.1 Pendahuluan Hal

Lebih terperinci

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset David Samuel/NIM :13506081 1) 1) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang Bab 1 Pendahuluan BAB 1 PENDAHULUAN 1.1. Latar Belakang Pada era globalisasi saat ini, perkembangan teknologi tidak dapat dihindarkan dalam kehidupan manusia. Perkembangan teknologi yang ada, memiliki

Lebih terperinci

Analisis Aturan Asosiasi Data Transaksi Supermarket Menggunakan Algoritma Apriori

Analisis Aturan Asosiasi Data Transaksi Supermarket Menggunakan Algoritma Apriori Analisis Aturan Asosiasi Data Transaksi Supermarket Menggunakan Algoritma Apriori Ginanjar Abdurrahman 1) 1) Jurusan Teknik Informatika, Fakultas Teknik, Universitas Muhammadiyah Jember Jl. Karimata No.

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) PENERAPAN IMPROVED APRIORI PADA APLIKASI DATA MINING DI PERUSAHAAN KALVIN SOCKS PRODUCTION

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) PENERAPAN IMPROVED APRIORI PADA APLIKASI DATA MINING DI PERUSAHAAN KALVIN SOCKS PRODUCTION Vol. 5, No., Maret 26, ISSN : 289-9 5 PENERAPAN IMPROVED APRIORI PADA APLIKASI DATA MINING DI PERUSAHAAN KALVIN SOCKS PRODUCTION Yepi Septiana, Dian Dharmayanti2 Teknik Informatika - Universitas Komputer

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Association rules mining merupakan teknik data mining untuk menentukan hubungan diantara data atau bagaimana suatu kelompok data mempengaruhi suatu kelompok data lain

Lebih terperinci

Analisis asosiasi Penguasaan ICT Mahasiswa Baru dan Pencapaian Prestasi Akademik Mahasiswa dengan Algoritma Apriori.

Analisis asosiasi Penguasaan ICT Mahasiswa Baru dan Pencapaian Prestasi Akademik Mahasiswa dengan Algoritma Apriori. SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Analisis asosiasi Penguasaan ICT Mahasiswa Baru dan Pencapaian Prestasi Akademik Mahasiswa dengan Algoritma Apriori. Kuswari Hernawati 1,

Lebih terperinci

BAB I PENDAHULUAN. Penjualan cake dan bakery pada Zahara Bakery yang selalu laris, membuat

BAB I PENDAHULUAN. Penjualan cake dan bakery pada Zahara Bakery yang selalu laris, membuat BAB I PENDAHULUAN I.1. Latar Belakang Penjualan cake dan bakery pada Zahara Bakery yang selalu laris, membuat karyawan Zahara Bakery harus mempersiapkan penjualan sesuai dengan tingkat kebutuhan konsumen

Lebih terperinci

PENGELOMPOKAN MAHASISWA BERDASARKAN NILAI UJIAN NASIONAL DAN IPK MENGGUNAKAN METODE K-MEANS

PENGELOMPOKAN MAHASISWA BERDASARKAN NILAI UJIAN NASIONAL DAN IPK MENGGUNAKAN METODE K-MEANS PENGELOMPOKAN MAHASISWA BERDASARKAN NILAI UJIAN NASIONAL DAN IPK MENGGUNAKAN METODE K-MEANS Hartatik STMIK Amikom Manajemen Informatika STMIK AMIKOM Yogyakarta Jl. Ringroad Utara, Condong Catur, Depok,

Lebih terperinci

PENGGUNAAN ALGORITHMA APRIORI DALAM MENGANALISA PRILAKU MAHASISWA DALAM MEMILIH MATA KULIAH ( STUDI KASUS : FKIP UPI YPTK )

PENGGUNAAN ALGORITHMA APRIORI DALAM MENGANALISA PRILAKU MAHASISWA DALAM MEMILIH MATA KULIAH ( STUDI KASUS : FKIP UPI YPTK ) PENGGUNAAN ALGORITHMA APRIORI DALAM MENGANALISA PRILAKU MAHASISWA DALAM MEMILIH MATA KULIAH ( STUDI KASUS : FKIP UPI YPTK ) SARJON DEFIT Fakultas Ilmu Komputer Universitas Putra Indonesia YPTK E-mail :

Lebih terperinci

STRATEGI PENJUALAN PAKAN UNGGAS PADA TOKO PAKAN PEKSI KEDIRI DENGAN MEMBANGUN SISTEM PENDUKUNG KEPUTUSAN MENGGUNAKAN ALGORITMA APRIORI

STRATEGI PENJUALAN PAKAN UNGGAS PADA TOKO PAKAN PEKSI KEDIRI DENGAN MEMBANGUN SISTEM PENDUKUNG KEPUTUSAN MENGGUNAKAN ALGORITMA APRIORI STRATEGI PENJUALAN PAKAN UNGGAS PADA TOKO PAKAN PEKSI KEDIRI DENGAN MEMBANGUN SISTEM PENDUKUNG KEPUTUSAN MENGGUNAKAN ALGORITMA APRIORI ARTIKEL SKRIPSI Diajukan Guna Memenuhi Salah Satu Syarat Memperoleh

Lebih terperinci

RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI

RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI Candra Irawan Amak Yunus 1 Sistem Informasi, Universitas

Lebih terperinci

PENERAPAN DATA MINING DALAM ANALISIS KEJADIAN TANAH LONGSOR DI INDONESIA DENGAN MENGGUNAKAN ASSOCIATION RULE ALGORITMA APRIORI

PENERAPAN DATA MINING DALAM ANALISIS KEJADIAN TANAH LONGSOR DI INDONESIA DENGAN MENGGUNAKAN ASSOCIATION RULE ALGORITMA APRIORI PENERAPAN DATA MINING DALAM ANALISIS KEJADIAN TANAH LONGSOR DI INDONESIA DENGAN MENGGUNAKAN ASSOCIATION RULE ALGORITMA APRIORI Dewi Setianingsih, RB Fajriya Hakim Program Studi Statistika Fakultas Matematika

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI DALAM MENENTUKAN PERSEDIAAN OBAT

IMPLEMENTASI ALGORITMA APRIORI DALAM MENENTUKAN PERSEDIAAN OBAT IMPLEMENTASI ALGORITMA APRIORI DALAM MENENTUKAN PERSEDIAAN OBAT Gusti Ahmad Syaripudin 1), Edi Faizal 2) 1) Teknik Informatika STMIK El Rahma Yogyakarta 1) Jl. Sisingamangaraja No. 76, Karangkajen, Brontokusuman,

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Perkembangan dan persaingan dalam dunia bisnis perdagangan serta kemajuan teknologi informasi merupakan suatu hal yang saling terkait, dalam ketatnya persaingan pasar

Lebih terperinci

Nusantara of Engginering (NoE)/Vol. 1/No. 2/ISSN:

Nusantara of Engginering (NoE)/Vol. 1/No. 2/ISSN: Nusantara of Engginering (NoE)/Vol. 1/No. 2/ISSN: 2355-6684 76 ANALISA LOG AKSES DI E-LEARNING MENGGUNAKAN ASSOCIATION RULE MINING UNTUK MENGENALI POLA BELAJAR SISWA (Studi Kasus di SMUN 1 Pare Kediri)

Lebih terperinci

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA)

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) Nur Rohman Ardani 1), Nur Fitrina 2) 1) Magister Teknik Informatika STMIK AMIKOM Yogyakarta 2) Teknik

Lebih terperinci

BAB I PENDAHULUAN. frekuensi tinggi antar himpunan itemset yang disebut fungsi Association

BAB I PENDAHULUAN. frekuensi tinggi antar himpunan itemset yang disebut fungsi Association 1 BAB I PENDAHULUAN 1.1 Latar Belakang Belakangan ini data mining telah diimplementasikan keberbagai bidang, diantaranya dalam bidang bisnis atau perdangangan, dan telekomunikasi. Data Mining diartikan

Lebih terperinci

IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH

IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH Oliver Zakaria 1), Kusrini 2) 1) Teknik Informatika STMIK AMIKOM Yogyakarta Jl. Ring Road Utara Condong

Lebih terperinci