LONG MEMORY MODELS TO FORECASTING TEMPERATURE. Rezzy Eko Caraka, S.Si Department of Actuarial Science Bandung Institute of Technology

Ukuran: px
Mulai penontonan dengan halaman:

Download "LONG MEMORY MODELS TO FORECASTING TEMPERATURE. Rezzy Eko Caraka, S.Si Department of Actuarial Science Bandung Institute of Technology"

Transkripsi

1

2 LONG MEMORY MODELS TO FORECASTING TEMPERATURE Rezzy Eko Caraka, S.Si Department of Actuarial Science Bandung Institute of Technology

3 Suhu atau temperature udara adalah faktor yang berperan penting untuk menganlisis anomaly cuaca yang terjadi pada di daerah tertentu.perlu diketahui bahwa suhu udara antara daerah satu dengan daerah lain sangat berbeda. Adapun faktor yang berpengaruh terhadap cuaca pada suatu daerah antara lain adalah 1. Sudut Datangnya Sinar Matahari 2. Tinggi Rendahnya Tempat 3. Angin dan Arus Laut 4. Lamanya Penyinaran 5. Awan

4 TEMPERATURE ANOMALY CONTROVERSY

5 Fenomena Anomali

6

7 Analisis Runtun Waktu Sebuah teknik statistika untuk meramalkan kejadian yang akan datang Data runtun waktu (time series) adalah jenis data yang dikumpulkan menurut urutan waktu dalam suatu rentang tertentu. Adapun waktu yang digunakan dapat berupa harian, mingguan, bulan, tahun, dan sebagainya (Wei, 2006). Beberapa alasan menggunakan analisis runtun waktu adalah: Adanya pola berulang. Kondisi saat ini terkait dengan kondisi (nilai data) pada periode sebelumnya. Peramalan kondisi di periode mendatang dapat dilakukan jika mampu mengetahui pola pergerakan data dari waktu ke waktu.

8 Long Memory Model Autoregressive Fractionally Integrated Moving Average (ARFIMA) merupakan pengembangan dari model ARIMA. Suatu proses dikatakan mengikuti model ARFIMA jika nilai d adalah riil. ARFIMA disebut juga ARIMA yang nilai d tidak hanya berupa nilai integer, melainkan termasuk juga nilai-nilai riil yang disebabkan oleh adanya memori jangka panjang. Menurut Doornik dan Ooms (1999), model ARFIMA(p,d,q) dapat ditulis φ B d Y t = θ B a t, t = 1,2,, T dengan level integrasi d merupakan bilangan riil dan a t ~IID 0, σ t 2. Filter pembeda d pada rumus di atas disebut Long Memory Filter (LMF) yang menggambarkan adanya ketergantungan jangka panjang dalam deret. Filter ini diekspansikan sebagai deret Binomial d = 1 B d = j=0 d j 1 j B j

9 Diagram Penelitian Data yang digunakan adalah suhu Stasiun Meteorologi Raja Haji Abdullah Tanjung Balai Karimun Provinsi Kepulauan Riau dari January 2014 sampai dengan February 2016 yang diolah menggunakan AFRIMA.

10 KARIMUN Kabupaten Karimun adalah salah satu kabupaten di Provinsi Kepulauan Riau, Indonesia. Ibu kota Kabupaten Karimun terletak di Tanjung Balai Karimun. Kabupaten ini memiliki luas wilayah km², dengan luas daratan km² dan luas lautan km². Kabupaten Karimun terdiri dari 198 pulau dengan 67 diantaranya berpenghuni. Karimun memiliki jumlah penduduk sebanyak jiwa. Kabupaten Karimun Berbatasan dengan Kepulauan Meranti di sebelah Barat, Pelalawandan Indragiri Hilir di Selatan, Selat Malaka di sebelah utara, dan Kota Batam di sebelah Timur

11 STATISTIKA DESKRIPTIF Suhu minimum sebesar 20 terjadi pada 20 January 2015 Suhu maksimum sebesar terjadi pada 06 Mei 2014 Range yang lebar untuk data suhu yaitu sebesar Rata-rata Penyimpangan suhu standar deviasi Keragaman suhu sebesar Nilai skewness data suhu condong berada ke kiri karena memiliki ekor kiri yang panjang dibandingkan dengan ekor kanan yang jauh lebih pendek. Nilai kurtosis yang diperoleh lebih besar dari 3, hal ini menunjukkan bahwa data suhu kabupaten karimun menghasilkan kurva leptokurtis (meruncing).

12 ARFIMA (1) Data belum stasioner terhadap varian sehingga perlu dilakukan transformasi Box-Cox. Dalam melakukan transformasi Box-Cox, langkah selanjutnya adalah melakukan transformasi ln terhadap data in sample SUHU. Data hasil transformasi tersebut digunakan untuk analisis selanjutnya.

13 ARFIMA (2) Tampak terpotong pada suatu lag. Ini menunjukkan kecenderungan data memiliki model Autoregressive (AR). Pada plot PACF adapun kemungkinan model untuk proses long memory adalah ARFIMA(1,d,0), ARFIMA(2,d,1), ARFIMA(1,d,2), ARFIMA(2,d,0), ARFIMA(2,d,1), dan ARFIMA(2,d,2), dengan d= Model Uji Normalitas Uji Non Autokorelasi Uji Non Heteroskedastisitas AIC ARFIMA( 1, 0,70363,0) ARFIMA( 1, 0,170363,2)

14 ARFIMA (3) Dilakukan perbandingan hasil ramalan model ARFIMA terbaik dengan suhu pada tanggal 08 february 2016 sampai 19 february 2016 dengan 08 february February 2015 dan juga 08 February 2014 sampai dengan 19 February 2014 yang didapatkan pada website bmkg (http://dataonline.bmkg.go.id/ketersediaan_data) dan didapatkan hasil sebagai berikut : Tanggal Hasil Ramalan Tahun 2015 Tahun February February February February February February February February February February February February Perbandingan Suhu Pada Bulan February Tahun 2014 Sampai 2016 Hasil Ramalan Tahun 2015 Tahun Feb-16 8-Feb Feb-1612-Feb-1614-Feb-1616-Feb-1618-Feb-1620-Feb-16

15 PANAS YA? LANTAS MAU MENYALAHKAN SIAPA? RUMPUT YANG BERGOYANG? Perhatikan Dampak yang akan timbul

16 EKONOMI LAKI- LAKI JIWA PEREMPUAN USIA PRODUKTIF anggap 10% dari data tersebut maka sekitar JIWA yang diduga mengalami dilema karena kulitnya akan berwarna gelap UMK PER 2014 Rp

17 Kesehatan Nyamuk penyebab demam berdarah akan berkembang biak dengan baik pada suhu tersebut bahkan larva berkembang pada suhu 28 c sekitar 10 hari sehingga akan membuat angka kesehatan akan menurun Pada tahun 2014 untuk setiap penduduk tersedia 5 dokter, 9 bidan dan 16 Perawat dan 2 rumah sakit

18 PERTANIAN 1. KELAPA suhu 20 0 C-27 0 C 2. GAMBIR (MINYAK ASIRI ) Suhu udara 20 0 C - 40 C 3. KARET 25 0 C sampai 35 0 C 4. Sukun 20 0 C sampai 24 0 C

19 PERIKANAN dan KELAUTAN Budidaya ikan laut di keramba jaring apung (floating cages) juga dapat dilakukan, karena fitoplankton laut jenis Dunaliella sp. yang merupakan pakan alami bagi ikan mampu hidup pada salinitas 31 ppm dengan suhu optimal 20 c - 40 c. Adapun ikan yang dapat di budidayakan adalah Ikan Kerapu macan dan bawal bintang, yang mana keduanya merupakan komoditas ikan budidaya laut pasar ekspor dan memiliki nilai ekonomis tinggi

20 PENUTUP ARFIMA(1, ,2) memiliki nilai AIC lebih kecil dibandingkan dengan ARFIMA( 1, ,0) hasil peramalan dengan menggunakan model ARFIMA(1, ,2) lebih cocok untuk memprediksi suhu di karimun, kepulauan riau. Dengan adanya peramalan suhu ini, diharapkan pemerintah Karimun dapat lebih waspada terhadap anomaly cuaca yang terjadi dan dapat bersikap arif terhadap kejadian sekitar Statistics may not teach me how add love or substract hate, but it gives me every reason to hope that every problem has a solution Rezzy Eko Caraka

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL ARFIMA (AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Liana Kusuma Ningrum dan Winita Sulandari, M.Si. Jurusan Matematika,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Dalam dunia statistika terdapat serangkaian pengamatan data yang dapat dijadikan sebagai model time series (runtun waktu) untuk meramalkan kejadian pada periode berikutnya.

Lebih terperinci

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK

PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA ABSTRAK PERBANDINGAN MODEL PADA DATA DERET WAKTU PEMAKAIAN LISTRIK JANGKA PENDEK YANG MENGANDUNG POLA MUSIMAN GANDA Gumgum Darmawan 1), Suhartono 2) 1) Staf Pengajar Jurusan Statistika FMIPA UNPAD 2) Staf Pengajar

Lebih terperinci

PENERAPAN MODEL AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE (ARFIMA) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI)

PENERAPAN MODEL AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE (ARFIMA) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) PENERAPAN MODEL AUTOREGRESSIVE FRACTIONALLY INTEGRATED MOVING AVERAGE (ARFIMA) DALAM PERAMALAN SUKU BUNGA SERTIFIKAT BANK INDONESIA (SBI) Oleh LIANA KUSUMA NINGRUM M0105047 SKRIPSI ditulis dan diajukan

Lebih terperinci

Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA

Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA Seminar Nasional Statistika IX Institut Teknologi Sepuluh Nopember, 7 November 2009 Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA 1 Harnum Annisa Prafitia dan 2 Irhamah

Lebih terperinci

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE

VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE VERIFIKASI MODEL ARIMA MUSIMAN MENGGUNAKAN PETA KENDALI MOVING RANGE (Studi Kasus : Kecepatan Rata-rata Angin di Badan Meteorologi Klimatologi dan Geofisika Stasiun Meteorologi Maritim Semarang) SKRIPSI

Lebih terperinci

BAB I PENDAHULUAN. Aplikasi Arima Dan Arfima Pada Data Kondentrasi Balck Carbon Partikulat Udara Halus PM2,5 Di Daerah Lembang Bandung

BAB I PENDAHULUAN. Aplikasi Arima Dan Arfima Pada Data Kondentrasi Balck Carbon Partikulat Udara Halus PM2,5 Di Daerah Lembang Bandung BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Black carbon (BC) merupakan bentuk impuritas dari karbon hasil pembakaran tidak sempurna bahan bakar fosil atau pembakaran biomassa. Black carbon memiliki pengaruh

Lebih terperinci

Analisis Kejadian Gempa Bumi Tektonik di Wilayah Pulau Sumatera

Analisis Kejadian Gempa Bumi Tektonik di Wilayah Pulau Sumatera Jurnal Matematika Vol. 6 No. 1, Juni 2016. ISSN: 1693-1394 Analisis Kejadian Gempa Bumi Tektonik di Wilayah Pulau Sumatera Jose Rizal Program Studi Matematika, Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP SKRIPSI Disusun oleh : DITA RULIANA SARI NIM. 24010211140084 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH Tri Mulyaningsih ), Budi Nurani R ), Soemartini 3) ) Mahasiswa Program Magister Statistika Terapan Universitas Padjadjaran

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

ANALISIS INTERVENSI FUNGSI STEP

ANALISIS INTERVENSI FUNGSI STEP ANALISIS INTERVENSI FUNGSI STEP (Studi Kasus Pada Jumlah Pengiriman Benda Pos Ke Semarang Pada Tahun 2006 2011) SKRIPSI Diajukan Sebagai Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Statistika

Lebih terperinci

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan pada dasarnya merupakan proses menyusun informasi tentang kejadian masa lampau yang berurutan untuk menduga kejadian di masa depan (Frechtling, 2001:

Lebih terperinci

PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)

PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) M-11 2) PERAMALAN JUMLAH PENUMPANG BANDARA I GUSTI NGURAH RAI DENGAN MENGGUNAKAN METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) Naili Farkhatul Jannah 1), Muhammad Bahtiar Isna Fuady 2), Sefri

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Salah satu indikator tingkat kesejahteraan rakyat dapat dilihat dari perkembangan angka kematian balita, dikarenakan kematian balita berkaitan erat dengan keadaan ekonomi,

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA

PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Jurnal UJMC, Volume 2, Nomor 1, Hal. 28-35 pissn : 2460-3333 eissn: 2579-907X PERAMALAN PENYEBARAN JUMLAH KASUS VIRUS EBOLA DI GUINEA DENGAN METODE ARIMA Novita Eka Chandra 1 dan Sarinem 2 1 Universitas

Lebih terperinci

PROSIDING 2016 ANOMALI CUACA DAN IKLIM SEBAGAI PELUANG DAN TANTANGAN

PROSIDING 2016 ANOMALI CUACA DAN IKLIM SEBAGAI PELUANG DAN TANTANGAN PROSIDING 2016 ANOMALI CUACA DAN IKLIM SEBAGAI PELUANG DAN TANTANGAN ISBN: 978-602-60274-3-6 Tim Editor Dr. Deni Septiadi, M.Si. Andang Kurniawan, A.P Nizar Manarul Hidayat, A.P Vinca Amalia Rizkiafama

Lebih terperinci

BAB 1 PENDAHULUAN. Di Indonesia meteorologi diasuh dalam Badan Meteorologi dan Geofisika di Jakarta

BAB 1 PENDAHULUAN. Di Indonesia meteorologi diasuh dalam Badan Meteorologi dan Geofisika di Jakarta BAB 1 PENDAHULUAN 1.1. Latar Belakang Di Indonesia meteorologi diasuh dalam Badan Meteorologi dan Geofisika di Jakarta yang sejak tahun enam puluhan telah diterapkan menjadi suatu direktorat perhubungan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial

BAB II TINJAUAN PUSTAKA. autokovarians (ACVF) dan fungsi autokorelasi (ACF), fungsi autokorelasi parsial BAB II TINJAUAN PUSTAKA Berikut teori-teori yang mendukung penelitian ini, yaitu konsep dasar peramalan, konsep dasar deret waktu, proses stokastik, proses stasioner, fungsi autokovarians (ACVF) dan fungsi

Lebih terperinci

PEMODELAN DATA RUNTUK WAKTU PADA DATA PRODUKSI SUSU SAPI DI AMERIKA SEJAK TAHUN

PEMODELAN DATA RUNTUK WAKTU PADA DATA PRODUKSI SUSU SAPI DI AMERIKA SEJAK TAHUN PEMODELAN DATA RUNTUK WAKTU PADA DATA PRODUKSI SUSU SAPI DI AMERIKA SEJAK TAHUN 1962 1975 Jantini Trianasari Natangku dan Fitria Puspitoningrum Mahasiswa Program Studi Matematika Fakultas Sains dan Matematika

Lebih terperinci

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk.

PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. APPLICATION OF ARIMA TO FORECASTING STOCK PRICE OF PT. TELOKM Tbk. PENERAPAN MODEL ARIMA UNTUK MEMPREDIKSI HARGA SAHAM PT. TELKOM Tbk. Djoni Hatidja ) ) Program Studi Matematika FMIPA Universitas Sam Ratulangi, Manado 955 email: dhatidja@yahoo.com ABSTRAK Penelitian ini

Lebih terperinci

Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model

Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Peramalan Deret Waktu Menggunakan S-Curve dan Quadratic Trend Model Ni Kadek Sukerti STMIK STIKOM Bali Jl. Raya Puputan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Berdasarkan sifatnya peramalan terbagi atas dua yaitu peramalan kualitatif dan peramalan kuantitatif. Metode kuantitatif terbagi atas dua yaitu analisis deret berkala

Lebih terperinci

PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH)

PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (GARCH) Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 80 88 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN RESIKO INVESTASI BANK CENTRAL ASIA DAN BANK MANDIRI MENGGUNAKAN MODEL GENERALIZED AUTOREGRESSIVE

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 36 HASIL DAN PEMBAHASAN Deskripsi Data Penelitian ini diawali dengan melihat ketergantungan antar lokasi dan waktu. Lokasi-lokasi dalam penelitian ini saling berhubungan, hal ini ditunjukkan dengan nilai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Manfaat Peramalan Pada dasarnya peramalan adalah merupakan suatu dugaan atau perkiraan tentang terjadinya suatu keadaan dimasa depan, tetapi dengan menggunakan metode metode tertentu

Lebih terperinci

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT

BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT BAB 3 MODEL FUNGSI TRANSFER MULTIVARIAT Model fungsi transfer multivariat merupakan gabungan dari model ARIMA univariat dan analisis regresi berganda, sehingga menjadi suatu model yang mencampurkan pendekatan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG

ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG ANALISIS DERET BERKALA MULTIVARIAT DENGAN MENGGUNAKAN MODEL FUNGSI TRANSFER: STUDI KASUS CURAH HUJAN DI KOTA MALANG Fachrul Ulum Febriansyah dan Abadyo Universitas Negeri Malang E-mail: fachrul.febrian@gmail.com

Lebih terperinci

Pemodelan ARIMA Non- Musim Musi am

Pemodelan ARIMA Non- Musim Musi am Pemodelan ARIMA Non- Musimam ARIMA ARIMA(Auto Regresif Integrated Moving Average) merupakan suatu metode analisis runtun waktu(time series) ARIMA(p,d,q) Dengan AR : p =orde dari proses autoreggresif I

Lebih terperinci

Statistik Deskriptif dengan Microsoft Office Excel

Statistik Deskriptif dengan Microsoft Office Excel Statistik Deskriptif dengan Microsoft Office Excel Junaidi, Junaidi I. Prosedur Statistik Deskriptif pada Excel Statistik deskriptif adalah statistik yang bertujuan untuk mendeskripsikan atau menggambarkan

Lebih terperinci

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan SEMINAR PROPOSAL TUGAS AKHIR Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan OLEH: NAMA : MULAZIMATUS SYAFA AH NRP : 13.11.030.021 DOSEN PEmbimbing: Dr.

Lebih terperinci

IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.2 Jenis dan Sumber Data

IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.2 Jenis dan Sumber Data IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian Lokasi penelitian tentang risiko harga sayuran di Indonesia mencakup komoditas kentang, kubis, dan tomat dilakukan di Pasar Induk Kramat Jati, yang

Lebih terperinci

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan.

BAB 2 LANDASAN TEORI. datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang datang. Kegunaan dari peramalan terlihat pada saat pengambilan keputusan. Keputusan yang

Lebih terperinci

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 253 266. PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

A. Judul : PEMODELAN FUNGSI TRANSFER PADA PERAMALAN CURAH HUJAN DI KABUPATEN BANDUNG

A. Judul : PEMODELAN FUNGSI TRANSFER PADA PERAMALAN CURAH HUJAN DI KABUPATEN BANDUNG A. Judul : PEMODELAN FUNGSI TRANSFER PADA PERAMALAN CURAH HUJAN DI KABUPATEN BANDUNG B. Latar Belakang Informasi tentang curah hujan merupakan perihal penting yang berpengaruh terhadap berbagai macam aktifitas

Lebih terperinci

PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG DOMESTIK DI BANDAR UDARA JUANDA DENGAN MENGGUNAKAN METODE FUNGSI TRANSFER MULTI INPUT

PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG DOMESTIK DI BANDAR UDARA JUANDA DENGAN MENGGUNAKAN METODE FUNGSI TRANSFER MULTI INPUT PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG LOGO DOMESTIK DI BANDAR UDARA JUANDA DENGAN MENGGUNAKAN METODE FUNGSI TRANSFER MULTI INPUT Oleh : Ary Miftakhul Huda (1309 100 061) Dosen Pembimbing : Dr.rer.pol.

Lebih terperinci

ANALISA DAN PEMBAHASAN

ANALISA DAN PEMBAHASAN ANALISA DAN PEMBAHASAN STATISTIK DESKRIPTIF Statistik Deskriptif Data Polusi Udara Variabel Total Total Non Mising Total Mising Mean Standar deviasi Minimum Maksimum PM10 1096 940 156 54.903 21.154 11.48

Lebih terperinci

Metode Langkah-langkah yang dilakukan dalam penelitian ini dapat dilihat pada Gambar 1. Eksplorasi data. Identifikasi model ARCH

Metode Langkah-langkah yang dilakukan dalam penelitian ini dapat dilihat pada Gambar 1. Eksplorasi data. Identifikasi model ARCH 6 Metode Langkah-langkah yang dilakukan dalam penelitian ini dapat dilihat pada Gambar 1. Eksplorasi data Identifikasi model ARCH Pendugaan parameter dan pemilihan model ARCH/GARCH Uji pengaruh asimetrik

Lebih terperinci

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung

Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Analisis Peramalan Data Produk Domestik Regional Bruto (PDRB) Sebagai Tolak Ukur Kinerja Perekonomian Provinsi Kepulauan Bangka Belitung Desy Yuliana Dalimunthe Jurusan Ilmu Ekonomi, Fakultas Ekonomi,

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 38 III. METODE PENELITIAN A. Konsep Dasar dan Batasan Operasional Konsep dasar dan definisi opresional mencakup pengertian yang dipergunakan untuk mendapatkan dan menganalisis data sesuai dengan tujuan

Lebih terperinci

BAB I PENDAHULUAN. atau memprediksi nilai suatu perolehan data di masa yang akan datang

BAB I PENDAHULUAN. atau memprediksi nilai suatu perolehan data di masa yang akan datang BAB I PENDAHULUAN 1.1 Latar Belakang Time Series atau deret waktu merupakan barisan suatu nilai pengamatan yang diukur dalam rentang waktu tertentu dalam interval waktu yang sama. Analisis data deret waktu

Lebih terperinci

ANALISIS INTERVENSI FUNGSI STEP (Studi Kasus Pada Jumlah Pengiriman Benda Pos Ke Semarang Pada Tahun )

ANALISIS INTERVENSI FUNGSI STEP (Studi Kasus Pada Jumlah Pengiriman Benda Pos Ke Semarang Pada Tahun ) ANALISIS INTERVENSI FUNGSI STEP (Studi Kasus Pada Jumlah Pengiriman Benda Pos Ke Semarang Pada Tahun 2006 2011) Amelia Crystine 1, Abdul Hoyyi 2, Diah Safitri 3 1 Mahasiswa Jurusan Statistika FSM UNDIP

Lebih terperinci

PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.

PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK. Jurnal Matematika UNAND Vol. VI No. 1 Hal. 25 32 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN RESIKO INVESTASI DENGAN MODEL GARCH PADA INDEKS HARGA SAHAM PT. INDOFOOD SUKSES MAKMUR TBK.

Lebih terperinci

BAB III MISSING DATA DAN PROSES RUNTUN WAKTU JANGKA PANJANG

BAB III MISSING DATA DAN PROSES RUNTUN WAKTU JANGKA PANJANG BAB III MISSING DATA DAN PROSES RUNTUN WAKTU JANGKA PANJANG 3.1 Missing Data Missing data merupakan hilangnya informasi atau data dalam suatu subjek. Terdapat banyak hal yang menyebabkan terjadinya missing

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan

Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan METODE BOX JENKINS Model Autoregressive Integrated Moving Average (ARIMA) adl teknik untuk mencari pola yg paling cocok dari sekelompok data Model ARIMA dapat digunakan utk semua tipe pola data. Dapat

Lebih terperinci

LONG MEMORY PADA DATA NILAI TUKAR RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT (USD)

LONG MEMORY PADA DATA NILAI TUKAR RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT (USD) LONG MEMORY PADA DATA NILAI TUKAR RUPIAH TERHADAP DOLLAR AMERIKA SERIKAT (USD) Harnum Annisa Prafitia, 2 Irhamah, dan 3 Kartika Fithriasari Mahasiswa Jurusan Statistika (306 00 002) FMIPA-ITS 2,3 Dosen

Lebih terperinci

Prediksi Curah Hujan Bulanan Untuk Kegiatan Pertanian/Perkebunan. Menggunakan Metoda SARIMA. (Seasonal Autoregressive Integrated Moving Average) :

Prediksi Curah Hujan Bulanan Untuk Kegiatan Pertanian/Perkebunan. Menggunakan Metoda SARIMA. (Seasonal Autoregressive Integrated Moving Average) : Prediksi Curah Hujan Bulanan Untuk Kegiatan Pertanian/Perkebunan Menggunakan Metoda SARIMA (Seasonal Autoregressive Integrated Moving Average) : Studi Kasus di Kabupaten Semarang Jawa Tengah Indonesia

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Tingkat pemanasan rata-rata selama lima puluh tahun terakhir hampir dua kali lipat dari rata-rata seratus tahun terakhir, di mana pemanasan lebih dirasakan

Lebih terperinci

PEMBOBOTAN SUB DIMENSION INDICATOR INDEX UNTUK PENGGABUNGAN CURAH HUJAN (Studi Kasus : 15 Stasiun Penakar Curah Hujan di Kabupaten Indramayu)

PEMBOBOTAN SUB DIMENSION INDICATOR INDEX UNTUK PENGGABUNGAN CURAH HUJAN (Studi Kasus : 15 Stasiun Penakar Curah Hujan di Kabupaten Indramayu) Xplore, 2013, Vol. 1(1):e3(1-7) c 2013 Departemen Statistika FMIPA IPB PEMBOBOTAN SUB DIMENSION INDICATOR INDEX UNTUK PENGGABUNGAN CURAH HUJAN (Studi Kasus : 15 Stasiun Penakar Curah Hujan di Kabupaten

Lebih terperinci

Prediksi Harga Saham dengan ARIMA

Prediksi Harga Saham dengan ARIMA Prediksi Harga Saham dengan ARIMA Peramalan harga saham merupakan sesuatu yang ditunggu-tunggu oleh para investor. Munculnya model prediksi yang baru yang bisa meramalkan harga saham secara tepat merupakan

Lebih terperinci

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER PKMT-2-13-1 PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER Umi Rosyiidah, Diah Taukhida K, Dwi Sitharini Jurusan Matematika, Universitas Jember, Jember ABSTRAK

Lebih terperinci

Model Space Time Autoregressive (STAR) Orde 1 Dan Penerapannya Pada Prediksi Harga Beras Di Kota Manado, Tomohon Dan Kabupaten Minahasa Utara

Model Space Time Autoregressive (STAR) Orde 1 Dan Penerapannya Pada Prediksi Harga Beras Di Kota Manado, Tomohon Dan Kabupaten Minahasa Utara Model Space Time Autoregressive (STAR) Orde 1 Dan Penerapannya Pada Prediksi Harga Beras Di Kota Manado, Tomohon Dan Kabupaten Minahasa Utara 1 Rahmadania Paita, 2 Nelson Nainggolan, 3 Yohanes A.R. Langi

Lebih terperinci

Pengenalan Analisis Deret Waktu (Time Series Analysis) MA 2081 Statistika Dasar 30 April 2012

Pengenalan Analisis Deret Waktu (Time Series Analysis) MA 2081 Statistika Dasar 30 April 2012 Pengenalan Analisis Deret Waktu (Time Series Analysis) ) MA 208 Statistika Dasar 0 April 202 Utriweni Mukhaiyar Ilustrasi Berikut adalah data rata-rata curah hujan bulanan yang diamati dari Stasiun Padaherang

Lebih terperinci

Peramalan Permintaan Paving Blok dengan Metode ARIMA

Peramalan Permintaan Paving Blok dengan Metode ARIMA Konferensi Nasional Sistem & Informatika 2015 STMIK STIKOM Bali, 9 10 Oktober 2015 Peramalan Permintaan Paving Blok dengan Metode ARIMA Adin Nofiyanto 1,Radityo Adi Nugroho 2, Dwi Kartini 3 1,2,3 Program

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA

PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 59 67 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMODELAN DAN PERAMALAN DATA DERET WAKTU DENGAN METODE SEASONAL ARIMA ANNISA UL UKHRA Program Studi Matematika,

Lebih terperinci

PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013

PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013 La Pimpi //Paradigma, Vol. 17 No. 2, Oktober 2013, hlm. 35-46 PENERAPAN METODE ARIMA DALAM MERAMALKAN INDEKS HARGA KONSUMEN (IHK) INDONESIA TAHUN 2013 1) La Pimpi 1 Staf Pengajar Jurusan Matematika, FMIPA,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji

BAB II TINJAUAN PUSTAKA. penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji 35 BAB II TINJAUAN PUSTAKA Pada Bab II akan dibahas konsep-konsep yang menjadi dasar dalam penelitian ini, yaitu ln return, volatilitas, data runtun waktu, kestasioneran, uji ACF, uji PACF, uji ARCH-LM,

Lebih terperinci

BAB III METODE PENELITIAN. dikumpulkan oleh pihak lain selain dari penelitian itu sendiri. Jenis data yang dipakai

BAB III METODE PENELITIAN. dikumpulkan oleh pihak lain selain dari penelitian itu sendiri. Jenis data yang dipakai 24 BAB III METODE PENELITIAN 1.1 Jenis dan Sumber Data Menurut Sekaran (2003), data sekunder merupakan informasi yang dikumpulkan oleh pihak lain selain dari penelitian itu sendiri. Jenis data yang dipakai

Lebih terperinci

PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32

PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32 PREDIKSI JANGKA PENDEK B ULAN AN JUMLAH FLARE DENGAN MODEL ARIMA (p,d,[q]), (P,D,Q)' 32 Nanang WIdodo Penelid Staslun Pengamat Dlrgantara Watukosek, LAPAN ABSTRACT The time series of the monthly number

Lebih terperinci

II. TINJAUAN PUSTAKA. Time series merupakan serangkaian observasi terhadap suatu variabel yang

II. TINJAUAN PUSTAKA. Time series merupakan serangkaian observasi terhadap suatu variabel yang II. TINJAUAN PUSTAKA 2.1 Analisis Deret Waktu (time series) Time series merupakan serangkaian observasi terhadap suatu variabel yang diambil secara beruntun berdasarkan interval waktu yang tetap (Wei,

Lebih terperinci

IV. METODE PENELITIAN

IV. METODE PENELITIAN IV. METODE PENELITIAN 4.1. Lokasi dan Waktu Penelitian Penelitian dilakukan di Pasar Bunga Rawabelong, Jakarta Barat yang merupakan Unit Pelaksana Teknis (UPT) Pusat Promosi dan Pemasaran Holtikultura

Lebih terperinci

ANALISIS KELAYAKAN RENCANA PEMBUKAAN SHOWROOM MOBIL OLEH PT XYZ BERDASARKAN RAMALAN PERMINTAAN DI BANDA ACEH

ANALISIS KELAYAKAN RENCANA PEMBUKAAN SHOWROOM MOBIL OLEH PT XYZ BERDASARKAN RAMALAN PERMINTAAN DI BANDA ACEH Saintia Matematika Vol. 1, No. 1 (2013), pp. 41 50. ANALISIS KELAYAKAN RENCANA PEMBUKAAN SHOWROOM MOBIL OLEH PT XYZ BERDASARKAN RAMALAN PERMINTAAN DI BANDA ACEH Maradu Naipospos, Pengarapen Bangun, Gim

Lebih terperinci

PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN STOKASTIK PADA DATA JUMLAH PENUMPANG KERETA API (Studi Kasus : KA Argo Muria)

PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN STOKASTIK PADA DATA JUMLAH PENUMPANG KERETA API (Studi Kasus : KA Argo Muria) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2017, Halaman 131-140 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN

Lebih terperinci

BAB I PENDAHULUAN. Statistika inferensial adalah statistika yang dengan segala informasi dari

BAB I PENDAHULUAN. Statistika inferensial adalah statistika yang dengan segala informasi dari BAB I PENDAHULUAN 1.1 Latar Belakang Statistika inferensial adalah statistika yang dengan segala informasi dari sampel digunakan untuk menarik kesimpulan mengenai karakteristik populasi dari mana sampel

Lebih terperinci

APLIKASI PROGRAM DINAMIK UNTUK MENGOPTIMALKAN BIAYA TOTAL PADA PENGENDALIAN PRODUKSI MINYAK SAWIT DAN INTI SAWIT

APLIKASI PROGRAM DINAMIK UNTUK MENGOPTIMALKAN BIAYA TOTAL PADA PENGENDALIAN PRODUKSI MINYAK SAWIT DAN INTI SAWIT Saintia Matematika Vol. 1, No. 5 (2013), pp. 419 433. APLIKASI PROGRAM DINAMIK UNTUK MENGOPTIMALKAN BIAYA TOTAL PADA PENGENDALIAN PRODUKSI MINYAK SAWIT DAN INTI SAWIT (STUDI KASUS: PTPN IV (PERSERO) PKS

Lebih terperinci

PREDIKSI CURAH HUJAN DI KOTA SEMARANG DENGAN METODE KALMAN FILTER

PREDIKSI CURAH HUJAN DI KOTA SEMARANG DENGAN METODE KALMAN FILTER PREDIKSI CURAH HUJAN DI KOTA SEMARANG DENGAN METODE KALMAN FILTER Tika Dhiyani Mirawati 1, Hasbi Yasin 2, Agus Rusgiyono 3 1 Mahasiswa Jurusan Statistika FSM UNDIP 2,3 Staff Pengajar Jurusan Statistika

Lebih terperinci

PREDIKSI CURAH HUJAN DENGAN METODE KALMAN FILTER (Studi Kasus di Kota Semarang Tahun 2012)

PREDIKSI CURAH HUJAN DENGAN METODE KALMAN FILTER (Studi Kasus di Kota Semarang Tahun 2012) PREDIKSI CURAH HUJAN DENGAN METODE KALMAN FILTER (Studi Kasus di Kota Semarang Tahun 2012) SKRIPSI Disusun Oleh : TIKA DHIYANI MIRAWATI NIM : J2E 008 057 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA

Lebih terperinci

OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA)

OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA) OPTIMALISASI PERENCANAAN PRODUKSI DENGAN PREEMPTIVE GOAL PROGRAMMING (STUDI KASUS: UD. DODOL MADE MERTA TEJAKULA, SINGARAJA) Ni Putu Deviyanti 1, Ni Ketut Tari Tastrawati 2, I Wayan Sumarjaya 3 1 Jurusan

Lebih terperinci

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER

PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER PERAMALAN JUMLAH KUNJUNGAN WISATAWAN MANCANEGARA YANG BEKUNJUNG KE BALI MENGGUNAKAN FUNGSI TRANSFER I Ketut Putra Adnyana 1, I Wayan Sumarjaya 2, I Komang Gde Sukarsa 3 1 Jurusan Matematika, Fakultas FMIPA

Lebih terperinci

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP.

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP. PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL Oleh: Niswatul Maghfiroh NRP. 1208100065 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

BAB 3 METODOLOGI. 3.1 Metodologi Penelitian Pengumpulan Bahan Penelitian. Dalam penelitian ini bahan atau materi dikumpulkan melalui :

BAB 3 METODOLOGI. 3.1 Metodologi Penelitian Pengumpulan Bahan Penelitian. Dalam penelitian ini bahan atau materi dikumpulkan melalui : BAB 3 METODOLOGI 3.1 Metodologi Penelitian 3.1.1 Pengumpulan Bahan Penelitian Dalam penelitian ini bahan atau materi dikumpulkan melalui : 1) Data primer, yaitu memperoleh sumber data penelitian langsung

Lebih terperinci

SEMINAR TUGAS AKHIR. Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik. Rina Wijayanti

SEMINAR TUGAS AKHIR. Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik. Rina Wijayanti SEMINAR TUGAS AKHIR Peta Kendali Comulative Sum (Cusum) Residual Studi Kasus pada PT. PJB Unit Pembangkitan Gresik Rina Wijayanti 1306100044 Pembimbing Drs. Haryono, MSIE Dedi Dwi Prastyo, S.Si., M.Si.

Lebih terperinci

Unnes Journal of Mathematics

Unnes Journal of Mathematics UJM 3 (2) (2014) Unnes Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PEMODELAN ARFIMA MELALUI SEBAGAI PENENTU DAN APLIKASINYA DALAM ESTIMASI HARGA SAHAM Putri Dwi Pradina, Scolastika

Lebih terperinci

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi.

TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS. Fitri Yulianti, SP. MSi. TATAP MUKA IV UKURAN PENYIMPANGAN SKEWNESS DAN KURTOSIS Fitri Yulianti, SP. MSi. UKURAN PENYIMPANGAN Pengukuran penyimpangan adalah suatu ukuran yang menunjukkan tinggi rendahnya perbedaan data yang diperoleh

Lebih terperinci

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA Seminar Hasil Tugas Akhir Jurusan Statistika Institut Teknologi Sepuluh Nopember Surabaya 2013 LOGO PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

Lebih terperinci

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu

BAB I PENDAHULUAN. Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Peramalan keadaan pada suatu waktu merupakan hal penting. Hal itu dikarenakan peramalan dapat digunakan sebagai rujukan dalam menentukan tindakan yang akan

Lebih terperinci

JURNAL GAUSSIAN, Volume 2, Nomor 3, Tahun 2013, Halaman Online di:

JURNAL GAUSSIAN, Volume 2, Nomor 3, Tahun 2013, Halaman Online di: JURNAL GAUSSIAN, Volume 2, Nomor 3, Tahun 2013, Halaman 239-248 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PREDIKSI CURAH HUJAN DENGAN METODE KALMAN FILTER (Studi Kasus di Kota Semarang

Lebih terperinci

PENERAPAN METODE BOX-JENKINS UNTUK PERAMALAN PENCEMARAN UDARA OLEH PARAMETER KARBON MONOKSIDA (CO) DI KOTA PEKANBARU TUGAS AKHIR.

PENERAPAN METODE BOX-JENKINS UNTUK PERAMALAN PENCEMARAN UDARA OLEH PARAMETER KARBON MONOKSIDA (CO) DI KOTA PEKANBARU TUGAS AKHIR. PENERAPAN METODE BOX-JENKINS UNTUK PERAMALAN PENCEMARAN UDARA OLEH PARAMETER KARBON MONOKSIDA (CO) DI KOTA PEKANBARU TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains

Lebih terperinci

ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES

ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES ESTIMASI DATA YANG HILANG DENGAN MENGGUNAKAN PROSES PENYARINGAN DALAM PEMODELAN DATA TIME SERIES Rais 1 1 Jurusan Matematika FMIPA Universitas Tadulako, email: rais76_untad@yahoo.co.id Abstrak Makalah

Lebih terperinci

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series JURNAL SAINS DAN SENI ITS Vol. 6, No. 1, (2017) ISSN: 2337-3520 (2301-928X Print) D-157 Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series Moh Ali Asfihani dan Irhamah

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS Oleh : Agustini Tripena ABSTRACT In this paper, forecasting the consumer price index data and inflation. The method

Lebih terperinci

PERAMALAN HASIL PRODUKSI ALUMINIUM BATANGAN PADA PT INALUM DENGAN METODE ARIMA

PERAMALAN HASIL PRODUKSI ALUMINIUM BATANGAN PADA PT INALUM DENGAN METODE ARIMA Saintia Matematika Vol. 1, No. 1 (2013), pp. 1 10. PERAMALAN HASIL PRODUKSI ALUMINIUM BATANGAN PADA PT INALUM DENGAN METODE ARIMA Lukas Panjaitan, Gim Tarigan, Pengarapen Bangun Abstrak. Dalama makalah

Lebih terperinci

Metode Deret Berkala Box Jenkins

Metode Deret Berkala Box Jenkins METODE BOX JENKINS Metode Deret Berkala Box Jenkins Suatu metode peramalan yang sistematis, yang tidak mengasumsikan suatu model tertentu, tetapi menganalisa deret berkala sehingga diperoleh suatu model

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 DATA MINING Data Mining adalah analisis otomatis dari data yang berjumlah banyak atau kompleks dengan tujuan untuk menemukan pola atau kecenderungan yang penting yang biasanya

Lebih terperinci

PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON

PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON (MODELS OF ARIMA TO PREDICT RISING SEA AND ITS IMPACT FOR THE WIDESPREAD DISTRIBUTION OF ROB

Lebih terperinci

MODEL ARMA (AUTOREGRESSIVE MOVING AVERAGE) UNTUK PREDIKSI CURAH HUJAN DI KABUPATEN SEMARANG JAWA TENGAH - INDONESIA. Salatiga, Jawa Tengah, Indonesia

MODEL ARMA (AUTOREGRESSIVE MOVING AVERAGE) UNTUK PREDIKSI CURAH HUJAN DI KABUPATEN SEMARANG JAWA TENGAH - INDONESIA. Salatiga, Jawa Tengah, Indonesia MODEL ARMA (AUTOREGRESSIVE MOVING AVERAGE) UNTUK PREDIKSI CURAH HUJAN DI KABUPATEN SEMARANG JAWA TENGAH - INDONESIA Adi Nugroho 1, Bistok Hasiholan Simanjuntak 2 1 Staf pengajar di Fakultas Teknologi Informasi

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Meramalkan sesuatu berdasarkan ilmu pengetahuan merupakan sesuatu yang dianjurkan dalam Islam, sebagaimana yang diceritakan dalam Al-qur an dalam surat Yusuf ayat

Lebih terperinci

ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG

ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG ANALISIS INTERVENSI KENAIKAN HARGA BBM BERSUBSIDI PADA DATA INFLASI KOTA SEMARANG SKRIPSI Disusun Oleh : NOVIA DIAN ARIYANI 24010211120016 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH

PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH PERAMALAN DATA SAHAM S&P 500 INDEX MENGGUNAKAN MODEL TARCH Universitas Negeri Malang E-mail: abiyaniprisca@ymail.com Abstrak: Penelitian ini bertujuan untuk mengetahui model peramalan terbaik dari data

Lebih terperinci

IV. KONDISI UMUM WILAYAH PENELITIAN

IV. KONDISI UMUM WILAYAH PENELITIAN 53 IV. KONDISI UMUM WILAYAH PENELITIAN 4.1 Kondisi Geografis Selat Rupat merupakan salah satu selat kecil yang terdapat di Selat Malaka dan secara geografis terletak di antara pesisir Kota Dumai dengan

Lebih terperinci