INTENSITAS IKATAN NON-LINIER FONON-FRAKTON DALAM JARING PERKOLASI DUA DIMENSI. Heri Jodi *

Ukuran: px
Mulai penontonan dengan halaman:

Download "INTENSITAS IKATAN NON-LINIER FONON-FRAKTON DALAM JARING PERKOLASI DUA DIMENSI. Heri Jodi *"

Transkripsi

1 INTENSITAS IKATAN NON-LINIER FONON-FRAKTON DALAM JARING PERKOLASI DUA DIMENSI Heri Jodi * ABSTRAK INTENSITAS IKATAN NON-LINEAR FONON-FRAKTON DALAM JARING PERKOLASI DUA DIMENSI. Kelakuan panas bahan amorf sangatlah spesifik dan berbeda dengan kristal biasa. Setelah membentuk daerah datar, konduktivitas panas bahan ini naik kembali pada temperatur diatas 10 K. Fenomena ini diperkirakan terjadi karena adanya ikatan non-linier antara fonon dengan moda yang terlokalisasi kuat. Dengan asumsi bahwa moda tersebut adalah frakton, telah dihitung intensitas ikatan fonon-frakton dalam sebuah jaring perkolasi dua dimensi. Didapatkan koefisien ikatan fonon-frakton dalam jaring perkolasi lebih besar puluhan kali lipat dibandingkan dengan harganya untuk ikatan fonon-fonon. Disimpulkan bahwa frakton merupakan model yang efektif untuk menerangkan kelakuan konduktivitas panas bahan amorf pada suhu rendah. Kata-kata kunci : konduktivitas panas, frakton, jaring perkolasi, koefisien ikatan non-linier ABSTRACT THE INTENSITY OF PHONON-FRACTON AN-HARMONIC COUPLING IN A 2-D PERCOLATION NET. Thermal conductivity of amorphous materials such as glasses has a very specific feature which is different from common crystals. The thermal conductivity has a plateau area around 10 K and increases again from the plateau area just above 10 K. This phenomenon may be resulted from the presence of an-harmonic coupling between vibrational mode called phonon with another vibrational mode which is strongly localized. Assuming that the strongly localized mode is fracton, we calculated the intensity of phonon-fracton coupling in a 2-D percolation net. The result is that the magnitude of an-harmonic phonon-fracton coupling arises to several ten times larger than that of phonon-phonon coupling. It is concluded that fracton is an effective model to explain the feature of thermal conductivity of amorphous material at low temperature. Keywords : thermal conductivity, fracton, percolation net, anharmonic coupling coefficient. PENDAHULUAN Bahan-bahan amorf seperti gelas banyak digunakan dalam dunia teknologi sekarang. Silikon amorf misalnya, banyak digunakan sebagai baterai tenaga surya dengan biaya produksi lebih murah dibandingkan dengan kristal tunggal Silikon. Bahan-bahan ini tidak mempunyai keteraturan (periodisitas) dalam strukturnya. * Pusat Penelitian dan Pengembangan Ilmu Bahan BATAN

2 Kelakuan panas bahan amorf pada suhu rendah berbeda dengan kristal biasa. Pada suhu dibawah 10 K, amorf mempunyai konduktivitas panas sebanding dengan T 2. Pada suhu sekitar 10 K, konduktivitas panas membentuk daerah datar (plateau), dan kemudian naik lagi di atas suhu 10 K. Kelakuan panas ini sangatlah spesifik dan merupakan kelakuan yang universal dari semua bahan gelas dan makromolekul [1]. Gambar 1 menunjukkan konduktivitas panas beberapa bahan gelas yang diambil dari hasil penelitian R.C. Zeller dkk. [1]. Gambar 1. Konduktivitas panas beberapa bahan gelas naik sebanding dengan T 2 pada suhu dibawah 10 K, membentuk daerah datar pada suhu sekitar 10 K dan naik kembali di atas 10 K[1]. Kenaikan konduktivitas panas gelas dari daerah datar dihubungkan dengan kemunculan moda vibrasi yang terlokalisasi dengan kuat dalam daerah temperatur tersebut. Moda terlokalisasi kuat itu adalah moda vibrasi yang terikat dalam daerah yang sempit yang dibangkitkan dari sistem acak (random) dengan korelasi yang kuat. Misalnya frakton, moda karakteristik dari sebuah sistem dengan simetri kesamaan diri (disebut fraktal), merupakan moda yang terlokalisasi kuat dengan ciri khas hanya memiliki satu skala besaran yaitu panjang korelasi. Frakton mempunyai besaran dimensi yang bukan bilangan rasional yang disebut dimensi frakton ð, dan rapat keadaan D(ω) ω ð-1 [2,3,4]. Sebagian besar sistem acak yang ada di alam ini dalam

3 arti statistik merupakan bentuk fraktal (fraktal acak). Bahan gelas yang memiliki struktur fraktal adalah Silica-aerogels [5]. Diperkirakan ada interaksi non-linear antara moda fonon dengan moda terlokalisasi kuat dalam bahan amorf yang menyebabkan konduktivitas panas bahan ini naik kembali dari daerah datar. Untuk melihat berapa besar intensitas ikatan tersebut, dilakukan penghitungan numerik dalam sebuah model fraktal acak yang disebut jaring perkolasi dua dimensi. Hasil penghitungan tersebut akan memberi pertimbangan tentang efektivitas model frakton sebagai model mikroskopik untuk menerangkan kelakuan konduktivitas panas gelas. TEORI Dalam percobaan menggunakan hamburan neutron inelastik pada silika amorf ditemukan puncak moda vibrasi baru yang bukan fonon. Dari perhitungan dengan menggunakan model SiO 4, diketahui moda tersebut merupakan moda terlokalisasi kuat dalam daerah penyebaran sekitar 10Å, dengan frekuensi sekitar 200 GHz atau setara dengan suhu 10 K[6]. Hal ini mengindikasikan bahwa moda terlokalisasi kuat mempunyai peranan yang penting terhadap kelakuan panas gelas pada temperatur rendah. Indikasi ini diperkuat oleh keberhasilan sebuah model menggambarkan konduktivitas panas gelas dalam daerah jangkauan suhu yang yang cukup lebar. Yang menjadi perhatian adalah model ini bekerja atas dasar asumsi bahwa di dalam bahan gelas terdapat moda terlokalisasi kuat, dan bahwa setiap moda mempunyai potensial yang merupakan fungsi non-linier[7]. Sehingga disimpulkan bahwa untuk melihat fenomena konduktivitas panas bahan gelas, perlu dipertimbangkan hadirnya moda terlokalisasi kuat pada suhu sekitar 10 K. Pada suhu rendah moda terlokalisasi kuat sangat sedikit jumlahnya, dan tidak mempunyai kontribusi pada penghantaran panas. Ketika T >10 K, energi serta amplitudo vibrasi tiap atom semakin besar, sehingga terjadi interaksi (ikatan) diantara moda yang ada. Ikatan antara moda fonon dengan moda terlokalisasi kuat mengakibatkan loncatan (hopping) pusat lokalisasi moda, dan terus bertambah seiring dengan kenaikan temperatur. Hal inilah yang diperkirakan membawa aliran panas dan mengakibatkan naiknya konduktivitas panas[8,9]. Probabilitas transisi moda λ ke moda λ ( W λλ ) dari hukum emas (Golden Rule) dari Fermi, mengisyaratkan bahwa W λλ (C eff ) 2, di mana C eff adalah koefisien efektif ikatan non-linier (intensitas ikatan moda). W λλ = (2π/h) <λ H anh λ> 2 δ(e λ - E λ ) H anh = C eff [ u(r)] 3 d 3 r : Hamiltonian anharmonik

4 Setelah probabilitas tersebut dijumlahkan untuk seluruh moda λ, akan diperoleh umur moda λ (life time τ λ ) sebagai berikut. 1/τ λ (C eff ) 2. (1) Bila konduktivitas panas terjadi karena proses fonon + frakton frakton, maka κ hopping Σ λ (fn,fr1 fr2) (1/τ λ ) T. Sehingga setelah daerah datar, konduktivitas panas menjadi κ = κ plateau + αt, (α adalah konstanta). Ketergantungan konduktivitas panas terhadap temperatur ini telah dibuktikan dalam eksperimen menggunakan resin epoxy[10]. Bahan gelas memiliki struktur tidak teratur (acak), akan tetapi belum tentu merupakan sistem fraktal. Bahan ini mempunyai banyak panjang korelasi dalam skala 5~20 Å, tetapi kelakuan panasnya tidak tergantung pada ragam panjang korelasi tersebut[11]. Bahan ini juga mempunyai moda yang terlokalisasi kuat. Sehingga dengan menganggap salah satu panjang korelasinya sebagai korelasi fraktal dan moda terlokalisasi kuatnya sebagai moda frakton, menjadikan fraktal sebagai model untuk mengetahui kelakuan panas gelas tidak akan memberikan gambaran yang salah. Dalam percobaan yang menggunakan resin epoxy dengan struktur tatanan Cantor, ditemukan bahwa harga intensitas ikatan fonon-frakton lebih besar lima kali lipat dibandingkan dengan harganya untuk ikatan fonon-fonon[12]. Untuk menghitung intensitas ikatan fonon-frakton tersebut, kali ini digunakan model jaring perkolasi, sebuah bentuk fraktal acak yang mempunyai ikatan-ikatan lemah dalam strukturnya yang tidak terdapat dalam struktur tatanan Cantor[3,13]. Ikatan-ikatan ini diharapkan memberikan efek non-linieritas yang lebih besar sehingga didapatkan harga intensitas ikatan fonon-frakton yang lebih besar. METODA PENGHITUNGAN Dalam sebuah sistem kisi yang terbentuk dari N buah partikel bermassa m yang saling berikatan, keseluruhan energi sistem dapat dituliskan sebagai berikut, E = (1/2) m Σ i (u i ) 2 + (1/2) Σ i,j k ij u i u j + (1/3) Σ i,j,k l ijk u i u j u k di mana u l adalah besar amplitudo getaran (jarak pergeseran) partikel ke l, k ij adalah konstanta pegas yang menghubungkan partikel ke i dengan partikel ke j, di mana

5 berlaku (k ij = k ji ). Sedangkan l ijk adalah variabel yang berharga konstan untuk setiap ijk tertentu. Bila pada kondisi awal moda λ 0 mempunyai energi sebesar E 0, maka seiring dengan bertambahnya waktu t, energinya akan berkurang oleh interaksi energi dengan moda lain. Sehingga energi sistem pada saat t bisa dituliskan sebagai berikut. E λo (t) = E 0 exp (- t / τ λ ). (2) Energi moda E λo akan berkurang dengan cepat seiring dengan menguatnya intensitas interaksi antar moda, dan mengakibatkan umur moda (life-time) τ λo menjadi pendek. Ini berarti bila harga C eff semakin besar, maka harga τ λo akan menjadi kecil. Oleh karena itu dengan mencari besarnya energi, maka akan didapatkan harga τ dan C eff. Rasio (perbandingan) intensitas ikatan fonon-frakton dengan intensitas ikatan fonon-fonon bisa dihitung dari persamaan (1). ( C eff ) ph-fr / ( C eff ) ph-ph [τ ph / τ fr ] (3) Urutan penghitungan kali ini adalah sebagai berikut: Menghitung pola moda (mode pattern) frakton dalam jaring perkolasi. Menghitung energi sistem dengan persamaan gerak yang memiliki suku non-linear dengan menggunakan metoda ekspansi waktu. Jarak pergeseran awal partikel diperoleh dari hasil penghitungan pola moda. Mendapatkan harga τ (umur moda) frakton dari energi moda. Dengan urutan yang sama melakukan penghitungan untuk moda fonon. Menghitung rasio intensitas ikatan fonon-frakton dengan ikatan fonon-fonon. Metoda penghitungan yang dipakai untuk menghitung rapat keadaan (DOS) sistem dan pola modanya adalah Metoda Gaya Penggetar Luar (Forced Oscillator Method) yaitu dengan memanfaatkan gejala resonansi yang diakibatkan oleh pemberian gaya luar yang periodik secara terus-menerus pada setiap titik kisi[4,14]. Ketika ke dalam sebuah sistem kisi diberikan sebuah gaya luar yang periodik, persamaan gerak kisi tersebut adalah M j (u j ) (t) = -Σ k Φ jk u k (t) + F j cos(ω t) (4) di mana F j = F o cos(φ j ) m j ; adalah gaya luar yang berikan pada titik kisi j, F o adalah konstanta dan φ j adalah bilangan acak pada daerah [0;2π]. Jarak pergeseran titik kisi u j (t) merupakan penjumlahan dari amplitudo moda-moda standar Q λ (t). u j (t) = Σ λ Q λ (t) e j (λ)/ m j. (5)

6 Bila solusi persamaan (4) mempunyai ketergantungan waktu sebesar ~ exp(iωt), maka persamaan gerak kisi sebagai fungsi amplitudo moda Q λ (t) adalah Q λ (t) + ω λ 2 Q λ (t) = Σ j F j cos (Ωt) e j (λ)/ m j. (6) Bila penambahan gaya luar tersebut dilakukan terus menerus dalam waktu yang relatif panjang, energi rata-rata sistem yang diakibatkannya adalah <E> = (1/8)πtF o 2 Σ λ δ(ω λ - Ω) sehingga dengan membandingkan persamaan tersebut terhadap rumus umum kerapatan keadaan, diperoleh rapat keadaan (DOS) sistem dengan N buah titik kisi adalah sebagai berikut. D(Ω) = 8 <E> / πtf o 2 N. (7) Solusi persamaan (6) dengan kondisi awal Q λ (t=0) = 0 adalah Q λ (t) = 2 Σ j F j e j (λ) /( m j ) [2 sin (Ω+ω λ )t/2 sin (Ω-ω λ )t/2] / (Ω 2 - ω λ 2 ). Ketika ke dalam sistem diberikan gaya luar selama selang satuan waktu t pertama, amplitudo titik kisi ke j adalah merupakan penjumlahan amplitudo moda-moda yang mempengaruhinya, dan menjadi sebagai berikut. u (1) j (t) = 1/( m j ) Σ λ F λ h(ω,ω λ,t) e j (λ) F λ = Σ j F j e j (λ) / m j h(ω,ω λ,t) = [2 sin (Ω+ω λ )t/2 sin (Ω-ω λ )t/2] / (Ω 2 - ω 2 λ ). Dengan berlandaskan pada besar pergeseran tiap titik kisi ini, ditetapkan besar amplitudo gaya luar periodik yang diberikan pada tiap titik kisi pada putaran waktu t selanjutnya sebagai berikut. F j (1) = m j u j (1) (t) Setelah sistem dikembalikan ke dalam kondisi awal, maka diberikan lagi gaya (1) luar periodik F j cos(ωt) selama selang satuan waktu t selanjutnya. Angka dalam kurung superskrip menunjukkan jumlah proses pemberian gaya luar yang telah diberikan. Setelah proses tersebut dilakukan p kali, pergeseran tiap titik kisi akan menjadi

7 u j (p) (t) = 1/( m j ) Σ λ F λ h p (Ω,ω λ,t) e j (λ). (8) Jika pengulangan di atas dilakukan dengan cukup, maka akan terdapat sebuah moda (misal λ 1 ) yang mempunyai amplitudo sangat besar dibandingkan dengan modamoda lain. Moda ini mempunyai frekuensi ω λ memberikan harga yang paling besar pada harga mutlak dari fungsi-h persamaan (8). Dengan cara ini dihitung pola-pola moda frekuensi tertentu. Terhadap pola-pola moda yang dihitung, diperlukan penilaian atas ketunggalannya. Untuk itu telah digunakan sebuah indeks δ l yang merupakan parameter pencampuran moda pada titik kisi j. δ j = - (1/ m j ) {Σ k φ jk u k + ϖ 2 m j u j } δ l akan berharga =0 jika dan hanya jika pada titik kisi j terdapat hanya satu-satunya moda yang terbentuk (λ o ), jadi pada saat ϖ = ω λo. Bila u j merupakan pola moda lain yang mempunyai frekuensi yang dekat dengan Ω, maka ϖ ω λo dan δ l akan mempunyai harga yang kecil. Jaring perkolasi kisi segi empat dua dimensi yang digunakan, memiliki tingkat non-linieritas orde empat dengan Hamiltonian sebagai berikut. H = Σ j (p j ) 2 /2m + (1/2) Σ jj' k jj' ( u j' u j ) 2 + (1/4) Σ jj' β jj' ( u j' u j ) 4 k jj adalah konstanta pegas yang menghubungkan titik ke j dengan titik ke j (k jj = 1), dan β jj' adalah konstanta pegas non-linier. Di antara keduanya berlaku hubungan β jj' = α k jj' di mana α<< 1. Titik-titik kisi yang diperhitungkan hanyalah titik-titik kisi terdekat (4 buah) di sekeliling titik kisi acuan. Semua massa partikel pada tiap titik kisi dimuat m = 1, dan setiap konstanta pegas (non-linier) dikalikan dengan sebuah indeks c = 1 bila di antara kedua titik kisi terdapat ikatan dan c = 0 bila diantaranya tidak terdapat ikatan. Kondisi awal tiap titik kisi ditetapkan menggunakan pola moda e j (λ o ) yang telah dihitung pada proses sebelumnya. u j (0) = C e j (λ o ) ; v j (0) = 0 C adalah konstanta yang tak bergantung pada waktu dan koordinat titik kisi. Energi moda λ o ditulis sebagai fungsi amplitudo moda. E λo (t) = (1/2) { (Q λo (t)) 2 + (ω λo Q λo (t)) 2 } Q λo (t) diperoleh dengan cara mengalikan persamaan (5) dengan e j (λ o ) m j dan hasilnya dijumlahkan untuk seluruh titik kisi.

8 Σ j u j (t) e j (λ o ) m j = Σ λ Q λ (t) Σ j e j (λ) e j (λ o ) = Q λo (t) Semua penghitungan dijalankan dengan program komputer menggunakan bahasa pemograman FORTRAN, dilakukan dengan cara mengubah parameter kontinyu waktu t menjadi parameter diskrit dengan interval t. HASIL DAN PEMBAHASAN Jaring perkolasi yang digunakan berbentuk kisi segi empat dua dimensi ukuran 200 x 200 titik kisi, dibuat dengan cara menghilangkan ikatan dari kisi normal secara acak dengan probabilitas 1-p. Harga probabilitas pengikatan p = 0,6 dan harga dimensi frakton ð = 4/3. Tahap pertama dihitung rapat keadaan (Density Of States/DOS) sistem. Dari hasil penghitungan didapatkan bahwa daerah frekuensi frakton meliputi daerah sekitar ω 0,2 0,7 (s -1 ) -- daerah di mana D(ω) ω ð-1. Daerah frekuensi yang lebih rendah dari daerah tersebut adalah daerah fonon (Gambar 2). Gambar 2. Rapat Keadaan (DOS) dari sistem jaring perkolasi ikatan dengan harga p=0,6. Daerah frekuensi frakton terdapat pada daerah frekuensi ω 0,2 0,7 (s -1 ) Selanjutnya dihitung pola moda untuk frakton pada tiga buah frekuensi eigen yang berbeda, masing-masing ω 1 =0,2 s -1, 0,3 s -1 dan 0,4 s -1. Gambar pola moda-moda disekitar pusat lokalisasi moda disajikan pada Gambar 3. Rasio pengotoran moda

9 untuk semua pola moda yang dihitung adalah δ l < 10-5 sehingga bisa dikatakan modamoda tersebut merupakan moda-moda frakton murni. Dengan cara yang sama telah dihitung pula pola moda untuk sistem kisi teratur (p=1). Kondisi batas sistem ini telah dibuat mengikuti kondisi batas periodik. Gambar 3. Pola moda jaring perkolasi ikatan dua dimensi di sekitar pusat lokalisasi, dari kiri ke kanan masing-masing ω 1 = 0,2 s -1, ω 2 = 0,3 s -1, ω 3 = 0,4 s -1. Probabilitas pengikatan p=0,6. Dengan menggunakan harga pola moda, dihitung energi moda untuk setiap tahapan waktu. Harga konstanta non-linieritas adalah α= 0,2 (untuk ω=0,2 s -1 ), α= 0,05 (ω=0,3 s -1 ), α= 0,02 (ω=0,4 s -1 ). Hasil penghitungan energi moda ini disajikan pada gambar 4. Hasilnya menunjukkan bahwa dalam setiap kasus yang dihitung, energi frakton berkurang dengan cepat jauh dibandingkan dengan energi fonon (p=1), yakni berkurang mendekati aturan ~ exp (-t/τ). Gambar 4. Grafik ketergantungan energi moda terhadap waktu (s), dinormalisasikan terhadap E λo (0)=1. Frekuensi karakteristiknya ω = 0,2 s -1, ω = 0,3 s -1 dan ω = 0,4 s -1

10 Hasil penghitungan umur moda dan perbandingan koefisien intensitas ikatan non-linier fonon-frakton, dirangkum dalam tabel dibawah ini. ω (s -1 ) τ ph (s) τ fr (s) C eff (ph-fr) / C eff (ph-ph) 0,2 0,3 0, Harga rasio koefisien ikatan semakin besar seiring dengan naiknya frekuensi yang dipakai. Hal ini sesuai dengan penghitungan bahwa besaran (panjang) lokalisasi frakton bergantung pada frekuensi sesuai aturan Λ(ω) ω -(γ) (γ : konstan). Ini berarti bahwa besaran lokalisasi akan mengecil bila frekuensinya bertambah besar. Hal tersebut mengakibatkan amplitudo vibrasi di sekitar pusat lokalisasi menjadi besar dan menambah efek non-linieritas dalam sistem. Dari data di atas diketahui bahwa intensitas ikatan fonon-frakton dalam jaring perkolasi lebih kuat puluhan kali lipat dibandingkan dengan intensitas ikatan fononfonon. Hasil ini menunjukkan bahwa intensitas ikatan fonon-frakton dalam jaring perkolasi cukup besar bila dibandingkan dengan intensitasnya dalam sistem yang berstruktur tatanan Cantor. Dengan membandingkan model ini dengan model tatanan Cantor, hasil penghitungan intensitas ikatan non-linier fonon-frakton kali ini membuktikan bahwa frakton sebagai moda terlokalisasi kuat cukup efektif sebagai sebuah model untuk menerangkan kelakuan panas gelas pada suhu rendah terutama fenomena naiknya konduktivitas panas dari daerah datar. Tatanan Cantor adalah fraktal yang mempunyai struktur ketidakteraturan dalam satu dimensi, sedangkan dalam jaring perkolasi struktur ketidakteraturan terdistribusi dalam dua dimensi. Jaring perkolasi mempunyai ikatan-ikatan lemah yang tidak dimiliki oleh tatanan Cantor. Saat bergetar, ikatan-ikatan lemah ini akan mempunyai amplitudo yang lebih besar, sehingga akan berpengaruh besar terhadap peningkatan efek non-linieritas dalam sistemnya. KESIMPULAN Menghitung perbandingan harga intensitas ikatan fonon-frakton dengan ikatan fonon-fonon sangatlah penting artinya untuk menjelaskan efektif atau tidaknya moda terlokalisasi kuat seperti frakton untuk dijadikan model yang menerangkan kelakuan panas gelas pada suhu rendah terutama kelakuan konduktivitas panas gelas pada daerah suhu di atas 10 K.

11 Ikatan-ikatan lemah dalam suatu sistem mempunyai kontribusi yang sangat besar untuk terjadinya interaksi non-linier antara moda terlokalisasi kuat dengan moda fonon. Jaring perkolasi sebagai salah satu contoh sistem fraktal juga mengandung ikatan-ikatan lemah. Sehingga, terdapat harapan untuk mendapatkan harga intensitas ikatan non-linier fonon-frakton yang besar dalam sistem tersebut. Telah dihitung perbandingan intensitas ikatan non-linier fonon-frakton dengan harga intensitas ikatan fonon-fonon di dalam jaring perkolasi dua dimensi yang mempunyai bentuk kisi segi empat dengan probabilitas p=0,6. Dari hasil penghitungan tersebut diketahui hal-hal berikut. 1. Intensitas ikatan non-linier fonon-frakton, lebih besar kali lipat dibandingkan dengan intensitas ikatan fonon-fonon. 2. Ikatan-ikatan lemah dalam jaring perkolasi menyebabkan amplitudo vibrasi menjadi besar, mengakibatkan naiknya efek non-linieritas. Hasil-hasil di atas sangat penting untuk memberikan bukti bahwa naiknya konduktivitas panas dari daerah datar disebabkan oleh adanya kontribusi dari moda terlokalisasi kuat seperti halnya frakton. Sehingga bisa disimpulkan bahwa model frakton merupakan model yang efektif untuk menerangkan kelakuan panas gelas pada suhu rendah terutama fenomena naiknya konduktivitas panas dari daerah datar. UCAPAN TERIMAKASIH Terimakasih yang sebesar-besarnya disampaikan kepada Bapak Professor T. Nakayama, K. Yakubo serta Sdr. M. Nemoto atas diskusi-diskusinya yang berharga yang menjadi dasar acuan penelitian ini. DAFTAR PUSTAKA 1. R.C. ZELLER, R.O. POHL: Phys. Rev. B 4, 2029 (1971) 2. S. ALEXANDER AND R. ORBACH: J. Phys. Lett. 43, L-625 (1982) 3. Y.GEFEN, A. AHARONY, S. ALEXANDER: Phys. Rev. Lett. 50, 77 (1983) 4. B. B. MANDELBROT, The Fractal Geometry of Nature, W. H. Freeman & Co., San Francisco (1983) 5. K.YAKUBO, T. NAKAYAMA: Phys. Rev. B 36, 8933 (1987)

12 6. K. YAKUBO, T. NAKAYAMA: Phys. Rev. B 40, 517 (1989) 7. J. FRICKE: Scientific American 258, 68 (1988) 8. U. BUCHENAU, N. NUCKER AND A.J. DIANOUX: Phys. Rev. Lett. 53, 2316 (1984); 9. U. BUCHENAU, H.M. ZHOU, N. NUCKER, K.S. GILROY AND W.A. PHILIPS: Phys. Rev. Lett. 60, 1318 (1988) 10. V. G. KARPOV, M. I. KLINGER, F. N. IGNAT EV: Sov. Phys. JETP 57, 499 (1983) 11. L. GIL, M.A. RAMOS, A. BRINGER, U. BUCHENAU: Phys. Rev. Lett. 70, 182 (1993) 12 J. MICHALSKI: Phys. Rev. B 45, 7054 (1992) 13 S. ALEXANDER, O. ENTIN-WOHLMAN AND R. ORBACH: Phys. Rev. B 34, 2726 (1986) 14 A. JAGANNATHAN, R. ORBACH AND O. ENTIN-WOHLMAN: Phys. Rev. B 39, (1989) 15. E. de Oliveira, J.N. Page and H.M. Rosenberg: Phys. Rev. Lett. 62, 780 (1989) 16. S. R. ELLIOTT: Physics of Amorphous Materials, 2 nd Ed., (Longman Scientific & Technical, 1990) 17. A.ALIPPI, G.SCKERDIN, A.BETTUCCI, F.CRACIUN, E.MOLINARI AND A. PETRI, Phys. Rev. Lett. 69, 3318 (1992) 18. F. GRACIUN, A. BETTUCCI, A. PETRI AND A. ALIPPI; Phys. Rev. Lett. 68, 1555 (1992) 19. D. STAUFER: Introduction to Percolation Theory (Taylor & Francis, London 1985) 20. M. L. WILLIAMS AND H. J. MARIS: Phys. Rev. B 31, 4505 (1985)

13 21. K. YAKUBO, T. NAKAYAMA, H. J. MARIS: J. Phys. Soc. Jpn. 60, 3249 (1991) 22. T. NAKAYAMA, K. YAKUBO, R. L. ORBACH: Rev. Mod. Phys. 66, 381 (1994)

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan Getaran Teredam Dalam Rongga Tertutup pada Sembarang Bentuk Dari hasil beberapa uji peredaman getaran pada pipa tertutup membuktikan bahwa getaran teredam di dalam rongga tertutup dapat dianalisa tidak

Lebih terperinci

TUGAS MATA KULIAH ILMU MATERIAL UMUM THERMAL PROPERTIES

TUGAS MATA KULIAH ILMU MATERIAL UMUM THERMAL PROPERTIES TUGAS MATA KULIAH ILMU MATERIAL UMUM THERMAL PROPERTIES Nama Kelompok: 1. Diah Ayu Suci Kinasih (24040115130099) 2. Alfiyan Hernowo (24040115140114) Mata Kuliah Dosen Pengampu : Ilmu Material Umum : Dr.

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup: PENDAHULUAN Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup: kristal semikonduktor intrinsik dan kristal semikonduktor ekstrinsik. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon

Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon F. Manfaat Penelitian Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon di dalam inti atom yang menggunakan potensial Yukawa. 2. Dapat

Lebih terperinci

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D Keadaan Stasioner Pada pembahasan sebelumnya mengenai fungsi gelombang, telah dijelaskan bahwa potensial dalam persamaan

Lebih terperinci

Getaran Dalam Zat Padat BAB I PENDAHULUAN

Getaran Dalam Zat Padat BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Pendahuluan Getaran atom dalam zat padat dapat disebabkan oleh gelombang yang merambat pada Kristal. Ditinjau dari panjang gelombang yang digelombang yang digunakan dan dibandingkan

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron PENDAHUUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

Elektron Bebas. 1. Teori Drude Tentang Elektron Dalam Logam

Elektron Bebas. 1. Teori Drude Tentang Elektron Dalam Logam Elektron Bebas Beberapa teori tentang panas jenis zat padat yang telah dibahas dapat dengan baik menjelaskan sifat-sfat panas jenis zat padat yang tergolong non logam, akan tetapi untuk golongan logam

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Umum Perpindahan panas adalah perpindahan energi yang terjadi pada benda atau material yang bersuhu tinggi ke benda atau material yang bersuhu rendah, hingga tercapainya kesetimbangan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 23 BAB IV HASIL DAN PEMBAHASAN 4.1 Visualisasi Gelombang di Dalam Domain Komputasi Teknis penelitian yang dilakukan dalam menguji disain sensor ini adalah dengan cara menembakkan struktur sensor yang telah

Lebih terperinci

SINTESIS DAN KARAKTERISASI SIFAT LISTRIK SUPERKONDUKTOR Eu 2-x Ce x CuO 4+α-δ (ECCO) UNTUK UNDER-DOPED

SINTESIS DAN KARAKTERISASI SIFAT LISTRIK SUPERKONDUKTOR Eu 2-x Ce x CuO 4+α-δ (ECCO) UNTUK UNDER-DOPED Proseding Seminar Nasional Fisika dan Aplikasinya Sabtu, 19 November 2016 Bale Sawala Kampus Universitas Padjadjaran, Jatinangor SINTESIS DAN KARAKTERISASI SIFAT LISTRIK SUPERKONDUKTOR Eu 2-x Ce x CuO

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

Untai Elektrik I. Waveforms & Signals. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Setyawan.

Untai Elektrik I. Waveforms & Signals. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana. Untai 1. I. Setyawan. Untai Elektrik I Waveforms & Signals Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Secara umum, tegangan dan arus dalam sebuah untai elektrik dapat dikategorikan menjadi tiga jenis

Lebih terperinci

FONON I : GETARAN KRISTAL

FONON I : GETARAN KRISTAL MAKALAH FONON I : GETARAN KRISTAL Diajukan untuk Memenuhi Tugas Mata Kuliah Pendahuluan Fisika Zat Padat Disusun Oleh: Nisa Isma Khaerani ( 3215096525 ) Dio Sudiarto ( 3215096529 ) Arif Setiyanto ( 3215096537

Lebih terperinci

Bab II. Prinsip Fundamental Simulasi Monte Carlo

Bab II. Prinsip Fundamental Simulasi Monte Carlo Bab II Prinsip Fundamental Simulasi Monte Carlo Metoda monte carlo adalah suatu metoda pemecahan masalah fisis dengan menirukan proses-proses nyata di alam memanfaatkan bilangan acak/ random. Jadi metoda

Lebih terperinci

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi

Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi JURNAL FISIKA DAN APLIKASINYA VOLUME 6, NOMOR 1 JANUARI,010 Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak Potensial Satu Dimensi Yohanes Dwi Saputra dan Agus Purwanto Laboratorium Fisika

Lebih terperinci

Experiment indonesian (Indonesia) Loncatan manik-manik - Sebuah model transisi fase dan ketidak-stabilan (10 poin)

Experiment indonesian (Indonesia) Loncatan manik-manik - Sebuah model transisi fase dan ketidak-stabilan (10 poin) Q2-1 Loncatan manik-manik - Sebuah model transisi fase dan ketidak-stabilan (10 poin) Sebelum mengerjakan soal ini, kalian baca lebih dahulu Petunjuk Umum pada amplop yang terpisah. Pendahuluan Transisi

Lebih terperinci

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI

PARTIKEL DALAM SUATU KOTAK SATU DIMENSI PARTIKEL DALAM SUATU KOTAK SATU DIMENSI Atom terdiri dari inti atom yang dikelilingi oleh elektron-elektron, di mana elektron valensinya bebas bergerak di antara pusat-pusat ion. Elektron valensi geraknya

Lebih terperinci

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON Rif ati Dina Handayani 1 ) Abstract: Suatu partikel yang bergerak dengan momentum p, menurut hipotesa

Lebih terperinci

IPA KESEHATAN: Fisika. Dr. Zaroh Irayani, M.Si.

IPA KESEHATAN: Fisika. Dr. Zaroh Irayani, M.Si. IPA KESEHATAN: Fisika Dr. Zaroh Irayani, M.Si. OUTLINE 11. Gelombang Bunyi & Mekanisme Pendengaran 12. Kebisingan: Intensitas Bunyi; Efek Doppler 13. Optik: Aspek Fisis Penglihatan 14. Radioaktivitas:

Lebih terperinci

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR A V PERAMATAN GELOMANG OPTIK PADA MEDIUM NONLINIER KERR 5.. Pendahuluan erkas (beam) optik yang merambat pada medium linier mempunyai kecenderungan untuk menyebar karena adanya efek difraksi; lihat Gambar

Lebih terperinci

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M

FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M FISIKA FMIPA UNIVERSITAS SEBELAS MARET SURAKARTA 2010 Alfan Muttaqin/M0207025 Di terjemahkan dalam bahasa Indonesia dari An introduction by Heinrich Kuttruff Bagian 6.6 6.6.4 6.6 Penyerapan Bunyi Oleh

Lebih terperinci

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5 Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani Program Studi Pendidikan Fisika FKIP Universitas Jember email: schrodinger_risma@yahoo.com

Lebih terperinci

The Forced Oscillator

The Forced Oscillator The Forced Oscillator Behaviour, Displacement, Velocity and Frequency Apriadi S. Adam M.Sc Jurusan Fisika Universitas Islam Negeri Sunan Kalijaga Yogyakarta Update 5 November 2013 A.S. Adam (UIN SUKA)

Lebih terperinci

DAN TEGANGAN LISTRIK

DAN TEGANGAN LISTRIK 1 ARUS DAN TEGANGAN LISTRIK 1.1 Pengertian Arus Listrik (Electrical Current) Kita semua tentu paham bahwa arus listrik terjadi karena adanya aliran elektron dimana setiap elektron mempunyai muatan yang

Lebih terperinci

C.1 OSILASI GANDENG PEGAS

C.1 OSILASI GANDENG PEGAS Mata Kuliah GELOMBANG-OPTIK OPTIK TOPIK I SUB TOPIK OSILASI GANDENG C. SISTEM OSILASI DUA DERAJAT KEBEBASAN:OSILASI GANDENG Satu derajat kebebasan: Misalkan: pegas yang memiliki satu simpangan Dua derajat

Lebih terperinci

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu. Adam Hendra Brata

Probabilitas dan Statistika Fungsi Distribusi Peluang Kontinyu. Adam Hendra Brata Probabilitas dan Statistika Adam Hendra Brata Himpunan nilai-nilai yang mungkin dari peubah acak X merupakan himpunan tak terhitung yaitu tidak dapat dinyatakan sebagai {,, 3,., n } atau {,, 3,.} tetapi

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG 1/19 Kuliah Fisika Dasar Teknik Sipil 2007 GETARAN DAN GELOMBANG Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id GETARAN Getaran adalah salah satu bentuk

Lebih terperinci

MODUL 1 KULIAH SEMIKONDUKTOR

MODUL 1 KULIAH SEMIKONDUKTOR MODUL 1 KULIAH SMIKONDUKTOR I.1. LOGAM, ISOLATOR dan SMIKONDUKTOR. Suatu bahan zat padat apabila dikaitkan dengan kemampuannya dalam menghantarkan arus listrik, maka bahan zat padat dibedakan menjadi tiga

Lebih terperinci

ARUS LISTRIK. Di dalam konduktor / penghantar terdapat elektron bebas (muatan negatif) yang bergerak dalam arah sembarang (random motion)

ARUS LISTRIK. Di dalam konduktor / penghantar terdapat elektron bebas (muatan negatif) yang bergerak dalam arah sembarang (random motion) ARUS LISTRIK Di dalam konduktor / penghantar terdapat elektron bebas (muatan negatif) yang bergerak dalam arah sembarang (random motion) Konduktor terisolasi Elektron-elektron tersebut tidak mempunyai

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

Gelombang sferis (bola) dan Radiasi suara

Gelombang sferis (bola) dan Radiasi suara Chapter 5 Gelombang sferis (bola) dan Radiasi suara Gelombang dasar lain datang jika jarak dari beberapa titik dari titik tertentu dianggap sebagai koordinat relevan yang bergantung pada variabel akustik.

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

VI. Teori Kinetika Gas

VI. Teori Kinetika Gas VI. Teori Kinetika Gas 6.1. Pendahuluan dan Asumsi Dasar Subyek termodinamika berkaitan dengan kesimpulan yang dapat ditarik dari hukum-hukum eksperimen tertentu, dan memanfaatkan kesimpulan ini untuk

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP)

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) Fisika Zat Padat Pendahuluan halaman 1 dari 9 GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) MATA KULIAH : FISIKA ZAT PADAT PENDAHULUAN KODE/BOBOT : PAF 225 / 2 SKS DESKRIPSI SINGKAT : Dalam pembelajaran iniakan

Lebih terperinci

MEKANIKA KUANTUM DALAM TIGA DIMENSI

MEKANIKA KUANTUM DALAM TIGA DIMENSI MEKANIKA KUANTUM DALAM TIGA DIMENSI Sebelumnya telah dibahas mengenai penerapan Persamaan Schrödinger dalam meninjau sistem kuantum satu dimensi untuk memperoleh fungsi gelombang serta energi dari sistem.

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Dalam bab ini dibahas tentang dasar-dasar teori yang digunakan untuk mengetahui kecepatan perambatan panas pada proses pasteurisasi pengalengan susu. Dasar-dasar teori tersebut meliputi

Lebih terperinci

MAKALAH PITA ENERGI. Di susun oleh, Pradita Ajeng Wiguna ( ) Rombel 1. Untuk Memenuhi Tugas Mata Kuliah Fisika dan Teknologi Semikonduktor

MAKALAH PITA ENERGI. Di susun oleh, Pradita Ajeng Wiguna ( ) Rombel 1. Untuk Memenuhi Tugas Mata Kuliah Fisika dan Teknologi Semikonduktor MAKALAH PITA ENERGI Untuk Memenuhi Tugas Mata Kuliah Fisika dan Teknologi Semikonduktor Di susun oleh, Pradita Ajeng Wiguna (4211412011) Rombel 1 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

IKATAN KIMIA DALAM BAHAN

IKATAN KIMIA DALAM BAHAN IKATAN KIMIA DALAM BAHAN Sifat Atom dan Ikatan Kimia Suatu partikel baik berupa ion bermuatan, inti atom dan elektron, dimana diantara mereka, akan membentuk ikatan kimia yang akan menurunkan energi potensial

Lebih terperinci

MOLEKUL, ZAT PADAT DAN PITA ENERGI MOLEKUL ZAT PADAT PITA ENERGI

MOLEKUL, ZAT PADAT DAN PITA ENERGI MOLEKUL ZAT PADAT PITA ENERGI MOLEKUL, ZAT PADAT DAN PITA ENERGI MOLEKUL ZAT PADAT PITA ENERGI edy wiyono 2004 PENDAHULUAN Pada umumnya atom tunggal tidak memiliki konfigurasi elektron yang stabil seperti gas mulia, maka atom atom

Lebih terperinci

BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK. Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau

BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK. Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau BAB III ALAT PENGUKUR ALIRAN BERDASARKAN WAKTU TEMPUH GELOMBANG ULTRASONIK 3.1 Gelombang Ultrasonik Gelombang ultrasonik adalah salah satu jenis gelombang akustik atau gelombang bunyi dengan persamaan

Lebih terperinci

(6.38) Memasukkan ini ke persamaan (6.14) (dengan θ = 0) membawa kita ke faktor refleksi dari lapisan

(6.38) Memasukkan ini ke persamaan (6.14) (dengan θ = 0) membawa kita ke faktor refleksi dari lapisan 6.6.3 Penyerapan oleh lapisan berpori Selanjutnya kita mempertimbangkan penyerapan suara oleh lapisan tipis berpori, misalnya, dengan selembar kain seperti tirai, atau dengan pelat tipis dengan perforasi

Lebih terperinci

PENDAHULUAN. 1.1 Latar Belakang

PENDAHULUAN. 1.1 Latar Belakang PENDAHULUAN 1.1 Latar Belakang Pada tahun 1911 fisikawan Belanda H.Kamerlingh-Onnes menemukan fenomena alam baru yang dinamakan Superkonduktivitas. Pada saat itu Onnes ingin mengukur resistansi listrik

Lebih terperinci

Mengenal Sifat Material. Teori Pita Energi

Mengenal Sifat Material. Teori Pita Energi Mengenal Sifat Material Teori Pita Energi Ulas Ulang Kuantisasi Energi Planck : energi photon (partikel) bilangan bulat frekuensi gelombang cahaya h = 6,63 10-34 joule-sec De Broglie : Elektron sbg gelombang

Lebih terperinci

Hasil dan Pembahasan

Hasil dan Pembahasan Bab 4 Hasil dan Pembahasan 4.1 Sintesis Polimer Benzilkitosan Somorin (1978), pernah melakukan sintesis polimer benzilkitin tanpa pemanasan. Agen pembenzilasi yang digunakan adalah benzilklorida. Adapun

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

BAB II PENERAPAN HUKUM THERMODINAMIKA

BAB II PENERAPAN HUKUM THERMODINAMIKA BAB II PENERAPAN HUKUM THERMODINAMIKA 2.1 Konsep Dasar Thermodinamika Energi merupakan konsep dasar termodinamika dan merupakan salah satu aspek penting dalam analisa teknik. Sebagai gagasan dasar bahwa

Lebih terperinci

PENDAHULUAN Anda harus dapat

PENDAHULUAN Anda harus dapat PENDAHULUAN Di dalam modul ini Anda akan mempelajari Teori Pita Energi yang mencakup : asal mula celah energi, model elektron hampir bebas, model Kronig-Penney, dan persamaan sentral. Oleh karena itu,

Lebih terperinci

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang.

II LANDASAN TEORI. Besaran merupakan frekuensi sudut, merupakan amplitudo, merupakan konstanta fase, dan, merupakan konstanta sembarang. 2 II LANDASAN TEORI Pada bagian ini akan dibahas teori-teori yang digunakan dalam penyusunan karya ilmiah ini. Teori-teori tersebut meliputi osilasi harmonik sederhana yang disarikan dari [Halliday,1987],

Lebih terperinci

Dibuat oleh invir.com, dibikin pdf oleh

Dibuat oleh invir.com, dibikin pdf oleh 1. Energi getaran selaras : A. berbanding terbalik dengan kuadrat amplitudonya B. berbanding terbalik dengan periodanya C. berbanding lurus dengan kuadrat amplitudonya. D. berbanding lurus dengan kuadrat

Lebih terperinci

PR ONLINE MATA UJIAN: FISIKA (KODE A07)

PR ONLINE MATA UJIAN: FISIKA (KODE A07) PR ONLINE MATA UJIAN: FISIKA (KODE A07) 1. Gambar di samping ini menunjukkan hasil pengukuran tebal kertas karton dengan menggunakan mikrometer sekrup. Hasil pengukurannya adalah (A) 4,30 mm. (D) 4,18

Lebih terperinci

Bab 6. Elektron Dalam Zat Padat (Teori Pita Energi)

Bab 6. Elektron Dalam Zat Padat (Teori Pita Energi) Bab 6 Elektron Dalam Zat Padat (Teori Pita Energi) Teori Pita Energi Untuk Zat Padat (Model Untuk Teori Pita Energi) Berdasarkan daya hantar listrik, zat padat dibedakan menjadi tiga jenis : Logam dan

Lebih terperinci

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1

Teori Kinetik & Interpretasi molekular dari Suhu. FI-1101: Teori Kinetik Gas, Hal 1 FI-1101: Kuliah 13 TEORI KINETIK GAS Teori Kinetik Gas Suhu Mutlak Hukum Boyle-Gay y Lussac Gas Ideal Teori Kinetik & Interpretasi molekular dari Suhu FI-1101: Teori Kinetik Gas, Hal 1 FISIKA TERMAL Cabang

Lebih terperinci

KARAKTERISTIK SYMMETRIC NUCLEAR MATTER PADA TEMPERATUR NOL

KARAKTERISTIK SYMMETRIC NUCLEAR MATTER PADA TEMPERATUR NOL KARAKTERISTIK SYMMETRIC NUCLEAR MATTER PADA TEMPERATUR NOL Annisa Fitri 1, Anto Sulaksono 2 1,2 Departemen Fisika FMIPA UI, Kampus UI Depok, 16424 1 annisa.fitri11@sci.ui.ac.id 2 anto.sulaksono@sci.ui.ac.id

Lebih terperinci

TEORI KINETIK GAS (II) Dr. Ifa Puspasari

TEORI KINETIK GAS (II) Dr. Ifa Puspasari TEORI KINETIK GAS (II) Dr. Ifa Puspasari a) Gas terdiri atas partikelpartikel yang sangat kecil yang disebut molekul, massa dan besarnya sama untuk tiap-tiap jenis gas. b) Molekul-molekul ini selalu bergerak

Lebih terperinci

PEMBANGKIT RANDOM VARIATE

PEMBANGKIT RANDOM VARIATE PEMBANGKIT RANDOM VARIATE Mata Kuliah Pemodelan & Simulasi JurusanTeknik Informatika Universitas Komputer Indonesia 1 Pendahuluan (1) Sifat probalitistik pada sistem nyata mempunyai pola distribusi probabilistik

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP 10.09.04 PAF 219 Revisi ke - Tanggal 13 September 2013 Dikaji Ulang Oleh Ketua Program Studi Fisika Dikendalikan Oleh GPM

Lebih terperinci

Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu

Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu Getaran sistem pegas berbeban dengan massa yang berubah terhadap waktu Kunlestiowati H *. Nani Yuningsih **, Sardjito *** * Staf Pengajar Polban, kunpolban@yahoo.co.id ** Staf Pengajar Polban, naniyuningsih@gmail.com

Lebih terperinci

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan 4 Hasil dan Pembahasan 4.1 Sintesis Padatan TiO 2 Amorf Proses sintesis padatan TiO 2 amorf ini dimulai dengan melarutkan titanium isopropoksida (TTIP) ke dalam pelarut etanol. Pelarut etanol yang digunakan

Lebih terperinci

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB

GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB GETARAN DAN GELOMBANG STAF PENGAJAR FISIKA DEP. FISIKA IPB Getaran (Osilasi) : Gerakan berulang pada lintasan yang sama Ayunan Gerak Kipas Gelombang dihasilkan oleh getaran Gelombang bunyi Gelombang air

Lebih terperinci

Studi Komputasi Gerak Bouncing Ball pada Vibrasi Permukaan Pantul

Studi Komputasi Gerak Bouncing Ball pada Vibrasi Permukaan Pantul Studi Komputasi Gerak Bouncing Ball pada Vibrasi Permukaan Pantul Haerul Jusmar Ibrahim 1,a), Arka Yanitama 1,b), Henny Dwi Bhakti 1,c) dan Sparisoma Viridi 2,d) 1 Program Studi Magister Sains Komputasi,

Lebih terperinci

ANALISIS LANJUTAN. Tingkat Energi & Orbit Elektron. Pita Energi Semikonduktor Intrinsik. Pita Energi Pada Semikonduktor Ter-Doping

ANALISIS LANJUTAN. Tingkat Energi & Orbit Elektron. Pita Energi Semikonduktor Intrinsik. Pita Energi Pada Semikonduktor Ter-Doping Tingkat Energi & Orbit Elektron ANALISIS LANJUTAN Pita Energi Semikonduktor Intrinsik Pita Energi Pada Semikonduktor Ter-Doping Elektronika 1 23 Irwan Arifin 2004 P-N Junction Elektronika 1 24 Irwan Arifin

Lebih terperinci

Yang akan dibahas: 1. Kristal dan Ikatan pada zat Padat 2. Teori Pita Zat Padat

Yang akan dibahas: 1. Kristal dan Ikatan pada zat Padat 2. Teori Pita Zat Padat ZAT PADAT Yang akan dibahas: 1. Kristal dan Ikatan pada zat Padat 2. Teori Pita Zat Padat ZAT PADAT Sifat sifat zat padat bergantung pada: Jenis atom penyusunnya Struktur materialnya Berdasarkan struktur

Lebih terperinci

IX. Aplikasi Mekanika Statistik

IX. Aplikasi Mekanika Statistik IX. Aplikasi Mekanika Statistik 9.1. Gas Ideal Monatomik Sebagai test case termodinamika statistik, kita coba terapkan untuk gas ideal monatomik. Mulai dengan fungsi partisi: ε j Z = g j exp j k B T Energi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 21 Analisis output dilakukan terhadap hasil simulasi yang diperoleh agar dapat mengetahui variabel-variabel yang mempengaruhi output. Optimasi juga dilakukan agar output meningkat mendekati dengan hasil

Lebih terperinci

DETEKTOR RADIASI INTI. Sulistyani, M.Si.

DETEKTOR RADIASI INTI. Sulistyani, M.Si. DETEKTOR RADIASI INTI Sulistyani, M.Si. Email: sulistyani@uny.ac.id Konsep Dasar Alat deteksi sinar radioaktif atau sistem pencacah radiasi dinamakan detektor radiasi. Prinsip: Mengubah radiasi menjadi

Lebih terperinci

STurn SIFAT VIBRASI LOKAL SEMIKONDUKTOR AMORF SILIKON KARBON (a-sic:h)1

STurn SIFAT VIBRASI LOKAL SEMIKONDUKTOR AMORF SILIKON KARBON (a-sic:h)1 Prosidin Pertemuan l/miah Sains Materi /SSN /4/0-2897 STurn SIFAT VIBRASI LOKAL SEMIKONDUKTOR AMORF SILIKON KARBON (a-sic:h)1 % Efta Yudiarsah2 dad Rosari Saleh2,3 ABSTRAK STUDI SIFAT VI BRAS I LOKAL SEMIKONDUKTOR

Lebih terperinci

BAB III. Proses Fisis Penyebab Fluktuasi Temperatur CMB

BAB III. Proses Fisis Penyebab Fluktuasi Temperatur CMB BAB III Proses Fisis Penyebab Fluktuasi Temperatur CMB III.1 Penyebab Fluktuasi Struktur di alam semesta berasal dari fluktuasi kuantum di awal alam semesta. Akibat pengembangan alam semesta, fluktuasi

Lebih terperinci

BAB IV OSILATOR HARMONIS

BAB IV OSILATOR HARMONIS Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =

Lebih terperinci

BAB 2 DATA DAN METODA

BAB 2 DATA DAN METODA BAB 2 DATA DAN METODA 2.1 Pasut Laut Peristiwa pasang surut laut (pasut laut) adalah fenomena alami naik turunnya permukaan air laut secara periodik yang disebabkan oleh pengaruh gravitasi bendabenda-benda

Lebih terperinci

Sidang Tugas Akhir - Juli 2013

Sidang Tugas Akhir - Juli 2013 Sidang Tugas Akhir - Juli 2013 STUDI PERBANDINGAN PERPINDAHAN PANAS MENGGUNAKAN METODE BEDA HINGGA DAN CRANK-NICHOLSON COMPARATIVE STUDY OF HEAT TRANSFER USING FINITE DIFFERENCE AND CRANK-NICHOLSON METHOD

Lebih terperinci

MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER)

MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER) MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER) Oleh: Kusnanto Mukti / M0209031 Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta 2012 I. Pendahuluan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

4. Buku teks: Introduction to solid state physics, Charles Kittel, John Willey & Sons, Inc.

4. Buku teks: Introduction to solid state physics, Charles Kittel, John Willey & Sons, Inc. Pengantar. Target: mahasiswa undergraduate menjelang tingkat akhir atau mahasiswa graduate tanpa latar belakang fisika zat padat. 2. Penjelasan Mata kuliah: tujuan perkuliahan ini adalah untuk memberikan

Lebih terperinci

1. Sekumpulan angka untuk menerangkan sesuatu, baik angka yang belum tersusun maupun angka angka yang sudah tersusun dalam suatu daftar atau grafik.

1. Sekumpulan angka untuk menerangkan sesuatu, baik angka yang belum tersusun maupun angka angka yang sudah tersusun dalam suatu daftar atau grafik. 1. Sekumpulan angka untuk menerangkan sesuatu, baik angka yang belum tersusun maupun angka angka yang sudah tersusun dalam suatu daftar atau grafik. 3. Sekumpulan angka yang menjelaskan sifat-sifat data

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Panas merupakan suatu bentuk energi yang ada di alam. Panas juga merupakan suatu energi yang sangat mudah berpindah (transfer). Transfer panas disebabkan oleh adanya

Lebih terperinci

MODUL V FISIKA MODERN RADIASI BENDA HITAM

MODUL V FISIKA MODERN RADIASI BENDA HITAM 1 MODUL V FISIKA MODERN RADIASI BENDA HITAM Tujuan instruksional umum : Agar mahasiswa dapat memahami tentang radiasi benda hitam Tujuan instruksional khusus : Dapat menerangkan tentang radiasi termal

Lebih terperinci

PENGARUH IRADIASI-γ TERHADAP REGANGAN KISI DAN KONDUKTIVITAS IONIK PADA KOMPOSIT PADAT (LiI) 0,5 (Al 2 O 3.4SiO 2 ) 0,5

PENGARUH IRADIASI-γ TERHADAP REGANGAN KISI DAN KONDUKTIVITAS IONIK PADA KOMPOSIT PADAT (LiI) 0,5 (Al 2 O 3.4SiO 2 ) 0,5 Pengaruh Iradiasi- Terhadap Regangan Kisi dan Konduktivitas Ionik Pada Komposit Padat (LiI) 0,5(Al 2O 3.4SiO 2) 0,5 (P. Purwanto, S. Purnama, D.S. Winatapura dan Alifian) PENGARUH IRADIASI-γ TERHADAP REGANGAN

Lebih terperinci

3. Termodinamika Statistik

3. Termodinamika Statistik 3. Termodinamika Statistik Pada bagian ini akan dibahas pemanfaatan postulat statistik yang berdasarkan sistem dalam keadaan keseimbangan untuk menjelaskan besaran makroskopis. Disiplin ini disebut Mekanika

Lebih terperinci

PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012

PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 UJI COBA MATA PELAJARAN KELAS/PROGRAM ISIKA SMA www.rizky-catatanku.blogspot.com PAKET SOAL 1.c LATIHAN SOAL UJIAN NASIONAL TAHUN PELAJARAN 2011/2012 : FISIKA : XII (Dua belas )/IPA HARI/TANGGAL :.2012

Lebih terperinci

Kajian Sistem Terfrustasi pada Bahan Antiferromagnet dengan Model Ising 2D

Kajian Sistem Terfrustasi pada Bahan Antiferromagnet dengan Model Ising 2D Kajian Sistem Terfrustasi pada Bahan Antiferromagnet dengan Model Ising 2D R. N. Safitri, A. R. U. Fadlilah, D. Darmawan, R. Y. A. Sari Lab. Fisika Komputasi, FMIPA, Universitas Negeri Yogyakarta email:

Lebih terperinci

BAB III. KECEPATAN GRUP DAN RAPAT KEADAAN BAB IV. SUHU KRITIS...52 BAB VI. DAFTAR PUSTAKA...61

BAB III. KECEPATAN GRUP DAN RAPAT KEADAAN BAB IV. SUHU KRITIS...52 BAB VI. DAFTAR PUSTAKA...61 DAFTAR ISI HALAMAN PERNYATAAN...i HALAMAN PERSEMBAHAN...ii PRAKATA...iii DAFTAR ISI...v DAFTAR GAMBAR...vii DAFTAR SINGKATAN...xi DAFTAR LAMBANG...xii INTISARI...xiv ABSTRACT...xv BABI. PENDAHULUAN...16

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Intan adalah salah satu jenis perhiasan yang harganya relatif mahal. Intan merupakan kristal yang tersusun atas unsur karbon (C). Intan berdasarkan proses pembentukannya

Lebih terperinci

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan

Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI. andhysetiawan Mata Kuliah GELOMBANG OPTIK TOPIK I OSILASI HARMONIK PENDAHULUAN Gerak dapat dikelompokan menjadi: Gerak di sekitar suatu tempat contoh: ayunan bandul, getaran senar dll. Gerak yang berpindah tempat contoh:

Lebih terperinci

BAB II DASAR TEORI. A. Kemagnetan Bahan. Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet. seperti terlihat pada Gambar 2.

BAB II DASAR TEORI. A. Kemagnetan Bahan. Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet. seperti terlihat pada Gambar 2. BAB II DASAR TEORI A. Kemagnetan Bahan Secara garis besar, semua bahan dapat dikelompokkan ke dalam bahan magnet seperti terlihat pada Gambar 2. Gambar 2: Diagram pengelompokan bahan magnet (Stancil &

Lebih terperinci

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

DERET FOURIER DAN APLIKASINYA DALAM FISIKA Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER

Lebih terperinci

PEMBAHASAN SOAL PRA UAN SOAL PAKET 2

PEMBAHASAN SOAL PRA UAN SOAL PAKET 2 PEMBAHASAN SOAL PRA UAN SOAL PAKET 2 Soal No 1 Pada jangka sorong, satuan yang digunakan umumnya adalah cm. Perhatikan nilai yang ditunjukkan skala utama dan skala nonius. Nilai yang ditunjukkan oleh skala

Lebih terperinci

Termodinamika. Energi dan Hukum 1 Termodinamika

Termodinamika. Energi dan Hukum 1 Termodinamika Termodinamika Energi dan Hukum 1 Termodinamika Energi Energi dapat disimpan dalam sistem dengan berbagai macam bentuk. Energi dapat dikonversikan dari satu bentuk ke bentuk yang lain, contoh thermal, mekanik,

Lebih terperinci

Simulasi Sifat Fisis Model Molekuler Dinamik Gas Argon dengan Potensial Lennard-Jones

Simulasi Sifat Fisis Model Molekuler Dinamik Gas Argon dengan Potensial Lennard-Jones Jurnal Sainsmat, September 2012, Halaman 147-155 Vol. I, No. 2 ISSN 2086-6755 http://ojs.unm.ac.id/index.php/sainsmat Simulasi Sifat Fisis Model Molekuler Dinamik Gas Argon dengan Potensial Lennard-Jones

Lebih terperinci

Bab VIII Teori Kinetik Gas

Bab VIII Teori Kinetik Gas Bab VIII Teori Kinetik Gas Sumber : Internet : www.nonemigas.com. Balon udara yang diisi dengan gas massa jenisnya lebih kecil dari massa jenis udara mengakibatkan balon udara mengapung. 249 Peta Konsep

Lebih terperinci

T 19 Kerapatan Keadaan pada Struktur Nano Berbentuk Sumur Nano, Kawat Nano dan Titik Nano

T 19 Kerapatan Keadaan pada Struktur Nano Berbentuk Sumur Nano, Kawat Nano dan Titik Nano T 19 Kerapatan Keadaan pada Struktur Nano Berbentuk Sumur Nano, Kawat Nano dan Titik Nano Ratno Nuryadi Pusat Teknologi Material, Badan Pengkajian dan Penerapan Teknologi (BPPT) BPPT Gedung II Lt. 22.

Lebih terperinci

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) 39 HASIL DAN PEMBAHASAN Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) Hasil karakterisasi dengan Difraksi Sinar-X (XRD) dilakukan untuk mengetahui jenis material yang dihasilkan disamping menentukan

Lebih terperinci

Copyright all right reserved

Copyright  all right reserved Latihan Soal UN Paket C 2011 Program IP Mata Ujian : Fisika Jumlah Soal : 20 1. Pembacaan jangka sorong berikut ini (bukan dalam skala sesungguhnya) serta banyaknya angka penting adalah. 10 cm 11 () 10,22

Lebih terperinci

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK BAB III KONDUKSI ALIRAN SEDI - DIMENSI BANYAK Untuk aliran stedi tanpa pembangkitan panas, persamaan Laplacenya adalah: + y 0 (6-) Aliran kalor pada arah dan y bisa dihitung dengan persamaan Fourier: q

Lebih terperinci

ANALISIS POLA INTERFERENSI CELAH BANYAK UNTUK MENENTUKAN PANJANG GELOMBANG LASER He-Ne DAN LASER DIODA

ANALISIS POLA INTERFERENSI CELAH BANYAK UNTUK MENENTUKAN PANJANG GELOMBANG LASER He-Ne DAN LASER DIODA 26 S.L. Handayani, Analisis Pola Interferensi Celah Banyak ANALISIS POLA INTERFERENSI CELAH BANYAK UNTUK MENENTUKAN PANJANG GELOMBANG LASER He-Ne DAN LASER DIODA Sri Lestari Handayani Pascasarjana Universitas

Lebih terperinci