INVERS MATRIK DAN ELIMINASI GAUSS

Ukuran: px
Mulai penontonan dengan halaman:

Download "INVERS MATRIK DAN ELIMINASI GAUSS"

Transkripsi

1 INVERS MATRIK DAN ELIMINASI GAUSS Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia atau 5 Februari 2005 Secara umum, sistem persamaan linear adalah sebagai berikut: a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... = =... a n1 x 1 + a n2 x a nn x n = b n Sistem persamaan linear tersebut dapat dinyatakan dalam bentuk operasi matrik, Ax = b (1) sehingga bentuknya menjadi seperti ini: a 11 a a 1n a 21 a a 2n... x 1 x 2. = b 1 b 2. a n1 a n2... a nn x n b n dimana A = a 11 a a 1n a 21 a a 2n..., x = x 1 x 2., b = b 1 b 2. a n1 a n2... a nn x n b n 1

2 Dalam kaitannya dengan invers matrik, matrik A disebut matrik non-singular jika matrik A memiliki matrik invers dirinya yaitu A 1. Atau dengan kata lain, matrik A 1 adalah invers dari matrik A. Jika matrik A tidak memiliki invers, maka matrik A disebut singular. Bila matrik A dikalikan dengan matrik A 1 maka akan menghasilkan matrik identitas I, yaitu suatu matrik yang elemen-elemen diagonalnya bernilai AA = I =. (2) Misalnya diketahui, A = , A 1 = Bila keduanya dikalikan, maka akan menghasilkan matrik identitas, AA 1 = = Lalu bagaimana cara mendapatkan matrik invers, A 1? Persamaan (2) bisa dijadikan pedoman.. AA 1 = I i 11 i 12 i i 21 i 22 i 2 = i 1 i 2 i dalam hal ini matrik A 1 adalah A 1 = i 11 i 12 i 1 i 21 i 22 i 2 i 1 i 2 i Elemen-elemen matrik invers, A 1 dapat diperoleh dengan menerapkan metode eliminasi gauss. Diawali dengan membentuk matrik augment:

3 Lalu dilanjutkan dengan proses triangularisasi: (P 2 2P 1 ) (P 2 ) dan (P + P 1 ) (P ), kemudian diikuti oleh (P + P 2 ) (P ): Langkah berikutnya, matrik augment yang telah mengalami triangularisasi tersebut dipecah menjadi tiga buah matrik augment seperti berikut ini: Langkah pamungkasnya adalah melakukan proses substitusi mundur pada ketiga matrik augment di atas, sehingga diperoleh: i 11 = 2 9 i 21 = 9 i 1 = 1 i 12 = 5 9 i 22 = 1 9 i 2 = 1 i 1 = 1 9 i 2 = 2 9 i = 1 Hasil tersebut digabung menjadi sebuah matrik, yaitu matrik A 1, A 1 = Keberadaan matrik A 1 bisa digunakan untuk menyelesaikan sistem persamaan linear (mencari nilai x), dengan cara sebagai berikut Ax = b A 1 Ax = A 1 b Ix = A 1 b x = A 1 b () Contoh berikut ini akan menjelaskan prosesnya secara lebih rinci. Misalnya diketahui sistem persamaan linear x 1 +2x 2 x = 2 2x 1 + x 2 = x 1 + x 2 +2x =

4 Bila dikonversikan kedalam operasi matrik menjadi x x 2 = Berdasarkan persamaan (), maka elemen-elemen vektor x dapat dicari dengan cara x x = A 1 b x = = Akhirnya diperoleh solusi x 1 = 7/9, x 2 = 1/9, dan x = 5/. Penyelesaian sistem persamaan linear menjadi lebih mudah bila matrik A 1 sudah diketahui. Sayangnya, untuk mendapatkan matrik A 1, diperlukan langkah-langkah, seperti yang sudah dibahas pada contoh pertama di atas, yang berakibat in-efisiensi proses penyelesaian (secara komputasi) bila dibandingkan dengan metode eliminasi gauss untuk memecahkan sistem persamaan linear. Namun bagaimanapun, secara konseptual kita dianjurkan mengetahui cara bagaimana mendapatkan matrik A 1. Saya telah memodifikasi program eliminasi gauss yang terdahulu, untuk keperluan perhitungan matrik invers. Program ini ditulis dengan bahasa fortran, sudah berhasil dikompilasi dalam Linux Debian (g77) dan Windows XP (Visual Fortran). Inilah programnya, DIMENSION A(10,20), D(10,10), X(10) REAL MJI INTEGER TKR, BK, TK, Q =PROGRAM INVERS MATRIK DENGAN ELIMINASI GAUSS= C LANGKAH 1: MEMASUKAN NILAI ELEMEN-ELEMEN MATRIK A WRITE (*, (1X,A) ) JUMLAH PERSAMAAN? READ (*,*) N MASUKAN ELEMEN-ELEMEN MATRIK A M = N + 1 DO 50 I = 1,N

5 DO 60 J = 1,N WRITE (*, (1X,A,I2,A,I2,A) ) A(,I,,,J, ) = READ (*,*) A(I,J) 60 CONTINUE 50 CONTINUE C LANGKAH 2: MENDEFINISIKAN MATRIK IDENTITAS MENDEFINISIKAN MATRIK IDENTITAS DO 70 I = 1,N DO 80 J = M,N+N A(I,J) = 0 IF (I+N.EQ. J) THEN A(I,J) = 1 END IF 80 CONTINUE 70 CONTINUE C MENAMPILKAN MATRIK AUGMENT WRITE (*, (1X,A) ) MATRIK AUGMENT: DO 110 I = 1,N WRITE (*, (1X,5(F1.8)) ) (A(I,J),J=1,N+N) 110 CONTINUE C MENGHITUNG JUMLAH TUKAR (TKR) POSISI. MULA2 TKR = 0 TKR = 0 C MENGHITUNG JUMLAH OPERASI BAGI/KALI (BK). BK = 0 C MENGHITUNG JUMLAH OPERASI TAMBAH/KURANG (TK). TK = 0 C LANGKAH : MEMERIKSA ELEMEN2 PIVOT DAN PROSES TUKAR POSISI NN = N-1 DO 10 I=1,NN C LANGKAH : MENDEFINISIKAN P P = I 100 IF (ABS(A(P,I)).GE.1.0E-20.OR. P.GT.N) GOTO 200 5

6 P = P+1 GOTO IF(P.EQ.N+1)THEN C MENAMPILKAN PESAN SINGULAR WRITE(*,5) GOTO 00 END IF C LANGKAH 5: PROSES TUKAR POSISI IF(P.NE.I) THEN DO 20 JJ=1,N+N C = A(I,JJ) A(I,JJ) = A(P,JJ) A(P,JJ) = C TKR = TKR CONTINUE END IF C LANGKAH 6: PERSIAPAN PROSES TRIANGULARISASI JJ = I+1 DO 0 J=JJ,N C LANGKAH 7: TENTUKAN MJI MJI = A(J,I)/A(I,I) C LANGKAH 8: MELAKUKAN PROSES TRIANGULARISASI DO 0 K=JJ,N+N A(J,K) = A(J,K)-MJI*A(I,K) TK = TK CONTINUE A(J,I) = 0 0 CONTINUE 10 CONTINUE C MENAMPILKAN HASIL TRIANGULARISASI WRITE (*, (1X,A) ) HASIL TRIANGULARISASI: DO 120 I = 1,N 6

7 WRITE (*, (1X,5(F1.8)) ) (A(I,J),J=1,N+N) 120 CONTINUE C LANGKAH 9: MEMERIKSA ELEMEN A(N,N) IF(ABS(A(N,N)).LT.1.0E-20) THEN C MENAMPILKAN PESAN SINGULAR WRITE(*,5) GOTO 00 END IF DO 500 J = 1,N Q=N+J C LANGKAH 10: MENGHITUNG A(N,N) D(J,N) = A(N,Q)/A(N,N) C LANGKAH 11: PROSES SUBSTITUSI MUNDUR L = N-1 DO 15 K=1,L I = L-K+1 JJ = I+1 SUM = 0.0 DO 16 KK=JJ,N SUM = SUM+A(I,KK)*D(J,KK) TK = TK CONTINUE D(J,I) = (A(I,Q)-SUM)/A(I,I) TK = TK CONTINUE 500 CONTINUE C LANGKAH 12: MENAMPILKAN HASIL PERHITUNGAN WRITE (*, (1X,A) ) MATRIK INVERS: DO 220 I = 1,N WRITE (*, (1X,5(F1.8)) ) (D(J,I),J=1,N) 7

8 220 CONTINUE WRITE(*,8) TKR WRITE(*,9) BK WRITE(*,11) TK 00 STOP 5 FORMAT(1X, MATRIK A BERSIFAT SINGULAR ) 8 FORMAT(1X, JUMLAH TUKAR POSISI =,X,I5) 9 FORMAT(1X, JUMLAH OPERASI BAGI/KALI =,X,I6) 11 FORMAT(1X, JUMLAH OPERASI JUMLAH/KURANG =,X,I6) END Saya cukupkan sementara sampai disini. Insya Allah akan saya sambung lagi dilain waktu. Kalau ada yang mau didiskusikan, silakan hubungi saya melalui . 8

SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS

SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS SISTEM PERSAMAAN LINEAR DAN ELIMINASI GAUSS Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com 5 Februari 2005 Abstract

Lebih terperinci

LU DECOMPOSITION (FAKTORISASI MATRIK)

LU DECOMPOSITION (FAKTORISASI MATRIK) LU DECOMPOSITION (FAKTORISASI MATRIK) Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com 5 Februari 2005 Pada semua catatan

Lebih terperinci

Komputasi untuk Sains dan Teknik

Komputasi untuk Sains dan Teknik Komputasi untuk Sains dan Teknik Dr. Eng. Supriyanto, M.Sc Edisi I Laboratorium Jaringan Komputer Departemen Fisika-FMIPA Univeristas Indonesia 2006 Untuk Muflih Syamil dan Hasan Azmi... Mottoku : Tenang,

Lebih terperinci

Komputasi untuk Sains dan Teknik

Komputasi untuk Sains dan Teknik Komputasi untuk Sains dan Teknik Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: supri@fisika.ui.ac.id atau supri92@gmail.com ) Edisi II Revisi terakhir tgl: 12 Februari 2008 Departemen

Lebih terperinci

METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR

METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR METODE ITERASI DALAM SISTEM PERSAMAAN LINEAR Penulis: Dr. Eng. Supriyanto, M.Sc, email: supri@fisika.ui.ac.id Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Penulisan vektor-kolom Sebelum

Lebih terperinci

Komputasi untuk Sains dan Teknik

Komputasi untuk Sains dan Teknik Komputasi untuk Sains dan Teknik Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: supri@fisika.ui.ac.id atau supri92@gmail.com ) Edisi II Revisi terakhir tgl: 28 April 2008 Departemen

Lebih terperinci

Komputasi untuk Sains dan Teknik -Dalam Matlab-

Komputasi untuk Sains dan Teknik -Dalam Matlab- Komputasi untuk Sains dan Teknik -Dalam Matlab- Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.edu ) ( Email: supri@fisika.ui.ac.id atau supri92@gmail.com ) Edisi III Revisi terakhir tgl: 25

Lebih terperinci

REGRESI LINEAR DAN ELIMINASI GAUSS

REGRESI LINEAR DAN ELIMINASI GAUSS REGRESI LINEAR DAN ELIMINASI GAUSS Penulis: Supriyanto, email: supri@fisika.ui.ac.id Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Diketahui data eksperimen tersaji dalam tabel berikut ini

Lebih terperinci

SCRIPT PERSAMAAN CRAMER

SCRIPT PERSAMAAN CRAMER SCRIPT PERSAMAAN CRAMER Program ; Uses crt; var a11,a12,a13,a21,a22,a23,a31,a32,a33,c1,c2,c3 : integer; D, Dx, Dy, Dz, x, y, z: real; Begin clrscr; writeln ('PENYELESAIAN PERS ALJABAR LINEAR':50); writeln

Lebih terperinci

METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR

METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR METODE FINITE-DIFFERENCE UNTUK PROBLEM LINEAR Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com November 12, 2006 Suatu

Lebih terperinci

MATRIK DAN KOMPUTASI

MATRIK DAN KOMPUTASI MATRIK DAN KOMPUTASI Penulis: Supriyanto, email: supri@fisika.ui.ac.id Staf Lab. Komputer, Departemen Fisika, Universitas Indonesia Fukuoka, 5 Feb 2005 Catatan ini bermaksud menjelaskan secara singkat

Lebih terperinci

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika

MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika MATRIKS FTP UB Mas ud Effendi Pokok Bahasan Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar Invers suatu matriks bujursangkar Penyelesaian set persamaan linier Nilai-eigen dan

Lebih terperinci

BAB II ISI ( ) (sumber:

BAB II ISI ( ) (sumber: BAB II ISI A. Permasalahan yang Diberikan Soal saudara dalam UTS ini harus terus digunakan untuk mengerjakan tugas proyek ini, yaitu: prediksi sifat-sifat tekanan uap murni suatu fluida hidrokarbon sebagai

Lebih terperinci

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3. MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar

Lebih terperinci

MATRIKS Matematika Industri I

MATRIKS Matematika Industri I MATRIKS TIP FTP UB Mas ud Effendi Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu

Lebih terperinci

Interpolasi Cubic Spline

Interpolasi Cubic Spline Interpolasi Cubic Spline Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri92@gmail.com December 13, 2006 Figure 1: Fungsi f(x) dengan

Lebih terperinci

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU),

PENDAHULUAN A. Latar Belakang 1. Metode Langsung Metode Langsung Eliminasi Gauss (EGAUSS) Metode Eliminasi Gauss Dekomposisi LU (DECOLU), PENDAHULUAN A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa.

Lebih terperinci

MATRIKS Matematika Industri I

MATRIKS Matematika Industri I MATRIKS TIP FTP UB Mas ud Effendi Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier

PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier PAM 252 Metode Numerik Bab 3 Sistem Persamaan Linier Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2016/2017 1 Mahdhivan Syafwan Metode Numerik: Sistem Persamaan Linier

Lebih terperinci

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR

BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR BAB 4 PENYELESAIAN SISTEM PERSAMAAN LINEAR A. Latar Belakang Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi,

Lebih terperinci

Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa

Bab 7 Sistem Pesamaan Linier. Oleh : Devie Rosa Anamisa Bab 7 Sistem Pesamaan Linier Oleh : Devie Rosa Anamisa Pendahuluan Bentuk umum dari aljabar linier sebagai berikut: a11x1 + a12a 12X2 +... + a1na 1nXn = b1b a21x1 + a22a 22X2 +... + a2na 2nXn = b2b...............

Lebih terperinci

Sistem Persamaan Aljabar Linier

Sistem Persamaan Aljabar Linier Sistem Persamaan Aljabar Linier Dimana: a ij = koefisien konstanta; x j = unknown ; b j = konstanta; n = banyaknya persamaan Metode-Metode untuk menyelesaikan Sistem Persamaan Aljabar Linier: 1. Metode

Lebih terperinci

Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan

Contoh. C. Determinan dan Invers Matriks. C. 1. Determinan C. Determinan dan Invers Matriks C.. Determinan Suatu matriks persegi selalu dapat dikaitkan dengan suatu bilangan yang disebut determinan. Determinan dari matriks persegi dinotasikan dengan. Untuk matriks

Lebih terperinci

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear

BAB 4 Sistem Persamaan Linear. Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear BAB 4 Sistem Persamaan Linear berbentuk Sistem m persamaan linear dalam n variabel LG=C adalah himpunan persamaan linear Dengan koefisien dan adalah bilangan-bilangan yang diberikan. Sistem ini disebut

Lebih terperinci

6 Sistem Persamaan Linear

6 Sistem Persamaan Linear 6 Sistem Persamaan Linear Pada bab, kita diminta untuk mencari suatu nilai x yang memenuhi persamaan f(x) = 0. Pada bab ini, masalah tersebut diperumum dengan mencari x = (x, x,..., x n ) yang secara sekaligus

Lebih terperinci

Solusi Sistem Persamaan Linear Ax = b

Solusi Sistem Persamaan Linear Ax = b Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem

Lebih terperinci

II. SISTEM PERSAMAAN LANJAR I. PENDAHULUAN

II. SISTEM PERSAMAAN LANJAR I. PENDAHULUAN Solusi Sistem Persamaan Lanjar Homogen dengan Eliminasi Gauss-Jordan Sandy Socrates 135844 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI

MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI 214 MODUL ALJABAR LINEAR 1 Disusun oleh, ASTRI FITRIA NUR ANI Astri Fitria Nur ani Aljabar Linear 1 1/1/214 1 DAFTAR ISI DAFTAR ISI... i BAB I MATRIKS DAN SISTEM PERSAMAAN A. Pendahuluan... 1 B. Aljabar

Lebih terperinci

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor.

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor. Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut Pertanian Bogor e-mail: syarif_abdullah@apps.ipb.ac.id 25 Maret 2016 Ringkasan Kuliah ke-6 Analisis Numerik (16 Maret 2016) Materi : System

Lebih terperinci

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR

M AT E M AT I K A E K O N O M I MATRIKS DAN SPL I N S TITUT P ERTA N I A N BOGOR M AT E M AT I K A E K O N O M I MATRIKS DAN SPL TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 1 2 Kesetimbangan Dua Pasar Permintaan kopi bergantung tidak hanya pada harganya tetapi juga pada harga

Lebih terperinci

BAB X MATRIK DAN SISTEM PERSAMAAN LINIER SIMULTAN

BAB X MATRIK DAN SISTEM PERSAMAAN LINIER SIMULTAN 1 BAB X MATRIK DAN SISTEM PERSAMAAN LINIER SIMULTAN Pembahasan berikut ini akan meninjau salah satu implementasi operasi matrik untuk menyelesaikan sistem persamaan linier simultan. Selain menggunakan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Suatu matriks A C m n dikatakan memiliki faktorisasi LU jika matriks tersebut dapat dinyatakan sebagai A = LU dengan L C m m matriks invertibel segitiga bawah

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

Matriks. Matriks B A B. A. Pengertian Matriks. B. Operasi Hitung pada Matriks. C. Determinan dan Invers

Matriks. Matriks B A B. A. Pengertian Matriks. B. Operasi Hitung pada Matriks. C. Determinan dan Invers Matriks B B 3. Pengertian Matriks B. Operasi Hitung pada Matriks C. Determinan dan Invers Matriks D. Penerapan Matriks dalam Sistem Persamaan Linear Sumber: www.smanela-bali.net Pernahkah kalian mengamati

Lebih terperinci

SISTEM PERSAMAAN LINEAR ( BAGIAN II )

SISTEM PERSAMAAN LINEAR ( BAGIAN II ) SISTEM PERSAMAAN LINEAR ( BAGIAN II ) D. FAKTORISASI MATRIKS D2 2. METODE ITERASI UNTUK MENYELESAIKAN SPL D3 3. NILAI EIGEN DAN VEKTOR EIGEN D4 4. POWER METHOD Beserta contoh soal untuk setiap subbab 2

Lebih terperinci

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk

BAB 1 PENDAHULUAN. Sebuah garis dalam bidang xy secara aljabar dapat dinyatakan oleh persamaan yang berbentuk BAB 1 PENDAHULUAN 1.1 Latar belakang Sebagian besar dari sejarah ilmu pengetahuan alam adalah catatan dari usaha manusia secara kontinu untuk merumuskan konsep-konsep yang dapat menguraikan permasalahan

Lebih terperinci

Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss

Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss Tri Hastuti Yuniati (23515009) 1 Program Studi Magister Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

02-Pemecahan Persamaan Linier (1)

02-Pemecahan Persamaan Linier (1) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Vektor dan Persamaan Linier Bagian : Teori Dasar Eliminasi Bagian 3: Eliminasi Menggunakan Matriks Bagian 4:

Lebih terperinci

BAB X SISTEM PERSAMAAN LINIER

BAB X SISTEM PERSAMAAN LINIER BAB X SISTEM PERSAMAAN LINIER 10.1 Definisi Persamaan linier adalah persamaan aljabar yang terdiri dari satu atau lebih peubah dan masing-masing peubah mempunyai derajad satu. Sebagai contoh persamaan

Lebih terperinci

Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi

Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Elvina Riama K. Situmorang 55) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah

Lebih terperinci

Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK

Bentuk umum : SPL. Mempunyai penyelesaian disebut KONSISTEN. Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK Bentuk umum : dimana x, x,..., x n variabel tak diketahui, a ij, b i, i =,,..., m; j =,,..., n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. SPL Mempunyai penyelesaian disebut KONSISTEN

Lebih terperinci

Metode Matematika untuk Geofisika

Metode Matematika untuk Geofisika Metode Matematika untuk Geofisika Supriyanto Suparno ( Website: http://supriyanto.fisika.ui.ac.id ) ( Email: supri@fisika.ui.ac.id atau supri9@gmail.com ) Edisi I Revisi terakhir tgl: Desember 009 Departemen

Lebih terperinci

03-Pemecahan Persamaan Linier (2)

03-Pemecahan Persamaan Linier (2) -Pemecahan Persamaan Linier () Dosen: Anny Yuniarti, M.Comp.Sc Gasal - Anny Agenda Bagian : Matriks Invers Bagian : Eliminasi = Faktorisasi: A = LU Bagian : Transpos dan Permutasi Anny Bagian MATRIKS INVERS

Lebih terperinci

Pelatihan fortran JURUSAN TEKNIK SIPIL 2014 / 2015

Pelatihan fortran JURUSAN TEKNIK SIPIL 2014 / 2015 Pelatihan fortran JURUSAN TEKNIK SIPIL 2014 / 2015 STRUKTUR PROGRAM FORTRAN STRUKTUR DARI PROGRAM FORTRAN DIBAGI MENJADI 5 BAGIAN KOLOM DAN TIAP-TIAP BARIS DI DALAM PROGRAM DAPAT BERISI : 1) METACOMMAND

Lebih terperinci

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA

JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA CATATAN KULIAH ALJABAR LINEAR MUSTHOFA JURUSAN PENDIDIKAN MATEMATIKA FMIPA UNIVERSITAS NEGERI YOGYAKARTA 20 SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan sistem persamaan linear. OPERASI BARIS ELEMENTER

Lebih terperinci

ISSN (Media Cetak) ISSN (Media Online) Implementasi Metode Eliminasi Gauss Pada Rangkaian Listrik Menggunakan Matlab

ISSN (Media Cetak) ISSN (Media Online) Implementasi Metode Eliminasi Gauss Pada Rangkaian Listrik Menggunakan Matlab JITEKH, Vol, No, Tahun 27, -5 ISSN 28-577(Media Cetak) ISSN 2549-4 (Media Online) Implementasi Metode Eliminasi Gauss Pada Rangkaian Listrik Menggunakan Matlab Silmi, Rina Anugrahwaty 2 Staff Pengajar

Lebih terperinci

Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN

Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN Contoh-Contoh Teknik Pemrograman VBA, Pascal, dan FORTRAN (Epsilon Machine, Interpolasi dan Eliminasi Gauss) Setijo Bismo Departemen Teknik Kimia FTUI 06 Oktober 2015 Perlu untuk SELALU DIINGAT! Cara-Cara

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS (WAJIB)

LEMBAR AKTIVITAS SISWA MATRIKS (WAJIB) LEMBAR AKTIVITAS SISWA MATRIKS (WAJIB) Nama Siswa Kelas : : Kompetensi Dasar (Kurikulum 2013): 3.1 Menganalisis konsep, nilai determinan dan sifat operasi matriks serta menerapkannya dalam menentukan invers

Lebih terperinci

Solusi Persamaan Linier Simultan

Solusi Persamaan Linier Simultan Solusi Persamaan Linier Simultan Obyektif : 1. Mengerti penggunaan solusi persamaan linier 2. Mengerti metode eliminasi gauss. 3. Mampu menggunakan metode eliminasi gauss untuk mencari solusi 1. Sistem

Lebih terperinci

MODUL IV SISTEM PERSAMAAN LINEAR

MODUL IV SISTEM PERSAMAAN LINEAR MODUL IV SISTEM PERSAMAAN LINEAR 4.. Pendahuluan. Sistem Persamaan Linear merupakan salah satu topik penting dalam Aljabar Linear. Sistem Persamaan Linear sering dijumpai dalam semua bidang penyelidikan

Lebih terperinci

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri

Lebih terperinci

METODE GAUSS TUJUAN DASAR TEORI Eliminasi Gauss PEMBAHASAN Analisis :

METODE GAUSS TUJUAN DASAR TEORI Eliminasi Gauss PEMBAHASAN Analisis : METODE GAUSS TUJUAN 1. Menentukan sistem persamaan linier dari kasus fisika 2. Mengubah bentuk sistem persamaan linier kedalam bentuk matriks 3. Membuat program metode eliminasi Gauss (hingga membentuk

Lebih terperinci

STATEMENT FORMAT, DATA, PARAMETER, SPESIFIKASI DAN PENGERJAAN. Kuliah ke-3

STATEMENT FORMAT, DATA, PARAMETER, SPESIFIKASI DAN PENGERJAAN. Kuliah ke-3 STATEMENT FORMAT, DATA, PARAMETER, SPESIFIKASI DAN PENGERJAAN Kuliah ke-3 1 PROGRAM FORTRAN STATEMENT FORMAT Bentuk umum penulisan statement FORMAT adalah ; < label statement > FORMAT Penjelasan

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN

Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN Contoh-Contoh Pemrograman Lanjut: VBA/MS-Excel, PASCAL, dan FORTRAN (Epsilon Machine, Interpolasi dan Metode Newton-Raphson) Prof. Dr. Ir. Setijo Bismo, DEA. Departemen Teknik Kimia FTUI 09 Oktober 2015

Lebih terperinci

BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil

BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Diagonalisasi Sub bab ini membahas tentang faktorisasi matriks A berorde nn ke dalam hasil kali berbentuk PDP, di mana D adalah matriks diagonal. Jika diperoleh

Lebih terperinci

Matriks. Baris ke 2 Baris ke 3

Matriks. Baris ke 2 Baris ke 3 Matriks A. Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegi panjang. Susunan bilangan itu diletakkan di dalam kurung

Lebih terperinci

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau

BAB II KAJIAN TEORI. yang diapit oleh dua kurung siku sehingga berbentuk empat persegi panjang atau BAB II KAJIAN TEORI Pada bab ini akan diberikan kajian teori mengenai matriks dan operasi matriks, program linear, penyelesaian program linear dengan metode simpleks, masalah transportasi, hubungan masalah

Lebih terperinci

BAB 3 STRUKTUR KENDALI, SUBROUTINE, DAN FUNGSI

BAB 3 STRUKTUR KENDALI, SUBROUTINE, DAN FUNGSI BAB 3 STRUKTUR KALI, SUBROUTINE, DAN FUNGSI TUJUAN Tujuan Instruksi Umum: Menjelaskan kepada mahasiswa mengenai struktur kendali pada Fortran Menjelaskan Kepada mahasiswa mengenai Function dan subroutine

Lebih terperinci

MATRIK dan RUANG VEKTOR

MATRIK dan RUANG VEKTOR MATRIK dan RUANG VEKTOR A. Matrik. Pendahuluan Sebuah matrik didefinisikan sebagai susunan persegi panjang dari bilangan bilangan yang diatur dalam baris dan kolom. Matrik ditulis sebagai berikut: a a

Lebih terperinci

PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA

PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA PENERAPAN METODE NUMERIK PADA PERAMALAN UNTUK MENGHITUNG KOOEFISIEN-KOEFISIEN PADA GARIS REGRESI LINIER BERGANDA Yuniarsi Rahayu, S.Si, M.Kom Program Studi Teknik Informatika, Fakultas Ilmu Komputer Universitas

Lebih terperinci

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA.

a11 a12 x1 b1 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 Kumpulan Materi Kuliah #1 s/d #03 Tahun Ajaran 2016/2016: Oleh: Prof. Dr. Ir. Setijo Bismo, DEA. a11 a12 x1 b1 a a x b 21 22 2 2 a11 a12 x1 b1 a a x b 21 22 2 2 Setijo Bismo

Lebih terperinci

MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR

MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR MODUL 3 FAKTORISASI LU, PARTISI MATRIK DAN FAKTORISASI QR KOMPETENSI: 1. Memahami penggunaan faktorisasi LU dalam penyelesaian persamaan linear.. Memahami penggunaan partisi matrik dalam penyelesaian persamaan

Lebih terperinci

Pertemuan 1 Sistem Persamaan Linier dan Matriks

Pertemuan 1 Sistem Persamaan Linier dan Matriks Matriks & Ruang Vektor Pertemuan Sistem Persamaan Linier dan Matriks Start Matriks & Ruang Vektor Outline Materi Pengenalan Sistem Persamaan Linier (SPL) SPL & Matriks Matriks & Ruang Vektor Persamaan

Lebih terperinci

Dasar Komputer & Pemrograman 2A

Dasar Komputer & Pemrograman 2A Dasar Komputer & Pemrograman 2A Materi 3 Reza Aditya Firdaus STATEMENT INPUT OUTPUT Dalam bahasa Pascal untuk keperluan input (membaca input) digunakan identifier standar READ atau READLN. Identifier standart

Lebih terperinci

Vektor. Vektor. 1. Pengertian Vektor

Vektor. Vektor. 1. Pengertian Vektor Universitas Muhammadiyah Sukabumi Artikel Aljabar Vektor dan Matriks Oleh : Zie_Zie Vektor Vektor 1. Pengertian Vektor a. Definisi Vektor adalah suatu besaran yang mempunyai nilai (besar) dan arah. Contohnya

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

LEMBAR AKTIVITAS SISWA MATRIKS

LEMBAR AKTIVITAS SISWA MATRIKS Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA MATRIKS Notasi dan Ordo Matriks Lengkapilah isian berikut! Suatu matriks biasanya dinotasikan dengan huruf kapital, misalnya: A. PENGERTIAN MATRIKS 1) Tabel

Lebih terperinci

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks

BAB I PENDAHULUAN. 3) Untuk mengetahui apa yang dimaksud dengan invers matriks. 4) Untuk mengetahui apa yang dimaksud dengan determinan matriks 1.1 LATAR BELAKANG BAB I PENDAHULUAN Teori matriks merupakan salah satu cabang ilmu aljabar linier yang menjadi pembahasan penting dalam ilmu matematika. Sejalan dengan perkembangan ilmu pengetahuan, aplikasi

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks

Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks 6. Tentukan polinomial karakteristik dari matriks transformasi A=. Andaikan A adalah matriks persegi berdimensi x. Polinom karakteristik

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR

PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR Achmad Dimas Noorcahyo NIM 3508076 Program Studi Teknik Informatika, Institut Teknologi Bandung Jalan Ganeca 0, Bandung

Lebih terperinci

Metode Matriks Balikan

Metode Matriks Balikan Metode Matriks Balikan MisalkanA -1 adalahmatriksbalikandaria. Sistempersamaan lanjar Ax = b dapat diselesaikan sebagai berikut: Ax= b A -1 Ax= A -1 b I x= A -1 b (A -1 A = I ) x= A -1 b Cara penyelesaiandenganmengalikanmatriksa

Lebih terperinci

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN

4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN 4.1 Persamaan Garis a. Bentuk umum persamaan garis Garis lurus yang biasa disebut garis merupakan kurva yang paling sederhana dari semua kurva. Misalnya titik A(2,1)

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR SISTEM PERSAMAAN LINEAR BAB 1 Dr. Abdul Wahid Surhim POKOK BAHASAN 1.1 Pengantar Sistem Persamaan Linear (SPL) 1.2 Eliminasi GAUSS-JORDAN 1.3 Matriks dan operasi matriks 1.4 Aritmatika Matriks, Matriks

Lebih terperinci

MATEMATIKA. Sesi MATRIKS CONTOH SOAL A. MATRIKS SATUAN (MATRIKS IDENTITAS)

MATEMATIKA. Sesi MATRIKS CONTOH SOAL A. MATRIKS SATUAN (MATRIKS IDENTITAS) MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 10 Sesi N MATRIKS A. MATRIKS SATUAN (MATRIKS IDENTITAS) Masih ingat angka 1 kan, setiap bilangan yang dikali satu apakah berubah? Tentunya tidak. Matriks satuan

Lebih terperinci

10. MATRIKS. , maka transpose matriks A adalah A T a

10. MATRIKS. , maka transpose matriks A adalah A T a 0. MATRIKS A. Kesamaan Dua Buah Matriks Dua Matriks A dan B dikatakan sama apaila keduanya erordo sama dan semua elemen yang terkandung di dalamnya sama B. Transpose Matriks a Jika A =, maka transpose

Lebih terperinci

Solusi Numerik Sistem Persamaan Linear

Solusi Numerik Sistem Persamaan Linear Solusi Numerik Sistem Persamaan Linear Modul #2 Praktikum AS2205 Astronomi Komputasi Oleh Dr. Muhamad Irfan Hakim Program Studi Astronomi Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

PERSAMAAN & PERTIDAKSAMAAN

PERSAMAAN & PERTIDAKSAMAAN PERSAMAAN & PERTIDAKSAMAAN PERTEMUAN III Nur Edy, PhD. Tujuan Mengaplikasikan konsep persamaan dan pertidaksamaan Pokok Bahasan: Persamaan (Minggu 3 dan 4) Pertidaksamaan (Minggu 3 dan 4) Harga mutlak

Lebih terperinci

Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 2 dari Buku J. Leon Aljabar Linear) Program Scilab

Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 2 dari Buku J. Leon Aljabar Linear) Program Scilab Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 2 dari Buku J. Leon Aljabar Linear) Program Scilab Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB email: arjunaganteng71@gmail.com

Lebih terperinci

MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR

MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR MATRIKS VEKTOR DETERMINAN SISTEM LINEAR ALJABAR LINEAR 7.1 Matriks DEFINISI Susunan bilangan (fungsi) berbentuk persegi panjang yang ditutup dengan tanda kurung. Bilangan (fungsi) disebut entri-entri matriks.

Lebih terperinci

MATRIKS Nuryanto, ST., MT.

MATRIKS Nuryanto, ST., MT. MateMatika ekonomi MATRIKS TUJUAN INSTRUKSIONAL KHUSUS Setelah mempelajari bab ini, anda diharapkan dapat : 1. Pengertian matriks 2. Operasi matriks 3. Jenis matriks 4. Determinan 5. Matriks invers 6.

Lebih terperinci

MODUL PEMROGRAMAN DENGAN MENGGUNAKAN BAHASA PASCAL CONTOH PROGRAM DENGAN MENGGUNAKAN BAHASA PASCAL (FPC)

MODUL PEMROGRAMAN DENGAN MENGGUNAKAN BAHASA PASCAL CONTOH PROGRAM DENGAN MENGGUNAKAN BAHASA PASCAL (FPC) MODUL PEMROGRAMAN DENGAN MENGGUNAKAN BAHASA PASCAL CONTOH PROGRAM DENGAN MENGGUNAKAN BAHASA PASCAL (FPC) 1. PENGGUNAAN MASUKAN (INPUT ) fileinp: text ; A,B,C : real ; assign(fileinp, 'input.txt'); reset(fileinp);

Lebih terperinci

BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut:

BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut: BAB 2 LANDASAN TEORI Pada bab ini dibicarakan mengenai matriks yang berbentuk bujur sangkar dengan beberapa definisi, teorema, sifat-sifat dan contoh sesuai dengan matriks tertentu yang dibicarakan yang

Lebih terperinci

BAB MATRIKS. Tujuan Pembelajaran. Pengantar

BAB MATRIKS. Tujuan Pembelajaran. Pengantar BAB II MATRIKS Tujuan Pembelajaran Setelah mempelajari materi bab ini, Anda diharapkan dapat: 1. menggunakan sifat-sifat dan operasi matriks untuk menunjukkan bahwa suatu matriks persegi merupakan invers

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

RUNGE-KUTTA ORDE EMPAT

RUNGE-KUTTA ORDE EMPAT RUNGE-KUTTA ORDE EMPAT Dr. Eng. Supriyanto, M.Sc Lab. Komputer, Departemen Fisika, Universitas Indonesia email: supri@fisika.ui.ac.id atau supri9@gmail.com December 30, 00 Pada saat membahas metode Euler

Lebih terperinci

LAPORAN PRAKTIKUM FISIKA KOMPUTASI

LAPORAN PRAKTIKUM FISIKA KOMPUTASI LAPORAN PRAKTIKUM FISIKA KOMPUTASI Judul : Metode Iterasi Jacobi Pelaksanaan Praktikum Hari : Senin Tanggal : 1 Juni 2015 Jam : 5-6 Oleh : Nama : Mei Budi Utami Nim : 081211332009 Dosen Pembimbing : Endah

Lebih terperinci

MULTIMEDIA PEMBELAJARAN DIAGONALISASI MATRIKS

MULTIMEDIA PEMBELAJARAN DIAGONALISASI MATRIKS MULTIMEDIA PEMBELAJARAN DIAGONALISASI MATRIKS 1 Kirana Permata Putri, 2 Ardi Pujiyanta(0529056601) 1,2 Program Studi Teknik Informatika Universitas Ahmad Dahlan Prof. Dr. Soepomo, S.H., Janturan, Umbulharjo,

Lebih terperinci

Konsep Dasar. Modul 1 PENDAHULUAN

Konsep Dasar. Modul 1 PENDAHULUAN Modul 1 Konsep Dasar M PENDAHULUAN Drs. Suryo Guritno, M.Stats., Ph.D. ateri yang akan dibahas dalam modul ini adalah konsep-konsep dasar aljabar matriks yang meliputi pengertian matriks, vektor dan skalar;

Lebih terperinci

a. TRUE b. FALSE c. Jawaban A dan B keduanya dimungkinkan benar d. Tidak dapat ditentukan e. Tidak ada jawaban di antara A, B, C, D yang benar

a. TRUE b. FALSE c. Jawaban A dan B keduanya dimungkinkan benar d. Tidak dapat ditentukan e. Tidak ada jawaban di antara A, B, C, D yang benar Bidang Studi : Informatika / Komputer Kode Berkas : KOM-L01 (solusi) 1. Jika : A bernilai FALSE B bernilai TRUE Maka pernyataan di bawah bernilai? ((A and B) or (B and not A)) xor (A and B) a. TRUE b.

Lebih terperinci

Eigen value & Eigen vektor

Eigen value & Eigen vektor Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan

Lebih terperinci

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut: SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau

Lebih terperinci

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut:

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: Bagian 5. RUANG VEKTOR 5.1 Lapangan (Field) Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: 1. dan 2., 3.,

Lebih terperinci