E-LOGIC. Nama : Eko Budi Pranyoto. Nim : Abstrak

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "E-LOGIC. Nama : Eko Budi Pranyoto. Nim : Abstrak"

Transkripsi

1 E-LOGIC Nama : Eko Budi Pranyoto Nim : Abstrak Logika merupakan hal sangat penting dalam matematika. Hampir semua bidang dalam matematika dimulai dari logika. Sebagian besar perkembangan matematika seperti teori himpunan, analisis real, teori bilangan, struktur aljabar, kalkulus dan lain-lain berasal dari logika inclusife, sedangkan dalam logika eksclusif belum ada yang meneliti secara jauh bagaimana efek dari logika eksklusif bila diterapkan dalam matematika. Logika ekslusif ini memiliki nilai kebenaran salah apabila ada dua pernyataan memiliki nilai kebenaran sama dan memiliki nilai kebenaran benar untuk yang lain. Hal yang paling pokok jika kita ingin mengubah cara pandang matematika menggunakan logika eksklusive maka kita harus mengetahui perubahan utama dalam teori himpunan terlebih dahulu Dimulai dari dasar tersebut dapat diperoleh sebagai contoh yakni bila diterapkan dalam operasi pada himpunan misalnya gabungan, irisan, pengurangan, penjumlahan dan operasi lain dalam himpunan. Penggunaan logika eksklusif ternyata memberikan dampak yang luar biasa terutama bila operasi tersebut berhubungan dengan disjungsi. Keyword : logika, ekslusif, e-logic A. Latar Belakang Perkembangan teknologi semakin pesat menjadikan ilmu-ilmu diberbagai bidang ikut berkembang. Perkembangan ilmu teknologi tidak dapat dipungkiri ditunjang oleh ilmu-ilmu lain yang mendukung misalnya matematika, fisika, kimia, biologi dan lain-lain. Salah satu cabang ilmu matematika yang digunakan dalam perkembangan Ilmu Teknologi (IT) yakni logika matematika. Logika matematika adalah hal yang sangat penting dan fundamental baik dalam matematika itu sendiri ataupun dijadikan sebagai bahasa pemprograman dalam IT. Ada beberapa jenis logika matematika diantaranya yakni logika inclusife dan logika eksklusife. Matematika pada umumnya yang kita pelajari saat ini berpangkal pada logika inclusif. Logika inklusif ini sudah berkembang dan diterapkan dalam cabang matematika 1

2 misal di teori himpunan, analisis real, struktur aljabar, kalkulus dan lain-lain. Karena aliran logika inklusif sering digunakan sehingga aliran logika ekslusif menjadi asing dan jarang ditelinga kita. Pada aplikasinya penggunaan bahasa pemprograman logika eksklusif ini sudah dipakai namun masih sedikit,karena belum berkembang dalam dunia matematika. Berbagai buku matematika baik sumber dalam negeri atau pun luar negeri masih sangat minim untuk mencari tahu bagaimana perkembangan logika ekslusif ini. Bahkan dalam beberapa sumber menyebutkan hanya sepenggal pengertian logika ekslusif dan tak ada keterangan lain yang menjelaskanya. Hal ini menjadikan motivasi saya untuk meneliti bagaimana efek di matematika bila dikembangan dengan menggunakan logika ekslusif. Oleh sebab itu sebelum memasuki ranah berbagai cabang matematika yang bekerja menggunakan logika ekslusive, alangkah baiknya meneliti yang paling awal dan dasarnya terlebih dahulu yakni bagaimana efek yang terjadi dalam teori himpunan bila bekerja mengggunakan sudut pandang logika matematika aliran ekslusif. B. Rumusan Masalah 1. Apakah logika ekslusif itu? 2. Bagaimana efek dari logika eksklusif jika diterapkan dalam teori himpunan? C. Kajian Teori Adalah tidak asing bila kita mendengar kata logika, namun apakah logika di matematika sama dengan logika dalam kehidupan sehari hari? Dalam kajiannya kata logika diartikan sebagi menurut akal atau nalar. Akan tetapi logika sebagai istilah mengandung makna suatu metode atau teknik yang diciptakan untuk meneliti ketepatan penalaran. Penalaran adalah suatu pentuk pemikiran. Oleh sebab itu muncul berbagi macam pemikiran - pemikiran. Berawal dari munculnya baerbagai pemikiran maka terbentuklah 2

3 berbagai jenis aliran logika. Contoh tidak lain yang sering kita temui diantaranya logika simbolik, logika tradisional, logika induktif. Perkembangan matematika memang tidak lepas dari berbagai macam logika tetapi yang mendominasi di dalamnya adalah logika simbolik. Logika simbolik di sini lebih dikenal disebut logika proposisional. Logika proposisional adalah logika yang mengunakan pernyataan pernyataan sehingga dapat ditarik suatu konklusi melalui silogisme hipotetik. Dalam sistemnya logika proposisional ini memiliki suatu perantara untuk menghubungkan proposisi satu dengan yang lain. Perantara ini memiliki nama, simbol, penggunaan yang berbeda.adapun konjungsi ( ), disjungsi ( ), implikasi ( ), dan biimplikasi ( ). Dalam sistemnya masing-masing memiliki nilai kebenaran yang berbeda pula yang disepakati dan digunakan. Pada umumnya sistem yang digunakan menggunakan logika inklusif. Sehingga matematika pun menggunakan logika ini sebagai pangkal dan sudut pandang dalam perkembangan dirinya. Sebenarnya ada jenis lain logika dan serupa dengan logika inklusif yang bisa digunakan untuk mengembangkan matematika yakni logika ekslusif. Logika ini sangat asing dikarenakan para matematikawan sudah terpengaruh dan merasa nyaman dengan logika inklusif. Ini menyebabkan para matematikawan enggan untuk menggunakannya. Memang dilihat dari nilai kebenaran tidak jauh beda dengan nilai kebenaran yang ada dalam logika inklusif. Perbedaannya hanya terletak pada nilai kebenaran disjungsi. Dalam disjungsi eksklusif kita dapat melihat kejadian sehari-hari contoh misalnya dalam hari dan waktu yang sama diberi pilihan mau mengikuti studytour ke Hawai atau mengikuti ujian CPNS di Jakarta. Adalah pilihan yang sangat sulit tak mungkin bisa mengikuti keduanya dalam waktu yang sama. Ini adalah contoh real logika eksklusif berbeda dengan logika inklusif.meskipun perbedaannya terlihat sangat sepele namun ini akan berdampak besar dalam cabang ilmu matematika lain. Misalnya dimulai dari teori himpunan, analisis real, struktur aljabar, kalkulus dan lain lain. 3

4 Matematika merupakan foundation bagi berbagai ilmu. Matematika memfasilitasi ilmu lain untuk berkembang. Untuk memfasilitasin tersebut matematika perlu dikembangan dari berbagi sudut pandang agar dapat memenuhi kebutuhan ilmu lainya. Perkembangan teknologi saat ini juga merupakan berkat matematika salah satunya adalah logika. Dalam ilmu teknologi, logika sangat perperan penting baik secara langsung atau tidak langsung dalam pemrograman perangkat lunak. Untuk mengantisipasi hal tersebut maka perlu dikembangkanya trobosan baru mengenai logika eksklusif sebab pemrograman saat ini yang diaplikasikan menggunakan logika inklusif. Tidak menutup kemungkinan logika ekslusif akan digunakan jika matematika memfasilitasinya. D. Pembahasan. a) Simbol dan Pengertian E-Logic (Logika Ekslusif) Dibawah ini beberapa simbol yang digunakan dalam logika ekslusif Tabel 1.1 Simbol Baca Contoh Cara membaca Negasi Negasi p / Ingkaran p Konjungsi Ekslusif ݍ p dan q (dan dalam e-logic) Disjungsi Eksklusif ݍ p atau q (atau dalam e-logic) Implikasi Eksklusif ݍ Jika p maka q Biimplikasi Eksklusif ݍ p jika dan hanya jika q Selain itu untuk menyatakan nilai kebenaran dalam tabel pernyataan benar = B dan untuk pernyataan salah = S. 4

5 Pengertian E-Logic E-logic berasal dari kata exsclusive or jika diartikan dalam bahasa Indonesia atau yang digunakan secara eksklusif. Dalam logika matematika atau sering disebut dengan disjungsi. Yang membedakan antara logika eksklusif dan logika inklusif terletak pada nilai kebenaran pada disjungsinya. Disjungsi dalam logika inklusif memiliki nilai kebenaran benar jika salah satu proposisi (pernyataan) bernilai benar atau keduanya benar serta bernilai salah untuk yang lain sedangkan dalam logika eksklusif memliki nilai kebenaran salah bila kedua proposisi memliki nilai sama dan bernilai benar untuk yang lain. Lihat tabel kebenaran pembanding berikut. Tabel 1.2 P Q disjungsi ) disjungsi ) ekslusif) inklusif) B B B S B S B B S B B B S S S S b) Definisi-definisi yang Digunakan Dalam E-logic Definisi 1.1 Misalkan p adalah proposisi. p didefiniskan sebagai ingkaran p dengan nilai kebenaran jika p bernilai benar maka ingkaran p bernilai salah atau sebaliknya. Untuk lebih jelas lihat tabel kebenaran sebagai berikut : Tabel 1.3 p B S p S B Definisi 1.2 Misalkan p dan q adalah proposisi. 5

6 Konjungsi eksklusif dinotasikan ݍ didefinisikan sebagai ݍ (konjungsi inklusif) sehingga antara ݍ dan ݍ memiliki nilai kebenran sama yakni memiliki nilai kebenaran benar jika keduanya benar dan bernilai salah untuk yanga lain. Tabel 1.4 P Q disjungsi ) inklusif) disjungsi ) ekslusif) B B B B B S S S S B S S S S S S Definisi 1.3 Misalkan p dan q adalah proposisi.disjungsi eksklusif antara p dan q dinotasikan ݍ didefinisikan memiliki nilai kebenaran benar jika kedua proposisi memiliki nilai kebenaran berbeda serta memiliki nilai kebenaran yang salah untuk yang lain. Tabel 1.5 P Q disjungsi ) inklusif) B B S B S B S B B S S S Definisi 1.4 Misalkan p dan q adalah proposisi.implikasi eksklusif antara p dan q dinotasikan p q didefinisikan ݍ (implikasi pada inklusif) memiliki nilai kebenaran salah jika proporsi p benar dan q salah serta memiliki nilai kebenaran yang benar untuk yang lain. 6

7 Tabel 1.6 P Q implikasi ) inklusif) implikasi ) ekslusif) B B B B B S S S S B S S S S S S Definisi 1.5 Misalkan p dan q adalah proposisi.biimplikasi eksklusif antara p dan q dinotasikan ݍ didefinisikan memiliki nilai kebenaran benar jika kedua proposisi memiliki nilai kebenaran sama serta memiliki nilai kebenaran yang salah untuk yang lain. Tabel 1.7 P Q biimplikasi ) inklusif) biimplikasi ) ekslusif) B B B B B S S S S B S S S S S S Sama halnya pada logika inklusif dalam logika eksklusif juga terdapat konvers, invers dan kontraposisi. Adapun nilai kebenarannya sama pada logika inklusif. Tabel 1.8 implikasi konvers invers kontraposisi B B S S B B B B B S S B S B B S S B B S B S S B S S B B B B B B 7

8 c) Ekuivalensi ( ), Taotologi ( T )dan Kontradiksi ( K ) Beberapa contoh ekuivalensi, tautologi, kontradiksi dalam logika inklusif sama dengan di logika eksklusif yang berbeda jika berhubungan dengan disjungsi ada yang memiliki sifat sama ada yang berbeda oleh sebab itu contoh berikut berupa disjungsi. Contoh 1.1: 1) Ekuivalen ( ) untuk lebih jelas lihat bukti dalam tabel berikut Tabel 1.9 P Q ( ) B B S S B S B B S B B B S S S S 2) tautologi gabungan proposisi yang selalu bernilai benar Tabel 2.0 P ( ) B S B S B B 3) kontradiksi gabungan proposisi yang selalu bernilai salah Tabel 2.1 P Q ( ) ( ( ( ) B B B S S B S S B S S B S B S S S B S S 8

9 Latihan 1.1 Sebagai latihan berikanlah contoh lain dari tautologi, ekuivalensi dan kontradiksi dengan mengujinya menggunakan tabel kebenaran. Dari definisi - definisi diatas mengkibatkan theorema berikut. Theorema 1.1 Setiap pernyataan p berlaku : a. Bahwa nilai kebenaran ingkaran p ekuivalen dengan tautologi didisjungsikan eksklusif terhadap p. ( ) b. Bahwa nilai kebenaran p didisjungsikan eksklusif terhadap p akan menghasilkan nilai kebenaran selalu kontradiksi. ( = ) Bukti untuk a ( ( T p B S B S S B B B Bukti untuk b ( ) p B S S S B S Tabel 2.2 d) Struktur disjungsi dan konjungsi eksklusif dilihat dari sudut pandang operasi biner pada ring (lapangan). Sebelum kita melangkah lebih jauh ke dalam ranah teori himpunan terlebih dahulu kita teliti struktur disjungsi dan konjungsi dilihat dari syarat lapanganya. Hal ini perlu kita teliti karena untuk mempermudah pengggunaaannya dalam teori himpunan. Misalkan P adalah himpunan semua pernyataan maka apakah ( P,, ) membentuk ring? 9

10 Untuk mengetahui hal tersebut maka harus memenuhi aksioma syarat dari ring yaitu sebagai berikut. i. Bersifat komutatif Ambil sembarang p,q P akan dibuktikan p q = q p, p q = q p Bukti p q q p p q q p B B S S B B B S B B S S S B B B S S S S S S S S Tabel 2.3 Dari tabel menunjukkan memiliki sifat yang sama jadi terbukti. ii. Bersifat asosiatif Ambil sembarang p,q dan r P akan dibuktikan 1 ݎ (ݍ ) = (ݎ ݍ) p 2 ݎ (ݍ ) = (ݎ ݍ) Untuk yang pertama 1 jelas sudah dibuktikan dalam logika inklusif. Namun yang perlu dibuktikan yakni yang kedua 2 Bukti Tabel 2.4 p q ( ) ) ) q r B B S S B S S B S B B B S S S B S B B B B S S B S B B B iii. Bersifat distributif 10

11 Ambil sembarang p,q dan r P akan dibuktikan 1 (ݎ ) (ݍ ) = (ݎ ݍ) p 2 (ݎ ) (ݍ ) = (ݎ ݍ) Bukti untuk.1 Tabel 2.5 q r ( ) F B B S B B B S B B B S B S B S S S B B S Tabel 2.6 p q p r ) ) ) ) B B S B S B B S B S B B S B S S S S S S B S S S Dari tabel 2.5 dan 2.6 bisa dbuktikan bahwa bersifat distributif untuk yang pertama kemudian kita buktikan yang kedua. Tabel 2.7 q r ) ( B B S S B B S B S B S B S S S S S B S S 11

12 Tabel 2.8 ) ) ) ) p q p r ݎ ݍ B B S S B S B S B B S S S B S B S S S S B S S S Ternyata untuk yang kedua tidak terbukti distributif hal ini perlu digaris bawahi karena sangat penting. p 1 ( ) ( ) = ( ) terbukti 2 ( tidak terbukti ) ( ) = ( ) iv. Memiliki elemen identitas K untuk setiap p P, maka dan elemen identitas T untuk setiap p P, maka,=(ܭ ),=( ) v. Memiliki invers terdapat p untuk setiap p P yang memenuhi ܭ=( ) Baik untuk sementara itu dulu kita akan lanjutkan ke ranah teori himpunan e) Efek dari logika Eksklusif dalam Teori Himpunan. 1) Irisan Definisi 1.6, ݑ h ݑ = { } = ܤ ܣ, ܤ,ܣ Tidak berimbas karena masih menggunakan konjungsi 2) Gabungan Definisi 1.7, ݑ h ݑ ݏ = { } = ܤ ఢ ܣ, ܤ,ܣ 12

13 pada diagram venn terlihat sebagai berikut ܤ ܣ Hal ini jelas berbeda dengan gabungan versi logika inklusif( ( ini merupakan produk baru dalam e- logic). 3) Selisih Definisi 1.7, ݑ h ݑ = B} ={x S x A dan x ܤ ܣ, ܤ,ܣ Himpunan selisih A dan B adalah suatu himpunan yang anggotanya merupakan elemen A tetapi bukan elemen dari B. 4) Komplemen dan selisih Definisi 1.8 komplemen dari A disinotasikan dengan, ݑ h ݑ ݏ = A C dan elemen elemenya terdapat pada S tetapi bukan elemen di A. A C = {x S x A} daerah yangdiarsir merupakan A C Definisi 1.9 Selisih A dan B dinotasikan dengan A B dan elemen elemenya terdari dari elemen A tetapi bukan elemen B 13

14 A B = {x A x B} 5) Simetrik diferensi Biasanya sering di sebut beda setangkap, simetric diferensi dari A dan B disimbolkan A B Definisi 2.0 A B = ܣ ݔ,ܤ ܣ } ఢ {ܤ dapat juga di maknai (A- B) ఢ ( B-A) Dalam logika eksklusif ini akan menjadi unik karena simetric diferensi sama dengan irisan/gabungan. Contoh Soal Diketahui S = {,,,, }, A = {,,, }, B = {, } B! A tentukan Jawab :A B = } { kita cek satu persatu elemen dari S 1.{ {, nilai kebenarannya yakni benar atau salah = benar jadi 1 elemen dari A ఢ B. 14

15 2. { {, nilai kebenarannya yakni benar atau benar = salah jadi 2 bukan elemen dari A ఢ B. 3. { {, nilai kebenarannya yakni benar atau salah = benar jadi 3 elemen dari A ఢ B. 4. { {, nilai kebenarannya yakni benar atau salah = benar jadi 4 elemen dari A ఢ B. 5. { {, nilai kebenarannya yakni salah atau benar = salah jadi 5 elemen dari A ఢ B. Jadi A ఢ B ={,,, } Jika A merupakan bagian dari S (Himpunan semua pernyataan), buktikan bahwa A A=? Jawab : Menurut theorema 1.1b jelas bahwa untuk setiap p pernyataan akan menghasilkan kontradiksi sehingga tidak ada anggota dari A A= A A maka Latihan 1.2 1) Diberikan semesta pernyataan S = {1,2,3..,10}, P = { Bilangan prima kurang dari 10} Q ={Bilangan ganjil kurang dari 10}. Tentukan : a) P Q b) S Q c) Q Q ۳ = ۳ ). : bahwa 2) Buktikan 15

16 E. PENUTUP Dari uraian di atas dapat saya simpulkan bahwa E - logic secara umum sering disebut logika eksklusif yang memiliki kebenaran berbeda dengan logika inklusif. Perbedaan nilai kebenaran ini akan berpengaruh dalam cara memandang matematika dari sudut pandang mana ia bekerja. Pengaruh logika eksklusif dalam teori himpunan meski dilihat sangat kecil namun efeknya akan besar, dalam hal ini peneliti tidak hanya berhenti di sini tapi masih berlanjut untuk bahasan selanjutnya sebab ada banyak fenomena dalam matematika yg pelu dikaji lebih jauh lagi. F. DAFTAR PUSTAKA Antonie, Pierre Abstrak Algebra. USA : Mathematic: Depertement University Of California At Berkeley. Johnstone P.T Notes on Logic and_set Theory. New York : Cambridge Univercity Press. Munir, Rinaldi Matematika Diskrit. Bandung : Penerbit Informatika. Soekadijo, R. G Logika Dasar (Tradisional, Simbolik, dan Induktif). Jakarta: Gramedia. Suppes Patrick Axiomatix Set Theory. Canada : D Van Nostran Company. 16

DE-ALGEBRAS, E-LOGIC DAN E-SET THEORY. Denik Agustito

DE-ALGEBRAS, E-LOGIC DAN E-SET THEORY. Denik Agustito DE-ALGEBRAS, E-LOGIC DAN E-SE HEORY Denik Agustito Pendidikan Matematika, Universitas Sarjanawiyata amansiswa Email: denikagustito@yahoocoid ABSRAK Dalam logika biasa, disjungsi yang digunakan dalam beberapa

Lebih terperinci

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu

Lebih terperinci

BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?

BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat? BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti

Lebih terperinci

LOGIKA. Arum Handini Primandari

LOGIKA. Arum Handini Primandari LOGIKA Arum Handini Primandari LOGIKA MATEMATIKA KALIMAT TERBUKA DAN TERTUTUP Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Apakah kamu tahu pencipta lagu PPAP? Semoga ujian

Lebih terperinci

Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI.

Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI. Modul ke: 5 Logika Matematika Proposisi & Kuantor Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Kalkulus Proposisi Konjungsi Disjungsi

Lebih terperinci

PROPOSISI MATEMATIKA SISTEM INFORMASI 1

PROPOSISI MATEMATIKA SISTEM INFORMASI 1 PROPOSISI MATEMATIKA SISTEM INFORMASI 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat

Lebih terperinci

Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan

Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan Unit 5 PENALARAN/LOGIKA MATEMATIKA Wahyudi Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan. Penalaran matematika menjadi pedoman atau tuntunan sah atau tidaknya

Lebih terperinci

Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1

Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1 2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki

Lebih terperinci

LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom

LOGIKA MATEMATIKA LOGIKA. Altien Jonathan Rindengan, S.Si, M.Kom LOGIKA MATEMATIKA LOGIKA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Untuk menemukan suatu gagasan baru dari informasi dan gagasan yang telah ada, diperlukan proses berpikir. Proses ini dikenal

Lebih terperinci

Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi

Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi Selamat datang di Perkuliahan LOGIKA MAEMAIKA Logika Matematika eori Himpunan eori fungsi Dosen : Dr. Julan HERNADI PUSAKA : Kenneth H Rossen, Discrete mathematics and its applications, fifth edition.

Lebih terperinci

RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN

RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN RUMUS LOGIKA MATEMATIKA DAN TABEL KEBENARAN Updated by Admin of Bahan Belajar Logika matematika merupakan salah satu materi pelajaran matematika dan cabang logika yang mengandung kajian matematis logika.

Lebih terperinci

LOGIKA. /Nurain Suryadinata, M.Pd

LOGIKA. /Nurain Suryadinata, M.Pd Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi

Lebih terperinci

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit DASAR-DASAR LOGIKA Pertemuan 2 Matematika Diskrit 25-2-2013 Materi Pembelajaran 1. Kalimat Deklaratif 2. Penghubung kalimat 3. Tautologi dan Kontradiksi 4. Konvers, Invers, dan Kontraposisi 5. Inferensi

Lebih terperinci

- Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat

- Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat LOGIKA Tujuan umum : - Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat Tujuan Khusus: - mahasiswa diharapkan dapat : 1. memahami pengertian proposisi,

Lebih terperinci

Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Logika Klasik Matematika Diskret (TKE132107) - Program Studi Teknik

Lebih terperinci

PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka.

PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka. BAB 2 LOGIKA PENGERTIAN Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang

Lebih terperinci

MATEMATIKA DISKRIT LOGIKA

MATEMATIKA DISKRIT LOGIKA MATEMATIKA DISKRIT LOGIKA Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa Informatika.

Lebih terperinci

LOGIKA MATEMATIKA I. PENDAHULUAN

LOGIKA MATEMATIKA I. PENDAHULUAN LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan

Lebih terperinci

BAB 6 LOGIKA MATEMATIKA

BAB 6 LOGIKA MATEMATIKA A 6 LOGIKA MATEMATIKA A RINGKAAN MATERI 1. Pengertian Logika adalah suatu metode yang diciptakan untuk meneliti ketepatan penalaran (bentuk pemikiran yang masuk akal). Pernyataan adalah kalimat yang hanya

Lebih terperinci

Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses.

Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses. Unit 6 PENALARAN MATEMATIKA Clara Ika Sari Budhayanti Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan baik di bidang aritmatika, aljabar, geometri dan pengukuran,

Lebih terperinci

Pertemuan 2. Proposisi Bersyarat

Pertemuan 2. Proposisi Bersyarat Pertemuan 2 Proposisi ersyarat Proposisi ersyarat Definisi 4 Misalkan p dan q adalah proposisi. Proposisi majemuk jika p, maka q disebut proposisi bersyarat (implikasi dan dilambangkan dengan p q Proposisi

Lebih terperinci

KATA PENGANTAR. Assalamu alaikum Wr. Wb.

KATA PENGANTAR. Assalamu alaikum Wr. Wb. KATA PENGANTAR Assalamu alaikum Wr. Wb. Matematika tidak dapat terlepas dalam kehidupan manusia sehari-hari, baik saat mempelajari matematika itu sendiri maupun mata kuliah lainnya. Mata kuliah Pengantar

Lebih terperinci

LOGIKA DAN PEMBUKTIAN

LOGIKA DAN PEMBUKTIAN BAB I LOGIKA DAN PEMBUKTIAN A. PENGANTAR Prinsip dari logika matematika memiliki korelasi dengan pembuktian kebenaran yang dilakukan menggunakan tabel kebenaran ataupun tanpa menggunakan tabel kebenaran

Lebih terperinci

PERTEMUAN 2 TABEL KEBENARAN DADANG MULYANA. TABEL KEBENARAN (TB) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi.

PERTEMUAN 2 TABEL KEBENARAN DADANG MULYANA. TABEL KEBENARAN (TB) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi. PEREMUAN 2 ABEL KEBENARAN DADANG MULYANA ABEL KEBENARAN (B) digunakan untuk menyajikan hubungan antara nilai kebenaran sejumlah proposisi. ABEL 1 : B untuk proposisi dan negasinya p p MASALAH LOGIKA 1

Lebih terperinci

I. PERNYATAAN DAN NEGASINYA

I. PERNYATAAN DAN NEGASINYA 1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan

Lebih terperinci

Matematika Industri I

Matematika Industri I LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai

Lebih terperinci

Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali

Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali Materi 4: Logika I Nyoman Kusuma Wardana STMIK STIKOM Bali Logika merupakan dasar dr semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan-pernyataan (statements). Dalam Logika

Lebih terperinci

BAB I LOGIKA MATEMATIKA

BAB I LOGIKA MATEMATIKA BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut

Lebih terperinci

EKUIVALENSI LOGIS. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 3 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo

EKUIVALENSI LOGIS. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 3 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 3 FONDASI MATEMATIKA Variasi bentuk implikasi Berangkat dari implikasi p q kita dapat membentuk tiga pernyataan implikasi relevan yang

Lebih terperinci

LOGIKA MATEMATIKA. MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM. proposisi conjungsi tautologi inferensi

LOGIKA MATEMATIKA. MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM. proposisi conjungsi tautologi inferensi LOGIKA MATEMATIKA MATEMATiKA DISKRET S1-SISTEM INFORMATIKA STMIK AMIKOM Definisi Proposisi adalah suatu kalimat yang bernilai benar atau salah dan tidak keduanya Proposisi Kalimat Deklaratif Proposisi

Lebih terperinci

LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan

LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan LOGIKA (LOGIC) Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataanpernyataan (statements). Proposisi kalimat deklaratif yang bernilai benar (true)

Lebih terperinci

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi 1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UPI BANDUNG SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMATIKA DASAR KODE MATA KULIAH : SFAT MATA KULIAH : PROGRAM STUDI : PENDIDIKAN BIOLOGI SEMESTER : PERTAMA JUMLAH

Lebih terperinci

Berdasarkan tabel 1 diperoleh bahwa p q = q p.

Berdasarkan tabel 1 diperoleh bahwa p q = q p. PEMAHAAN 1. Pengertian Kata LOGIKA mengacu pada suatu metode atau cara yang sistematis dalam berpikir (reasoning), dan terdapat dua sistem khusus yaitu : suatu metode dasar yang disebut dengan Kalkulus

Lebih terperinci

BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran

BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran BAB 4 PROPOSISI 1. Pernyataan dan Nilai Kebenaran Ilmu logika adalah berhubungan dengan kalimat-kalimat (argumen-argumen) dan hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah memberikan

Lebih terperinci

PENALARAN DALAM MATEMATIKA

PENALARAN DALAM MATEMATIKA PENALARAN DALAM MATEMATIKA A. PENDAHULUAN Siswa belajar dimulai dari mengamati contoh-contoh atau fenomena Dari informasi-informasi yang diperoleh secara khusus siswa mencoba melakukan generalisasi secara

Lebih terperinci

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai

Lebih terperinci

Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah.

Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. LOGIKA MATEMATIKA 1. Pernyataan Pernyataan adalah kalimat yang bernilai benar atau salah tetapi tidak sekaligus benar dan salah. Pernyataan dilambangkan dengan huruf kecil, misalnya p, q, r dan seterusnya.

Lebih terperinci

PENGANTAR MATEMATIKA DISKRIT

PENGANTAR MATEMATIKA DISKRIT PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER PENGANTAR MATEMATIKA DISKRIT ILHAM SAIFUDIN Selasa, 04 Oktober 2016 Universitas Muhammadiyah Jember Apa Kalian tau? Jawabannya

Lebih terperinci

Representasi Kalimat Logika ke dalam Matriks Trivia

Representasi Kalimat Logika ke dalam Matriks Trivia Representasi Kalimat Logika ke dalam Matriks Trivia Rio Chandra Rajagukguk 13514082 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

MODUL LOGIKA MATEMATIKA

MODUL LOGIKA MATEMATIKA PERENCANAAN PEMBELAJARAN MATEMATIKA MODUL LOGIKA MATEMATIKA AUTHOR: Navel Mangelep UNIVERSITAS NEGERI MANADO FAKULTAS MATEMATIKA & ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA KATA PENGANTAR Salah satu penunjang

Lebih terperinci

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012 Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya

Lebih terperinci

VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR

VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR 98 VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR Elly s Mersina Mursidik Program Studi Pendidikan Guru Sekolah Dasar Fakultas Ilmu Pendidikan IKIP

Lebih terperinci

Logika Matematika. Cece Kustiawan, FPMIPA, UPI

Logika Matematika. Cece Kustiawan, FPMIPA, UPI Logika Matematika 1. Pengertian Logika 2. Pernyataan Matematika 3. Nilai Kebenaran 4. Operasi Uner 5. Operasi Biner 6. Tabel kebenaran Pernyataan 7. Tautologi, Kontradiksi dan Kontingen 8. Pernyataan-pernyataan

Lebih terperinci

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat 1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat dan logos yang artinya ilmu merupakan cabang matematika yang bersangkutan dengan

Lebih terperinci

Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus.

Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus. Logika Proposisi 1 I. Logika Proposisi Logika adalah bagian dari matematika, tetapi pada saat yang sama juga merupakan bahasa matematika. Pada akhir abad ke-19 dan awal abad ke-20, ada kepercayaan bahwa

Lebih terperinci

LOGIKA Matematika Industri I

LOGIKA Matematika Industri I LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan

Lebih terperinci

Berpikir Komputasi. Sisilia Thya Safitri, MT Citra Wiguna, M.Kom. 3 Logika Proposisional (I)

Berpikir Komputasi. Sisilia Thya Safitri, MT Citra Wiguna, M.Kom. 3 Logika Proposisional (I) Berpikir Komputasi Sisilia Thya Safitri, MT Citra Wiguna, M.Kom 3 Logika Proposisional (I) Capaian Sub Pembelajaran Mahasiswa dapat memahami logika proposisional sebagai dasar penerapan algoritma. Outline

Lebih terperinci

HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma

HIMPUNAN MATEMATIKA. Program Studi Agroteknologi Universitas Gunadarma HIMPUNAN MATEMATIKA Program Studi Agroteknologi Universitas Gunadarma Ruang Lingkup Pengertian Himpunan Notasi Himpunan Cara menyatakan Himpunan Macam Himpunan Diagram Venn Operasi Himpunan dan Sifat-sifatnya

Lebih terperinci

Keterkaitan Logika dengan Emosi dan Perasaan

Keterkaitan Logika dengan Emosi dan Perasaan Keterkaitan Logika dengan Emosi dan Perasaan Raihan Muhammad Suria Nagara,13515128 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

BAB I DASAR-DASAR LOGIKA

BAB I DASAR-DASAR LOGIKA BAB I DASAR-DASAR LOGIKA 11 Pendahuluan Logika adalah suatu displin yang berhubungan dengan metode berpikir Pada tingkat dasar, logika memberikan aturan-aturan dan teknik-teknik untuk menentukan apakah

Lebih terperinci

Logika Proposisi. Adri Priadana ilkomadri.com

Logika Proposisi. Adri Priadana ilkomadri.com Logika Proposisi Adri Priadana ilkomadri.com Matematika Diskrit Apa? Cabang matematika yg mempelajari tentang obyek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)? Objek disebut diskrit jika:

Lebih terperinci

Konvers, Invers dan Kontraposisi

Konvers, Invers dan Kontraposisi MODUL 5 Konvers, Invers dan Kontraposisi Represented by : Firmansyah,.Kom A. TEMA DAN TUJUAN KEGIATAN PEMELAJARAN 1. Tema Konvers, Invers dan Kontraposisi 2. Fokus Pembahasan Materi Pokok 1. Konvers, invers

Lebih terperinci

NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3)

NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) 1 1 Kata Penghubung Kalimat 1. Konjungsi: menggunakan kata penghubung: dan 2. Disjungsi: menggunakan kata penghubung: atau 3. Implikasi: menggunakan kata

Lebih terperinci

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi

Lebih terperinci

INGKARAN DARI PERNYATAAN

INGKARAN DARI PERNYATAAN HAND-OUT Student Name : Subject : Matematika Wajib Grade/Class : / Toic : Logika Matematika Date : Teacher(s) : Mr. Daniel Kristanto Semester : 2 Parent s Signature : LOGIKA MATEMATIKA Kalimat logika matematika

Lebih terperinci

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi +

BAB II KERANGKA TEORITIS. komposisi biner atau lebih dan bersifat tertutup. A = {x / x bilangan asli} dengan operasi + 5 BAB II KERANGKA TEORITIS 2.1 Struktur Aljabar Struktur aljabar adalah salah satu mata kuliah dalam jurusan matematika yang mempelajari tentang himpunan (sets), proposisi, kuantor, relasi, fungsi, bilangan,

Lebih terperinci

BAB 6 EKUIVALENSI LOGIS

BAB 6 EKUIVALENSI LOGIS BAB 6 EKUIVALENSI LOGIS 1. Pendahuluan Bab ini akan membahas persamaan-persamaan antara dua buah ekspresi logika yang mungkin ekuivalen (sama), mungkin berbeda, yang kesamaan atau perbedaan tadi akan dibuktikan

Lebih terperinci

Logika Matematika. Bab 1

Logika Matematika. Bab 1 Bab 1 Sumber: pkss.co.id Pada bab ini, Anda akan diajak untuk memecahkan masalah yang ber - hubungan dengan konsep, di antaranya mendeskripsikan pernyataan dan bukan pernyataan (kalimat terbuka), mendeskripsikan

Lebih terperinci

PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd.

PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd. Doc Logika Matematika PGSD Maulana 1 PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321 BOBOT SKS : 2 (DUA) TAHUN AKADEMIK : 2007/2008 PROGRAM : PGSD S-1 KELAS SEMESTER : GANJIL

Lebih terperinci

MATERI 1 PROPOSITIONAL LOGIC

MATERI 1 PROPOSITIONAL LOGIC MATERI 1 PROPOSITIONAL LOGIC 1.1 Pengantar Beberapa pernyataan (statement) dapat langsung diterima kebenarannya tanpa harus tahu kebenaran pembentuknya Ada kehidupan di Bulan atau tidak ada kehidupan di

Lebih terperinci

NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG

NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG LOGIKA MATEMATIKA A. PERNYATAAN DAN KALIMAT TERBUKA Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya (benar dan salah). 1. Gadis itu cantik. 2. Bersihkan lantai itu. 3. Pernyataan/kalimat

Lebih terperinci

Diktat Kuliah LOGIKA INFORMATIKA. Oleh : Didin Astriani Prasetyowati, M.Stat

Diktat Kuliah LOGIKA INFORMATIKA. Oleh : Didin Astriani Prasetyowati, M.Stat Diktat Kuliah LOGIKA INFORMATIKA Oleh : Didin Astriani Prasetyowati, M.Stat PROGRAM STUDI INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS INDO GLOBAL MANDIRI TAHUN AJARAN 2015/2016 DAFTAR ISI BAB 1 : DASAR-DASAR

Lebih terperinci

IT105 MATEMATIKA DISKRIT. Ramos Somya, S.Kom., M.Cs.

IT105 MATEMATIKA DISKRIT. Ramos Somya, S.Kom., M.Cs. IT105 MATEMATIKA DISKRIT Ramos Somya, S.Kom., M.Cs. TUJUAN Mahasiswa Memahami dan menguasai konsep dasar logika matematika Mahasiswa mempunyai daya nalar yang semakin tajam. POKOK BAHASAN Pernyataan dan

Lebih terperinci

Logika Matematika. Teknik Informatika IT Telkom

Logika Matematika. Teknik Informatika IT Telkom Logika Matematika Andrian Rakhmatsyah Teknik Informatika IT Telkom 1 OUTLINE ATURAN PENILAIAN SYLABUS PUSTAKA TEORI HIMPUNAN BAB I ALJABAR BOOLEAN 2 PENILAIAN UTS : 35% UAS : 40% KUIS : 20% PR/PRAKTEK

Lebih terperinci

LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1

LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1 LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir

Lebih terperinci

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6) RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p

Lebih terperinci

51. Mata Pelajaran Matematika Kelompok Teknologi, Kesehatan dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A.

51. Mata Pelajaran Matematika Kelompok Teknologi, Kesehatan dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. 51. Mata Pelajaran Matematika Kelompok Teknologi, Kesehatan dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. Latar Belakang Matematika merupakan ilmu universal yang

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan (Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: hgunawan@math.itb.ac.id. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang

Lebih terperinci

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012 Jurusan Informatika FMIPA Unsyiah September 26, 2012 yang diharapkan Dasar: Menggunakan logika matematika. Indikator Esensial: 1 Mengidentifikasi suatu tautologi 2 Menentukan ingkaran suatu pernyataan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMK... Mata Pelajaran : Matematika Kelas : XI Program Keahlian : Akuntansi dan Penjualan Standar Kompetensi Kompetensi Dasar Indikator Alokasi Waktu

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER

RENCANA PEMBELAJARAN SEMESTER RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI : Pendidikan Matematika MATAKULIAH : Landasan Matematika KODE MATAKULIAH : MTA231 SKS : 3 SEMESTER : 1 MATAKULIAH PRASYARAT : DOSEN PENGAMPU : Tatik Retno Murniasih,

Lebih terperinci

VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR

VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR 64 VARIASI MODEL SILOGISME UNTUK PENGAMBILAN KESIMPULAN DALAM PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR Elly s Mersina Mursidik * Abstract Logical argumentations are required in communication and interactions

Lebih terperinci

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai

Lebih terperinci

: SRI ESTI TRISNO SAMI

: SRI ESTI TRISNO SAMI MATEMATIKA DISKRIT By : SRI ESTI TRISNO SAMI 082334051324 Bahan Bacaan / Refferensi : 1. Seymour Lipschutz dan Marc Lars Lipson, Matematika Diskkrit Shcaum s Outline Series, Mc Graw-Hill Book Company,

Lebih terperinci

Modul Ilmu Mantiq/Logika. Dosen: Ahmad Taufiq MA

Modul Ilmu Mantiq/Logika. Dosen: Ahmad Taufiq MA Modul Ilmu Mantiq/Logika Dosen: Ahmad Taufiq MA C. PROPOSISI Unsur Dasar Proposisi Proposisi kategorik adalah suatu pernyataan yang terdiri atas hubungan 2 term sebagai subjek dan predikat serta dapat

Lebih terperinci

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit

R maupun. Berikut diberikan definisi ruang vektor umum, yang secara eksplisit BAB I RUANG EKTOR UMUM Dalam bab ini akan dipelajari tentang konsep ruang vektor umum, sub ruang vektor dan sifat-sifatnya. Pada pembicaraan ini, para mahasiswa dianggap sudah mengenal konsep dan sifat

Lebih terperinci

RPKPS MATA KULIAH PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FMIPA UGM

RPKPS MATA KULIAH PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FMIPA UGM RPKPS MATA KULIAH PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FMIPA UGM 1 Judul, Kode, SKS Pengantar Logika Matematika Dan Himpunan, MMM 1201, 3 SKS 2 Silabus Semesta Pembicaraan, Kalimat Deklaratif, Ingkaran

Lebih terperinci

LOGIKA MATEMATIKA SOAL DAN PENYELESAIAN Logika, Himpunan, Relasi, Fungsi JONG JEK SIANG Kita menjalani hidup dari apa yang kita dapatkan Tetapi kita menikmati hidup dari apa yang kita berikan Jong Jek

Lebih terperinci

Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed

Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Himpunan Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Obyek-obyek diskret ada di sekitar kita. Matematika Diskret (TKE132107)

Lebih terperinci

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi

Lebih terperinci

KATA PENGANTAR UCAPAN TERIMA KASIH ABSTRAK DAFTAR ISI DAFTAR TABEL DAFTAR BAGAN

KATA PENGANTAR UCAPAN TERIMA KASIH ABSTRAK DAFTAR ISI DAFTAR TABEL DAFTAR BAGAN DAFTAR ISI KATA PENGANTAR...i UCAPAN TERIMA KASIH...ii ABSTRAK.iii DAFTAR ISI.iv DAFTAR TABEL.vi DAFTAR BAGAN ix DAFTAR GAMBAR...x DAFTAR LAMPIRAN.xi BAB I PENDAHULUAN... 1 A. Latar Belakang Masalah..

Lebih terperinci

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54302/ Matematika Diskrit 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL SISTEM BILANGAN REAL Materi : 1.1 Pendahuluan Sistem Bilangan Real adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, ini merupakan

Lebih terperinci

PERNYATAAN MAJEMUK & NILAI KEBENARAN

PERNYATAAN MAJEMUK & NILAI KEBENARAN PERNYATAAN MAJEMUK & NILAI KEBENARAN 1. Pernyataan Majemuk Perhatikan pernyataan hari ini hujan dan aku berjalan-jalan. Pernyataan tersebut terdiri dari dua pernyataan pokok/tunggal (prime sentence), yaitu

Lebih terperinci

BAHAN KULIAH LOGIKA MATEMATIKA

BAHAN KULIAH LOGIKA MATEMATIKA BAHAN KULIAH LOGIKA MATEMATIKA O L E H A. Rahman H., S.Si, MT & Muhammad Khaidir STTIKOM Insan unggul Jl. S.A. tirtayasa no. 146 Komp. Istana Cilegon blok B 25-28 Cilegon Banten 42414 http://didir.co.cc

Lebih terperinci

50. Mata Pelajaran Matematika Kelompok Akuntansi dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A.

50. Mata Pelajaran Matematika Kelompok Akuntansi dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. 50. Mata Pelajaran Matematika Kelompok Akuntansi dan Pertanian untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. Latar Belakang Matematika merupakan ilmu universal yang mendasari

Lebih terperinci

SILABUS. Menyimak pemahaman tentang bentuk pangkat, akar dan logaritma beserta keterkaitannya. Mendefinisikan bentuk pangkat, akar dan logaritma.

SILABUS. Menyimak pemahaman tentang bentuk pangkat, akar dan logaritma beserta keterkaitannya. Mendefinisikan bentuk pangkat, akar dan logaritma. SILABUS Nama Sekolah : SMA PGRI 1 AMLAPURA Mata Pelajaran : MATEMATIKA Kelas/Program : X Semester : 1 STANDAR KOMPETENSI: 1. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Materi Pelajaran : Matematika Kelas/ Semester : X / 2 Pertemuan ke : 1,2 Alokasi Waktu : 5 x 45 menit Standar Kompetensi : Menerapkan logika matematika dalam pemecahan

Lebih terperinci

BAB 2. HIMPUNAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK. Senin, 17 Oktober 2016

BAB 2. HIMPUNAN UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK. Senin, 17 Oktober 2016 PROGRAM STUDI MANAJEMEN INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER BAB 2. HIMPUNAN ILHAM SAIFUDIN Senin, 17 Oktober 2016 Universitas Muhammadiyah Jember ILHAM SAIFUDIN MI HIMPUNAN 1 DASAR-DASAR

Lebih terperinci

EKSKLUSIF OR (XOR) DEFINISI

EKSKLUSIF OR (XOR) DEFINISI Logika Matematik EKSKLUSIF OR (XOR) DEFINISI : Misalkan p dan q adalah proposisi. Proposisi salah satu p atau q ditulis p q adalah proposisi yang bernilai benar jika tepat satu diantara p atau q BENAR,

Lebih terperinci

BAB I TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN

BAB I TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN BAB I TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi juga dapat diterapkan

Lebih terperinci

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements).

Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Logika Matematik 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat deklaratif yang bernilai

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Kurikulim MK Negeri 1 urabaya RENCANA PELAKANAAN PEMELAJARAN (RPP) Nama ekolah : MK Negeri 1 urabaya Program Keahlian : Mata Pelajaran : Matematika Kelas / emester : tandar Kompetensi : Menerapkan logika

Lebih terperinci

B. Tujuan Mata pelajaran Matematika bertujuan agar peserta didik memiliki kemampuan sebagai berikut.

B. Tujuan Mata pelajaran Matematika bertujuan agar peserta didik memiliki kemampuan sebagai berikut. 49. Mata Pelajaran Matematika Kelompok Seni, Pariwisata, Sosial, Administrasi Perkantoran, dan Teknologi Kerumahtanggaan untuk Sekolah Menengah Kejuruan (SMK)/Madrasah Aliyah Kejuruan (MAK) A. Latar Belakang

Lebih terperinci

Materi Kuliah IF2091 Struktur Diskrit. Pengantar Logika. Oleh: Rinaldi Munir. Program Studi Informatika STEI - ITB

Materi Kuliah IF2091 Struktur Diskrit. Pengantar Logika. Oleh: Rinaldi Munir. Program Studi Informatika STEI - ITB Materi Kuliah IF2091 Struktur Diskrit Pengantar Logika Oleh: Rinaldi Munir Program Studi Informatika STEI - ITB 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti

Lebih terperinci

PERTEMUAN Logika Matematika

PERTEMUAN Logika Matematika 1-1 PERTEMUAN 1 Nama Mata Kuliah : Matematika Diskrit ( 3 SKS) Nama Dosen Pengampu : Dr. Suparman E-mail : matdis@netcourrier.com HP : 081328201198 Judul Pokok Bahasan Tujuan Pembelajaran : 1. Logika Matematika

Lebih terperinci

Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono

Proposition Logic. (Logika Proposisional) Bimo Sunarfri Hantono Proposition Logic (Logika Proposisional) Bimo Sunarfri Hantono bimo@te.ugm.ac.id Proposition (pernyataan) Merupakan komponen penyusun logika dasar yang dilambangkan dengan huruf kecil (p, q, r,...) yang

Lebih terperinci

1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1.

1.1 Pengertian Himpunan. 1.2 Macam-macam Himpunan. 1.3 Relasi Antar Himpunan. 1.4 Diagram Himpunan. 1.5 Operasi pada Himpunan. 1. I. HIMPUNAN 1.1 Pengertian Himpunan 1.2 Macam-macam Himpunan 1.3 Relasi Antar Himpunan 1.4 Diagram Himpunan 1.5 Operasi pada Himpunan 1.6 Aljabar Himpunan Pengertian Himpunan 1. Apa yang dimaksud dengan

Lebih terperinci