SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA"

Transkripsi

1 PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp , Fax JAKARTA TIMUR A UJI KOMPETENSI KE-1 SEMESTER GANJIL TAHUN PELAJARAN Mata Pelajaran : Matematika Materi Ajar : Persamaan garis lurus Kelas : VIII (delapan ) Alokasi Waktu : 2 x 40 menit Pilih satu jawaban yang paling benar! 1. Bentuk-bentuk berikut yang merupakan persamaan garis lurus adalah... a. x + y = 0 b. 2y - x + 1 c. x + y - 2 d. y = Garis-garis berikut yang melalui titik pusat koordinat adalah... a. 2x + y = 0 b. 2x - y = 6 c. 3x - 2y + 12 = 0 d. y = 5x Persamaan garis yang melalui titik-titik (1, 2), ( 3, 6), (-4, -8) adalah... a. 2y = x b. y = 2x c. 3y = 9x d. 5y = 12x 4. Perhatikan gambar berikut! a b Garis-garis pada gambar di atas yang memiliki gradien 2 dan -6 adalah garisgaris... a. a dan b b. a dan c c. c dan d d. b dan a 5. Gradien garis yang memiliki persamaan 3y = 5x 1. a. c Gradien garis 2y 3x + 5 = 0 adalah... a. c. d c 7. Gradien garis yang melalui titik pusat koordinat dan P(-5, 7) adalah... a. - c. b. - d. 8. Gradien garis yang melalui A(2, -3) dan B(5, 4) adalah... a. -1 c Persamaan garis lurus yang bergradien m = -1 dan melalui P(4, -1) adalah... a. y + x = 3 b. y - x = 3 c. y + x = -3 d. y - x = Persamaan garis lurus yang melalui (-3, -5) dengan gradien m = -2 adalah... a. 2x - y - 11 = 0 b. 2x - y + 11 = 0 c. 2x + y - 11 = 0 d. 2x + y + 11 = Perhatikan gambar berikut! Persamaan garis g pada gambar di atas adalah... a. 4x - 3y - 12 = 0 b. 4x - 3y + 12 = 0 c. 4x + 3y - 12 = 0 d. 4x + 3y + 12 = Persamaan garis yang melalui P(-1, -5) dan Q(-3, 1) adalah... a. 3x + y = -8 b. 3x + y = 8 c. 3x - y = -8 d. 3x - y = 8

2 13. Titik potong garis 5y = 3x - 15 terhadap sumbu x. a. (5, 0) c. (0, 5) b. (0, -3) d. (-3, 0) 14. Titik potong garis 4x - 5y + 20 = 0 terhadap sumbu y adalah... a. (0, -4) c. (-5, 0) b. (0, 4) d. (5, 0) 15. Titik potong garis 5x + 7y = -35 terhadap sumbu x dan sumbu y secara berturut-turut a. (0, 5) dan (7, 0) b. (5, 0) dan (0, 7) c. (-7, 0) dan (0, -5) d. (0, -7) dan (-5, 0) 16. Titik (a, 3) terletak pada garis 2y - x = 4, maka nilai a adalah... a. 1 c. 3 b. 2 d Diketahui garis x + y = 3 berpotongan dengan garis 2x - 3y = 11. Titik potong ke dua garis tersebut adalah... a. (4, -1) c. (-4, -1) b. (4, 1) d. (-4, 1) 18. Perhatikan gambar berikut! 5 k 3 (a, b) 2 l Jika titik (a, b) adalah titik potong garis k dan garis l maka nilai a dan b berturutturut a. (½, 3) c. (-½, -3) b. (3, ½) d. (-½, 3) 22. Persamaan garis yang memiliki gradien - dan melalui titik (3, 4) adalah ax + by + c = 0. Nilai a + b c =... a. 13 c. 18 b. 15 d Perhatikan gambar! 0 Gambar di atas merupakan sketsa grafik dari sebuah garis lurus y = mx + c. Nilai m dan c berikut yang benar adalah... a. m < 0 dan c > 0 b. m < 0 dan c < 0 c. m > 0 dan c > 0 d. m > 0 dan c < Garis yang melalui A(2, y) dan B(5, 7) memiliki gradien m = -1. Nilai y... a. -4 c. 6 b. 4 d Persamaan garis y - 2x 3 = 0 berpotongan dengan y + 2x + 5 = 0 di titik A. Persamaan garis yang melalui titik A dan titik B(1, 8). a. y = -3x + 8 b. y = -2x + 7 c. y = 2x + 3 d. y = 3x + 5 SELAMAT MENGERJAKAN! 19. Persamaan garis yang melalui titik (-2, 5) dan sejajar garis 3x - 5y + 12 = 0 adalah... a. 3x - 5y - 31 = 0 b. 3x + 5y - 31 = 0 c. 5y + 3x + 31 = 0 d. 5y - 3x - 31 = Persamaan garis yang melalui titik (-3, -2) dan tegak lurus dengan garis yang mempunyai persamaan 5x - 2y - 8 = 0. a. 5y - 2x - 16 = 0 b. 5y + 2x - 16 = 0 c. 2x - 5y + 16 = 0 d. 2x + 5y + 16 = Garis y = mx + n melalui titik (-2, 3) Dan (4, 6). Nilai 2m + n adalah... a. 2 c. 4 b. 3 d. 5

3 PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp , Fax JAKARTA TIMUR B UJI KOMPETENSI KE-1 SEMESTER GANJIL TAHUN PELAJARAN Mata Pelajaran : Matematika Materi Ajar : Persamaan garis lurus Kelas : VIII (delapan ) Alokasi Waktu : 2 x 40 menit Pilih satu jawaban yang paling benar! 1. Bentuk-bentuk berikut yang merupakan persamaan garis lurus adalah... a. x + y = 2 b. 2y + x - 1 c. x - y + 2 d. x = Garis-garis berikut yang melalui titik pusat koordinat adalah... a. 2x + 3y = 0 b. 2x + y = 6 c. 4x - 3y + 12 = 0 d. 2y = 5x Persamaan garis yang melalui titik-titik (1, 3), ( 3, 9), (-4, -12) adalah... a. 2y = x b. y = 2x c. y = 3x d. 5y = 12x 4. Perhatikan gambar berikut! a b Garis-garis pada gambar di atas yang memiliki gradien 6 dan -5 adalah garisgaris... a. a dan b b. a dan c c. b dan c d. c dan d 5. Gradien garis yang memiliki persamaan 3y = 4x 1. a. c Gradien garis 5y 3x + 8 = 0 adalah... a. c. d c 7. Gradien garis yang melalui titik pusat koordinat dan P(-5, -7) adalah... a. - c. b. - d. 8. Gradien garis yang melalui A(-2, -3) dan B(5, 4) adalah... a. -1 c Persamaan garis lurus yang bergradien m = -1 dan melalui P(4, 1) adalah... a. y + x = 5 b. y - x = 5 c. y + x = -5 d. y - x = Persamaan garis lurus yang melalui (-2, -3) dengan gradien m = -2 adalah... a. 2x - y - 7 = 0 b. 2x - y + 7 = 0 c. 2x + y - 7 = 0 d. 2x + y + 7 = Perhatikan gambar berikut! Persamaan garis g pada gambar di atas adalah... a. 3x - 4y - 12 = 0 b. 3x - 4y + 12 = 0 c. 3x + 4y - 12 = 0 d. 3x + 4y + 12 = Persamaan garis yang melalui P(-1, 5) dan Q(-3, -1) adalah... a. 3x + y = -8 b. 3x + y = 8 c. 3x - y = -8 d. 3x - y = 8

4 13. Titik potong garis 4y = 3x - 12 terhadap sumbu x. a. (4, 0) c. (0, 4) b. (0, -3) d. (-3, 0) 14. Titik potong garis 4x - 2y + 20 = 0 terhadap sumbu y adalah... a. (0, -10) c. (-5, 0) b. (0, 10) d. (5, 0) 15. Titik potong garis 3x + 7y = -21 terhadap sumbu x dan sumbu y secara berturut-turut a. (0, 3) dan (7, 0) b. (3, 0) dan (0, 7) c. (-7, 0) dan (0, -3) d. (0, -7) dan (-3, 0) 16. Titik (a, 3) terletak pada garis y - 2x = 7, maka nilai a adalah... a. -1 c. -3 b. -2 d Diketahui garis x - y = 3 berpotongan dengan garis 2x + 3y = 11. Titik potong ke dua garis tersebut adalah... a. (4, -1) c. (-4, -1) b. (4, 1) d. (-4, 1) 18. Perhatikan gambar berikut! 5 k 3 (a, b) 2 l Jika titik (a, b) adalah titik potong garis k dan garis l maka nilai a dan b berturutturut a. (½, 3) c. (-½, -3) b. (3, ½) d. (-½, 3) 22. Persamaan garis yang memiliki gradien - dan melalui titik (-3, -4) adalah ax + by + c = 0. Nilai a + b c =... a. -13 c. -18 b. -15 d Perhatikan gambar! 0 Gambar di atas merupakan sketsa grafik dari sebuah garis lurus y = mx + c. Nilai m dan c berikut yang benar adalah... a. m < 0 dan c > 0 b. m < 0 dan c < 0 c. m > 0 dan c > 0 d. m > 0 dan c < Garis yang melalui A(x, 2) dan B(5, 7) memiliki gradien m = -1. Nilai x... a. -4 c. 6 b. 4 d Persamaan garis y - 2x 3 = 0 berpotongan dengan y + 2x + 5 = 0 di titik A. Persamaan garis yang melalui titik A dan titik B(1, 8). a. y = -3x + 8 b. y = -2x + 7 c. y = 2x + 3 d. y = 3x + 5 SELAMAT MENGERJAKAN! 19. Persamaan garis yang melalui titik (2, -5) dan sejajar garis 3x + 5y - 12 = 0 adalah... a. 3x - 5y - 19 = 0 b. 3x + 5y - 19 = 0 c. 5y + 3x + 19 = 0 d. 5y - 3x - 19 = Persamaan garis yang melalui titik (3, -2) dan tegak lurus dengan garis yang mempunyai persamaan 2x - 5y - 8 = 0. a. 5x - 2y - 19 = 0 b. 5x + 2y - 19 = 0 c. 5x - 2y + 19 = 0 d. 5x + 2y + 19 = Garis y = mx + n melalui titik (2, -3) dan (-1, 6). Nilai 2m + n adalah... a. -2 c. -4 b. -3 d. -5

5

6

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA SEKOLAH STANDAR NASIONAL (SSN) Jl. RA Fadillah Komp. Kopassus Cijantung Telp. 8400005,

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS PERSAMAAN GARIS LURUS A. Menggambar grafik garis lurus Langkah langkah mengambar grafik persamaan garis lurus sama dengan langkahlangkah membuat grafik pada sistim koordinat. Gambarlah grafik persamaan

Lebih terperinci

BAB XI PERSAMAAN GARIS LURUS

BAB XI PERSAMAAN GARIS LURUS BAB XI PERSAMAAN GARIS LURUS A. Pengertian Pesamaan Garis Lurus Persamaan garis lurus adalah suatu fungsi yang apabila digambarkan ke dalam bidang Cartesius akan berbentuk garis lurus. Garis lurus ini

Lebih terperinci

LEMBAR KERJA SISWA TAHUN PELAJARAN SMP Negeri 103 Jakarta

LEMBAR KERJA SISWA TAHUN PELAJARAN SMP Negeri 103 Jakarta LEMBAR KERJA SISWA TAHUN PELAJARAN 2012-2013 SMP Negeri 103 Jakarta Mata Pelajaran : Matematika Pokok Materi : Tabung (BRSL) Kelas/Semester : IX-1 Pertemuan : 1 dan 2 A. Standart Kompetensi : 2. Memahami

Lebih terperinci

fungsi Dan Grafik fungsi

fungsi Dan Grafik fungsi fungsi Dan Grafik fungsi Suatu fungsi adalah pemadanan dua himpunan tidak kosong dengan pasangan terurut (x, y) dimana tidak terdapat elemen kedua yang berbeda. Fungsi (pemetaan) himpunan A ke himpunan

Lebih terperinci

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran

LINGKARAN. Lingkaran. pusat lingkaran diskriminan posisi titik posisi garis garis kutub gradien. sejajar tegak lurus persamaan lingkaran LINGKARAN Persamaan Persamaan garis singgung lingkaran Persamaan lingkaran berpusat di (0, 0) dan (a, b) Kedudukan titik dan garis terhadap lingkaran Merumuskan persamaan garis singgung yang melalui suatu

Lebih terperinci

PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA

PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA Jl. Gajah Mada No. 109 Telp. (0362) 22441 Fax. (0362) 2970 Website: http://www.smpn1singaraja.sch.id E-mail: smpn1_singaraja@yahoo.co.id

Lebih terperinci

: Gradien dan Persamaan Garis Lurus

: Gradien dan Persamaan Garis Lurus PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA Jl. Gajah Mada No. 109 Telp. (0362) 22441 Fax. (0362) 2970 Website: http://www.smpn1singaraja.sch.id E-mail: smpn1_singaraja@yahoo.co.id

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN(RPP) 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus

RENCANA PELAKSANAAN PEMBELAJARAN(RPP) 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus RENCANA PELAKSANAAN PEMBELAJARAN(RPP) Satuan Pendidikan Mata Pelajaran Kelas / Semester Bahan Kajian Alokasi Waktu : SMPIT Insan Kamil Karanganyar : Matematika : VIII / Ganjil : Persamaan Garis Lurus :

Lebih terperinci

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran

matematika KTSP & K-13 GARIS SINGGUNG LINGKARAN K e a s A. Definisi Garis Singgung Lingkaran Tujuan Pembelajaran KTSP & K-3 matematika K e l a s XI GARIS SINGGUNG LINGKARAN Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi garis singgung lingkaran..

Lebih terperinci

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus

Peta Konsep. Standar Kompetensi. Kompetensi Dasar. Memahami bentuk aljabar, relasi, fungsi. persamaan garis lurus PErSamaan GarIS lurus Untuk SMP Kelas VIII Peta Konsep Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus Kompetensi Dasar Menentukan gradien, persamaan dan grafik garis

Lebih terperinci

PEMERINTAH KABUPATEN BULELENG

PEMERINTAH KABUPATEN BULELENG PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA Jl. Gajah Mada No. 109 Telp. (0362) 22441 Fax. (0362) 2970 Website: http://www.smpn1singaraja.sch.id E-mail: smpn1_singaraja@yahoo.co.id

Lebih terperinci

Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius

Pengertian Persamaan Garis Lurus 1. Koordinat Cartesius a. Menggambar Titik pada Koordinat Cartesius b. Menggambar Garis pada Koordinat Cartesius Pengertian Persamaan Garis Lurus Sebelum memahami pengertian persamaan garis lurus, ada baiknya kamu mengingat kembali materi tentang koordinat Cartesius persamaan garis lurus selalu digambarkan dalam

Lebih terperinci

CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS

CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS CONTOH SOAL MATEMATIKA KELAS 8 PERSAMAAN GARIS LURUS 1. Diketahui titik-titik pada bidang koordinat Cartesius sebagai berikut. a. (10, 5) c. ( 7, 3) e. ( 4, 9) b. (2, 8) d. (6, 1) Tentukan absis dan ordinat

Lebih terperinci

KETIDAKSAMAAN. A. Pengertian

KETIDAKSAMAAN. A. Pengertian A. Pengertian KETIDAKSAMAAN Ketidaksamaan dinotasikan dengan 1. < (lebih Kecil 2. ( lebih kecil atau sama dengan)) 3. > ( lebih besar) 4. ( lebih besar atau sama dengan) Tanda di atas digunakan untuk membuat

Lebih terperinci

PEMERINTAH KABUPATEN BULELENG

PEMERINTAH KABUPATEN BULELENG PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI SINGARAJA Jl. Gajah Mada No. 09 Telp. (0362) 2244 Fax. (0362) 25970 Website: http://www.smpnsingaraja.sch.id E-mail: smpn_singaraja@yahoo.co.id

Lebih terperinci

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran.

LINGKARAN 2. A. Kedudukan titik dan Garis terhadap Lingkaran 11/18/2015. Peta Konsep. A. Kedudukan Titik dan Garis Terhadap. Lingkaran. /8/205 Peta Konsep Jurnal Materi MIPA Peta Konsep Lingkaran Daftar Hadir MateriA LINGKARAN 2 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Kedudukan Titik dan Garis Terhadap Lingkaran

Lebih terperinci

Fungsi Linear dan Fungsi Kuadrat

Fungsi Linear dan Fungsi Kuadrat Modul 1 Fungsi Linear dan Fungsi Kuadrat Drs. Susiswo, M.Si. K PENDAHULUAN ompetensi umum yang diharapkan, setelah mempelajari modul ini, adalah Anda dapat memahami konsep tentang persamaan linear dan

Lebih terperinci

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii)

FUNGSI. A. Relasi dan Fungsi Contoh: Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) FUNGSI A. Relasi dan Fungsi Manakah yang merupakan fungsi/pemetaan dan manakah yang bukan fungsi? (i) (ii) (iii) Relasi himpunan A ke himpunan B adalah relasi yang memasangkan/mengkawankan/mengkorepodensikan

Lebih terperinci

Bank Soal dan Pembahasan Persamaan Garis Lurus

Bank Soal dan Pembahasan Persamaan Garis Lurus Bank Soal dan Pembahasan Persamaan Garis Lurus 1. Garis m mempunyai persamaan y = -3x + 2. Garis tersebut memotong sumbu Y dititik... a. (0, -3) b. (0, 2) c. (0, 3) d. (0, -2) e. (0, 4) Pembahasan : Persamaan

Lebih terperinci

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan

FUNGSI DAN PERSAMAAN LINEAR. EvanRamdan FUNGSI DAN PERSAMAAN LINEAR TEORI FUNGSI Fungsi yaitu hubungan matematis antara suatu variabel dengan variabel lainnya. Unsur-unsur pembentukan fungsi yaitu variabel (terikat dan bebas), koefisien dan

Lebih terperinci

6 FUNGSI LINEAR DAN FUNGSI

6 FUNGSI LINEAR DAN FUNGSI 6 FUNGSI LINEAR DAN FUNGSI KUADRAT 5.1. Fungsi Linear Pada Bab 5 telah dijelaskan bahwa fungsi linear merupakan fungsi yang variabel bebasnya paling tinggi berpangkat satu. Bentuk umum fungsi linear adalah

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Satuan Pendidikan : SMP XXX Mata Pelajaran : Matematika Kelas / Semester : VIII / Gasal Standar Kompetensi :. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis

Lebih terperinci

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r.

Persamaan Garis singgung Melalui titik (x 1, y 1 ) diluar lingkaran. Pusat Lingkaran (a, b) Persamaan Garis singgung. Jari Jari r. PERSAMAAN LINGKARAN Pusat Lingkaran (0, 0) Melalui titik (x, y ) pada lingkaran Jika diketahui gradient m xx y mx r yy r m x y r Persamaan Garis singgung Melalui titik (x, y ) diluar lingkaran Jari Jari

Lebih terperinci

Siswa dapat membedakan relasi dan fungsi serta dapat menjelaskan jenis jenis fungsi. Ceramah, Tanya Jawab dan Pemberian Tugas

Siswa dapat membedakan relasi dan fungsi serta dapat menjelaskan jenis jenis fungsi. Ceramah, Tanya Jawab dan Pemberian Tugas RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Sekolah : SMK... Mata Pelajaran : Matematika Kelas/semester : XI / 3 Pertemuan ke :... Alokasi waktu : 4 x 45 menit ( 2x pertemuan ) Standar kompetensi: Menerapakan

Lebih terperinci

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat

β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat A. Persamaan Kuadrat dan Fungsi Kuadrat 1. Salah satu akar persamaan kuadrat ( a 1) x + (3a 1) x 3a = 0 adalah 1, maka akar lainnya adalah.... Nilai m yang memenuhi agar persamaan kuadrat ( m + 1) x +

Lebih terperinci

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran

Persamaan Lingkaran. Pusat Jari-jari Pusat. Jari-jari Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran 2. 5. Menentukan persamaan lingkaran atau garis singgung lingkaran. Persamaan Lingkaran Persamaan Lingkaran () () Bentuk Umum 0 dibagi (2) Pusat Jari-jari Pusat (,), Jumlah kuadrat pusat dikurangi Jari-jari

Lebih terperinci

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK 1 KEGIATAN BELAJAR 4 KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK Setelah mempelajari kegiatan belajar 4 ini, mahasiswa diharapkan mampu: 1. Menentukan kedudukan dua garis lurus di bidang dan di ruang 2.

Lebih terperinci

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real.

Silabus. 1 Sistem Bilangan Real. 2 Fungsi Real. 3 Limit dan Kekontinuan. Kalkulus 1. Arrival Rince Putri. Sistem Bilangan Real. Silabus 1 2 3 Referensi E. J. Purcell, D. Varberg, and S. E. Rigdon, Kalkulus, Jilid 1 Edisi Kedelapan, Erlangga, 2003. Penilaian 1 Ujian Tengah Semester (UTS) : 30 2 Ujian Akhir Semester (UAS) : 20 3

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. Standar Kompetensi Nama Sekolah : SMP Negeri 3 Singaraja Mata Pelajaran : Matematika Kelas / Semester : VIII / Ganjil Alokasi Waktu : 2 40 menit 1. Memahami bentuk

Lebih terperinci

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4

PERSAMAAN GARIS BAHAN BELAJAR MANDIRI 4 BAHAN BELAJAR MANDIRI 4 PERSAMAAN GARIS PENDAHULUAN Secara umum bahan belajar mandiri ini menjelaskan tentang konsep garis, dan persamaan garis lurus yang dinyatakan ke dalam bentuk implisit maupun bentuk

Lebih terperinci

F U N G S I A R U M H A N D I N I P R I M A N D A R I

F U N G S I A R U M H A N D I N I P R I M A N D A R I F U N G S I A R U M H A N D I N I P R I M A N D A R I DEFINISI Fungsi adalah suatu aturan yang memetakan setiap anggota himpunan A pada tepat satu anggota himpunan B. Dimana: Himpunan A disebut domain

Lebih terperinci

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA)

RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) NAMA: KELAS: PENGERTIAN IRISAN KERUCUT Bangun Ruang Kerucut yang dipotong oleh sebuah bidang datar. RINGKASAN IRISAN KERUCUT (PARABOLA, ELIPS, DAN HIPERBOLA) Macam-macam Irisan Kerucut: 1. Parabola 2.

Lebih terperinci

AB = AB = ( ) 2 + ( ) 2

AB = AB = ( ) 2 + ( ) 2 Nama Siswa Kelas LEMBAR AKTIVITAS SISWA HUBUNGAN ANTAR GARIS Titik Tengah Sebuah Segmen Garis : : Kompetensi Dasar (KURIKULUM 2013): 3.10 Menganalisis sifat dua garis sejajar dan saling tegak lurus dan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Satuan Pendidikan : SMP XXX Mata Pelajaran : Matematika Kelas / Semester : VIII / Gasal Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis

Lebih terperinci

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA

SEKOLAH MENENGAH PERTAMA (SMP) NEGERI 103 JAKARTA PMRINTH PRVINSI RH KHUSUS IUKT JKRT INS PNIIKN SKLH MNNGH PRTM (SMP) NGRI 103 JKRT SKLH STNR NSINL (SSN) Jl R Fadillah Komp Kopassus ijantung Telp 8400005, 87781261 Fax 84000056 JKRT TIMUR UJI KMPTNSI

Lebih terperinci

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT

MATEMATIKA EKONOMI DAN BISNIS. Nuryanto.ST.,MT MATEMATIKA EKONOMI DAN BISNIS Fungsi Dalam ilmu ekonomi, kita selalu berhadapan dengan variabel-variabel ekonomi seperti harga, pendapatan nasional, tingkat bunga, dan lainlain. Hubungan kait-mengkait

Lebih terperinci

SISTEM PERSAMAAN LINEAR DUA VARIABEL

SISTEM PERSAMAAN LINEAR DUA VARIABEL SMP - 1 SISTEM PERSAMAAN LINEAR DUA VARIABEL A. Pengertian persamaan linear dua variabel (PLDV) Persamaan linear dua variabel ialah persamaan yang mengandung dua variabel dimana pangkat/derajat tiap-tiap

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Satuan Pendidikan Mata Pelajaran Kelas / Semester : SMP XXX : Matematika : VIII / Gasal Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis

Lebih terperinci

Silabus dan Rencana Pelaksanaan Pembelajaran (RPP)

Silabus dan Rencana Pelaksanaan Pembelajaran (RPP) Ponco Sujatmiko MODEL Silabus dan Rencana Pelaksanaan Pembelajaran (RPP) MATEMATIKA KREATIF Konsep dan Terapannya untuk Kelas VIII SMP dan MTs Semester 1 2A Berdasarkan Permendiknas Nomor 22 Tahun 2006

Lebih terperinci

A. Menentukan Letak Titik

A. Menentukan Letak Titik Apa yang akan Anda Pelajari? Koordinat Cartesius Mengenal pengertian dan menentukan gradien garis lurus Menentukan persamaan garis lurus Menggambar grafik garis lurus Menentukan Gradien, Persamaan garis

Lebih terperinci

53

53 LAMPIRAN 53 54 55 56 57 RENCANA PELAKSAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP Negeri 1 Sooko Ponorogo Mata Pelajaran : Matematika Kelas / Semester : VIII / 1 Materi Pokok : Persamaan Garis Lurus Alokasi

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Satuan Pendidikan Mata Pelajaran Kelas/Semester Alokasi waktu : SMA Negeri 1 Sukasada : Matematika : X/1 (Ganjil) : 2 x 45 menit (1 pertemuan) I. Standar Kompetensi

Lebih terperinci

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan

A. Kajian ulang tentang fungsi Pada gambar di bawah ini diberikan diagram panah suatu relasi dari himpunan MODUL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain Pesan soal-soal matematika untuk SD, SMP dan SMA? Soal ulangan harian, ulangan mid, ulangan semester, soal-soal UAN dll. Tulis

Lebih terperinci

King s Learning Be Smart Without Limits

King s Learning Be Smart Without Limits Nama Siswa : LEMBAR AKTIVITAS SISWA PERSAMAAN LINGKARAN Jadi dapat disimpulkan bahwa persamaan lingkaran dengan pusat O(0,0) dan jari-jari = r adalah Kelas : Persamaan lingkaran: Kompetensi Dasar (KURIKULUM

Lebih terperinci

PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015

PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015 PENGAYAAN ULANGAN AKHIR SEMESTER SMP ISLAM SABILILLAH MALANG TAHUN PELAJARAN 2014/2015 http://matematohir.wordpress.com/ Mata Pelajaran Kelas / Semester : Matematika : VIII / Ganjil Nama : Mathematics

Lebih terperinci

PEMERINTAH KABUPATEN BULELENG

PEMERINTAH KABUPATEN BULELENG PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA Jl. Gajah Mada No. 109 Telp. (0362) 22441 Fax. (0362) 25970 Website: http://www.smpn1singaraja.sch.id E-mail: smpn1_singaraja@yahoo.co.id

Lebih terperinci

BAB I PENDAHULUAN. menciptakan suasana belajar dan proses pembelajaran. Pendidikan. Berdasarkan Undang-Undang Nomor 20 tahun 2003 pasal 3 tentang

BAB I PENDAHULUAN. menciptakan suasana belajar dan proses pembelajaran. Pendidikan. Berdasarkan Undang-Undang Nomor 20 tahun 2003 pasal 3 tentang BAB I PENDAHULUAN BAB I PENDAHULUAN A. Latar Belakang Masalah Pendidikan merupakan usaha sadar dan terencana untuk menciptakan suasana belajar dan proses pembelajaran. Pendidikan dimaksudkan untuk meningkatkan

Lebih terperinci

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y

(2) Titik potong kurva dengan sumbu y, bila x = 0, diperoleh x = 0 y = mx + n y = m(0) + n y = n Jadi, titik potongnya dengan sumbu y, adalah (0, n) y BAB 3 FUNGSI LINIER DAN PERSAMAAN GARIS LURUS 3.1 Pengantar Fungsi linier adalah bentuk fungsi yang paling sederhana. Banyak hubungan antara variable ekonomi, dalam jangka pendek dianggap linier. Pengetahuan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Satuan Pendidikan : SMP XXX Mata Pelajaran : Matematika Kelas / Semester : VIII / Gasal Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis

Lebih terperinci

SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB

SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB 1. Diketahui F(x) = 4x + 3, maka nilai f (-3) = SMP kelas 9 - MATEMATIKA BAB 17. RELASI DAN FUNGSILATIHAN SOAL BAB 17-12 -10-9 -8 Kunci Jawaban : C http://www.primemobile.co.id/assets/uploads/materi/mtk09-18-pembhasan1.jpg

Lebih terperinci

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus.

Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Bab 3 Persamaan Garis Lurus Standar Kompetensi Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis lurus. Kompetensi Dasar 1.4 Menentukan gradien, persamaan dan grafik garis lurus 3.1 Pengertian

Lebih terperinci

U J I A N A K H I R S E K O L A H Tahun Pelajaran Mata Diklat : MATEMATIKA Kelas : XI Prakerin Semester : Genap

U J I A N A K H I R S E K O L A H Tahun Pelajaran Mata Diklat : MATEMATIKA Kelas : XI Prakerin Semester : Genap PEMERINTAH KOTA MALANG DINAS PENDIDIKAN SMK NEGERI 6 MALANG Jl. Ki Ageng Gribig 28 Malang 65138 Telp. 0341-722216 Fax. 0341-720138 www.smkn6-malang.sch.id E-mail : @smkn6-malang.sch.id ISO SMM 9001-2008

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN

RENCANA PELAKSANAAN PEMBELAJARAN RENCANA PELAKSANAAN PEMBELAJARAN Satuan Pendidikan : SMP XXX Mata Pelajaran : Matematika Kelas / Semester : VIII / Gasal Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan garis

Lebih terperinci

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS)

LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL KURIKULUM TINGKAT SATUAN PENDIDIKAN (KTSP) ANALISIS MATERI KOMPETENSI SISWA SMP (SILABUS) LAMPIRAN A : SILABUS KTSP KLS VII SEMESTER GANJIL SEKOLAH KELAS MATA PELAJARAN SEMESTER BILANGAN Standar Kompetensi KOMPETENSI DASAR 1.1 Melakukan operasi hitung bilangan bulat. : SMP : VII : MATEMATIKA

Lebih terperinci

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan

PEMERINTAH KABUPATEN KEDIRI DINAS PENDIDIKAN SMA NEGERI 1 KANDANGAN JL. Hayam Wuruk No. 96 telp Kandangan Pilihlah satu jawaban yang tepat.. (x x 4 ) dx.. ULANGAN AKHIR SEMESTER TAHUN PELAJARAN 007/008 Mata Pelajaran : Matematika Kelas / Program : XII / Ilmu Alam Hari, Tanggal : Waktu : 90 menit ( ) ` a. x

Lebih terperinci

Pedoman Penskoran Kemampuan Berpikir Kritis Matematis Siswa

Pedoman Penskoran Kemampuan Berpikir Kritis Matematis Siswa Pedoman Penskoran Kemampuan Berpikir Kritis Matematis Siswa Aspek yang Diukur Mengevaluasi Mengidentifikasi Menghubungkan Respon Siswa terhadap Soal Skor Tidak menjawab atau memberikan jawaban yang salah.

Lebih terperinci

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA

KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA KALKULUS BAB I. PENDAHULUAN DEPARTEMEN TEKNIK KIMIA BAB I Bilangan Real dan Notasi Selang Pertaksamaan Nilai Mutlak Sistem Koordinat Cartesius dan Grafik Persamaan Bilangan Real dan Notasi Selang Bilangan

Lebih terperinci

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran

Lingkaran. A. Persamaan Lingkaran B. Persamaan Garis Singgung Lingkaran Bab Sumber: www.panebiancod.com Setelah mempelajari bab ini, Anda harus mampu merumuskan persamaan lingkaran dan menggunakannya dalam pemecahan masalah; menentukan persamaan garis singgung pada lingkaran

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/ Semester : X/ Ganjil Alokasi Waktu : 2 x 45 menit

RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/ Semester : X/ Ganjil Alokasi Waktu : 2 x 45 menit RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/ Semester : X/ Ganjil Alokasi Waktu : 2 x 45 menit I. Standar Kompetensi 1.1 Memecahkan masalah yang berkaitan

Lebih terperinci

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f.

Pertemuan ke 8. GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(x,y): y = f(x), x D f } disebut grafik fungsi f. Pertemuan ke 8 GRAFIK FUNGSI Diketahui fungsi f. Himpunan {(,y): y = f(), D f } disebut grafik fungsi f. Grafik metode yang paling umum untuk menyatakan hubungan antara dua himpunan yaitu dengan menggunakan

Lebih terperinci

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN DAN KEBUDAYAAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp. / Fax Sidayu Gresik

PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN DAN KEBUDAYAAN SMA NEGERI 1 SIDAYU Jl. Pahlawan No.06 Telp. / Fax Sidayu Gresik PEMERINTAH KABUPATEN GRESIK DINAS PENDIDIKAN DAN KEBUDAYAAN SMA NEGERI SIDAYU Jl. Pahlawan No.6 Telp. / Fa. -99 Sidayu Gresik ULANGAN TENGAH SEMESTER GASAL TAHUN PELAJARAN 8/9 L E M B A R S O A L Mata

Lebih terperinci

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier

Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax

Lebih terperinci

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN)

Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Pembahasan Seleksi Nasional Masuk Perguruan Tinggi Negeri (SNMPTN) Bidang Matematika Kode Paket 578 Oleh : Fendi Alfi Fauzi 1. Diketahui vektor u = (a,, 1) dan v = (a, a, 1). Jika vektor u tegak lurus

Lebih terperinci

Geometri dalam Ruang, Vektor

Geometri dalam Ruang, Vektor Prodi Matematika FMIPA Unsyiah July 11, 2011 Koordinat Cartesius: Tiga garis koordinat yang saling tegak lurus (sumbu x, sumbu y dan sumbvu z); Titik nol ketiga garis berada pada titik O yang sama yang

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah :... Mata Pelajaran : Matematika Kelas : VIII (Delapan) Semester : 1 (Satu) Standar Kompetensi : 1. Memahami bentuk aljabar, relasi, fungsi, dan persamaan

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/ Semester : X/ Ganjil Alokasi Waktu : 2 x 45 menit

RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/ Semester : X/ Ganjil Alokasi Waktu : 2 x 45 menit RENCANA PELAKSANAAN PEMBELAJARAN (RPP ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/ Semester : X/ Ganjil Alokasi Waktu : x 45 menit I. Standar Kompetensi 1.1 Memecahkan masalah yang berkaitan

Lebih terperinci

PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA

PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA PEMERINTAH KABUPATEN BULELENG DINAS PENDIDIKAN SMP NEGERI 1 SINGARAJA Jl. Gajah Mada No. 109 Telp. (0362) 22441 Fax. (0362) 25970 Website: http://www.smpn1singaraja.sch.id E-mail: smpn1_singaraja@yahoo.co.id

Lebih terperinci

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari

MBS - DTA. Sucipto UNTUK KALANGAN SENDIRI. SMK Muhammadiyah 3 Singosari MBS - DTA Sucipto UNTUK KALANGAN SENDIRI SMK Muhammadiyah Singosari SERI : MBS-DTA FUNGSI STANDAR KOMPETENSI Siswa mampu memecahkan masalah yang berkaitan dengan fungsi, persamaan fungsi linear dan fungsi

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT

PERSAMAAN DAN FUNGSI KUADRAT Materi W2e PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 E. Grafik Fungsi Kuadrat www.yudarwi.com E. Grafik Fungsi Kuadrat Grafik fungsi kuadrat f(x) = ax 2 + bx + c dapat dilukis dengan langkah-langkah

Lebih terperinci

SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi.

SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi. SILABUS Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMA NEGERI 2 LAHAT : MATEMATIKA : XII / IPA : GANJIL STANDAR KOMPETENSI: 3. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan

Lebih terperinci

K13 Antiremed Kelas 11 Matematika Peminatan

K13 Antiremed Kelas 11 Matematika Peminatan K13 Antiremed Kelas 11 Matematika Peminatan Persiapan UAS 1 Doc. Name: K13AR11MATPMT01UAS Version : 015-11 halaman 1 01. Sukubanyak f() = 3 + + 3- dapat ditulis sebagai. f() = [( + ) - 3] + f() = [( -

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP RENCANA PELAKSANAAN PEMBELAJARAN ( RPP ) Mata Pelajaran : Matematika Satuan Pendidikan : SMA Kelas/Semester : X/ 1 (Ganjil) Alokasi waktu : 2 x 45 menit I. Standar Kompetensi 1.1 Memecahkan masalah yang

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

SILABUS PEMBELAJARAN

SILABUS PEMBELAJARAN SILABUS PEMBELAJARAN Sekolah :... Kelas : VIII (Delapan) Mata Pelajaran : Matematika Semester : I (satu) ALJABAR Standar : 1. Memahami bentuk aljabar, relasi,, dan persamaan garis lurus Indikator Kegiatan

Lebih terperinci

DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013

DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013 DINAS PENDIDIKAN PROVINSI DKI JAKARTA KISI-KISI ULANGAN KENAIKAN KELAS (SEMESTER GENAP) TAHUN PELAJARAN 2012/2013 Satuan Pendidikan : SMP Mata Pelajaran : MATEMATIKA Kelas : VII (TUJUH) Jumlah : 40 Bentuk

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. IDENTITAS Satuan Pendidikan Kelas / Semester Mata Pelajaran Program Pokok Bahasan Alokasi Waktu : Sekolah Menengah Atas : XI / 3 (tiga) : Matematika : Umum : Hubungan

Lebih terperinci

Hendra Gunawan. 30 Agustus 2013

Hendra Gunawan. 30 Agustus 2013 MA1101 MATEMATIKA 1A Hendra Gunawan Semester I, 2013/2014 30 Agustus 2013 Latihan (Kuliah yang Lalu) Selesaikan pertaksamaan berikut: 1. x + 1 < 2/x. (sudah dijawab) 2. x 3 < x + 1. 8/30/2013 (c) Hendra

Lebih terperinci

PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA

PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA PAKET PEMBINAAN PENATARAN Drs. M. Danuri, M.Pd. PEMBELAJARAN IRISAN KERUCUT: LINGKARAN DI SMA 45 O 1 3 4 DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH PUSAT PENGEMBANGAN

Lebih terperinci

Bab 1. Irisan Kerucut

Bab 1. Irisan Kerucut Tahun Ajaran 01 01-013/Genap Bab 1. Irisan Kerucut e=0 e 1 A. Lingkaran Persamaan Lingkaran yang berpusat di titik (0,0) Pada segitiga siku-siku, siku, menurut dalil phytagoras berlaku : c =

Lebih terperinci

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah

PERSAMAAN GARIS. Dua garis sejajar mempunyai gradien sama, sehingga persamaan garis yang sejajar l dan melalui titik (3,4) adalah PERSAMAAN GARIS. SIMAK UI Matematika Dasar 9, 9 Diketahui adalah garis l yang dinyatakan oleh det( A) dimana A x y, persamaan garis yang sejajar l dan melalui titik (,4) adalah... A. x y 7 C. x y E. x

Lebih terperinci

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran

SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54101 / Kalkulus I 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

MODUL 8 FUNGSI LINGKARAN & ELLIPS

MODUL 8 FUNGSI LINGKARAN & ELLIPS MODUL 8 FUNGSI LINGKARAN & ELLIPS 8.1. LINGKARAN A. PERSAMAAN LINGKARAN DENGAN PUSAT PADA TITIK ASAL DAN JARI-JARI R Persamaan lingkaran dengan pusat (0,0) dan jari jari R adalah : x 2 + y 2 = R 2 B. PERSAMAAN

Lebih terperinci

PROGRAM TAHUNAN MATA PELAJARAN : MATEMATIKA Kelas : VIII ( Delapan ) Tahun Pelajaran : 2013 / 2014

PROGRAM TAHUNAN MATA PELAJARAN : MATEMATIKA Kelas : VIII ( Delapan ) Tahun Pelajaran : 2013 / 2014 PROGRAM TAHUNAN MATA PELAJARAN : MATEMATKA Kelas : V ( Delapan ) Tahun Pelajaran : 2013 / 2014 Semester Standar Kompetensi Aljabar 1. Memahami bentuk aljabar, relasi, fungsi dan persamaan garis lurus 1.1

Lebih terperinci

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier

Materi Fungsi Linear Fungsi Variabel, koefisien, dan konstanta Variabel variabel bebas Koefisien Konstanta 1). Pengertian fungsi linier Materi Fungsi Linear Admin 8:32:00 PM Duhh akhirnya nongol lagi... kali ini saya akan bahas mengenai pelajaran yang paling disukai oleh hampir seluruh warga dunia :v... MATEMATIKA, ya itu namanya. materi

Lebih terperinci

MATEMATIKA TURUNAN FUNGSI

MATEMATIKA TURUNAN FUNGSI MATEMATIKA TURUNAN FUNGSI lim h 0 f ( x h) f( x) h KELAS : XII IIS SEMESTER GANJIL SMA Santa Angela Bandung Tahun Pelajaran 017/018 XII IIS Semester 1 Tahun Pelajaran 017/018 PENGANTAR : TURUNAN FUNGSI

Lebih terperinci

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang :

PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : PROGRAM LINEAR Jenis-jenis soal program linear yang sering diujikan adalah soal-soal tentang : 1. Menggambar daerah yang memenuhi 2. Menentukan system pertidaksamaan suatu daerah 3. Menentukan nilai optimum

Lebih terperinci

BAB I PENDAHULUAN. kehidupan sehari-hari tidak dipungkiri selalu digunakan aplikasi matematika. Saat

BAB I PENDAHULUAN. kehidupan sehari-hari tidak dipungkiri selalu digunakan aplikasi matematika. Saat BAB I PENDAHULUAN 1.1 Latar Belakang Matematika adalah suatu hal yang tidak asing lagi untuk didengar. Dalam kehidupan sehari-hari tidak dipungkiri selalu digunakan aplikasi matematika. Saat ini pendidikan

Lebih terperinci

" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "

                                             KALKULUS Oleh : A.B. Panggabean Edisi Pertama Cetakan Pertama, 2008 Hak Cipta 2008 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian atau seluruh isi buku

Lebih terperinci

GLBB & GLB. Contoh 1 : Besar percepatan konstan (kelajuan benda. bertambah secara konstan)

GLBB & GLB. Contoh 1 : Besar percepatan konstan (kelajuan benda. bertambah secara konstan) GLBB & GLB Suatu benda dikatakan melakukan gerak lurus berubah beraturan (GLBB) jika percepatannya selalu konstan. Percepatan merupakan besaran vektor (besaran yang mempunyai besar dan arah). Percepatan

Lebih terperinci

Hand out_x_fungsi kuadrat

Hand out_x_fungsi kuadrat STANDAR KOMPETENSI: Memecahkan masalah yang berkaitan dengan fungsi, persamaan dan fungsi kuadrat serta pertidaksamaan kuadrat. KOMPETENSI DASAR: Menggambar grafik fungsi aljabar sederhana dan fungsi kuadrat

Lebih terperinci

MODUL ALJABAR Untuk SMP/MTSN

MODUL ALJABAR Untuk SMP/MTSN MODUL ALJABAR Untuk SMP/MTSN 1 Pendahuluan Aljabar merupakan bahasa simbol dan relasi. Dalam kehidupan seharihari aljabar seringkali digunakan tanpa memperdulikan apa pengertian aljabar tersebut. Dalam

Lebih terperinci

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS NEGERI 39 JAKARTA

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS NEGERI 39 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS NEGERI 9 JAKARTA Jl. RA Fadillah Cijantung Jakarta Timur Telp. 840078, Fax 87794718 REMEDIAL ULANGAN TENGAH SEMESTER

Lebih terperinci

ANALISIS PENETAPAN KRITERIA KETUNTASAN MINIMAL (KKM)

ANALISIS PENETAPAN KRITERIA KETUNTASAN MINIMAL (KKM) ANALISIS PENETAPAN KRITERIA KETUNTASAN MINIMAL (KKM) Nama Sekolah : SMP... Mata Pelajaran : MATEMATIKA Tahun Pelajaran : 2014/2015 Kelas : VIII (DELAPAN) Nilai Modus SEMESTER I (SATU) / GANJIL KI-1 dan

Lebih terperinci

Prosiding Seminar Matematika dan Pendidikan Matematika...ISBN: hal November http://jurnal.fkip.uns.ac.

Prosiding Seminar Matematika dan Pendidikan Matematika...ISBN: hal November http://jurnal.fkip.uns.ac. ANALISIS KEMAMPUAN PENALARAN MATEMATIS PADA MATERI PERSAMAAN GARIS LURUS DITINJAU DARI TIPE KEPRIBADIAN SISWA KELAS VIII SMP NEGERI 2 NGEMPLAK BOYOLALI Sayekti Dwiningrum 1, Mardiyana 2, Ikrar Pramudya

Lebih terperinci

MATEMATIKA BISNIS FUNGSI LINIER

MATEMATIKA BISNIS FUNGSI LINIER MODUL MATEMATIKA BISNIS 2 FUNGSI LINIER Definisi Fungsi linier adalah fungsi paling sederhana karena hanya mempunyai satu variabel bebas dan berpangkat satu pada variabel tersebut, atau dengan kata lain

Lebih terperinci

BAHAN AJAR PERTEMUAN 06

BAHAN AJAR PERTEMUAN 06 BAHAN AJAR PERTEMUAN 06 PERSAMAAN GARIS LURUS KELAS VIII SEMESTER II SMP WAODE EKADAYANTI, S.Pd. BAHAN AJAR 06 Satuan Pendidikan : SMP Kelas / Semester : VIII / 2 Standar Kompetensi : Memahami bentuk aljabar,

Lebih terperinci

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0

B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0 BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP)

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) RENCANA PELAKSANAAN PEMBELAJARAN (RPP) A. IDENTITAS Satuan Pendidikan Kelas / Semester Mata Pelajaran Program Pokok Bahasan Alokasi Waktu : Sekolah Menengah Atas : XI / 3 (tiga) : Matematika : Wajib :

Lebih terperinci

SMAN Bone-Bone, Luwu Utara, Sul-Sel Dan bahwa setiap pengalaman mestilah dimasukkan ke dalam kehidupan, guna memperkaya kehidupan itu sendiri. Karena tiada kata akhir untuk belajar seperti juga tiada kata

Lebih terperinci