MODIFIKASI DAN UJI FUNGSIONAL PENYIANG BERMOTOR (POWER WEEDER) TIPE PISAU CAKAR UNTUK TANAMAN PADI SAWAH. BAYU PITHANTOMO F

Ukuran: px
Mulai penontonan dengan halaman:

Download "MODIFIKASI DAN UJI FUNGSIONAL PENYIANG BERMOTOR (POWER WEEDER) TIPE PISAU CAKAR UNTUK TANAMAN PADI SAWAH. BAYU PITHANTOMO F"

Transkripsi

1 MODIFIKASI DAN UJI FUNGSIONAL PENYIANG BERMOTOR (POWER WEEDER) TIPE PISAU CAKAR UNTUK TANAMAN PADI SAWAH. Oleh : BAYU PITHANTOMO F FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR

2 Bayu Pithantomo, F Modifikasi Dan Uji Fungsional Penyiang Bermotor (Power Weeder) Tipe Pisau Cakar Untuk Tanaman Padi Sawah. Di bawah bimbingan : Ir. Imam Hidayat, M.Eng RINGKASAN Padi merupakan tanaman penghasil beras yang banyak dibudidayakan di Indonesia. Kebutuhan beras dari tahun ke tahun selalu meningkat seiring dengan pertambahan penduduk. Salah satu permasalahan yang serius dalam budidaya tanaman padi adalah pada proses pertumbuhan. Tanaman padi banyak mendapat saingan dari tanaman pengganggu (gulma). Gulma atau tanaman pengganggu telah dikenal sejak manusia memulai usaha pertanian. Produksi padi yang diharapkan tinggi tiba-tiba tidak tercapai karena serangan gulma yang tidak ditanggulangi dengan baik. Gulma bersaing dengan tanaman padi dalam hal cahaya matahari, unsur hara dan air. Apabila satu saja dari ketiga unsur tersebut kurang maka yang lain tidak dapat digunakan secara efektif walaupun tersedia dalam jumlah besar. Gulma atau tumbuhan pengganggu yang tumbuh di antara tanaman padi merupakan salah satu faktor penyebab menurunnya hasil, baik secara kuantitatif maupun secara kualitatif. Tujuan dari penelitian ini adalah 1) Meningkatkan performa kerja alat penyiang gulma secara keseluruhan dengan memodifikasi enjin dan menambahkan pelampung. 2) Melakukan uji fungsional alat penyiang gulma berpenggerak motor bakar 2 langkah untuk tanaman padi sawah yang sudah dimodifikasi. 3) Meningkatkan kapasitas lapang dan meningkatkan tingkat keberhasilan penyiangan tanpa merusak tanaman padi tersebut. Penelitian dilaksanakan di Laboratorium Lapangan Teknik Mesin Budidaya Pertanian, Departemen Teknik Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian Bogor dan lahan sawah Desa Situ Gede untuk uji fungsional. Penelitian berlangsung pada bulan Agustus 2006 sampai dengan November Penyiang bermotor dirancang untuk menyiangi gulma pada tanaman padi dengan jarak tanam 20 cm sampai dengan 25 cm. Alat ini dapat digunakan pada penyiangan pertama, yaitu pada saat padi berumur empat minggu setelah penanaman dengan ketinggian padi sekitar 30 sampai 35 cm. Digunakan dua buah roda pencabut sehingga alat dapat seimbang dan dalam satu kali penyiangan dapat menyiangi dua alur sekaligus. Modifikasi dilakukan dalam desain memiliki tujuan untuk memperbaiki hasil desain yang terdahulu sehingga diperoleh kinerja yang lebih baik. Pada alat penyiang gulma yang sudah ada, modifikasi masih dapat dilakukan untuk memberikan peningkatan kinerja, yaitu dengan penggantian enjin yang memiliki daya lebih besar untuk meningkatkan kapasitas lapang dan efisiensi lapang, serta penambahan pelampung. Modifikasi yang dilakukan adalah menyediakan sumber tenaga (enjin) yang memiliki kapasitas tenaga yang cukup untuk menyediakan tenaga bagi operasi alat tetapi tidak memberikan beban tambahan bagi operator saat operasi dilahan, seperti tambahan berat berlebihan yang mempercepat tingkat kelelahan operator. Enjin yang digunakan dalam rancangan modifikasi ini adalah enjin 2 tak dengan merk Robin E086H kapasitas daya 3 HP / 6000 rpm, Enjin ini 2 kali lebih kuat dibandingkan enjin sebelumnya.

3 Secara fungsional, kaki belakang telah berfungsi dengan baik, kaki belakang mampu menopang beban berat dan menjadi titik tumpu kemudi. Akan tetapi, karena berat alat oleh penggunaan enjin, maka efeknya kaki belakang tersebut tenggelam lebih dalam dan menambah beban kerja operator. Rancangan kaki belakang alat yang terdahulu adalah pada ujungnya terdapat penampang kontak berbentuk seperti kaki bebek. Dengan menambah luasan bidang kontak tersebut, maka beban gaya persatuan luas akan semakin kecil, dengan demikian kedalaman tenggelamnya kaki belakang penopang tersebut dapat dikurangi. Seluncur yang digunakan terbuat terbuat dari papan particle board tebal 5 mm dengan ukuran 35 cm x 11 cm. Dengan bentuk profil datar tersebut, papan ini dipasang pada penampang kontak di ujung kaki belakang (skid). Seluncur jenis ini dipasang dengan menggunakan baut bajak sebanyak 4 buah. Lahan Sawah yang disiangi memiliki tanaman padi dengan jarak tanam 25 cm x 25 cm dengan ketinggian air 4 cm. Umur tanam 25 hari dengan tinggi tanaman rata-rata 34 cm. Jenis gulma yang tumbuh pada lahan percobaan adalah dari golongan Grasses atau Gramineae (berbentuk rerumputan) dengan tinggi rata-rata 10 cm dan dari golongan golongan Sedges atau Cyperaceae (sebangsa rumput teki) dengan tinggi 14 cm. Kapasitas lapang teoritis yang dihasilkan pada putaran enjin 2125 rpm sebesar 0.03 ha/jam dan kapasitas lapang efektif sebesar ha / jam, sehingga dihasilkan efisiensi lapang sebesar 30%. Kapasitas lapang teoritis yang dihasilkan pada putaran enjin 2850 rpm sebesar ha/jam dan kapasitas lapang efektif sebesar ha / jam, sehingga dihasilkan efisiensi lapang sebesar %. Kapasitas lapang teoritis yang dihasilkan pada putaran enjin 3250 rpm sebesar 0.04 ha/jam dan kapasitas lapang efektif sebesar 0.02 ha / jam, sehingga dihasilkan efisiensi lapang sebesar 50 %. Hasil tersebut menunjukan efisiensi yang lebih bagus daripada yang terdahulu yaitu pada putaran enjin 2850 rpm sebesar 18.75%, putaran enjin 3125 rpm sebesar 22.85% dan putaran enjin 3578 rpm sebesar 28.20%. Tingkat keberhasilan penyiang yang diperoleh pada putaran enjin 2125 rpm jumlah gulma yang tercabut sebanyak 37.79% dan jumlah gulma yang terpotong sebanyak 19.77%. Pada putaran enjin 2850 rpm jumlah gulma yang tercabut sebanyak 51.30% dan jumlah gulma yang terpotong sebanyak 16.23%. Sedangkan untuk putaran enjin 3125 rpm. Jumlah gulma yang tercabut sebanyak 66.49% dan jumlah gulma yang terpotong sebanyak 12.64%. Dari hasil pengujian yang telah dilakukan, dapat diketahui bahwa setelah dimodifikasi alat penyiang ini menunjukan performa kerja yang lebih baik dari yang sebelumnya.

4 INSTITUT PERTANIAN BOGOR FAKULTAS TEKNOLOGI PERTANIAN DEPARTEMEN TEKNIK PERTANIAN MODIFIKASI DAN UJI FUNGSIONAL PENYIANG BERMOTOR (POWER WEEDER) TIPE PISAU CAKAR UNTUK TANAMAN PADI SAWAH SKRIPSI Sebagai salah satu syarat untuk memperoleh gelar SARJANA TEKNOLOGI PERTANIAN Pada Departemen Teknik Pertanian Fakultas Teknologi Pertanian Institut Pertanian Bogor Oleh : Bayu Pithantomo F Dilahirkan pada tanggal 16 Juni 1984 Di Jogjakarta Disetujui, Bogor, 20 Februari 2007 Ir. Imam Hidayat, M.Eng Dosen Pembimbing Akademik

5 RIWAYAT HIDUP Penulis dilahirkan di Jogjakarta pada tanggal 16 Juni 1984, sebagai anak kedua dari dua bersaudara. Anak dari pasangan Drs. Suharno dan Dra. Purwaningsih. Penulis menyelesaikan pendidikan dasar di SDN Jetisharjo 1 Jogjakarta pada tahun Kemudian pada tahun 1999 penulis lulus dari SLTPN 6 Jogjakarta dan menamatkan pendidikan dari SMA Muhammadiyah 1 Jogjakarta pada tahun Pada tahun 2002 penulis diterima melalui jalur SPMB di Institut Pertanian Bogor, sebagai mahasiswa Departemen Teknik Pertanian, Fakultas Teknologi Pertanian dan memilih Sub Program Studi Teknik Mesin Budidaya Pertanian. Selama menjadi mahasiswa di Institut Pertanian Bogor, penulis aktif di Himpunan Profesi Mahasiswa Teknik Pertanian (HIMATETA), di Departemen Profesi pada tahun Selain itu, pada tahun penulis diamanahi sebagai Ketua Umum IKAMADITA-IPB. Pada tahun 2005 penulis melaksanakan praktek lapang di PT. Madu Baru, PG/PS Madukismo, Jogjakarta dengan topik Aspek Keteknikan Pertanian Dalam Proses Budidaya dan Pengolahan Tanaman Tebu.

6 KATA PENGANTAR Alhamdulillahirobbil alamin. Segala puji hanya milik Allah, yang telah memberikan kemampuan pada kita semua dalam melaksanakan setiap aktivitas kehidupan. Shalawat serta salam senantiasa tercurahkan kepada Rasulullah SAW yang kecintaan dan syafaatnya senantiasa kita harapkan. Sungguh setiap desahan nafas adalah amanah yang harus ditunaikan, setiap amal adalah bekal untuk kembali kepadanya, setiap jengkal kehidupan hanya layak untuk dipersembahkan kepadanya. Setelah sekian banyak peluh tertumpah dan sekian waktu telah tercurah, akhirnya atas izin Allah penulis berhasil menyelesaikan tugas akhir ini, yang berjudul Modifikasi dan Uji fungsional Penyiang Bermotor (Power Weeder) Tipe Pisau Cakar untuk Tanaman Padi Sawah. Tiada lain harapan selain agar tugas akhir ini dapat memberikan manfaat yang sebesar-besarnya serta menjadi pemicu bagi penulis khususnya untuk menjadi lebih baik lagi. Ucapan terima kasih penulis sampaikan kepada pihak-pihak yang telah membantu sejak penyiapan, pelaksanaan hingga penyelesaian tugas akhir ini. Penghormatan dan ucapan terima kasih penulis sampaikan kepada: 1. Ir. Imam Hidayat, M.Eng selaku dosen pembimbing, atas bimbingan dan arahannya kepada penulis. 2. Prof. Dr. Ir. Asep Sapei, MS. dan Dr. Ir. Gatot Pramuhadi, MSi. Selaku dosen penguji tugas akhir. 3. Bapak dan Ibu tercinta, Drs. Suharno dan Dra. Purwaningsih, semua yang nanda punya tiada akan pernah cukup meski hanya untuk membalas belaian kalian. 4. Kakakku Arika Sari dan adikku tersayang Prakasita Rananida. Teriring doa dan harapan semoga Allah menjadikan kita anak-anak soleh dan solehah. 5. Pak Abas, Pak Wana dan Pak Parma atas bantuannya selama penelitian. 6. Ibu Ros dan Ibu Mar atas bantuannya selama penulis belajar di Departemen Teknik Pertanian. 7. Keluarga besar Hadi Sucipto (Kokap) dan Untung Santoso (Tempel), atas berjuta kasih dan dukungan selama ini. i

7 8. Om Wahyu dan Tante Wati serta adik adikku tercinta ( Ira, Rendy dan Dimas) terima kasih atas tempat tinggal, kesabaran dan keceriaannya selama ini. 9. Bagon, Kicip, Buluz, Bazuki, Delly, Hamzah, Wien, Miaz, Bagdo, Agung, Rekan-rekan TEP 39, IKAMADITA dan JARIK. Sungguh indah ketika persahabatan kita tiada pernah terpisahkan ruang dan waktu. Semoga Allah memberikan jalan yang terbaik bagi kita semua. 10. Rini Rahmawati sebagai cahaya hidupku dan sumber inspirasi penulis, terima kasih atas doa, kasih sayang dan dukungannya. 11. Semua pihak yang luput dari ingatan. Jasa kalian tetap tercatat di sisi Allah. Terima kasih. Semoga karya kecil ini dapat memberikan manfaat. Atas segala kekurangan yang ada di dalamnya penulis menyampaikan permohonan maaf sekaligus mengharap kritik dan saran demi perbaikan. Bogor, Februari 2007 Penulis ii

8 DAFTAR ISI Halaman KATA PENGANTAR... i DAFTAR ISI... iii DAFTAR GAMBAR... v DAFTAR TABEL... vi DAFTAR LAMPIRAN... vii I. PENDAHULUAN... 1 A. LATAR BELAKANG... 1 B. TUJUAN... 3 II. TINJAUAN PUSTAKA... 4 A. BUDIDAYA TANAMAN PADI Botani Tanaman Padi Bercocok Tanam Padi di Indonesia Gulma Tanaman Padi Pengendalian Gulma... 8 B. PENGEMBANGAN ALAT PENYIANG GULMA PADI... 9 C. HUBUNGAN TANAH, AIR DAN MESIN PERTANIAN Kondisi Lapang Kondisi Alat Pertanian D. SUMBER TENAGA Tenaga Manusia Motor Bakar E. SISTEM PENYALURAN DAYA (TRANSMISI) III.METODE PENELITIAN A. TEMPAT DAN WAKTU PENELITIAN B. BAHAN DAN ALAT C. TAHAPAN PENELITIAN Identifikasi Masalah Analisis Perancangan Modifikasi iii

9 4. Pengujian IV.ANALISIS TEKNIK A. POROS UTAMA B. POROS RODA C. TORSI ENJIN D. TORSI RODA PENYIANG E. TORSI PENYIANGAN V. HASIL DAN PEMBAHASAN A. MODIFIKASI ALAT PENYIANG B. UJI FUNGSIONAL Kapasitas Lapang dan Efesiensi Lapang Tingkat Keberhasilan Penyiangan VI.KESIMPULAN DAN SARAN A. KESIMPULAN B. SARAN DAFTAR PUSTAKA LAMPIRAN iv

10 DAFTAR GAMBAR Halaman Gambar 1. Beberapa jenis gulma pada tanaman padi (Sudarmo, 1990)... 7 Gambar 2. Single-row and double-row cono weeder (IRRI, 1985)... 9 Gambar 3. Power weeder hasil pengembangan BBPMP (Triono, 2003) Gambar 4. Roda gigi cacing. (Sularso dan K. Suga, 1997) Gambar 5. Tahapan penelitian Gambar 6. Posisi pelampung di kaki skid Gambar 7. Penyiang bermotor sebelum di modifikasi Gambar 8. Penyiang bermotor sebelum di modifikasi Gambar 9. Penyiang bermotor setelah di modifikasi Gambar 10. Enjin yang baru Gambar 11. Enjin yang lama 32 Gambar 12. Penempatan pelampung Gambar 13. Pengujian penyiang bermotor di lahan sawah Gambar 14. Pengukuran jumlah gulma Gambar 15. Jenis gulma yang tumbuh di lahan sawah Gambar 16. Kondisi lahan setelah disiangi menggunakan putaran enjin 2125 rpm Gambar 17. Kondisi lahan setelah disiangi menggunakan putaran enjin 2850 rpm Gambar 18. Kondisi lahan setelah disiangi menggunakan putaran enjin 3125 rpm v

11 DAFTAR TABEL Halaman Tabel 1. Perbedaan sifat antara padi golongan Indica dan Yaponica... 4 Tabel 2. Fungsi komponen utama rancangan penyiang bermotor Tabel 3. Faktor-faktor koreksi daya yang akan ditransmisikan, fc Tabel 4. Kapasitas lapang dan efisiensi lapang vi

12 DAFTAR LAMPIRAN Halaman Lampiran 1. Data tahanan penekanan dan kedalaman tanah pada sudut Lampiran 2. Data hasil perhitungan gaya tekan alat dan perhitungan luasan pelampung Lampiran 3. Data pengukuran kapasitas lapang Lampiran 4. Data hasil pengukuran jumlah gulma Lampiran 5. Penyiang bermotor Lampiran 6. Daftar angka beban tahanan pembajakan spesifik vii

13 I. PENDAHULUAN A. LATAR BELAKANG Padi merupakan tanaman penghasil beras yang banyak dibudidayakan di Indonesia. Kebutuhan beras dari tahun ke tahun selalu meningkat seiring dengan pertambahan penduduk. Pada tahun 1970 konsumsi beras perkapita 70 kg per tahun dan naik menjadi 135 kg per tahun pada tahun Produksi padi nasional tahunan mencapai 52 juta ton dengan luas areal 11.5 juta hektar. Untuk mencukupi kebutuhan konsumsi beras nasional pada tahun 2003, Indonesia mengimpor beras mencapai 2 juta ton dari Vietnam dan Thailand (Asmono, 2004). Salah satu permasalahan yang serius dalam budidaya tanaman padi adalah pada proses pertumbuhan. Tanaman padi banyak mendapat saingan dari tanaman pengganggu (gulma). Gulma atau tanaman pengganggu telah dikenal sejak manusia memulai usaha pertanian. Produksi padi yang diharapkan tinggi tiba-tiba tidak tercapai karena serangan gulma yang tidak ditanggulangi dengan baik. Gulma bersaing dengan tanaman padi dalam hal cahaya matahari, unsur hara dan air. Apabila satu saja dari ketiga unsur tersebut kurang maka yang lain tidak dapat digunakan secara efektif walaupun tersedia dalam jumlah besar. Gulma atau tumbuhan pengganggu yang tumbuh di antara tanaman padi merupakan salah satu faktor penyebab menurunnya hasil, baik secara kuantitatif maupun secara kualitatif. Berdasarkan pengamatan Sudarmo (1990), gulma sering digunakan sebagai inang berbagai hama dan penyakit padi serta untuk persembunyian bagi tikus. Menurut Sutidjo, D (1980), kerugian produksi pertanian yang diakibatkan oleh gangguan gulma sebesar 10% sampai 20%. Khusus pada tanaman padi sawah menurut pengujian yang dilakukan oleh IRRI, penurunan hasil panen padi akibat gangguan gulma sebesar 24% sampai 48% atau ratarata sebesar 36%. Ampong-Nyarko dan De Datta (1991), menyatakan penurunan hasil akibat keberadaan gulma selama musim tanam diperkirakan sekitar 44% sampai 46% 1

14 Kegiatan pengendalian gulma pada tanaman padi pada umumnya dapat dilakukan dengan cara penggunaan herbisida atau dengan penyiangan secara manual dan mekanis. Namun penggunaan herbisida juga masih belum seratus persen efektif dan dapat memberikan dampak yang kurang baik terhadap lingkungan. Sedangkan penyiangan secara manual yaitu dengan cara mencabuti tumbuhan pengganggu menggunakan tangan atau secara mekanis dengan menggunakan landak merupakan cara pemberantasan yang umum, akan tetapi cara ini memerlukan curahan tenaga yang besar dan banyak memakan waktu. Di banyak daerah telah mengalami kesulitan mendapatkan tenaga kerja pertanian karena terjadinya pergeseran tenaga kerja ke sektor jasa dan industri. Disamping itu ada kecenderungan upah buruh tani yang terus meningkat. Berdasarkan hal-hal tersebut di atas diperlukan pengembangan alat pertanian yaitu alat penyiang yang dapat mengurangi permasalahan tersebut. Dengan memperhatikan sifat agronomi tanaman padi, kemampuan fisik manusia dan sifat fisik tanah, perlu dikembangkan alat penyiang yang lebih efektif dan efisien. Pada rancangan yang sebelumnya (Prabowo, 2005), telah dihasilkan alat penyiang bermotor dengan bagian utama yaitu : rangka utama, enjin, kemudi, skid (penyangga), reduction gear, roda penyiang dan pisau penyiang. Penyiang bermotor tersebut dapat digunakan untuk penyiangan pertama pada lahan sawah dengan jarak tanam 20 cm sampai dengan 25 cm. Mesin penggerak yang digunakan merupakan mesin pemotong rumput tipe gendong. Tetapi pada saat pengujian alat tidak optimal hal ini dapat diketahui dari efisiensi lapang yaitu pada putaran enjin 2850 rpm sebesar 18.75%, putaran enjin 3125 rpm sebesar 22.85% dan putaran enjin 3578 rpm sebesar 28.20%. Hasil tersebut menunjukan efisiensi yang relatif rendah. Hal ini disebabkan daya motor kurang, roda penyiang sering terbenam karena alat terlalu berat dan tidak adanya pelampung yang bisa membuat alat meluncur di atas lumpur. Dengan melihat kodisi di atas maka dengan berbasis pada modifikasi beberapa bagian diantaranya menganti engine, mengganti komponen alat, dan menambahkan pelampung, penelitian modifikasi dan uji 2

15 teknis alat penyiang gulma yang ada dapat dilaksanakan untuk dapat meningkatkan kinerja alat penyiang gulma ini. B. TUJUAN 1. Penelitian ini dilakukan untuk meningkatkan performa kerja alat penyiang gulma secara keseluruhan dengan memodifikasi enjin dan menambahkan pelampung. 2. Melakukan uji fungsional alat penyiang gulma berpenggerak motor bakar 2 langkah untuk tanaman padi sawah yang sudah dimodifikasi. 3. Meningkatkan kapasitas lapang dan meningkatkan tingkat keberhasilan penyiangan tanpa merusak tanaman padi tersebut. 3

16 II. TINJAUAN PUSTAKA A. BUDIDAYA TANAMAN PADI 1. Botani Tanaman Padi Tanaman padi (Oryza sativa L.) termasuk famili tumbuhan gramineae atau rumput-rumputan dengan batang tersusun dari beberapa ruas. Tanaman padi memiliki sifat merumpun, yang dalam waktu singkat bibit padi yang ditanam hanya satu batang dapat membentuk rumpun sejumlah 20 sampai 30 anakan (Siregar, 1981). Dari sekian banyak varietas, tanaman padi dapat dikelompokkan menjadi dua golongan, yaitu golongan Indica dan golongan Yaponica. Padi golongan Indica pada umumnya terdapat di negara-negara yang termasuk daerah tropis sedangkan padi golongan Yaponica pada umumnya terdapat di negara-negara di luar daerah tropis. Padi yang ditanam di Indonesia banyak dari golongan Indica, walaupun ada beberapa yang menanam dari golongan Yaponica. Menurut Siregar (1981), kedua golongan padi tersebut memiliki perbedaan sifat seperti pada Tabel 1. Tabel 1. Perbedaan sifat antara padi golongan Indica dan Yaponica No Sifat Indica Yaponica 1 Lingkaran batang kecil-sedang sedang-besar 2 Ukuran daun sempit lebar 3 Warna daun hijau muda hijau tua 4 Bentuk daun kelopak mendatar/sedikit tegak/tegap/lurus melengkung menjulang 5 Ukuran butiran gabah kecil-sedang sedang-besar 6 Daya merumpun tinggi rendah 7 Ketahanan terhadap mudah sulit kerobohan 8 Ketahanan terhadap tinggi kurang kekurangan air Sumber : Siregar,

17 2. Bercocok Tanam Padi di Indonesia Tumbuhan padi adalah tumbuhan yang membutuhkan banyak air (waterplant). Sebagai tanaman air bukan berarti bahwa tanaman padi hanya bisa tumbuh di atas tanah yang terus-menerus digenangi air. Tanaman padi dapat juga tumbuh di tanah kering asalkan curah hujan mencukupi kebutuhan tanaman. Tanaman padi di Indonesia dibudidayakan pada lahan kering atau disebut padi ladang (Upland Varieties) dan di lahan basah atau lahan sawah (Lowland Varieties). Untuk tanaman padi di lahan basah kebutuhan akan air sangat penting yaitu untuk melunakan tanah sebagai media tumbuh, memudahkan dalam penyerapan unsur hara dan juga karena sifat tanaman itu sendiri yang merupakan tanaman air. Selain fungsi di atas penggenangan air dapat juga berfungsi membunuh beberapa jenis gulma (Siregar, 1981). Kondisi tanah untuk tanaman padi sawah harus berlumpur. Untuk itu selain penggenangan air diperlukan juga pengolahan tanah. Pengolahan tanah yang ideal harus dilakukan dua kali, yaitu pembajakan dan penggaruan. Tujuan dari pembajakan adalah untuk membalikan tanah, sedangkan penggaruan untuk menghancurkan bongkahan tanah agar menjadi lebih halus dan siap ditanami (Siregar, 1981). Pada proses penanaman padi, penancapan bibit padi ke dalam tanah yang terbaik adalah sedalam 2.5 cm dengan jarak tanam sekitar 20 cm sampai dengan 25 cm. Akan tetapi banyak petani yang menggunakan kedalaman 5 cm dengan tujuan mencegah robohnya tanaman padi setelah penanaman (Siregar, 1981). Perkembangan akar tanaman padi mengarah ke bawah dan sedikit ke arah samping. Akar tumbuh di sekeliling pangkal batang yang selanjutnya menyebar ke semua arah. Panjang akar pada saat penanaman sekitar 4 cm sampai 5 cm dan belum menyebar, baru setelah satu minggu berikutnya akar mulai tumbuh menyebar. Pada saat penyiangan pertama yaitu padi berumur empat minggu penyebaran akar mencapai radius 6 cm sampai 7 cm, dan pada saat dewasa mencapai 10 cm sampai 15 cm. Letak susunan perakaran tidak terlalu dalam sekitar 20 cm sampai 30 cm dengan 5

18 arah penyebaran tidak terus ke dalam melainkan ke samping (Surowinoto, 1980). Ketinggian padi pada saat penanaman sekitar 20 cm. Setelah berumur empat minggu (penyiangan pertama) ketinggian batang padi ratarata sekitar 30 sampai 35 cm. Jumlah batang padi setelah berumur satu bulan bertambah kurang lebih mencapai 20 batang (Surowinoto, 1980). 3. Gulma Tanaman Padi Banyak definisi yang telah diberikan untuk menjelaskan gulma. Apa yang dimaksud dengan gulma tergantung pada pandangan seseorang, seperti tersebut dibawah ini : a. Menurut Sundaru (1976), gulma adalah setiap tumbuhan yang tumbuh di tempat yang tidak dikehendaki, terutama di tempat mana manusia bermaksud mengusahakan tumbuhan lain. b. Gulma adalah tumbuhan yang belum diketahui kegunaannya, tetapi dapat mengganggu kesejahteraan manusia, dengan demikian orang berusaha untuk memberantasnya (Soerjani, 1972). c. Gulma merupakan tanaman yang keberadaannya tidak diinginkan dan perkembangannya dapat mengganggu bahkan dapat merugikan. Terjadi persaingan antara gulma dengan tanaman yang kita usahakan dalam mengambil zat-zat makanan, air dari dalam tanah dan penerimaan sinar matahari untuk fotosintesis. Pertumbuhan gulma dapat meningkat apabila tanah sawah tidak diolah dengan baik dan tidak digenangi air (Sudarmo, 1990). Menurut Sudarmo (1990), tumbuhan pengganggu (gulma) pada tanaman padi sawah dibagi menjadi tiga golongan seperti yang terlihat pada Gambar 1 yaitu: a. Grasses atau Gramineae (berbentuk rerumputan) contoh: Echinochloa colonum, E. Crusgalli (L) Beauv, Leptochloa SP. b. Broadleaved weeds (berdaun lebar) contoh: Sphenoclea zylanica, Monochoria vaginalis, Jussiaea Repens. c. Sedges atau Cyperaceae (sebangsa rumput teki) contoh: Cyperus iria,cyperus radiatus dan Fimbritylis Milliacea L 6

19 Cyperus iria Monochoria vaginalis Echinochloa Crusgalli Gambar 1. Beberapa jenis gulma pada tanaman padi (Sudarmo, 1990) Gulma berbentuk rerumputan memiliki daun sempit, tumbuh tegak dan berakar serabut. Gulma berdaun lebar tumbuh secara horizontal dan berakar serabut. Untuk jenis rumput teki mempunyai bentuk daun segitiga dan memiliki umbi atau akar tinggal. Jenis ini sangat sulit diberantas, jika daunnya terpotong maka akan cepat tumbuh lagi. Kebanyakan jenis teki dan rumput akan tertekan pertumbuhannya bila digenangi air 5 sampai 10 cm. Beberapa gulma berdaun lebar tidak dapat diberantas dengan penggenangan (Sudarmo, 1990). Gulma daun lebar yang umum dijumpai antara lain Monocharia vaginalis, Marsilea crenata, Salvinia molesta, dan Sphenochlea zeylanica. Dari golongan teki antara lain Cyperus difformis, Fimbrystilis miliacea, Scirpus juncoides, dan Cyperus haspan. Selain dari kedua golongan gulma tersebut, dapat ditemukan juga dari golongan rumput antara lain Paspalum distichum, Leptochloa chinensis, Echinochloa crusgalli, dan Echinochloa colona. 7

20 4. Pengendalian Gulma Menurut Sudarmo (1990), pengendalian gulma dapat dilakukan dengan beberapa cara yaitu dengan penggenangan air, penggunaan herbisida. penyiangan dengan tangan dan penyiangan dengan alat. Penggenangan air menurut Sudarmo (1990), dapat menekan pertumbuhan jenis gulma tertentu. Penggenangan dapat diatur atau disesuaikan dengan stadia pertumbuhan tanaman. Sudarmo (1990), menyatakan bahwa untuk memperoleh hasil pengendalian yang tinggi dapat dilakukan beberapa modifikasi aplikasi herbisida, misalnya dengan memperhatikan kemungkinan efek dari pencampuran herbisida. Menggunakan bahan kimia biasanya untuk membunuh atau mencegah pertumbuhan gulma. Cara ini banyak digunakan terutama pada daerah di mana tenaga kerja sangat terbatas. Tetapi penggunaan bahan kimia seringkali dihindari karena dapat mencemari lingkungan sekitar. Penyiangan dengan tangan (hand weeding) caranya dengan mencabut gulma yang ada di sekeliling tanaman. Cara ini efektif terhadap gulma muda, gulma yang tumbuh di dalam rumpun dan di antara barisan tanaman padi, namun cara ini membutuhkan tenaga yang cukup banyak. Berdasarkan data yang dilaporkan oleh IRRI, kapasitas penyiangan dengan tangan adalah 120 jam/ha/orang. Penyiangan dengan alat biasanya menggunakan landak (jenis alat penyiang manual). Landak dilengkapi dengan roda silinder, jari pencabut dan pembenam rumput seperti terlihat pada Gambar 2. Landak mempunyai cara kerja digerakkan menggunakan tenaga dorong manusia. Gaya tersebut diteruskan melalui tangkai kemudi dan menuju ke silinder. Karena pengaruh gaya dorong landak akan bergerak maju dan silinder beputar karena adanya tahanan tanah. Bagian jari pencabut akan ikut berputar dan terjadi mekanisme pencabutan. Dengan adanya bagian pelampung pada bagian depan landak, maka landak tidak akan terbenam. Selain sebagai pencabut, bagian melengkung pada jari pencabut juga dapat sebagai pembenam rumput pada saat roda silinder berputar. Alat ini dapat bekerja 8

21 lebih cepat dan lebih nyaman dibanding dengan cara pencabutan gulma dengan menggunakan tangan. Kapasitas penyiangan dengan landak berdasarkan data yang dilaporkan oleh IRRI di dalam Prabowo (2005) adalah 70 jam/ha/orang. Gambar 2. Single-row and double-row cono weeder (IRRI, 1985 dalam Prabowo, 2005) B. PENGEMBANGAN ALAT PENYIANG GULMA PADI DI INDONESIA Alat penyiang padi di Indonesia baik berupa alat sederhana sampai bermotor penggerak diantaranya adalah : Single-row rotary weeder (Kuningan), Single-row rotary weeder (Malang), Japanese rotary weeder, IRRI rotary weeder. Salah satu pengembangan alat penyiang bermotor di Indonesia, dilakukan oleh Balai Besar Pengembangan Mekanisasi Pertanian (BBPMP). Dengan memperhatikan input parameter teknis yaitu : sifat tanaman padi, sifat fisik tanah, ergonomi dan antrophometri manusia juga telah dilakukan perhitungan dan pertimbangan teknis serta mengadopsi teknologi yang ada di Jepang maupun Philipina, maka dihasilkan alat penyiang seperti pada Gambar 3 (Triono, 2003). Penyiang tanaman padi memiliki desain dan konstruksi roda pencabut banyak menggunakan bentuk hexagonal. Bentuk ini pertama kali dikenalkan oleh salah satu tenaga ahli IRRI, pada tahun 1986 yaitu Dr. Khan. Sepasang hexagonal rotavator dengan cakar sebanyak 6 buah digerakkan dengan motor bensin 2 tak (umumnya digunakan pada mesin potong rumput) telah dicoba untuk menyiang gulma, dengan hasil cukup memuaskan, namun ada 9

22 kelemahan yaitu getaran yang ditimbulkan motor penggerak cukup memberikan efek getaran (Triono, 2003). Sedangkan Prabowo 2005 mendisain alat penyiang gulma dengan sepasang oktagonal rotavator sebagai roda penyiangnya tetapi desain tersebut masih memiliki kelemahan yaitu tidak lancarnya putaran roda karena besarnya beban yang diterima oleh motor penggerak dan besarnya tahanan tanah terhadap roda penyiang. Gambar 3. Power weeder hasil pengembangan BBPMP (Triono, 2003) C. HUBUNGAN TANAH, AIR DAN MESIN PERTANIAN Dapat diketahui bahwa selain sinar matahari dan udara, tanah dan air merupakan faktor yang sangat penting bagi pertumbuhan tanaman. Tanah merupakan media tumbuh tanaman yang memberikan berbagai unsur hara sebagai makanan tanaman. Menurut Setyati (1979), tanah merupakan bagian bumi dimana akar tanaman tumbuh dan tanah dapat dimanipulasi untuk mempengaruhi kehidupan tanaman. Air berfungsi sebagai pelarut berbagai unsur hara agar mudah diserap oleh akar tanaman dan juga sebagai pengatur kelembaban dan respirasi. Dalam penyempurnaan peralatan pertanian yang berkembang dari tradisional ke modern diperlukan penelitian, perhitungan, dan uji coba untuk menghasilkan peralatan yang lebih baik. Dalam hal perancangan suatu alat pertanian khususnya penyiang gulma, beberapa sifat fisik tanah harus 10

23 diperhatikan agar rancangan alat tersebut dapat berfungsi dengan baik sesuai yang diinginkan. Daywin et al. (1983), mengemukakan bahwa penggunaan peralatan pertanian pada pengolahan tanah dipandang sebagai pemberian kerja mekanis terhadap tanah seperti halnya pemukulan, penyobekan, pembalikan, penghancuran, pemotongan terhadap tanah dan sebagainya. Besarnya reaksi atas kerja mekanis sangat ditentukan oleh sifat fisik-mekanis dari tanah, arah dan kecepatan pengoperasian alat yang digunakan. Dalam pengoperasian peralatan pertanian tidak akan lepas dari masalah hambatan tanah (draft) yang mempunyai pengaruh yang besar terhadap unjuk kerja dari alat tersebut. Pada dasarnya terdapat dua faktor yang mempengaruhi besarnya tahanan tanah, yaitu kondisi lapang tempat beroperasinya alat dan kondisi alat yang digunakan. 1. Kondisi Lapang Kondisi lapang sangat dipengaruhi oleh jenis tanah, tekstur tanah, kadar air, dan vegetasi. a. Jenis Tanah Jenis tanah yang berbeda akan memberikan tahanan tanah yang berbeda pula bila tanpa memperhitungkan factor-faktor lainnya. Tahanan tanah mempunyai hubungan berbanding langsung dengan tenaga yang dibutuhkan alat untuk bekerja di atasnya. Semakin besar tahanan tanah maka semakin besar pula tenaga yang dibutuhkan. b. Kadar Air Tanah Kadar air tanah sangat mempengaruhi besarnya tahanan tanah. Dengan adanya perbedaan kadar air tanah, maka mengakibatkan perbedaan tahanan tanah karena kadar air tanah mempengaruhi faktorfaktor dinamis dari tanah seperti kohesi, adhesi, dan gesekan. Kohesi adalah gesekan antar partikel dan tarik menarik antar partikel tanah. Adhesi adalah gesekan antara tanah dengan alat pertanian yang bersentuhan langsung. Gesekan yang dimaksud adalah gesekan antara alat dengan tanah jika tanah dikenai gaya atau kerja. 11

24 Partikel tanah akan cenderung untuk saling bersinggungan dari pada bersatu kembali (Baver, 1961). c. Vegetasi Menurut penelitian Baver (1961), pengaruh dari vegetasi terutama sisa-sisa dari tumbuhan sebelumnya dapat mengakibatkan terjadinya variasi tahanan tanah dan tenaga yang dibutuhkan dalam pengolahan tanah. Pengaruh tersebut juga dapat disebabkan oleh keadaan vegetasi di atas tanah yang dapat mempengaruhi sifat tanah. 2. Kondisi Alat Pertanian Alat pertanian yang digunakan untuk mengolah tanah meliputi beberapa aspek yang meliputi bentuk alat, kecepatan operasi, ketajaman alat dan kedalaman operasi. Bentuk alat sangat mempengaruhi terhadap besarnya tahanan tanah, dengan kata lain luas permukaan bidang sentuh alat dengan tanah mempengaruhi terhadap besarnya tahanan tanah. Alat dengan bentuk meruncing cenderung mempunyai luas bidang sentuh yang kecil, sehingga semakin kecil bidang sentuh, maka semakin kecil pula tahanan yang diberikan oleh tanah terhadap bidang sentuh alat (Baver, 1961). Kecepatan operasi sangat penting dalam mempengaruhi besarnya tenaga tarik dari alat. Bila seandainya kecepatan berubah dari 3 mil/jam menjadi 6 mil/jam, maka tenaga yang diperlukan bertambah dari 25% sampai 80%. Adanya perbedaan kedalaman dan lebar kerja mengakibatkan tahanan tanah yang berbeda. Semakin dalam dan semakin lebar, maka tahanan tanah akan semakin besar, karena semakin luas permukaan sentuh alat dengan tanah makin besar pula bidang singgung antara tanah dengan alat (Baver, 1961). D. SUMBER TENAGA Pada pengoperasian peralatan pertanian yang bersifat mekanis, khususnya yang berkaitan dengan budidaya pertanian lebih banyak digunakan tenaga manusia, ternak dan motor bakar (Daywin et al., 1983). Khusus untuk 12

25 alat penyiang, tenaga yang dibutuhkan hanyalah tenaga manusia dan motor bakar. 1. Tenaga Manusia Kusen (1978), menjelaskan bahwa kemampuan seseorang untuk mengeluarkan tenaga mekanisnya tergantung dari lamanya melakukan kerja, usia, jenis kelamin, ukuran tubuh, bagian anggota badan yang digunakan, kesehatan dan sebagainya. Besarnya berat beban maksimum yang diterima oleh dua buah tangan untuk mendorong beban sebesar 27.5 kg dan untuk menarik beban sebesar 42.5 kg. Dalam waktu yang sangat singkat di bawah satu detik, seseorang dapat membangkitkan tenaga sebesar 4400 watt (6 hp) lebih. Pengeluaran tenaga mekanis untuk jenis pekerjaan harian berkisar antara 70 sampai 150 watt (0.1 sampai 0.2 hp) tergantung kondisi lingkungan tempat bekerja dan kondisi tubuh (Kusen, 1978). Setiap orang memiliki tenaga dan kapasitas kerja yang berbedabeda. Seperti untuk daerah kontrol optimum jangkauan tangan adalah pada ketinggian cm sampai cm dari permukaan tempat berpijak. Untuk jangkauan optimum ke arah depan pada jarak 26.6 cm sampai 53.2 cm di depan dada. Dan besarnya handle yang terbaik adalah ¾ inchi sampai 1 ½ inchi. Sedangkan untuk panjang pegangan kemudi sebaiknya lebih besar dari 3 ¾ inchi atau 94 mm (Kusen, 1978). 2. Motor Bakar Motor bakar dapat dibedakan menjadi dua jenis yaitu motor bakar eksternal dan motor bakar internal. Motor bakar eksternal adalah jenis motor dengan proses pembakarannya dilakukan di luar silinder dengan berbagai macam bahan bakar. Contoh dari motor bakar eksternal adalah motor uap. Untuk saat ini motor bakar yang digunakan adalah jenis motor bakar internal dimana motor bakar ini memiliki efisiensi lebih tinggi yaitu 15 hingga 30 persen, sedangkan motor bakar eksternal hanya 10 persen. Motor bakar internal lebih ringkas sehingga lebih mudah pemanfaatannya untuk tenaga penggerak pada peralatan pertanian dan kini motor bakar 13

26 internal telah dibuat dalam berbagai ukuran sesuai penggunaanya. Keuntungan penggunaan motor bakar internal di dalam bidang pertanian dibanding menggunakan tenaga lain yaitu mudah dioperasikan dimana saja dan tidak tergantung dengan energi lain seperti energi listrik di daerah pertanian tersebut. Pengoperasian jenis tenaga ini tidak memerlukan tenaga ahli khusus dan tidak dipengaruhi oleh iklim maupun cuaca (Daywin et al., 1983). E. SISTEM PENYALURAN DAYA (TRANSMISI) Penyaluran tenaga dari motor bakar dapat digunakan beberapa transmisi, diantaranya adalah dengan transmisi sabuk, rantai, dan roda gigi. Pada power weeder mekanisme penyaluran tenaga setelah poros utama yaitu menggunakan roda gigi. Jenis roda gigi yang digunakan adalah roda gigi cacing atau worm gear. Menurut Sularso dan K. Suga (1997), jenis roda gigi cacing sering dipakai karena dapat mengubah arah putaran dengan sudut yang diinginkan dan memiliki bentuk yang ringkas sehingga diaplikasikan pada peralatan sangat baik. Seperti diperlihatkan pada Gambar 4, pasangan roda gigi cacing terdiri atas sebuah cacing yang mempunyai ulir luar dan sebuah roda cacing yang terkait dengan cacing. Ciri yang sangat menonjol pada roda gigi cacing adalah kerjanya yang halus dan hampir tanpa bunyi, serta memungkinkan perbandingan transmisi yang besar. Perbandingan reduksi dapat dibuat sampai 1:100. Namun pada umumnya arah transmisi tidak dapat dibalik untuk menaikan putaran dari roda cacing ke cacing. Hal semacam ini disebut mengunci sendiri, karena putaran yang terbalik dari roda cacing akan dihentikan oleh cacing (Sularso dan K. Suga, 1997). 14

27 Gambar 4. Roda gigi cacing. (Sularso dan K. Suga, 1997) 15

28 III. METODE PENELITIAN A. TEMPAT DAN WAKTU PENELITIAN Penelitian dilaksanakan di Laboratorium Lapangan Teknik Mesin Budidaya Pertanian, Departemen Teknik Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian Bogor dan lahan sawah desa Situ Gede untuk uji fungsional. Penelitian berlangsung pada bulan Agustus 2006 sampai dengan November B. BAHAN DAN ALAT 1. Bahan Penelitan Bahan yang digunakan untuk membuat alat penyiang bermotor terdiri dari : a. Enjin 3 hp, 2 tak, 6000 rpm, digunakan sebagai sumber tenaga untuk memutar poros utama. b. Reduction gear (worm gear), digunakan untuk mereduksi putaran poros utama dan mengubah arah putaran (90 o ). c. Pipa besi Ø 20 mm, digunakan untuk membuat skid. d. Besi pejal Ø 12 mm, digunakan untuk membuat poros utama. e. Besi pejal Ø 30 mm, digunakan untuk membuat poros roda. f. Plat besi tebal 2 mm, digunakan untuk membuat pisau penyiang. g. Plat besi tebal 5 mm digunakan untuk membuat dudukan enjin pada rangka utama. h. Elektroda las, digunakan untuk merangkai komponen-komponen secara permanen. i. Baut dan mur, digunakan untuk merangkai komponen-komponen yang memiliki hubungan tidak permanen. 2. Alat Penelitian Alat yang digunakan untuk membuat prototipe penyiang bermotor terdiri dari : a. Peralatan bengkel seperti, gurinda, bor listrik, las listrik, ragum dan kunci-kunci. 16

29 b. Gergaji besi. c. Mesin bubut. d. Penetrometer e. Penggaris siku, meteran, jangka sorong. f. Alat tulis dan Gambar g. Tachometer C. TAHAPAN PENELITIAN Mulai Identifikasi Permasalahan Analisis rancangan Perbaikan Desain Modifikasi Tidak Uji Fungsi & Struktur, optimal? Ya Finishing Mesin Penyiang Gulma Siap Pakai Selesai Gambar 5. Tahapan penelitian 17

30 1. Identifikasi Masalah Penyiang bermotor dirancang untuk menyiangi gulma pada tanaman padi dengan jarak tanam 20 cm sampai dengan 25 cm. Alat ini dapat digunakan pada penyiangan pertama, yaitu pada saat padi berumur empat minggu setelah penanaman dengan ketinggian padi sekitar 30 sampai 35 cm. Digunakan dua buah roda pencabut sehingga alat dapat seimbang dan dalam satu kali penyiangan dapat menyiangi dua alur sekaligus. Kecepatan maju di lahan sawah direncanakan 2 km/jam, diasumsikan sama dengan kecepatan orang berjalan. Penyiang bermotor ini telah mengalami pengujian secara teknis di lapangan, yang dilakukan oleh perancang terdahulu. Pengujian ini dilakukan secara langsung di lahan sawah dengan tujuan untuk memberikan Gambaran kinerja alat ketika dipakai di lahan langsung (Prabowo, 2005). Hasil yang diperoleh menunjukkan adanya kendala teknis yang dihadapai oleh alat ini. Kendala tersebut meliputi kendala teknis pada sumber tenaga alat yang memberikan efek operasional alat. Penyiang bermotor yang dirancang oleh perancang terdahulu menggunakan enjin bertenaga 1.5 hp (horse power). Tenaga 1.5 hp yang dikeluarkan enjin yang dipakai terasa kurang memadai. Hal ini membuat operasi alat pada saat di lahan kurang baik karena pada saat pisau penyiang menyiangi pada kedalaman lebih dari 3 cm roda penyiang akan berhenti, sehinga alat perlu diangkat supaya roda penyiang kembali berputar. Selain itu, pergerakan alat di lahan sawah juga menjadi perhatian dalam modifikasi ini karena pergerakan alat yang memberikan sebagian faktor kinerja alat saat operasi di lahan. Dengan beroperasinya alat di lahan, alat akan bergerak sesuai dengan rencana operasi. Ketika di lahan, alat dikendalikan oleh operator melalui kemudi. Dengan adanya beban tambahan karena komponen enjin di lahan, alat akan terpengaruh. Tambahan berat menjadi beban tersendiri bagi komponen kaki belakang alat. Kaki belakang ini menjadi tumpuan kemudi saat berbelok dan juga sebagai titik tumpu (fulcrum) untuk menyeimbangkan antara beban 18

31 gesekan tanah dengan roda pencakar serta beban berat enjin didepan kemudi. Dengan kondisi operasi seperti diatas, kaki belakang (skid) menerima beban yang lebih banyak, akibatnya dengan rancangan tapak kaki awal, kaki belakang tenggelam lebih dalam dan mengganggu gerakan maju alat. Tenggelamnya kaki belakang ini menambah beban kerja operator terhadap alat ini. 2. Analisis Perancangan Analisis perancangan terdiri dari analisis fungsional, yaitu penentuan komponen-komponen yang dibutuhkan dalam pembuatan penyiang bermotor dan analisis struktural yaitu menentukan bentuk dari masing-masing komponen yang sesuai dengan analisis teknik dari masingmasing komponen. Penyiang bermotor terdiri dari beberapa komponen utama, yaitu : a) rangka utama, b) batang kemudi, c) reduction gear, d) roda penyiang, e) pisau penyiang, f) skid, g) pelampung, h) enjin, i) sistem transmisi. Fungsi komponen utama rancangan penyiang bermotor disajikan dalam Tabel 2. Tabel 2. Fungsi komponen utama rancangan penyiang bermotor No Nama Bagian Fungsi a Rangka utama Dirancang sebagai dudukan komponenkomponen seperti enjin, poros, reduction gear (worm gear), roda penyiang, skid, dan batang kemudi. b Batang kemudi Dirancang sebagai pengendali pada saat alat bekerja dan meletakan tuas pengatur kecepatan enjin. Ketinggian dapat diatur sesuai posisi operator. c Reduction Gear Menggunakan worm gear, dapat mengubah arah putaran (90 0 ) dan mereduksi putaran poros utama dengan perbandingan 20 : 1. d Roda penyiang Dirancang dengan Ø 400 mm agar dapat digunakan untuk penyiangan pertama dengan 19

32 tinggi tanaman cm dan dibentuk segi delapan agar mudah untuk meletakan pisau penyiang. e Pisau Penyiang Dirancang dengan bentuk cakar agar dapat dihasilkan mekanisme pencabutan. f Skid Dirancang untuk menopang alat dan sebagai dudukan pelampung. g Pelampung Dirancang untuk memberikan daya apung agar alat dapat mempertahankan kedalaman kerja roda pencakar dan sebagai pembenam rumput. h Enjin Menyediakan daya untuk memutar roda penyiang. i Sistem Transmisi Menggunakan sistem poros yang dihubungkan langsung ke reduction gear. 3. Modifikasi Modifikasi dilakukan dalam desain memiliki tujuan untuk memperoleh hasil desain yang sudah ada memiliki perubahan kinerja yang lebih baik. Pada alat penyiang gulma yang sudah ada, modifikasi masih dapat dilakukan untuk memberikan peningkatan kinerja. Beberapa hal yang disarankan oleh pembuat alat terdahulu, berkaitan dengan penggantian enjin yang memiliki daya lebih besar untuk meningkatkan kapasitas lapang dan efisiensi lapang, perubahan dalam pemilihan bahan untuk membuat komponen-komponen utama sehingga alat penyiang menjadi lebih ringan dari yang telah ada dan penambahan pelampung. Fokus modifikasi alat penyiang bermotor : a. Penggantian enjin lama dengan enjin baru yang lebih kuat Enjin menjadi komponen pokok dalam operasi alat penyiang gulma ini. Enjin berperan penting dalam menyediakan tenaga penggerak untuk memutar roda pencakar dan juga menggerakkan mesin untuk terus maju. Enjin yang dipakai pada mesin terdahulu tidak mampu 20

33 menyupali tenaga sesuai dengan yang dibutuhkan. Pada pengujiannya, mesin tidak mampu bergerak dan roda pencakar tidak berputar. Untuk bergerak maju, mesin harus dibantu oleh operator. Hal ini tidak sesuai dengan tujuan desain awal mesin. Mesin ini dirancang untuk dapat bergerak secara semi-otomatis, mesin dapat menangani suplai tenaganya sendiri, tidak menggunakan tenaga dari manusia (operator), dan operator hanya berperan dalam pengendalian dan pengarahan saja. Faktor penting yang memberi pengaruh pada enjin dalam operasi mesin ini adalah kondisi lahan. Lahan sawah lebih bersifat lumpur atau tanah liat, dimana tanah akan memberikan daya hambat terhadap roda penyiang sesuai dengan tingkat kedalaman. Semakin dalam suatu roda penyiang misalnya tenggelam maka akan semakin besar daya tahanannya. Selain itu, tanah dengan kondisi tersebut akan cenderung menempel pada implemen alat dan menambah berat total mesin. Alat penyiang bermotor yang sudah ada memiliki berat yang lumayan. Dengan kondisi mesin tersebut, maka dibutuhkan tenaga yang lebih besar daripada yang direncanakan dalam konsep rancangan. Hal ini perlu dipertimbangkan, karena dalam operasi di lahan, mesin tidak selalu akan beroperasi sesuai dengan yang direncanakan dalam konsep rancangan. Roda pencakar tidak selalu beroperasi pada kedalaman tanah tertentu, putaran roda pencakar tidak selalu konstan, suplai tenaga ke komponen traksi tidak selalu konstan dan kemungkinan berat total mesin bisa bertambah dengan adanya tanah sawah yang menempel semakin banyak. Menyadari perlunya pemenuhan kebutuhan tenaga untuk operasi di lahan, penggantian enjin yang ada dengan enjin yang bisa menyediakan tenaga operasi yang lebih 21

34 besar menjadi salah satu fokus dalam modifikasi alat penyiang ini. b. Penambahan Pelampung Alat penyiang bermotor yang dirancang oleh Prabowo. (2005), menunjukkan fungsional kerja yang sudah sesuai dengan rancangan. Berhubung berat total mesin yang berat, pada operasi di lahan sawah pada saat pengujian, mesin tersebut cenderung untuk tenggelam lebih dalam, roda pencakar akan cenderung masuk lebih dalam dan enjin penggerak cenderung menerima beban yang semakin bertambah. Supaya mesin dapat terus bergerak maju, operator akan berusaha keras untuk mempertahankan supaya kedalaman kerja roda pencakar tetap dengan mencoba mengangkat bagian roda pencakar bertumpu pada skid. Hal ini merugikan operasi kerja alat penyiang bermotor tersebut. Secara konsep, untuk mengubah kedalaman kerja roda pencakar dapat dilakukan dengan mengurangi berat total mesin. Akan tetapi, hal ini masih belum efektif, karena penggantian mesin baru akan menambah berat total mesin juga. Solusi yang lain adalah dengan menambahkan pelampung. Pelampung dirancang untuk menambah daya apung (floatation) mesin yang mengurangi kedalaman kerja hingga batas kedalaman tertentu. Tingkat apung pelampung salah satunya ditentukan posisi penempatan pelampung. Posisi yang tepat akan memberikan daya apung mesin yang baik dan menambah keseimbangan kerja. Oleh kerena itu pelampung ditempatkan dikaki skid. Kelebihan pelampung ditempatkan dikaki skid yaitu tidak diperlukan penambahkan kaki khusus untuk pelampung, seperti yang ditunjukan pada Gambar 6. Pelampung ditempatkan di belakang selain 22

35 berfungsi memberi daya apung juga dapat berfungsi sebagai pembenam gulma. Gambar 6. Posisi pelampung di kaki skid. 4. Pengujian Pengujian dilakukan untuk menentukan kemampuan hasil desain yang telah dibuat. Hasil pengujian diharapkan dapat diperoleh hasil yang baik. Pengujian dilakukan di lahan sawah untuk mengetahui kinerja dari alat tersebut. Pada tahap pengujian yang perlu diukur adalah : a. Kapasitas lapang Kapasitas lapang ditentukan dengan mengukur waktu kerja, kecepatan maju rata-rata dan lebar kerja dari alat tersebut. Kapasitas lapang ada dua, yaitu kapasitas lapang teoritis dan kapasitas lapang efektif. Kapasitas lapang teoritis dihitung berdasarkan rumus : ( v Lp) KLT = (1) dimana : KLT = Kapasitas lapang teoritis (ha/jam), v = Kecepatan maju alat (m/detik). Lp = Lebar kerja (m) = Nilai konversi dari m 2 /detik ke ha/jam. 23

36 Kapasitas lapang efektif dihitung berdasarkan rumus : L KLE =... (2) WK dimana : KLE = Kapasitas lapang efektif (ha/jam), L = Luas lahan (ha), WK = Waktu kerja alat (jam). Dari kedua persamaan kapasitas lapang tersebut dapat diketahui besarnya efisiensi lapang (Eff) berdasarkan rumus : KLE Eff = 100%... (3) KLT b. Tingkat keberhasilan penyiangan Tingkat keberhasilan penyiangan dapat diketahui dengan cara membandingkan jumlah gulma yang tercabut dengan populasi gulma awal. untuk mempermudahkan perhitungan dibuat petak-petak contoh yang dapat mewakili keadaan yang sebenarnya. Taksiran tingkat keberhasilan penyiangan dapat dihitung dengan menggunakan rumus : Gb Gh = 100%... (4) Gp dimana : Gh = Persentase gulma yang tersiang Gb = Jumlah gulma tersiang Gp = Jumlah populasi gulma awal. 24

37 A. POROS UTAMA IV. ANALISIS TEKNIK Menurut Sularso dan K. Suga (1997), untuk menghitung besarnya diameter poros yang digunakan adalah dengan menentukan daya rencana Pd (kw) dengan rumus : Pd = fcp (kw)... (5) dimana : P = Daya nominal out put dari motor penggerak (kw). fc = Faktor koreksi diambil dari tabel faktor koreksi daya (Tabel 3). Tabel 3. Faktor-faktor koreksi daya yang akan ditransmisikan, fc Daya yang akan ditransmisikan fc Daya rata-rata yang diperlukan Daya maksimum yang diperlukan Daya normal Untuk menghitung momen puntir atau disebut juga momen rencana (T) dapat digunakan persamaan sebagai berikut: ( T /1000)(2πn1 / 60) Pd =... (6) 102 sehingga : T Pd n 5 = (kg.mm)... (7) 1 Besarnya tegangan geser yang diijinkan (τ a ) dapat dihitung dengan persamaan : τ = τ /( sf ) 1 sf 2...(8) a b dimana : τ a = Tegangan geser yang diijinkan (kg.mm) τ b = Kekuatan tarik (kg/mm 2 ) sf 1 = Faktor keamanan dari faktor kelelahan puntir, harga 5.6 bahan SF dan 6.0 bahan S-C 25

38 sf 2 = Faktor bentuk fisik karena pengaruh konsentrasi tegangan dan kekasaran permukaan dengan harga 1.3 sampai 3.0 Dari persamaan di atas diperoleh rumus untuk menghitung diameter poros yaitu : d s 5.1 = KtCbT τ a 1/ 3... (9) dimana : d s = Diameter poros (mm) K t C b = Faktor keamanan oleh pengaruh keadaan momen puntir, besarnya antara 1.0 sampai 3.0 = Faktor pengaruh beban adanya beban lentur oleh transmisi lain, besarnya antar 1.2 sampai 2.3, bila tidak ada, Cb = 0 Poros yang digunakan berfungsi untuk menyalurkan daya sebesar 3 hp dengan rpm maksimum enjin (n 1 ) Beban yang diterima oleh poros berupa beban puntir, maka : P = 3 hp x = 2.2 kw Daya rencana : Pd = 1 x 2.2 = 2.2 kw Momen puntir : T = 9.74 x 10 5 x = kg.mm Bahan poros adalah baja difinis dingin (S45C), alasan pemakaian adalah poros dapat dibubut, digerinda, dan perlakuan lainnya. Bahan ini memiliki kekuatan tarik σ b tegangan geser yang diijinkan : = 58 kg/mm 2, dengan Sf 1 = 6 dan Sf 2 = 2, maka τ a = 58 = 4. 8 kg/mm

39 Faktor koreksi untuk momen puntir adalah Kt =1.5 dan beban dikenakan secara halus dengan faktor lenturan adalah Cb = 2. Dari nilai-nilai tersebut diameter poros dapat ditentukan : d s = /3 = 10.7 mm Dari hasil perhitungan diameter poros minimal 10.7 mm. Dapat dibulatkan menjadi 12 mm sehingga cukup aman dalam penggunaannya. B. POROS RODA Dari putaran enjin n 1 = 6000 rpm direduksi oleh reduction gear yang memiliki efisiensi penyaluran tenaga sebesar 99 %. Perbandingan rasio reduksi yang dimiliki worm gear adalah 1 : 20, maka putaran poros roda penyiang setelah melalui pereduksian adalah : n 2 = n n 2 = 20 = 300 rpm (10) Daya yang disalurkan setelah melalui worm gear adalah : P 2 = 99 % x 2.2 (kw) = kw Daya rencana : Pd = 1 x = kw Momen puntir : T = 9.74 x x = kg.mm

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. BUDIDAYA TANAMAN PADI 1. Botani Tanaman Padi Tanaman padi (Oryza sativa L.) termasuk famili tumbuhan gramineae atau rumput-rumputan dengan batang tersusun dari beberapa ruas. Tanaman

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. TEMPAT DAN WAKTU PENELITIAN Penelitian dilaksanakan di Laboratorium Lapangan Teknik Mesin Budidaya Pertanian, Departemen Teknik Pertanian, Fakultas Teknologi Pertanian, Institut

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN A. MODIFIKASI ALAT PENYIANG Alat ini merupakan hasil modifikasi dari alat penyiang gulma yang terdahulu yang didesain oleh Lingga mukti prabowo dan Hirasman tanjung (2005), Perubahan

Lebih terperinci

IV. ANALISIS TEKNIK. Pd n. Besarnya tegangan geser yang diijinkan (τ a ) dapat dihitung dengan persamaan :

IV. ANALISIS TEKNIK. Pd n. Besarnya tegangan geser yang diijinkan (τ a ) dapat dihitung dengan persamaan : A. POROS UTAMA IV. ANALISIS TEKNIK Menurut Sularso dan K. Suga (1997), untuk menghitung besarnya diameter poros yang digunakan adalah dengan menentukan daya rencana Pd (kw) dengan rumus : Pd = fcp (kw)...

Lebih terperinci

UJI PERFORMANSI DAN KENYAMANAN MODIFIKASI ALAT PENGEBOR TANAH MEKANIS UNTUK MEMBUAT LUBANG TANAM ARIEF SALEH

UJI PERFORMANSI DAN KENYAMANAN MODIFIKASI ALAT PENGEBOR TANAH MEKANIS UNTUK MEMBUAT LUBANG TANAM ARIEF SALEH UJI PERFORMANSI DAN KENYAMANAN MODIFIKASI ALAT PENGEBOR TANAH MEKANIS UNTUK MEMBUAT LUBANG TANAM Oleh : ARIEF SALEH F14102120 2007 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR Arief Saleh. F14102120.

Lebih terperinci

Perbandingan Tingkat Keberhasilan Penyiangan Tanaman Padi Berdasaran Hasil Modifikasi Power Weeder Tipe MC1R

Perbandingan Tingkat Keberhasilan Penyiangan Tanaman Padi Berdasaran Hasil Modifikasi Power Weeder Tipe MC1R Perbandingan Tingkat Keberhasilan Penyiangan Tanaman Padi Berdasaran Hasil Modifikasi Power Weeder Tipe MC1R Sri Widiyawati 1, Ishardita Pambudi Tama 2, Sugiono 3, Ceria Farela Mada Tantrika 4 Jurusan

Lebih terperinci

BAB I PENDAHULUAN A. LATAR BELAKANG

BAB I PENDAHULUAN A. LATAR BELAKANG BAB I PENDAHULUAN A. LATAR BELAKANG Indonesia sebagai salah satu negara yang berbasis pertanian umumnya memiliki usaha tani keluarga skala kecil dengan petakan lahan yang sempit. Usaha pertanian ini terutama

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN A. DESAIN PENGGETAR MOLE PLOW Prototip mole plow mempunyai empat bagian utama, yaitu rangka three hitch point, beam, blade, dan mole. Rangka three hitch point merupakan struktur

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. TINJAUAN PUSTAKA Potato peeler atau alat pengupas kulit kentang adalah alat bantu yang digunakan untuk mengupas kulit kentang, alat pengupas kulit kentang yang

Lebih terperinci

BAB IV PROSES, HASIL, DAN PEMBAHASAN. panjang 750x lebar 750x tinggi 800 mm. mempermudah proses perbaikan mesin.

BAB IV PROSES, HASIL, DAN PEMBAHASAN. panjang 750x lebar 750x tinggi 800 mm. mempermudah proses perbaikan mesin. BAB IV PROSES, HASIL, DAN PEMBAHASAN A. Desain Mesin Desain konstruksi Mesin pengaduk reaktor biogas untuk mencampurkan material biogas dengan air sehingga dapat bercampur secara maksimal. Dalam proses

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN A. PENGUJIAN PENDAHULUAN Pengujian ini bertujuan untuk merancang tingkat slip yang terjadi pada traktor tangan dengan cara pembebanan engine brake traktor roda empat. Pengujian

Lebih terperinci

V. HASIL DAN PEMBAHASAN A. HASIL PENGUJIAN MODEL METERING DEVICE PUPUK

V. HASIL DAN PEMBAHASAN A. HASIL PENGUJIAN MODEL METERING DEVICE PUPUK V. HASIL DAN PEMBAHASAN A. HASIL PENGUJIAN MODEL METERING DEVICE PUPUK Pengujian penjatah pupuk berjalan dengan baik, tetapi untuk campuran pupuk Urea dengan KCl kurang lancar karena pupuk lengket pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Gambaran Umum Mesin pemarut adalah suatu alat yang digunakan untuk membantu atau serta mempermudah pekerjaan manusia dalam hal pemarutan. Sumber tenaga utama mesin pemarut adalah

Lebih terperinci

BAB III BAHAN DAN METODE

BAB III BAHAN DAN METODE A. BAHAN BAB III BAHAN DAN METODE Alat dan bahan yang digunakan dalam penelitian ini adalah sebagai berikut: a. Besi plat esser dengan ketebalan 2 mm, dan 5 mm, sebagai bahan konstruksi pendorong batang,

Lebih terperinci

PERENCANAAN MESIN PENGADUK UDANG NAGET OTOMATIS

PERENCANAAN MESIN PENGADUK UDANG NAGET OTOMATIS PERENCANAAN MESIN PENGADUK UDANG NAGET OTOMATIS (1) Sobar Ihsan, (2) Muhammad Marsudi (1)(2) Prodi Teknik Mesin, Prodi Teknik Industri, Fakultas Teknik, Universitas Islam Kalimantan MAB Jln. Adhyaksa (Kayutangi)

Lebih terperinci

PENDEKATAN RANCANGAN Kriteria Perancangan Rancangan Fungsional Fungsi Penyaluran Daya

PENDEKATAN RANCANGAN Kriteria Perancangan Rancangan Fungsional Fungsi Penyaluran Daya IV. PENDEKATAN RANCANGAN 4.1. Kriteria Perancangan Perancangan dynamometer tipe rem cakeram pada penelitian ini bertujuan untuk mengukur torsi dari poros out-put suatu penggerak mula dimana besaran ini

Lebih terperinci

TINJAUAN PUSTAKA. pada permulaan abad ke-19 traktor dengan motor uap mulai diperkenalkan,

TINJAUAN PUSTAKA. pada permulaan abad ke-19 traktor dengan motor uap mulai diperkenalkan, TINJAUAN PUSTAKA Sejarah Traktor Sejarah traktor dimulai pada abad ke-18, motor uap barhasil diciptakan dan pada permulaan abad ke-19 traktor dengan motor uap mulai diperkenalkan, sementara itu penelitian

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. WAKTU DAN TEMPAT PENELITIAN Kegiatan penelitian yang meliputi perancangan, pembuatan prototipe mesin penanam dan pemupuk jagung dilakukan di Laboratorium Teknik Mesin Budidaya

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III METODE PENELITIAN A Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Juli sampai dengan Desember 2010 Pembuatan prototipe hasil modifikasi dilaksanakan di Bengkel Departemen Teknik

Lebih terperinci

RANCANG BANGUN MESIN PENGHANCUR BONGGOL JAGUNG UNTUK CAMPURAN PAKAN TERNAK SAPI KAPASITAS PRODUKSI 30 kg/jam

RANCANG BANGUN MESIN PENGHANCUR BONGGOL JAGUNG UNTUK CAMPURAN PAKAN TERNAK SAPI KAPASITAS PRODUKSI 30 kg/jam RANCANG BANGUN MESIN PENGHANCUR BONGGOL JAGUNG UNTUK CAMPURAN PAKAN TERNAK SAPI KAPASITAS PRODUKSI 30 kg/jam LAPORAN AKHIR Diajukan untuk Memenuhi Syarat Menyelesaikan Pendidikan Diploma III Jurusan Teknik

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.1 Pembuatan Alat 3.1.1 Waktu dan Tempat Pembuatan alat dilaksanakan dari bulan Maret 2009 Mei 2009, bertempat di bengkel Laboratorium Alat dan Mesin Budidaya Pertanian, Leuwikopo,

Lebih terperinci

METODE PENELITIAN. Simulasi putaran/mekanisme pisau pemotong tebu (n:500 rpm, v:0.5 m/s, k: 8)

METODE PENELITIAN. Simulasi putaran/mekanisme pisau pemotong tebu (n:500 rpm, v:0.5 m/s, k: 8) III. METODE PENELITIAN A. Tempat dan Waktu Penelitian Penelitian dilaksanakan pada bulan Maret sampai Juli 2011 di Laboratorium Lapangan Departemen Teknik Mesin dan Biosistem. Pelaksanaan penelitian terbagi

Lebih terperinci

IV. ANALISA PERANCANGAN

IV. ANALISA PERANCANGAN IV. ANALISA PERANCANGAN Mesin penanam dan pemupuk jagung menggunakan traktor tangan sebagai sumber tenaga tarik dan diintegrasikan bersama dengan alat pembuat guludan dan alat pengolah tanah (rotary tiller).

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN 3.1. Tempat dan Waktu Penelitian Penelitian ini dilaksanakan pada bulan Maret 2011 hingga bulan November 2011. Desain, pembuatan model dan prototipe rangka unit penebar pupuk dilaksanakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Mesin Pan Granulator Mesin Pan Granulator adalah alat yang digunakan untuk membantu petani membuat pupuk berbentuk butiran butiran. Pupuk organik curah yang akan

Lebih terperinci

BAB IV PERHITUNGAN DAN PEMBAHASAN

BAB IV PERHITUNGAN DAN PEMBAHASAN BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1. Perencanaan Tabung Luar Dan Tabung Dalam a. Perencanaan Tabung Dalam Direncanakan tabung bagian dalam memiliki tebal stainles steel 0,6, perencenaan tabung pengupas

Lebih terperinci

Jumlah serasah di lapangan

Jumlah serasah di lapangan Lampiran 1 Perhitungan jumlah serasah di lapangan. Jumlah serasah di lapangan Dengan ketinggian serasah tebu di lapangan 40 cm, lebar alur 60 cm, bulk density 7.7 kg/m 3 dan kecepatan maju traktor 0.3

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Maret 2013

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Maret 2013 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Maret 2013 di Laboratorium Daya dan Alat Mesin Pertanian, Jurusan Teknik Pertanian,

Lebih terperinci

SKRIPSI DESAIN RODA BESI BERSIRIP GERAK DENGAN MEKANISME SIRIP BERPEGAS UNTUK LAHAN SAWAH DI CIANJUR. Oleh: GINA AGUSTINA F

SKRIPSI DESAIN RODA BESI BERSIRIP GERAK DENGAN MEKANISME SIRIP BERPEGAS UNTUK LAHAN SAWAH DI CIANJUR. Oleh: GINA AGUSTINA F SKRIPSI DESAIN RODA BESI BERSIRIP GERAK DENGAN MEKANISME SIRIP BERPEGAS UNTUK LAHAN SAWAH DI CIANJUR Oleh: GINA AGUSTINA F14102037 2006 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR DESAIN RODA

Lebih terperinci

BAB III PERANCANGAN SISTEM TRANSMISI RODA GIGI DAN PERHITUNGAN. penelitian lapangan, dimana tujuan dari penelitian ini adalah :

BAB III PERANCANGAN SISTEM TRANSMISI RODA GIGI DAN PERHITUNGAN. penelitian lapangan, dimana tujuan dari penelitian ini adalah : BAB III PERANCANGAN SISTEM TRANSMISI RODA GIGI DAN PERHITUNGAN 3. Metode Penelitian Metode penelitian yang dipakai dalam perancangan ini adalah metode penelitian lapangan, dimana tujuan dari penelitian

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini berlangsung dalam 2 (dua) tahap pelaksanaan. Tahap pertama

III. METODOLOGI PENELITIAN. Penelitian ini berlangsung dalam 2 (dua) tahap pelaksanaan. Tahap pertama 16 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian ini berlangsung dalam 2 (dua) tahap pelaksanaan. Tahap pertama adalah modifikasi alat yang dilaksanakan di Laboratorium Mekanisasi Pertanian

Lebih terperinci

POROS dengan BEBAN PUNTIR

POROS dengan BEBAN PUNTIR POROS dengan BEBAN PUNTIR jika diperkirakan akan terjadi pembebanan berupa lenturan, tarikan atau tekanan, misalnya jika sebuah sabuk, rantai atau roda gigi dipasangkan pada poros, maka kemungkinan adanya

Lebih terperinci

MESIN PERUNCING TUSUK SATE

MESIN PERUNCING TUSUK SATE MESIN PERUNCING TUSUK SATE NASKAH PUBLIKASI Disusun : SIGIT SAPUTRA NIM : D.00.06.0048 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA 013 MESIN PERUNCING TUSUK SATE Sigit Saputra,

Lebih terperinci

BAB VI POROS DAN PASAK

BAB VI POROS DAN PASAK BAB VI POROS DAN PASAK Poros merupakan salah satu bagian yang terpenting dari setiap mesin. Hampir semua mesin meneruskan tenaga bersamasama dengan putaran. Peranan utama dalam transmisi seperti itu dipegang

Lebih terperinci

Mesin Penyiang Padi Sawah Bermotor Power Weeder JP-02 / 20

Mesin Penyiang Padi Sawah Bermotor Power Weeder JP-02 / 20 Mesin Penyiang Padi Sawah Bermotor Power Weeder JP-02 / 20 Bacalah buku petunjuk sebelum anda menggunakan mesin penyiang bermotor (power weeder) BALAI BESAR PENGEMBANGAN MEKANISASI PERTANIAN BADAN PENELITIAN

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN 5.1. Pembuatan Prototipe 5.1.1. Modifikasi Rangka Utama Untuk mempermudah dan mempercepat waktu pembuatan, rangka pada prototipe-1 tetap digunakan dengan beberapa modifikasi. Rangka

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN A. HASIL RANCANGAN DAN KONSTRUKSI 1. Deskripsi Alat Gambar 16. Mesin Pemangkas Tanaman Jarak Pagar a. Sumber Tenaga Penggerak Sumber tenaga pada mesin pemangkas diklasifikasikan

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A.WAKTU DAN TEMPAT Penelitian ini dilaksanakan pada bulan Desember 2009 sampai dengan Juni 2010. Desain pembuatan prototipe, uji fungsional dan uji kinerja dilaksanakan di Bengkel

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perancangan Proses perancangan mesin peniris minyak pada kacang seperti terlihat pada gambar 3.1 berikut ini: Mulai Studi Literatur Gambar Sketsa

Lebih terperinci

ALAT PENYIANG GULMA SISTEM LANDAK BERMOTOR

ALAT PENYIANG GULMA SISTEM LANDAK BERMOTOR Jurnal Pengabdian Masyarakat J-DINAMIKA, Vol. 1, No. 1, Juni 2016, P-ISSN: 2503-1031, E-ISSN: 2503-1112 ALAT PENYIANG GULMA SISTEM LANDAK BERMOTOR Dwi Rahmawati 1, Suhardjono 2, Amal Bahariawan 3 1) 2)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. TRAKTOR TANGAN Traktor tangan (hand tractor) merupakan sumber penggerak dari implemen (peralatan) pertanian. Traktor tangan ini digerakkan oleh motor penggerak dengan daya yang

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. WAKTU DAN TEMPAT Penelitian akan dilaksanakan pada bulan Juli sampai dengan bulan Desember 2009 bertempat di Bengkel Teknik Mesin Budidaya Pertanian, Leuwikopo, Departemen

Lebih terperinci

IV. PENDEKATAN DESAIN A. KRITERIA DESAIN B. DESAIN FUNGSIONAL

IV. PENDEKATAN DESAIN A. KRITERIA DESAIN B. DESAIN FUNGSIONAL IV. PENDEKATAN DESAIN A. KRITERIA DESAIN Perancangan atau desain mesin pencacah serasah tebu ini dimaksudkan untuk mencacah serasah yang ada di lahan tebu yang dapat ditarik oleh traktor dengan daya 110-200

Lebih terperinci

4 PENDEKATAN RANCANGAN. Rancangan Fungsional

4 PENDEKATAN RANCANGAN. Rancangan Fungsional 25 4 PENDEKATAN RANCANGAN Rancangan Fungsional Analisis pendugaan torsi dan desain penjatah pupuk tipe edge-cell (prototipe-3) diawali dengan merancang komponen-komponen utamanya, antara lain: 1) hopper,

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN Gambar 14. HASIL DAN PEMBAHASAN Gambar mesin sortasi buah manggis hasil rancangan dapat dilihat dalam Bak penampung mutu super Bak penampung mutu 1 Unit pengolahan citra Mangkuk dan sistem transportasi

Lebih terperinci

PERENCANAAN MESIN BENDING HEAT EXCHANGER VERTICAL PIPA TEMBAGA 3/8 IN

PERENCANAAN MESIN BENDING HEAT EXCHANGER VERTICAL PIPA TEMBAGA 3/8 IN PERENCANAAN MESIN BENDING HEAT EXCHANGER VERTICAL PIPA TEMBAGA 3/8 IN Dani Prabowo Jurusan Teknik Mesin Fakultas Teknik Universitas Negeri Jakarta E-mail: daniprabowo022@gmail.com Abstrak Perencanaan ini

Lebih terperinci

BAB III PERANCANGAN Perencanaan Kapasitas Penghancuran. Diameter Gerinda (D3) Diameter Puli Motor (D1) Tebal Permukaan (t)

BAB III PERANCANGAN Perencanaan Kapasitas Penghancuran. Diameter Gerinda (D3) Diameter Puli Motor (D1) Tebal Permukaan (t) BAB III PERANCANGAN 3.1. Perencanaan Kapasitas Penghancuran Kapasitas Perencanaan : 100 kg/jam PutaranMotor : 1400 Rpm Diameter Gerinda (D3) : 200 mm Diameter Puli Motor (D1) : 50,8 mm Tebal Permukaan

Lebih terperinci

BAB III METODOLOGI PELAKSANAAN. penggerak belakang gokart adalah bengkel Teknik Mesin program Vokasi

BAB III METODOLOGI PELAKSANAAN. penggerak belakang gokart adalah bengkel Teknik Mesin program Vokasi BAB III METODOLOGI PELAKSANAAN 3.1. Tempat Pelaksanaan Tempat yang akan di gunakan untuk perakitan dan pembuatan sistem penggerak belakang gokart adalah bengkel Teknik Mesin program Vokasi Universitas

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian dilaksanakan di Laboratorium Teknik Mesin Budidaya Pertanian, Departemen Teknik Pertanian, Fakultas Teknologi Pertanian, Institut

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN 3.1. WAKTU DAN TEMPAT Kegiatan Penelitian ini dilaksanakan mulai bulan Juni hingga Desember 2011 dan dilaksanakan di laboratorium lapang Siswadhi Soepardjo (Leuwikopo), Departemen

Lebih terperinci

BAB III METODE PROYEK AKHIR. Motor dengan alamat jalan raya Candimas Natar. Waktu terselesainya pembuatan mesin

BAB III METODE PROYEK AKHIR. Motor dengan alamat jalan raya Candimas Natar. Waktu terselesainya pembuatan mesin BAB III METODE PROYEK AKHIR A. Waktu dan Tempat Tempat pembuatan dan perakitan mesin pemotong kerupuk ini di lakukan di Bengkel Kurnia Motor dengan alamat jalan raya Candimas Natar. Waktu terselesainya

Lebih terperinci

TUGAS MATA KULIAH PERANCANGAN ELEMEN MESIN

TUGAS MATA KULIAH PERANCANGAN ELEMEN MESIN TUGAS MATA KULIAH PERANCANGAN ELEMEN MESIN Dosen : Subiyono, MP MESIN PENGUPAS SERABUT KELAPA SEMI OTOMATIS DISUSUN OLEH : NAMA : FICKY FRISTIAR NIM : 10503241009 KELAS : P1 JURUSAN PENDIDIKAN TEKNIK MESIN

Lebih terperinci

BAB IV ANALISIS TEKNIK MESIN

BAB IV ANALISIS TEKNIK MESIN BAB IV ANALISIS TEKNIK MESIN A. ANALISIS PENGATUR KETINGGIAN Komponen pengatur ketinggian didesain dengan prinsip awal untuk mengatur ketinggian antara pisau pemotong terhadap permukaan tanah, sehingga

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN BAGIAN BAGIAN CONVEYOR

BAB IV ANALISA DAN PERHITUNGAN BAGIAN BAGIAN CONVEYOR BAB IV ANALISA DAN PERHITUNGAN BAGIAN BAGIAN CONVEYOR Dalam pabrik pengolahan CPO dengan kapasitas 60 ton/jam TBS sangat dibutuhkan peran bunch scrapper conveyor yang berfungsi sebagai pengangkut janjangan

Lebih terperinci

METODE PENELITIAN. Waktu dan Tempat

METODE PENELITIAN. Waktu dan Tempat METODE PENELITIAN Waktu dan Tempat Penelitian ini dilakukan pada bulan Nopember 2010 September 2011. Perancangan dan pembuatan prototipe serta pengujian mesin kepras tebu dilakukan di Laboratorium Teknik

Lebih terperinci

Laporan Tugas Akhir BAB IV MODIFIKASI

Laporan Tugas Akhir BAB IV MODIFIKASI BAB IV MODIFIKASI 4.1. Rancangan Mesin Sebelumnya Untuk melakukan modifikasi, terlebih dahulu dibutuhkan data-data dari perancangan sebelumnya. Data-data yang didapatkan dari perancangan sebelumnya adalah

Lebih terperinci

PERANCANGAN MESIN PENGUPAS KULIT KENTANG KAPASITAS 3 KG/PROSES

PERANCANGAN MESIN PENGUPAS KULIT KENTANG KAPASITAS 3 KG/PROSES PERANCANGAN MESIN PENGUPAS KULIT KENTANG KAPASITAS 3 KG/PROSES TARTONO 202030098 PROGRAM STUDI TEKNIK MESIN, FAKULTAS TEKNIK, UNIVERSITAS MUHAMMADIYAH YOGYAKARTA Kampus Terpadu UMY, Jl. Lingkar Selatan

Lebih terperinci

KINERJA DITCHER DENGAN PENGERUK TANAH UNTUK BUDIDAYA TEBU LAHAN KERING. Oleh : ARI SEMBODO F

KINERJA DITCHER DENGAN PENGERUK TANAH UNTUK BUDIDAYA TEBU LAHAN KERING. Oleh : ARI SEMBODO F KINERJA DITCHER DENGAN PENGERUK TANAH UNTUK BUDIDAYA TEBU LAHAN KERING Oleh : ARI SEMBODO F14101098 2006 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR KINERJA DITCHER DENGAN PENGERUK TANAH

Lebih terperinci

PERENCANAAN OVERHEAD TRAVELLING CRANE YANG DIPAKAI PADA PABRIK PELEBURAN BAJA DENGAN KAPASITAS ANGKAT CAIRAN 10 TON

PERENCANAAN OVERHEAD TRAVELLING CRANE YANG DIPAKAI PADA PABRIK PELEBURAN BAJA DENGAN KAPASITAS ANGKAT CAIRAN 10 TON UNIVERSITAS SUMATERA UTARA FAKULTAS TEKNIK DEPARTEMEN TEKNIK MESIN MEDAN TUGAS SARJANA MESIN PEMINDAH BAHAN PERENCANAAN OVERHEAD TRAVELLING CRANE YANG DIPAKAI PADA PABRIK PELEBURAN BAJA DENGAN KAPASITAS

Lebih terperinci

BAB III PERANCANGAN. = 280 mm = 50,8 mm. = 100 mm mm. = 400 gram gram

BAB III PERANCANGAN. = 280 mm = 50,8 mm. = 100 mm mm. = 400 gram gram BAB III PERANCANGAN 3.. Perencanaan Kapasitas Perajangan Kapasitas Perencanaan Putaran motor iameter piringan ( 3 ) iameter puli motor ( ) Tebal permukaan ( t ) Jumlah pisau pada piringan ( I ) iameter

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian pengelasan secara umum a. Pengelasan Menurut Harsono,1991 Pengelasan adalah ikatan metalurgi pada sambungan logam paduan yang dilakukan dalam keadaan lumer atau cair.

Lebih terperinci

MESIN PEMINDAH BAHAN PERANCANGAN HOISTING CRANE DENGAN KAPASITAS ANGKAT 5 TON PADA PABRIK PENGECORAN LOGAM

MESIN PEMINDAH BAHAN PERANCANGAN HOISTING CRANE DENGAN KAPASITAS ANGKAT 5 TON PADA PABRIK PENGECORAN LOGAM MESIN PEMINDAH BAHAN PERANCANGAN HOISTING CRANE DENGAN KAPASITAS ANGKAT 5 TON PADA PABRIK PENGECORAN LOGAM SKRIPSI Skripsi Yang Diajukan untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik KURNIAWAN

Lebih terperinci

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor BAB II DASAR TEORI 2.1 Konsep Perencanaan Sistem Transmisi Pada perancangan suatu kontruksi hendaknya mempunyai suatu konsep perencanaan. Untuk itu konsep perencanaan ini akan membahas dasar-dasar teori

Lebih terperinci

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut: BAB II DASAR TEORI 2.1 Daya Penggerak Secara umum daya diartikan sebagai suatu kemampuan yang dibutuhkan untuk melakukan sebuah kerja, yang dinyatakan dalam satuan Watt ataupun HP. Penentuan besar daya

Lebih terperinci

DISAIN PENGERUK TANAH PADA DITCHER UNTUK SALURAN DRAINASE PADA BUDIDAYA TEBU LAHAN KERING. Oleh: ALAM MUHARAM F

DISAIN PENGERUK TANAH PADA DITCHER UNTUK SALURAN DRAINASE PADA BUDIDAYA TEBU LAHAN KERING. Oleh: ALAM MUHARAM F DISAIN PENGERUK TANAH PADA DITCHER UNTUK SALURAN DRAINASE PADA BUDIDAYA TEBU LAHAN KERING Oleh: ALAM MUHARAM F14102005 2006 DEPARTEMEN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR

Lebih terperinci

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer BAB II DASAR TEORI 2.1 Konsep Perencanaan Konsep perencanaan komponen yang diperhitungkan sebagai berikut: a. Motor b. Reducer c. Daya d. Puli e. Sabuk V 2.2 Motor Motor adalah komponen dalam sebuah kontruksi

Lebih terperinci

EVALUASI KINERJA DAYA POROS MOTOR DIESEL BERBAHAN BAKAR MINYAK KELAPA MENGGUNAKAN WATER BRAKE DYNAMOMETER YANG SUDAH DIMODIFIKASI

EVALUASI KINERJA DAYA POROS MOTOR DIESEL BERBAHAN BAKAR MINYAK KELAPA MENGGUNAKAN WATER BRAKE DYNAMOMETER YANG SUDAH DIMODIFIKASI EVALUASI KINERJA DAYA POROS MOTOR DIESEL BERBAHAN BAKAR MINYAK KELAPA MENGGUNAKAN WATER BRAKE DYNAMOMETER YANG SUDAH DIMODIFIKASI Oleh : PRAMUDITYA AZIZ FATIHA F14053142 2009 DEPARTEMEN TEKNIK PERTANIAN

Lebih terperinci

IV. PENDEKATAN DESAIN

IV. PENDEKATAN DESAIN IV. PENDEKATAN DESAIN A. Kriteria Desain Alat pengupas kulit ari kacang tanah ini dirancang untuk memudahkan pengupasan kulit ari kacang tanah. Seperti yang telah diketahui sebelumnya bahwa proses pengupasan

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perancangan Berikut proses perancangan alat pencacah rumput gajah seperti terlihat pada diagram alir: Mulai Pengamatan dan Pengumpulan Perencanaan

Lebih terperinci

III. METODELOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Desember 2012 hingga Maret 2013.

III. METODELOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Desember 2012 hingga Maret 2013. 13 III. METODELOGI PENELITIAN A. Waktu dan Tempat Penelitian ini dilaksanakan pada bulan Desember 2012 hingga Maret 2013. Proses modifikasi dan pengujian alat pemipil jagung dilakukan di Laboratorium Daya,

Lebih terperinci

MODIFIKASI PROTOTIPE MESIN PEMANGKAS RUMPUT POTRUM MODEL BBE-01 MENJADI BBE-02 (BACK PACK BRUSH CUTTER ENGINE-02) SKRIPSI

MODIFIKASI PROTOTIPE MESIN PEMANGKAS RUMPUT POTRUM MODEL BBE-01 MENJADI BBE-02 (BACK PACK BRUSH CUTTER ENGINE-02) SKRIPSI MODIFIKASI PROTOTIPE MESIN PEMANGKAS RUMPUT POTRUM MODEL BBE-01 MENJADI BBE-02 (BACK PACK BRUSH CUTTER ENGINE-02) SKRIPSI Oleh: REZA PAHLEVI F141051251 2009 DEPARTEMEN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI

Lebih terperinci

BAB III. Metode Rancang Bangun

BAB III. Metode Rancang Bangun BAB III Metode Rancang Bangun 3.1 Diagram Alir Metode Rancang Bangun MULAI PENGUMPULAN DATA : DESAIN PEMILIHAN BAHAN PERHITUNGAN RANCANG BANGUN PROSES PERMESINAN (FABRIKASI) PERAKITAN PENGUJIAN ALAT HASIL

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Desember 2012 sampai dengan Maret

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Desember 2012 sampai dengan Maret 20 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Desember 2012 sampai dengan Maret 2013. Penelitian ini dilakukan dalam dua tahap, yaitu tahap pembuatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dibudidayakan. Padi termasuk dalam suku padi-padian (Poaceae) dan

BAB II TINJAUAN PUSTAKA. dibudidayakan. Padi termasuk dalam suku padi-padian (Poaceae) dan 5 BAB II TINJAUAN PUSTAKA 2.1 Padi Padi merupakan tanaman pertanian kuno yang sampai saat ini terus dibudidayakan. Padi termasuk dalam suku padi-padian (Poaceae) dan merupakan tanaman pangan yang dapat

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. Waktu dan Tempat Penelitian dilaksanakan pada bulan April hingga bulan September 2012 di Laboratorium Lapang Siswadhi Soepardjo, Departemen Teknik Mesin dan Biosistem, Fakultas

Lebih terperinci

Lampiran 1. Peta wilayah Kelurahan Situgede, Kec. Bogor Barat, Kota Bogor LOKASI PENGAMATAN

Lampiran 1. Peta wilayah Kelurahan Situgede, Kec. Bogor Barat, Kota Bogor LOKASI PENGAMATAN L A M P I R A N Lampiran 1. Peta wilayah Kelurahan Situgede, Kec. Bogor Barat, Kota Bogor LOKASI PENGAMATAN 50 Lampiran 2. Struktur Lahan Sawah Menurut Koga (1992), struktur lahan sawah terdiri dari: 1.

Lebih terperinci

UJI KINERJA ALAT KEPRAS TEBU TIPE PIRINGAN BERPUTAR (KEPRAS PINTAR) PROTOTIPE-2 RIKKY FATURROHIM F

UJI KINERJA ALAT KEPRAS TEBU TIPE PIRINGAN BERPUTAR (KEPRAS PINTAR) PROTOTIPE-2 RIKKY FATURROHIM F UJI KINERJA ALAT KEPRAS TEBU TIPE PIRINGAN BERPUTAR (KEPRAS PINTAR) PROTOTIPE-2 RIKKY FATURROHIM F14104084 2009 DEPARTEMEN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR vii UJI

Lebih terperinci

PENGUJIAN PROTOTIPE ALAT TEBANG TEBU MANUAL TIPE TAJAK SKRIPSI. Oleh: OKTAFIL ULYA F

PENGUJIAN PROTOTIPE ALAT TEBANG TEBU MANUAL TIPE TAJAK SKRIPSI. Oleh: OKTAFIL ULYA F PENGUJIAN PROTOTIPE ALAT TEBANG TEBU MANUAL TIPE TAJAK SKRIPSI Oleh: OKTAFIL ULYA F14054386 2009 DEPARTEMEN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR PENGUJIAN PROTOTIPE ALAT

Lebih terperinci

BAB II LANDASAN TEORI. khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat

BAB II LANDASAN TEORI. khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat BAB II LANDASAN TEORI.. Pengertian Umum Kebutuhan peralatan atau mesin yang menggunakan teknologi tepat guna khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat diperlukan,

Lebih terperinci

TRANSMISI RANTAI ROL

TRANSMISI RANTAI ROL TRANSMISI RANTAI ROL Penggunaan: transmisi sabuk > jarak poros > transmisi roda gigi Rantai mengait pada gigi sproket dan meneruskan daya tanpa slip perbandingan putaran tetap Keuntungan: Mampu meneruskan

Lebih terperinci

PENDEKATAN DESAIN Kriteria Desain dan Gambaran Umum Proses Pencacahan

PENDEKATAN DESAIN Kriteria Desain dan Gambaran Umum Proses Pencacahan PENDEKATAN DESAIN Kriteria Desain dan Gambaran Umum Proses Pencacahan Mengingat lahan tebu yang cukup luas kegiatan pencacahan serasah tebu hanya bisa dilakukan dengan sistem mekanisasi. Mesin pencacah

Lebih terperinci

HAK CIPTA DILINDUNGI UNDANG-UNDANG [1] Tidak diperkenankan mengumumkan, memublikasikan, memperbanyak sebagian atau seluruh karya ini

HAK CIPTA DILINDUNGI UNDANG-UNDANG [1] Tidak diperkenankan mengumumkan, memublikasikan, memperbanyak sebagian atau seluruh karya ini BAB IV HASIL DAN PEMBAHASAN 4.1 Analisis Teknik 4.1.1. Kebutuhan Daya Penggerak Kebutuhan daya penggerak dihitung untuk mengetahui terpenuhinya daya yang dibutuhkan oleh mesin dengan daya aktual pada motor

Lebih terperinci

II. TINJAUAN PUSTAKA. vegetasinya termasuk rumput-rumputan, berakar serabut, batang monokotil, daun

II. TINJAUAN PUSTAKA. vegetasinya termasuk rumput-rumputan, berakar serabut, batang monokotil, daun II. TINJAUAN PUSTAKA 2.1 Tanaman Padi Tanaman padi merupakan tanaman tropis, secara morfologi bentuk vegetasinya termasuk rumput-rumputan, berakar serabut, batang monokotil, daun berbentuk pita dan berbunga

Lebih terperinci

PERANCANGAN ULANG DAN PEMBUATAN ALAT PENEKUK PIPA Perancangan Pada Bagian Statis (Rangka, Las, Baut dan Mur)

PERANCANGAN ULANG DAN PEMBUATAN ALAT PENEKUK PIPA Perancangan Pada Bagian Statis (Rangka, Las, Baut dan Mur) PERANCANGAN ULANG DAN PEMBUATAN ALAT PENEKUK PIPA Perancangan Pada Bagian Statis (Rangka, Las, Baut dan Mur) LAPORAN PROYEK AKHIR Oleh : PUPUT INDRA SATRIA NIM 011903101137 PROGRAM STUDI DIPLOMA III TEKNIK

Lebih terperinci

KEKUATAN SIRIP BERPEGAS DENGAN MEKANISME POROS PUNTIR OLEH PEMBEBANAN STATIS. Oleh : SLAMET EKA DANNY PRIYADI F

KEKUATAN SIRIP BERPEGAS DENGAN MEKANISME POROS PUNTIR OLEH PEMBEBANAN STATIS. Oleh : SLAMET EKA DANNY PRIYADI F KEKUATAN SIRIP BERPEGAS DENGAN MEKANISME POROS PUNTIR OLEH PEMBEBANAN STATIS Oleh : SLAMET EKA DANNY PRIYADI F14103101 DEPARTEMEN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR

Lebih terperinci

BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA

BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA 3.1 Perancangan awal Perencanaan yang paling penting dalam suatu tahap pembuatan hovercraft adalah perancangan awal. Disini dipilih tipe penggerak tunggal untuk

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Hasil Kondisi Umum Percobaan ini dilakukan mulai bulan Oktober 2007 hingga Februari 2008. Selama berlangsungnya percobaan, curah hujan berkisar antara 236 mm sampai dengan 377 mm.

Lebih terperinci

MODIFIKASI DAN UJI PERFORMANSI MEKANISME ALAT PENGUPAS KULIT ARI KACANG TANAH ( Arachis hypogaea L) SEMI MEKANIS TIPE BELT

MODIFIKASI DAN UJI PERFORMANSI MEKANISME ALAT PENGUPAS KULIT ARI KACANG TANAH ( Arachis hypogaea L) SEMI MEKANIS TIPE BELT MODIFIKASI DAN UJI PERFORMANSI MEKANISME ALAT PENGUPAS KULIT ARI KACANG TANAH ( Arachis hypogaea L) SEMI MEKANIS TIPE BELT Oleh : SUPRIYATNO F141 02 105 DEPARTEMEN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN

Lebih terperinci

RANCANG BANGUN MESIN PEMARUT KELAPA SKALA RUMAH TANGGA BERUKURAN 1 KG PER WAKTU PARUT 9 MENIT DENGAN MENGGUNAKAN MOTOR LISTRIK 100 WATT

RANCANG BANGUN MESIN PEMARUT KELAPA SKALA RUMAH TANGGA BERUKURAN 1 KG PER WAKTU PARUT 9 MENIT DENGAN MENGGUNAKAN MOTOR LISTRIK 100 WATT RANCANG BANGUN MESIN PEMARUT KELAPA SKALA RUMAH TANGGA BERUKURAN 1 KG PER WAKTU PARUT 9 MENIT DENGAN MENGGUNAKAN MOTOR LISTRIK 100 WATT Joko Hardono Jurusan Teknik Mesin Universitas Muhammadiyah Tangerang

Lebih terperinci

SISTEM MEKANIK MESIN SORTASI MANGGIS

SISTEM MEKANIK MESIN SORTASI MANGGIS SISTEM MEKANIK MESIN SORTASI MANGGIS Perancangan dan pembuatan mekanik mesin sortasi manggis telah selesai dilakukan. Mesin sortasi manggis ini terdiri dari rangka mesin, unit penggerak, unit pengangkut,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. Perencanaan mesin adalah proses atau usaha yang dilakukan tiap

BAB I PENDAHULUAN. 1.1 Latar Belakang. Perencanaan mesin adalah proses atau usaha yang dilakukan tiap BAB I PENDAHULUAN 1.1 Latar Belakang Perencanaan mesin adalah proses atau usaha yang dilakukan tiap individu atau sekelompok manusia guna memperoleh suatu alat yang bermanfaat bagi kemajuan manusia dan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan September 2016 s.d. Maret 2017 di Bank Sampah Tasikmalaya, Desa Cikunir Kecamatan Singaparna, Kabupaten

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Konstruksi Mesin Secara keseluruhan mesin kepras tebu tipe rotari terdiri dari beberapa bagian utama yaitu bagian rangka utama, bagian coulter, unit pisau dan transmisi daya (Gambar

Lebih terperinci

BAB II TINJAUAN PUSTAKA. digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini

BAB II TINJAUAN PUSTAKA. digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini BAB II TINJAUAN PUSTAKA A. Definisi Alat Pencacah plastik Alat pencacah plastik polipropelen ( PP ) merupakan suatu alat yang digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini memiliki

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Flowchart Perencanaan Pembuatan Mesin Pemotong Umbi Proses Perancangan mesin pemotong umbi seperti yang terlihat pada gambar 3.1 berikut ini: Mulai mm Studi Literatur

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli sampai dengan Oktober 2013.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli sampai dengan Oktober 2013. III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Juli sampai dengan Oktober 2013. Penelitian ini dilakukan dua tahap, yaitu tahap pembuatan alat yang dilaksanakan

Lebih terperinci

Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m)

Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m) LAMPIRAN 74 75 Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m) : 15,4 kg Diameter silinder pencacah (D) : 37,5cm = 0,375 m Percepatan gravitasi (g) : 9,81 m/s 2 Kecepatan putar

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN 14 METODOLOGI PENELITIAN Tahapan Penelitian Tahap-tahap penelitian terdiri dari : (1) proses desain, () konstruksi alat, (3) analisis desain dan (4) pengujian alat. Adapun skema tahap penelitian seperti

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Mesin Gerinda Batu Akik Sebagian pengrajin batu akik menggunakan mesin gerinda untuk membentuk batu akik dengan sistem manual. Batu gerinda diputar dengan menggunakan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN 36 HASIL DAN PEMBAHASAN Dasar Pemilihan Bucket Elevator sebagai Mesin Pemindah Bahan Dasar pemilihan mesin pemindah bahan secara umum selain didasarkan pada sifat-sifat bahan yang berpengaruh terhadap

Lebih terperinci