Bab 2 Bahan Bakar dan Prestasi Mesin

Ukuran: px
Mulai penontonan dengan halaman:

Download "Bab 2 Bahan Bakar dan Prestasi Mesin"

Transkripsi

1 Bab 2 Bahan Bakar dan Prestasi Mesin 2.1 Sifat Fisik dan Kimia Bahan Bakar Cair Bahan bakar cair seperti minyak tungku atau furnace oil dan LSHS (low sulphur heavy stock) secara umum dimanfaatkan dalam penggunaan industri maupun otomotif. Berbagai penjelasan mengenai sifat bahan bakar cair diberikan di bawah ini Densitas Densitas didefinisikan sebagai perbandingan massa bahan bakar terhadap volum bahan bakar pada suhu acuan 15 C. Densitas diukur dengan suatu alat yang disebut hidrometer. Pengetahuan mengenai densitas ini berguna untuk penghitungan dan pengkajian kuantitatif laju pemakaian bahan bakar dan efisiensi termal yang terjadi selama proses pembakaran. Satuan densitas adalah kg/m Specific Gravity Didefinisikan sebagai perbandingan berat dari sejumlah volum minyak bakar terhadap berat air untuk volum yang sama pada suhu tertentu. Densitas bahan bakar, relatif terhadap air, disebut pemakaian bahan bakar spesifik. Gravitasi spesifik air ditentukan sama dengan 1 (satu). Karena gravitasi spesifik adalah perbandingan, maka tidak memiliki satuan. Pengukuran gravitasi spesifik biasanya dilakukan dengan hidrometer. Gravitasi spesifik digunakan dalam penghitungan yang melibatkan berat dan volum. Gravitasi spesifik untuk berbagai bahan bakar minyak diberikan dalam tabel 2.1. Tabel 2.1 Gravitasi Spesifik Berbagai Bahan Bakar Minyak [1] Bahan Bakar Minyak Gravitasi Spesifik L.D.O (minyak diesel ringan) 0,85 0,87 Furnace Oil/Minyak Tungku 0,89 0,95 L.S.H.S. (Low Sulphur Heavy Stock) 0,88 0,98 5

2 2.1.3 Viskositas Viskositas suatu fluida merupakan ukuran resistansi bahan terhadap aliran. Viskositas tergantung pada suhu dan berkurang dengan naiknya suhu. Viskositas diukur dalam satuan Stokes/Centistokes. Kadang-kadang viskositas juga diukur dalam Engler, Saybolt atau Redwood. Tiap jenis minyak bakar memiliki hubungan suhu viskositas tersendiri. Pengukuran viskositas dilakukan dengan suatu alat yang disebut viskometer. Viskositas merupakan sifat yang sangat penting dalam penyimpanan dan penggunaan bahan bakar minyak. Viskositas mempengaruhi derajat pemanasan awal yang diperlukan untuk handling, penyimpanan, dan atomisasi yang memuaskan. Jika minyak terlalu kental, maka akan menyulitkan dalam pemompaan, sulit untuk penyalaan, dan sulit dialirkan. Atomisasi yang kurang sempurna akan mengakibatkan terjadinya pembentukan endapan karbon pada ujung penyala atau pada dinding-dinding. Oleh karena itu pemanasan awal dapat menjadi hal yang penting untuk atomisasi yang tepat Titik Nyala Titik nyala suatu bahan bakar adalah suhu terendah dimana bahan bakar dapat dipanaskan sehingga uap mengeluarkan nyala sebentar bila dilewatkan suatu nyala api. Titik nyala untuk minyak tungku ( furnace oil) adalah 66 o C Titik awan dan Titik tuang Titik awan adalah temperatur pada saat bahan bakar mulai tampak "berawan" (cloudy). Hal ini timbul karena munculnya kristal-kristal (padatan) di dalam bahan bakar. Meski bahan bakar masih bisa mengalir pada titik ini, keberadaan kristal di dalam bahan bakar bisa mempengaruhi kelancaran aliran bahan bakar di dalam filter, pompa, dan injektor. Sedangkan titik tuang adalah temperatur terendah yang masih memungkinkan terjadinya aliran bahan bakar; di bawah titik tuang bahan bakar tidak lagi bisa mengalir karena terbentuknya kristal atau gel yang menyumbat aliran bahan bakar. Dilihat dari definisinya, titik awan terjadi pada temperatur yang lebih tinggi dibandingkan dengan titik tuang. Pada umumnya permasalahan pada aliran bahan bakar terjadi pada 6

3 temperatur diantara titik awan dan titik tuang; pada saat keberadaan kristal mulai mengganggu proses filtrasi bahan bakar. Oleh karena itu, digunakan metode pengukuran yang lain untuk mengukur performansi bahan bakar pada temperatur rendah, yakni Cold Filter Plugging Point (CFPP) di negara-negara Eropa (standar EN 116) dan Low-Temperature Flow Test (LTFT) di Amerika Utara (standar ASTM D4539) [2]. Pada umumnya, titik awan dan titik tuang biodiesel lebih tinggi dibandingkan dengan solar. Hal ini bisa menimbulkan masalah pada penggunaan biodiesel, terutama, di negara-negara yang mengalami musim dingin. Untuk mengatasi hal ini, biasanya ditambahkan aditif tertentu pada biodiesel untuk mencegah aglomerasi kristal-kristal yang terbentuk dalam biodiesel pada temperatur rendah. Selain menggunakan aditif, bisa juga dilakukan pencampuran antara biodiesel dan solar. Pencampuran (blending) antara biodiesel dan solar terbukti dapat menurunkan titik awan dan titik tuang bahan bakar [3]. Teknik lain yang bisa digunakan untuk menurunkan cloud dan titik tuang bahan bakar adalah dengan melakukan "winterization" [4]. Pada metode ini, dilakukan pendinginan pada bahan bakar hingga terbentuk kristal-kristal yang selanjutnya disaring dan dipisahkan dari bahan bakar. Proses kristalisasi parsial ini terjadi karena asam lemak tak jenuh memiliki titik beku yang lebih rendah dibandingkan dengan asam lemak jenuh. Maka proses winterization sejatinya merupakan proses pengurangan asam lemak jenuh pada biodiesel. Di sisi lain, asam lemak jenuh berkaitan dengan angka setana. Maka proses winterization bisa menurunkan angka setana bahan bakar Panas Jenis Panas jenis adalah jumlah energi dalam kkal yang diperlukan untuk menaikan suhu 1 kg minyak sebesar 1 o C. Satuan panas jenis adalah kkal/kg o C. Besarnya bervariasi mulai dari 0,22 hingga 0,28 tergantung pada gravitasi spesifik minyak. Panas jenis menentukan berapa banyak uap atau energi listrik yang digunakan untuk memanaskan minyak ke suhu yang dikehendaki. Minyak ringan memiliki panas jenis yang rendah, sedangkan minyak yang lebih berat memiliki panas jenis yang lebih tinggi. 7

4 2.1.7 Nilai Kalor Nilai kalor merupakan ukuran panas atau energi yang dihasilkan., dan diukur sebagai nilai kalor kotor (gross calorific value) atau nilai kalor netto (nett calorific value). Perbedaannya ditentukan oleh panas laten kondensasi dari uap air yang dihasilkan selama proses pembakaran. Nilai gross calorific value (GCV) mengasumsikan seluruh uap yang dihasilkan selama proses pembakaran sepenuhnya terembunkan atau terkondensasikan. Nilai kalor netto (NCV) mengasumsikan air yang keluar dengan produk pengembunan tidak seluruhnya terembunkan. Bahan bakar harus dibandingkan berdasarkan nilai kalor netto. Nilai kalor batubara bervariasi tergantung pada kadar abu, kadar air dan jenis batu baranya sementara nilai kalor bahan bakar minyak lebih konsisten. GCV untuk beberapa jenis bahan bakar cair yang umum digunakan terlihat dibawah ini: Tabel 2.2 Nilai Kalor Kotor (GCV) untuk Beberapa Bahan Bakar Minyak [4] Bahan Bakar Minyak Gross Caloric Value (kkal/kg) Minyak tanah Minyak diesel L.D.O Minyak tungku LSHS Sulfur Jumlah sulfur dalam bahan bakar minyak sangat tergantung pada sumber minyak mentah dan pada proses penyulingannya. Kandungan normal sulfur untuk residu bahan bakar minyak (minyak furnace) berada pada 2-4%. Kandungan sulfur untuk berbagai bahan bakar minyak ditunjukkan pada tabel

5 Tabel 2.3. Persentase Sulfur untuk Berbagai Bahan Bakar Minyak [1] Bahan Bakar Minyak Persen Sulfur Minyak tanah 0,05-0,2 Minyak diesel 0,05 0,25 L.D.O. 0,5 1,8 Minyak furnace 2,0 4,0 L.S.H.S. <0,5 Kerugian utama dari adanya sulfur adalah resiko korosi oleh asam sulfat yang terbentuk selama dan sesudah pembakaran, dan pengembunan di cerobong asap, pemanas awal udara, dan economizer Kadar Abu Kadar abu erat kaitannya dengan bahan inorganik atau garam dalam bahan bakar minyak. Kadar abu pada distilat bahan bakar diabaikan. Residu bahan bakar memiliki kadar abu yang tinggi. Garam-garam tersebut dapat ditemukan dalam bentuk senyawa sodium, vanadium, kalsium, magnesium, silikon, besi, alumunium, nikel, dan lain sebagainya. Umumnya, kadar abu berada pada kisaran 0,03 0,07%. Abu yang berlebihan dalam bahan bakar cair dapat menyebabkan pengendapan kotoran pada peralatan pembakaran. Abu memiliki pengaruh erosi pada ujung burner, menyebabkan kerusakan pada refraktori pada suhu tinggi dapat meningkatkan korosi suhu tinggi dan penyumbatan peralatan Residu Karbon Residu karbon memberikan kecenderungan pengendapan residu padat karbon pada permukaan panas, seperti pada pembakaran atau penyemprotan, bila kandungan yang volatil menguap. Residu minyak mengandung residu karbon 1% atau lebih Kadar Air Kadar air minyak tungku/furnace pada saat pemasokan umumnya sangat rendah sebab produk disuling dalam kondisi panas. Batas maksimum 1% 9

6 ditentukan sebagai standar. Air dapat berada dalam bentuk bebas atau emulsi dan dapat menyebabkan kerusakan di bagian dalam permukaan tungku selama pembakaran terutama jika mengandung garam terlarut. Air juga dapat menyebabkan percikan nyala api di ujung burner, yang dapat mematikan nyala api, menurunkan suhu nyala api atau memperlambat penyalaan Bilangan Setana Motor diesel menggunakan bahan bakar yang dapat terbakar dengan sendirinya ketika diinjeksikan ke dalam ruang bakar dengan udara yang bertekanan tinggi. Kualitas penyalaan dari bahan bakar motor diesel dinyatakan dengan bilangan cetana (cetane number). Bilangan cetana merupakan suatu indeks yang umum dipergunakan untuk menunjukkan kualitas bahan bakar motor diesel. Cetana normal (C 16 H 34 ) dan α- methyl-naphtalene (C 10 H 7 CH 3 ) digunakan sebagai bahan bakar standar pengukur. C 16 H 34 adalah bahan bakar dengan persiapan pembakaran yang pendek dan memiliki bilangan cetana 100, sedangkan α-methyl-naphtalene mempunyai periode persiapan pembakaran yang panjang (bilangan cetana 0) sehingga tidak baik digunakan sebagai bahan bakar motor diesel. Untuk menentukan bilangan cetana dari suatu jenis bahan bakar motor diesel, digunakan mesin CFR (Coordinating Fuel Research Engine). CFR merupakan mesin yang perbandingan kompresinya dapat diubah ubah. Bahan bakar yang ingin diketahui bilangan cetananya digunakan sebagai bahan bakar CFR. Kemudian perbandingan kompresi dari CFR ini diatur sehingga diperoleh periode persiapan pembakaran sebesar 13 o sudut engkol. Setelah itu, dengan kondisi operasi yang sama, bahan bakar diganti dengan bahan bakar campuran dari C 16 H 34 dengan α-methyl-naphtalene. Perbandingan campuran dari bahan bakar ini diatur sehingga diperoleh periode persiapan pembakaran sebesar 13 o sudut engkol. Presentase volume C 16 H 34 dalam campuran bahan bakar tersebut menunjukkan besarnya bilangan cetana bahan bakar yang diuji. Bilangan cetana bahan bakar motor diesel putaran tinggi berkisar antara 40 sampai

7 Penyimpanan dan Stabilitas Biodiesel bisa mengalami degradasi apabila disimpan dalam waktu yang lama dalam kondisi tertentu. Degradasi biodiesel pada umumnya disebabkan oleh proses oksidasi. Beberapa faktor yang mempengaruhi degradasi biodiesel antara lain keberadaan asam lemak tak jenuh, kondisi penyimpanan (tertutup/terbuka, temperatur, dsb.), unsur logam, dan peroksida. Selain itu, diketahui bahwa temperatur tinggi (40 o C) yang disertai dengan keberadaan udara terbuka menyebabkan degradasi yang sangat signifikan pada penyimpanan biodiesel hingga 50 minggu [5]. Konsentrasi asam meningkat pada biodiesel yang telah terdegradasi; hal ini disebabkan oleh putusnya rantai asam lemak metil ester menjadi asam-asam lemak. Mereka menemukan bahwa faktor keberadaan air tidak terlalu signifikan mempengaruhi proses degradasi. Namun demikian, keberadaan air (yang terpisah dari biodiesel) bisa membantu pertumbuhan mikroorganisme [3]. Temperatur tinggi (40 o C) yang tidak disertai dengan keberadaan udara terbuka; dan sebaliknya udara terbuka tanpa keberadaan temperatur tinggi, tidak menyebabkan degradasi yang signifikan pada biodiesel yang disimpan dalam waktu lama (hingga 50 minggu). Kontak antara biodiesel dengan logam dan elastomer selama proses penyimpanan juga bisa mempengaruhi stabilitas biodiesel [3]. Ditemukan bahwa logam tembaga (copper) memiliki efek katalis oksidasi yang paling kuat untuk biodiesel [4]. Oksidasi pada biodiesel dapat menyebabkan terbentuknya suatu hidroperoksida yang selanjutnya terpolimerisasi dan membentuk gum, dimana hal ini dapat menyebabkan penyumbatan pada filter atau saluran bahan bakar mesin diesel [3]. Standard Eropa, EN 14214, mengatur uji stabilitas biodiesel terhadap oksidasi, yakni dengan cara memanaskan biodiesel pada 110 o C selama tak kurang dari 6 jam [2]. Harga viskositas biodiesel juga bisa dijadikan sebagai ukuran terjaditidaknya proses degradasi pada biodiesel. Dalam penelitian sebelumnya ditemukan bahwa biodiesel minyak Castor dapat mengalami degradasi, dicirikan dengan kenaikan viskositas yang sangat tinggi, bila dikenai temperatur yang sangat tinggi (210 o C) dalam jangka waktu lebih dari 10 jam. Degradasi ini terjadi diduga karena terjadinya proses oksidasi dan polimerisasi pada biodiesel [6]. 11

8 Bilangan Iodine Bilangan iodine pada biodiesel menunjukkan tingkat ketidakjenuhan senyawa penyusun biodiesel. Di satu sisi, keberadaan senyawa lemak tak jenuh meningkatkan performansi biodiesel pada temperatur rendah, karena senyawa ini memiliki titik leleh (melting point) yang lebih rendah [2] sehingga berkorelasi pada cloud dan titik tuang yang juga rendah. Namun di sisi lain, banyaknya senyawa lemak tak jenuh di dalam biodiesel memudahkan senyawa tersebut bereaksi dengan oksigen di atmosfer dan bisa terpolimerisasi membentuk material serupa plastik. Oleh karena itu, terdapat batasan maksimal harga angka iodine yang diperbolehkan untuk biodiesel, yakni 115 berdasarkan standar Eropa (EN 14214). Di samping itu, konsentrasi asam linolenic dan asam yang memiliki 4 ikatan ganda masing-masing tidak boleh melebihi 12% dan 1% [4]. Sebuah penelitian yang dilakukan oleh Mercedez-Benz menunjukkan bahwa biodiesel dengan angka iodine lebih dari 115 tidak bisa digunakan pada kendaraan diesel karena menyebabkan deposit karbon yang berlebihan [3]. Meski demikian, terdapat studi lain yang menghasilkan kesimpulan bahwa angka iodine tidak berkorelasi secara signifikan terhadap kebersihan dan pembentukan deposit di dalam ruang bakar [3] Efek Kelumasan Sifat kelumasan yang inheren pada solar menjadi berkurang manakala dilakukan desulfurisasi (pengurangan kandungan solar) akibat tuntutan standard solar di berbagai negara. Berkurangnya sifat kelumasan bahan bakar bisa menimbulkan permasalahan pada sistem penyaluran bahan bakar, seperti pompa bahan bakar dan injektor. Meski berkurangnya sifat kelumasan tersebut muncul akibat proses desulfurisasi, terdapat hasil penelitian yang menunjukkan bahwa berkurangnya sifat kelumasan tersebut bukan akibat berkurangnya konsentrasi sulfur itu sendiri, namun karena berkurangnya komponen-komponen non-polar yang terikut dalam proses desulfurisasi [2]. Dari analisis efek senyawa penyusun biodiesel terhadap sifat kelumasan bahan bakar, disimpulkan bahwa ester metil dan monodigliserida adalah dua komponen yang paling berpengaruh terhadap sifat kelumasan biodiesel secara 12

9 signifikan [7]. Karena memiliki sifat kelumasan yang baik, biodiesel dapat digunakan sebagai aditif untuk meningkatkan sifat kelumasan solar berkadar sulfur rendah (low-sulfur petrodiesel fuel). Penambahan 1-2% biodiesel bisa mengembalikan sifat kelumasan solar berkadar sulfur rendah ke tingkat semula (yakni setara dengan solar berkadar sulfur normal) [2]. Penggunaan biodiesel sebagai aditif kelumasan pada solar berkadar sulfur rendah memiliki keuntungan dibandingkan dengan aditif lain, karena biodiesel sekaligus merupakan bahan bakar mesin diesel. 2.2 Pengaruh Sifat Bahan Bakar terhadap Kelambatan Penyalaan Kelambatan penyalaan pada mesin diesel dinyatakan sebagai selang waktu (atau derajat poros engkol) antara mulainya penyemprotan bahan bakar dan mulai terjadinya pembakaran. Kelambatan penyalaan bergantung pada beberapa proses fisis dan kimiawi. Proses fisis yang mampu mempengaruhi panjang pendeknya kelambatan penyalaan meliputi atomisasi bahan bakar cair, penguapan droplet bahan bakar, dan pencampuran uap bahan bakar dengan udara. Sementara proses kimiawinya lebih dikarenakan karakter bahan bakar, dalam hal ini yang paling dominan adalah kualitas penyalaan bahan bakar yang ditentukan oleh bilangan cetana bahan bakar tersebut. Bahan bakar dengan bilangan cetana lebih rendah akan memiliki ignition delay yang lebih panjang. Akibatnya apabila gnition delay terlalu panjang dapat menimbulkan gejala knocking. Hal ini terjadi karena terlalu banyak bahan bakar yang ada dalam silinder sebelum penyalaan terjadi, sehingga saat terjadi penyalaan, bahan bakar akan terbakar secara simultan, menghasilkan kecepatan pembakaran yang tinggi dengan kenaikan tekanan yang tinggi pula. Untuk kasus dimana nilai bilangan cetana yang terlalu rendah, penyalaan dapat terjadi sangat terlambat, yaitu pada langkah ekspansi, sehingga proses pembakaran akan terquench, menghasilkan pembakaran yang tidak sempurna, menurunkan daya keluaran dan efisiensi konversi energi bahan bakar. Untuk bahan bakar dengan bilangan cetana yang tinggi, dengan ignition delay yang lebih pendek, penyalaan terjadi sebelum seluruh bahan bakar disemprotkan. Kenaikan tekanan ditentukan oleh laju penyemprotan bahan bakar 13

10 dan pencampuran udara-bahan bakar, yang menghasilkan operasi mesin lebih halus. Namun bila bilangan cetana terlalu tinggi, dapat menyebabkan penyalaan terjadi sebelum pencampuran udara dan bahan bakar memadai, sehingga emisi akan meningkat. Aditif dapat ditambahkan untuk meningkatkan kualitas penyalaan. Aditif untuk mempercepat penyalaan, atau dengan kata lain, menaikkan bilangan cetane antara lain adalah peroksida organik, nitrat, nitrit, dan berbagai macam senyawa sulfur. Yang paling popular secara komersial adalah alkyl nitrat (isopropil nitrat dan amil nitrat primer). Biasanya penambahan aditif tersebut sebanyak 5% volume akan meningkatkan bilangan cetana sampai 10 angka, meski keefektifannya juga bergantung terhadap bahan bakar dasarnya. Pada mesin yang telah benar benar berada pada kondisi kerja, karakter fisis bahan bakar, seperti viskositas dan volatilitas, tidak akan berperan secara signifikan. Demikian juga untuk mesin yang sudah berada pada temperatur kerjanya, variasi atomisasi dan spray penetration juga tidak memberikan perubahan kelambatan penyalaan secara signifikan. 2.3 Parameter Prestasi [8] Pengukuran prestasi mesin mengindikasikan daya maksimum yang mampu dihasilkan suatu produk dalam batas batas operasi yang ditetapkan oleh pabrikan, dimana batas tersebut ditentukan dalam rangka menjamin tingkat reliabilitas, durabilitas, dan satisfactory economy keseluruhan kinerja sistem. Torsi dan kecepatan maksimum yang dapat dicapai biasanya juga diberikan dalam brosur spesifikasi teknis. Namun, karena kedua hal tersebut torsi dan kecepatan maksimum bergantung pada kapasitas volume mesin, maka pemilihan parameter yang dinormalisasi perlu untuk dapat menjadi parameter pembanding yang komparatif. Pemilihan parameter prestasi yang diukur juga didasarkan pada kerakteristik operasional sehingga didapatkan perbandingan yang paling signifikan. Untuk pengoperasian mesin pada hampir seluruh titik operasi yang umum digunakan sesuai fungsional mesin tersebut dirancang dan periode operasional yang cukup lama, parameter parameter prestasi yang tepat untuk dilakukan 14

11 pengukuran meliputi specific fuel consumption atau fuel conversion efficiency dan specific emissions, selain tentu saja beberapa parameter lain seperti pencapaian torsi dan daya terhadap putaran mesin, serta pengukuran air fuel ratio Momen Putar dan Daya Torsi yang dihasilkan poros mesin biasanya diukur dengan mengunakan sebuah dinamometer. Mesin didudukkan pada test bed dan poros mesin dihubungkan dengan rotor dari dinamometer. Rotor tersebut terhubung dengan stator secara elektromagnet, hidraulik, atau dengan memanfaatkan gesekan mekanik. Gaya atau momen putar yang terjadi pada rotor akan ikut tersalurkan ke stator, dimana stator itu sendiri terhubungkan dengan load cell. Pembacaan sensor ini akan menunjukkan besarnya torsi yang dihasilkan dari putaran poros tersebut. Dengan mengetahui kecepatan putar dan torsi poros, maka dapat dihitung besarnya daya yang dihasilkan oleh mesin tersebut. Tentunya di dalam perhitungan juga melibatkan faktor koreksi dan toleransi dari masing masing bagian dalam sistem pengukuran tersebut. Berdasarkan skema di atas, dapat dihitung torsi yang dihasilkan, yaitu : T = Fb Sementara daya dapat dihitung dengan mengalikan putaran mesin : P = 2π n T Pemakaian Bahan Bakar Spesifik dan Efisiensi Dalam pengujian, konsumsi bahan bakar diukur sebagai laju aliran bahan bakar per satuan waktu (m f ). Parameter tersebut lebih umum dan bermanfaat jika dibandingkan terhadap output daya yang dihasilkan, dimana besarnya laju pemakaian bahan bakar diukur untuk setiap satuan daya yang dihasilkan atau disebut pemakaian bahan bakar spesifik (SFC). Parameter ini menggambarkan jumlah pasokan bahan bakar yang diperlukan mesin untuk menghasilkan kerja dan memberikan indikasi seberapa efisien suatu mesin beroperasi. SFC = m f P 15

12 Pemakaian bahan bakar spesifik merupakan parameter berdimensi, dan parameter serupa yang juga menggambarkan perbandingan kebutuhan input energi dengan output kerja yang dihasilkan namun merupakan parameter tak berdimensi adalah parameter efisiensi. Efisiensi menunjukkan rasio kerja per siklus terhadap besarnya energi yang disuplai ke ruang bakar dengan asumsi seluruh kandungan energi dalam bahan bakar dapat termanfaatkan. Dari pemahaman tersebut, diperoleh: η f = m f p LHV LHV adalah nilai kandungan kalor bahan bakar yang dipasok ke ruang bakar. Dengan mensubstitusi persamaan SFC, maka dapat diperoleh persamaan efisiensi yang lebih sederhana: η f = SFC 1 LHV Perbandingan Udara-Bahan Bakar Pada saat pengujian performa mesin, data aliran bahan bakar m f dan aliran udara masuk m a umumnya ikut diukur. Rasio dari kedua data tersebut dapat digunakan untuk mendefinisikan kondisi operasi kerja mesin. Perbandingan Udara-Bahan Bakar (AFR) = m m a f Pada operasi normal, umumnya AFR pada mesin diesel berkisar antara 18 sampai 70 [9] Emisi Spesifik dan Indeks Emisi Tingkat emisi dari oksida nitrogen (nitric oxide dan nitrogen dioxide, atau biasa dikelompokkan menjadi satu dan disebut NO x ), karbon dioksida (CO 2 ), karbon monoksida (CO), hidrokarbon yang tidak terbakar (HC), dan partikulat merupakan parameter yang mampu memberikan gambaran karakteristik operasi mesin. 16

13 Konsentrasi dari emisi gas buang ini biasanya diukur dari aliran exhaust gas dalam satuan part per million (ppm) atau persen volume. Selain pengamatan dalam satuan konsentrasi volume gas, seperti snox = ppm sco 2 = %volum udara sco = % volum udara shc = ppm spart. = Bosch Smoke Unit Alternatif lain dalam melakukan analisis adalah dengan menormalisasi laju emisi terhadap laju pemakaian bahan bakar, yang kemudian disebut emission index (EI). 2.4 Emisi Gas Buang Mesin bensin dan mesin diesel merupakan sumber utama polusi udara di perkotaan. Gas buang mesin bensin mengandung oksidan nitrogen (nitrat oksida, NO, dan sebagian nitrogen dioksida, yang kemudian disebut NO x ), karbon monoksida (CO) dan sisa bahan bakar yang tidak terbakar sempurna (hidrokarbon). Pada gas buang mesin diesel, konsentrasi NO x dapat dibandingkan dengan yang dihasilkan oleh mesin bensin, sementara emisi hidrokarbon yang dihasilkan pada mesin diesel 5 kali lebih rendah daripada konsentrasi hidrokarbon pada gas buang mesin bensin. Hidrokarbon pada gas buang mesin diesel dapat membentuk asap putih pada saat starting dan warming up mesin. Kandungan hidrokarbon inilah yang menimbulkan bau yang khas pada gas buang mesin diesel. Mesin diesel merupakan sumber utama dari emisi partikulat yang mengandung soot dimana di dalamnya terdapat kandungan hidrokarbon yang terabsorbsi. Mesin diesel tidak menghasilkan karbon monoksida secara signifikan. Pada mesin diesel, bahan bakar diinjeksikan ke dalam silinder tepat sebelum proses pembakaran dimulai. Hal ini mengakibatkan ketidakseragaman distribusi bahan bakar di dalam silinder pada saat proses pembakaran. Pembentukan polutan sangat bergantung pada distribusi bahan bakar dan bagaimana distribusi tersebut berubah terhadap variabel waktu pencampuran. Di bawah ini adalah ilustrasi yang menunjukkan efek terbentuknya masing-masing 17

14 polutan pada kepala piston, terkait pada bentuk semprotan pada mesin diesel penyemprotan langsung. Gambar 2.1 Formasi deposit pada kepala piston saat premixed combustion [9] Gambar 2.2 Formasi deposit pada kepala piston saat mixing-controlled combustion [9] Nitrit oksida terbentuk pada daerah bertemperatur tinggi khususnya pada daerah yang distribusi temperatur dan ratio bahan bakar/udara-nya mendekati kondisi stokiometrik. Sementara soot terbentuk pada daerah kaya dimana banyak bahan bakar yang tidak ikut terbakar pada proses berlangsung. Hidrokarbon karbon dan aldehid berasal dari daerah dimana terdapat banyak dilusi udara yang mencegah terjadinya proses persenyawaan di daerah tersebut. Bahan bakar yang menguap pada ujung nozzle juga berkontribusi pada pembentukan hidrokarbon. 18

15 Nitrogen Oksida (NO x ) Pada dasarnya NO x berasal dari oksidasi nitrogen pada udara atmosfir serta dimungkinkan juga berasal dari bahan bakar, terutama solar. Periode kritis pembentukan NO x terjadi saat temperatur gas pembakaran pada keadaan maksimum, contohnya pada periode antara mulainya pembakaran sampai sesaat setelah tekanan puncak pada silinder tercapai. Kondisi seperti ini dapat meningkatkan laju pembentukan NO x. Sehingga dapat dikatakan bahwa jika temperatur pembakaran yang tercapai makin tinggi, maka laju pembentukan NO x pun akan ikut meningkat. Hal ini dapat dilihat pada gambar 2.3. Gambar 2.3 Grafik pembentukan konsentrasi soot, NO, dan produk pembakaran lain terhadap sudut engkol dan temperatur ruang bakar mesin diesel penyemprotan langsung [9] Selain itu, dari gambar 2.4 dapat dilihat juga bahwa produksi NO x juga bergantung pada banyaknya bahan bakar yang diinjeksikan ke dalam silinder (dengan catatan bahwa temperatur maksimum ruang bakar dipertahankan pada titik yang sama). 19

16 Gambar 2.4 Grafik produksi gas buang NO dan NO x sebagai fungsi dari equivalence ratio pada putaran mesin dan saat penyemprotan yang sama [9] Karbon Monoksida (CO) Emisi CO pada mesin pembakaran dalam sangat bergantung pada air fuel ratio (AFR). Di bawah ini adalah grafik yang menunjukkan keterkaitan antara besarnya emisi karbon monoksida terhadap AFR pada mesin bensin. Gambar 2.5 Emisi CO dengan berbagai rasio H/C bahan bakar yang bervariasi [9] 20

17 2.4.3 Emisi Gas Hidrokarbon (HC) Emisi HC terjadi karena penguraian dan oksidasi bahan bakar yang tidak sempurna pada proses pembakaran. Hal ini dapat terdeteksi dari kandungan gas metana, etena, propana, maupun butana. Pada banyak kasus, emisi HC dihitung sebagai total ratai karbon yang ada pada gas buang, dan bukan bedasar struktur ikatan kimianya. Emisi HC dapat terjadi dikarenakan terlalu miskinnya pembakaran sehingga bahan bakar tidak dapat teroksidasi, atau dapat pula akibat sifat kimia bahan bakar yang menyulitkan proses pemutusan rantai karbon dan oksidasi. Sifat fisis dari bentuk injeksi pada awal pembakaran juga dapat mempengaruhi jumlah kandungan HC pada gas buang. Hal ini terjadi akibat kualitas spray pattern yang buruk dapat memperlambat proses reaksi pembakaran. Gambar berikut ini menunjukkan dasar sistematika terjadinya pembakaran yang tidak sempurna: Gambar 2.6 Skema mekanisme pembentukan HC pada mesin diesel: (a) diinjeksikannya bahan bakar saat delay period; (b) diinjeksikannya bahan bakar saat terjadi proses pembakaran [9] 21

18 2.4.4 Emisi Partikulat Emisi partikulat yang dihasilkan oleh mesin diesel mengandung material karbon hasil dari proses pembakaran (soot) yang juga dimungkinkan terdapat komponen organik lain yang juga terserap.sebagian besar partikulat berawal dari proses pembakaran yang tidak sempurna, dan sebagian kecil juga dapat diakibatkan oleh minyak pelumas. Rata-rata emisi partikulat pada mesin diesel direct injection berkisar dari g/km untuk mobil dan sekitar g/kwh untuk mesin stasioner yang berkapasitas besar. Teknik pengukuran emisi partikulat dilakukan dengan menggunakan smoke meter yang memiliki skala opacity untuk melihat besarnya dilusi yang terjadi sepanjang jalur gas buang. Pada smokemeter, dapat dilihat dan dibandingkan tingkat emisi partikulat yang terjadi dari satu sampel terhadap sampel lain. Hal ini pula yang dijadikan dasar dalam penentuan tingkat emisi partikulat. Jadi, smokemeter tidak menimbang atau mengukur secara langsung massa partikulat yang dihasilkan, melainkan hanya dilihat dari kepekatan sampel emisi pada kertas filter. 2.5 Proses Produksi Biodiesel Minyak Sawit [10] Bahan bakar diesel, selain berasal dari petrokimia juga dapat disintesis dari ester asam lemak yang berasal dari minyak nabati. Bahan bakar dari minyak nabati (biodiesel) dikenal sebagai produk yang ramah lingkungan, tidak mencemari udara, mudah terbiodegradasi, dan berasal dari bahan baku yang dapat diperbaharui. Pada umumnya biodiesel disintesis dari ester asam lemak dengan rantai karbon antara C6-C22. Minyak sawit merupakan salah satu jenis minyak nabati yang mengandung asam lemak dengan rantai karbon C14-C20, sehingga mempunyai peluang untuk dikembangkan sebagai bahan baku biodiesel. Keseluruhan proses pembuatan biodiesel dari minyak kelapa sawit dapat dilihat dari skema pada gambar 2.7, dimana minyak kelapa sawit atau yang biasa disebut crude palm oil (CPO), dijadikan sebagai bahan dasar biodiesel. Pada proses tersebut, minyak kelapa sawit yang sudah disiapkan akan dilanjutkan dengan esterifikasi dalam tahap pengolahannya. 22

19 Gambar 2.7 Skema produksi biodiesel minyak sawit [11] Pada umumnya biodiesel dibuat melalui proses transesterifikasi dua tahap, dilanjutkan dengan pencucian, pengeringan dan terakhir filtrasi. Akan tetapi jika bahan bakunya dari CPO, maka sebelumnya perlu dilakukan esterifikasi sebelum diolah dalam proses transesterifikasi. Gambar 2.8 Proses Esterifikasi [11] Proses Transesterifikasi Proses transesterifikasi meliputi dua tahap. Transesterifikasi I yaitu pencampuran antara kalium hidroksida (KOH) dan metanol (CH30H) dengan minyak sawit. Reaksi ini berlangsung sekitar 2 jam pada suhu C. Bahan 23

20 yang pertama dimasukkan ke dalam reaktor adalah asam lemak yang selanjutnya dipanaskan hingga suhu yang telah ditentukan. Reaktor transesterifikasi dilengkapi dengan pemanas dan pengaduk. Selama proses pemanasan, pengaduk dijalankan. Tepat pada suhu reactor 63 C, campuran metanol dan KOH dimasukkan ke dalam reaktor dan waktu reaksi mulai dihitung pada saat itu. Pada akhir reaksi akan terbentuk metil ester dengan konversi sekitar 94%. Selanjutnya produk ini diendapkan selama waktu tertentu untuk memisahkan gliserol dan metil ester. Gliserol yang terbentuk berada di lapisan bawah karena berat jenisnya lebih besar daripada metil ester. Gliserol kemudian dikeluarkan dari reaktor agar tidak mengganggu proses transesterifikasi II. Selanjutnya dilakukan transesterifikasi II pada metil ester. Setelah proses transesterifikasi II selesai, dilakukan pengendapan selama waktu tertentu agar gliserol terpisah dari metil ester. Pengendapan II memerlukan waktu lebih pendek daripada pengendapan I karena gliserol yang terbentuk relatif sedikit dan akan larut melalui proses pencucian. Gambar 2.9 Proses Transesterifikasi [11] Pencucian Pencucian hasil pengendapan pada transesterifikasi II bertujuan untuk menghilangkan senyawa yang tidak diperlukan seperti sisa gliserol dan metanol. 24

21 Pencucian dilakukan pada suhu sekitar 55 C, dan dilakukan tiga kali sampai ph campuran menjadi normal (6,8-7,2) Pengeringan Pengeringan bertujuan untuk menghilangkan air yang tercampur dalam metil ester. Pengeringan dilakukan sekitar 10 menit pada suhu 130 C. Pengeringan dilakukan dengan cara memberikan panas pada produk dengan suhu sekitar 95 C secara sirkulasi. Ujung pipa sirkulasi ditempatkan di tengah permukaan cairan pada alat pengering Filtrasi Tahap akhir dari proses pembuatan biodiesel adalah filtrasi. Filtrasi bertujuan untuk menghilangkan partikel-partikel pengotor biodiesel yang terbentuk selama proses berlangsung, seperti karat (kerak besi) yang berasal dari dinding reaktor atau dinding pipa atau kotoran dari bahan baku. Filter yang dianjurkan berukuran lebih kecil dari atau sama dengan 10 mikron. 25

PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL

PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL Jurnal Konversi Energi dan Manufaktur UNJ, Edisi terbit II Oktober 217 Terbit 64 halaman PENGARUH PENGGUNAAN BAHAN BAKAR SOLAR, BIOSOLAR DAN PERTAMINA DEX TERHADAP PRESTASI MOTOR DIESEL SILINDER TUNGGAL

Lebih terperinci

Bab 4 Data dan Analisis Hasil Pengujian

Bab 4 Data dan Analisis Hasil Pengujian Bab 4 Data dan Analisis Hasil Pengujian Pembahasan terhadap data hasil pengujian didasarkan pada hasil pengujian sifat bahan bakar yang dalam pelaksanaannya dilakukan di PetroLab Service, Rawamangun, oleh

Lebih terperinci

ANALISA KINERJA MESIN OTTO BERBAHAN BAKAR PREMIUM DENGAN PENAMBAHAN ADITIF OKSIGENAT DAN ADITIF PASARAN

ANALISA KINERJA MESIN OTTO BERBAHAN BAKAR PREMIUM DENGAN PENAMBAHAN ADITIF OKSIGENAT DAN ADITIF PASARAN Seminar Nasional Tahunan Teknik Mesin, SNTTM-VI, 2007 Jurusan Teknik Mesin, Universitas Syiah Kuala ANALISA KINERJA MESIN OTTO BERBAHAN BAKAR PREMIUM DENGAN PENAMBAHAN ADITIF OKSIGENAT DAN ADITIF PASARAN

Lebih terperinci

Proses Pembuatan Biodiesel (Proses Trans-Esterifikasi)

Proses Pembuatan Biodiesel (Proses Trans-Esterifikasi) Proses Pembuatan Biodiesel (Proses TransEsterifikasi) Biodiesel dapat digunakan untuk bahan bakar mesin diesel, yang biasanya menggunakan minyak solar. seperti untuk pembangkit listrik, mesinmesin pabrik

Lebih terperinci

PEMBAKARAN. Kimia Tehnik December 7, 2011 Cylirilla Indri P., ST., M.T. 1. PENDAHULUAN

PEMBAKARAN. Kimia Tehnik December 7, 2011 Cylirilla Indri P., ST., M.T. 1. PENDAHULUAN PEMBAKARAN 1. PENDAHULUAN Pembakaran adalah reaksi kimia yang cepat antara oksigen dan bahan yang dapat terbakar, disertai timbulnya cahaya dan menghasilkan kalor. Pembakaran spontan adalah pembakaran

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Pada penelitian yang telah dilakukan, katalis yang digunakan dalam proses metanolisis minyak jarak pagar adalah abu tandan kosong sawit yang telah dipijarkan pada

Lebih terperinci

II. TINJAUAN PUSTAKA. sawit kasar (CPO), sedangkan minyak yang diperoleh dari biji buah disebut

II. TINJAUAN PUSTAKA. sawit kasar (CPO), sedangkan minyak yang diperoleh dari biji buah disebut 7 II. TINJAUAN PUSTAKA 2.1. Minyak Kelapa Sawit Sumber minyak dari kelapa sawit ada dua, yaitu daging buah dan inti buah kelapa sawit. Minyak yang diperoleh dari daging buah disebut dengan minyak kelapa

Lebih terperinci

PEMBUATAN BIODIESEL DARI MINYAK BIJI KARET DENGAN PENGUJIAN MENGGUNAKAN MESIN DIESEL (ENGINE TEST BED)

PEMBUATAN BIODIESEL DARI MINYAK BIJI KARET DENGAN PENGUJIAN MENGGUNAKAN MESIN DIESEL (ENGINE TEST BED) PEMBUATAN BIODIESEL DARI MINYAK BIJI KARET DENGAN PENGUJIAN MENGGUNAKAN MESIN DIESEL (ENGINE TEST BED) Dwi Ardiana Setyawardhani 1), Sperisa Distantina 1), Anita Saktika Dewi 2), Hayyu Henfiana 2), Ayu

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Hasil penentuan asam lemak bebas dan kandungan air Analisa awal yang dilakukan pada sampel CPO {Crude Palm Oil) yang digunakan sebagai bahan baku pembuatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Landasan Teori Apabila meninjau mesin apa saja, pada umumnya adalah suatu pesawat yang dapat mengubah bentuk energi tertentu menjadi kerja mekanik. Misalnya mesin listrik,

Lebih terperinci

BAB I PENDAHULUAN. Studi komparansi kinerja..., Askha Kusuma Putra, FT UI, 2008

BAB I PENDAHULUAN. Studi komparansi kinerja..., Askha Kusuma Putra, FT UI, 2008 BAB I PENDAHULUAN 1.1 LATAR BELAKANG MASALAH Semakin meningkatnya kebutuhan minyak sedangkan penyediaan minyak semakin terbatas, sehingga untuk memenuhi kebutuhan minyak dalam negeri Indonesia harus mengimpor

Lebih terperinci

SKRIPSI MOTOR BAKAR. Disusun Oleh: HERMANTO J. SIANTURI NIM:

SKRIPSI MOTOR BAKAR. Disusun Oleh: HERMANTO J. SIANTURI NIM: SKRIPSI MOTOR BAKAR UJI EKSPERIMENTAL PENGARUH PENGGUNAAN CAMPURAN BAHAN BAKAR DIMETIL ESTER [B 06] DENGAN BAHAN BAKAR SOLAR TERHADAP UNJUK KERJA MESIN DIESEL Disusun Oleh: HERMANTO J. SIANTURI NIM: 060421019

Lebih terperinci

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA 3.1 Metode Pengujian 3.1.1 Pengujian Dual Fuel Proses pembakaran di dalam ruang silinder pada motor diesel menggunakan sistem injeksi langsung.

Lebih terperinci

PENGARUH PEMAKAIAN ALAT PEMANAS BAHAN BAKAR TERHADAP PEMAKAIAN BAHAN BAKAR DAN EMISI GAS BUANG MOTOR DIESEL MITSUBISHI MODEL 4D34-2A17 Indartono 1 dan Murni 2 ABSTRAK Efisiensi motor diesel dipengaruhi

Lebih terperinci

M.Mujib Saifulloh, Bambang Sudarmanta Lab. TPBB Jurusan Teknik Mesin FTI - ITS Jl. Arief Rahman Hakim, Surabaya

M.Mujib Saifulloh, Bambang Sudarmanta Lab. TPBB Jurusan Teknik Mesin FTI - ITS Jl. Arief Rahman Hakim, Surabaya KARAKTERISASI UNJUK KERJA MESIN DIAMOND TYPE Di 800 SISTEM INJEKSI BERTINGKAT BERBAHAN BAKAR BIODIESEL KEMIRI SUNAN DENGAN PERUBAHAN CAMSHAFT FUEL PUMP M.Mujib Saifulloh, Bambang Sudarmanta Lab. TPBB Jurusan

Lebih terperinci

BAB I PENDAHULUAN. BBM petrodiesel seperti Automatic Diesel Oil (ADO) atau solar merupakan

BAB I PENDAHULUAN. BBM petrodiesel seperti Automatic Diesel Oil (ADO) atau solar merupakan BAB I PENDAHULUAN 1.1 Latar Belakang BBM petrodiesel seperti Automatic Diesel Oil (ADO) atau solar merupakan sumber energi yang dikonsumsi paling besar di Indonesia. Konsumsi bahan bakar solar terus meningkat

Lebih terperinci

BAB I PENDAHULUAN. Latar Belakang

BAB I PENDAHULUAN. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Saat ini pemakaian bahan bakar yang tinggi tidak sebanding dengan ketersediaan sumber bahan bakar fosil yang semakin menipis. Cepat atau lambat cadangan minyak bumi

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. PENENTUAN PERBANDINGAN MASSA ALUMINIUM SILIKAT DAN MAGNESIUM SILIKAT Tahapan ini merupakan tahap pendahuluan dari penelitian ini, diawali dengan menentukan perbandingan massa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA A. Minyak Goreng 1. Pengertian Minyak Goreng Minyak goreng adalah minyak yang berasal dari lemak tumbuhan atau hewan yang dimurnikan dan berbentuk cair dalam suhu kamar dan biasanya

Lebih terperinci

Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS

Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS Uji Eksperimental Pertamina DEX dan Pertamina DEX + Zat Aditif pada Engine Diesel Putaran Konstan KAMA KM178FS ANDITYA YUDISTIRA 2107100124 Dosen Pembimbing : Prof. Dr. Ir. H D Sungkono K, M.Eng.Sc Kemajuan

Lebih terperinci

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL FLYWHEEL: JURNAL TEKNIK MESIN UNTIRTA Homepage jurnal: http://jurnal.untirta.ac.id/index.php/jwl ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL Sadar Wahjudi 1

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Motor Bakar. Motor bakar torak merupakan internal combustion engine, yaitu mesin yang fluida kerjanya dipanaskan dengan pembakaran bahan bakar di ruang mesin tersebut. Fluida

Lebih terperinci

Karakteristik Biodiesel Dari Minyak Jelantah Dengan Menggunakan Metil Asetat Sebagai Pensuplai Gugus Metil. Oleh : Riswan Akbar ( )

Karakteristik Biodiesel Dari Minyak Jelantah Dengan Menggunakan Metil Asetat Sebagai Pensuplai Gugus Metil. Oleh : Riswan Akbar ( ) Karakteristik Biodiesel Dari Minyak Jelantah Dengan Menggunakan Metil Asetat Sebagai Pensuplai Gugus Metil Oleh : Riswan Akbar (4207 100 091) Latar Belakang Terjadinya krisis energi, khususnya bahan bakar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Diesel (PLTD) Pembangkit Listrik Tenaga Diesel ( PLTD ) ialah Pembangkit listrik yang menggunakan mesin diesel sebagai penggerak mula (Prime mover) yang

Lebih terperinci

BAB I PENDAHULUAN. alternatif lain yang dapat dijadikan sebagai solusi. Pada umumnya sumber energi

BAB I PENDAHULUAN. alternatif lain yang dapat dijadikan sebagai solusi. Pada umumnya sumber energi BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya perindustrian di Indonesia akan menyebabkan kebutuhan bahan bakar fosil yang semakin meningkat sehingga dibutuhkan bahan bakar alternatif lain yang dapat

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Data Bahan Baku Minyak Minyak nabati merupakan cairan kental yang berasal dari ekstrak tumbuhtumbuhan. Minyak nabati termasuk lipid, yaitu senyawa organik alam yang tidak

Lebih terperinci

Jika diperhatikan lebih jauh terdapat banyak perbedaan antara motor bensin dan motor diesel antara lain:

Jika diperhatikan lebih jauh terdapat banyak perbedaan antara motor bensin dan motor diesel antara lain: BAB 2 TINJAUAN PUSTAKA 2.1 Motor diesel Motor diesel adalah jenis khusus dari mesin pembakaran dalam karakteristik utama pada mesin diesel yang membedakannya dari motor bakar yang lain, terletak pada metode

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 BAB I PENDAHULUAN I.1 Latar Belakang Cadangan dan produksi bahan bakar minyak bumi (fosil) di Indonesia mengalami penurunan 10% setiap tahunnya sedangkan tingkat konsumsi minyak rata-rata naik 6% per tahun.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Analisa awal yang dilakukan pada minyak goreng bekas yang digunakan

BAB IV HASIL DAN PEMBAHASAN. Analisa awal yang dilakukan pada minyak goreng bekas yang digunakan BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Hasil penentuan asam lemak dan kandungan air Analisa awal yang dilakukan pada minyak goreng bekas yang digunakan sebagai bahan baku pembuatan biodiesel adalah

Lebih terperinci

BAB 2 DASAR TEORI. Universitas Indonesia. Pemodelan dan..., Yosi Aditya Sembada, FT UI

BAB 2 DASAR TEORI. Universitas Indonesia. Pemodelan dan..., Yosi Aditya Sembada, FT UI BAB 2 DASAR TEORI Biodiesel adalah bahan bakar alternatif yang diproduksi dari sumber nabati yang dapat diperbaharui untuk digunakan di mesin diesel. Biodiesel mempunyai beberapa kelebihan dibandingkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dengan oli bekas untuk mengetahui emisi gas buang pada mesin diesel, hasil

BAB II TINJAUAN PUSTAKA. dengan oli bekas untuk mengetahui emisi gas buang pada mesin diesel, hasil 6 BAB II TINJAUAN PUSTAKA 2.1. Penelitian Terdahulu. Ale,B.B, (2003), melakukan penelitian dengan mencampur kerosin dengan oli bekas untuk mengetahui emisi gas buang pada mesin diesel, hasil penelitian

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan Penelitian ini dilakukan dalam dua tahap. Penelitian penelitian pendahuluan dilakukan untuk mendapatkan jenis penstabil katalis (K 3 PO 4, Na 3 PO 4, KOOCCH 3, NaOOCCH 3 ) yang

Lebih terperinci

PENGARUH STIR WASHING, BUBBLE WASHING, DAN DRY WASHING TERHADAP KADAR METIL ESTER DALAM BIODIESEL DARI BIJI NYAMPLUNG (Calophyllum inophyllum)

PENGARUH STIR WASHING, BUBBLE WASHING, DAN DRY WASHING TERHADAP KADAR METIL ESTER DALAM BIODIESEL DARI BIJI NYAMPLUNG (Calophyllum inophyllum) PENGARUH STIR WASHING, BUBBLE WASHING, DAN DRY WASHING TERHADAP KADAR METIL ESTER DALAM BIODIESEL DARI BIJI NYAMPLUNG (Calophyllum inophyllum) Disusun oleh : Dyah Ayu Resti N. Ali Zibbeni 2305 100 023

Lebih terperinci

BAB IV PENGOLAHAN DAN ANALISA DATA

BAB IV PENGOLAHAN DAN ANALISA DATA BAB IV PENGOLAHAN DAN ANALISA DATA 4.1 Data Hasil Penelitian Mesin Supra X 125 cc PGM FI yang akan digunakan sebagai alat uji dirancang untuk penggunaan bahan bakar bensin. Mesin Ini menggunakan sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 PERFORMANSI MOTOR DIESEL Motor diesel adalah jenis khusus dari mesin pembakaran dalam. Karakteristik utama dari mesin diesel yang membedakannya dari motor bakar lain terletak

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Tabel 4.1. Karakteristik Bahan Baku Biodiesel. Propertis Minyak Kelapa (Coconut Oil)

BAB IV HASIL DAN PEMBAHASAN. Tabel 4.1. Karakteristik Bahan Baku Biodiesel. Propertis Minyak Kelapa (Coconut Oil) BAB IV HASIL DAN PEMBAHASAN 4.1. Data Bahan Baku Minyak Bahan baku yang digunakan pada penelitian ini diantaranya yaitu minyak Jarak dan minyak Kelapa. Kedua minyak tersebut memiliki beberapa karakteristik

Lebih terperinci

BAB 2 DASAR TEORI. 1. Langkah Hisap (Intake)

BAB 2 DASAR TEORI. 1. Langkah Hisap (Intake) BAB 2 DASAR TEORI 2.1 Motor Diesel Motor pembakaran dalam didefinisikan sebagai mesin kalor yang berfungsi mengkonversikan energi kimia yang terkandung dalam bahan bakar menjadi energi mekanis dan prosesnya

Lebih terperinci

lebih ramah lingkungan, dapat diperbarui (renewable), dapat terurai

lebih ramah lingkungan, dapat diperbarui (renewable), dapat terurai 1 BAB I PENDAHULUAN 1.1 Latar Belakang Dewasa ini bahan bakar minyak bumi merupakan sumber energi utama yang digunakan di berbagai negara. Tingkat kebutuhan manusia akan bahan bakar seiring meningkatnya

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Biodiesel Biodiesel merupakan bahan bakar rendah emisi pengganti diesel yang terbuat dari sumber daya terbarukan dan limbah minyak. Biodiesel terdiri dari ester monoalkil dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Bahan Bakar Bahan bakar yang dipergunakan motor bakar dapat diklasifikasikan dalam tiga kelompok yakni : berwujud gas, cair dan padat (Surbhakty 1978 : 33) Bahan bakar (fuel)

Lebih terperinci

BAB I PENDAHULUAN. merupakan suatu campuran komplek antara hidrokarbon-hidrokarbon sederhana

BAB I PENDAHULUAN. merupakan suatu campuran komplek antara hidrokarbon-hidrokarbon sederhana BAB I PENDAHULUAN 1.1 Latar Belakang Pencemaran udara yang diakibatkan oleh gas buang kendaraan bermotor pada akhir-akhir ini sudah berada pada kondisi yang sangat memprihatinkan dan memberikan andil yang

Lebih terperinci

Bab IV Hasil dan Pembahasan. IV.2.1 Proses transesterifikasi minyak jarak (minyak kastor)

Bab IV Hasil dan Pembahasan. IV.2.1 Proses transesterifikasi minyak jarak (minyak kastor) 23 Bab IV Hasil dan Pembahasan IV.1 Penyiapan Sampel Kualitas minyak kastor yang digunakan sangat mempengaruhi pelaksanaan reaksi transesterifikasi. Parameter kualitas minyak kastor yang dapat menjadi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Energi merupakan aspek penting dalam kehidupan manusia dan merupakan kunci utama diberbagai sektor. Semakin hari kebutuhan akan energi mengalami kenaikan seiring dengan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1.Hasil 4.1.1. Hasil penentuan asam lemak bebas Penentuan asam lemak bebas sangat penting untuk mengetahui kualitas dari minyak nabati. Harga asam lemak bebas kurang dari

Lebih terperinci

PENGARUH PENGGUNAAN BAHAN BAKAR MINYAK KELAPA SAWIT DENGAN CAMPURAN SOLAR DAN BIOSOLAR TERHADAP PERFORMANSI MESIN DIESEL

PENGARUH PENGGUNAAN BAHAN BAKAR MINYAK KELAPA SAWIT DENGAN CAMPURAN SOLAR DAN BIOSOLAR TERHADAP PERFORMANSI MESIN DIESEL PENGARUH PENGGUNAAN BAHAN BAKAR MINYAK KELAPA SAWIT DENGAN CAMPURAN SOLAR DAN BIOSOLAR TERHADAP PERFORMANSI MESIN DIESEL SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

III. METODA PENELITIAN

III. METODA PENELITIAN III. METODA PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian dilakukan di laboratorium Proses Balai Besar Industri Agro (BBIA), Jalan Ir. H. Juanda No 11 Bogor. Penelitian dimulai pada bulan Maret

Lebih terperinci

I. PENDAHULUAN. Motor bensin dan diesel merupakan sumber utama polusi udara di perkotaan. Gas

I. PENDAHULUAN. Motor bensin dan diesel merupakan sumber utama polusi udara di perkotaan. Gas 1 I. PENDAHULUAN A. Latar Belakang Motor bensin dan diesel merupakan sumber utama polusi udara di perkotaan. Gas buang motor bensin mengandung nitrogen oksida (NO), nitrogen dioksida (NO 2 ) (NO 2 dalam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Perak Nitrat Perak nitrat merupakan senyawa anorganik tidak berwarna, tidak berbau, kristal transparan dengan rumus kimia AgNO 3 dan mudah larut dalam alkohol, aseton dan air.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Minyak Goreng Curah Minyak goreng adalah minyak nabati yang telah dimurnikan dan dapat digunakan sebagai bahan pangan. Minyak goreng berfungsi sebagai media penggorengan yang

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4..1. Analisis Reaksi Proses Proses Pembakaran 4.1.1 Perhitungan stoikiometry udara yang dibutuhkan untuk pembakaran Untuk pembakaran diperlukan udara. Jumlah udara

Lebih terperinci

I. PENDAHULUAN. suatu alat yang berfungsi untuk merubah energi panas menjadi energi. Namun, tanpa disadari penggunaan mesin yang semakin meningkat

I. PENDAHULUAN. suatu alat yang berfungsi untuk merubah energi panas menjadi energi. Namun, tanpa disadari penggunaan mesin yang semakin meningkat I. PENDAHULUAN 1.1 Latar Belakang Kendaraan bermotor merupakan salah satu alat yang memerlukan mesin sebagai penggerak mulanya, mesin ini sendiri pada umumnya merupakan suatu alat yang berfungsi untuk

Lebih terperinci

Sulfur dan Asam Sulfat

Sulfur dan Asam Sulfat Pengumpulan 1 Rabu, 17 September 2014 Sulfur dan Asam Sulfat Disusun untuk memenuhi Tugas Proses Industri Kimia Dosen Pembimbing : Prof. Dr. Ir. Chandrawati Cahyani, M.S. Ayu Diarahmawati (135061101111016)

Lebih terperinci

PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC

PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC PENGARUH PENAMBAHAN ADITIF PADA PREMIUM DENGAN VARIASI KONSENTRASI TERHADAP UNJUK KERJA ENGINE PUTARAN VARIABEL KARISMA 125 CC Riza Bayu K. 2106.100.036 Dosen Pembimbing : Prof. Dr. Ir. H.D. Sungkono K,M.Eng.Sc

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dimetil Eter Dimetil Eter (DME) adalah senyawa eter yang paling sederhana dengan rumus kimia CH 3 OCH 3. Dikenal juga sebagai methyl ether atau wood ether. Jika DME dioksidasi

Lebih terperinci

KAJIAN PERFORMANSI MESIN DIESEL STASIONER SATU SILINDER DENGAN BAHAN BAKAR CAMPURAN BIODIESEL SESAMUM INDICUM

KAJIAN PERFORMANSI MESIN DIESEL STASIONER SATU SILINDER DENGAN BAHAN BAKAR CAMPURAN BIODIESEL SESAMUM INDICUM KAJIAN PERFORMANSI MESIN DIESEL STASIONER SATU SILINDER DENGAN BAHAN BAKAR CAMPURAN BIODIESEL SESAMUM INDICUM Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ARTHUR K.M. BINTANG

Lebih terperinci

PEMBUATAN BIODIESEL DARI ASAM LEMAK JENUH MINYAK BIJI KARET

PEMBUATAN BIODIESEL DARI ASAM LEMAK JENUH MINYAK BIJI KARET PEMBUATAN BIODIESEL DARI ASAM LEMAK JENUH MINYAK BIJI KARET Dwi Ardiana Setyawardhani*), Sperisa Distantina, Hayyu Henfiana, Anita Saktika Dewi Jurusan Teknik Kimia Universitas Sebelas Maret Surakarta

Lebih terperinci

PENGARUH VARIASI PERBANDINGAN BAHAN BAKAR SOLAR-BIODIESEL (MINYAK JELANTAH) TERHADAP UNJUK KERJA PADA MOTOR DIESEL

PENGARUH VARIASI PERBANDINGAN BAHAN BAKAR SOLAR-BIODIESEL (MINYAK JELANTAH) TERHADAP UNJUK KERJA PADA MOTOR DIESEL PENGARUH VARIASI PERBANDINGAN BAHAN BAKAR SOLAR-BIODIESEL (MINYAK JELANTAH) TERHADAP UNJUK KERJA PADA MOTOR DIESEL SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memproleh Gelar Sarjana Teknik IKHSAN

Lebih terperinci

ENERGI BIOMASSA, BIOGAS & BIOFUEL. Hasbullah, S.Pd, M.T.

ENERGI BIOMASSA, BIOGAS & BIOFUEL. Hasbullah, S.Pd, M.T. ENERGI BIOMASSA, BIOGAS & BIOFUEL Hasbullah, S.Pd, M.T. Biomassa Biomassa : Suatu bentuk energi yang diperoleh secara langsung dari makhluk hidup (tumbuhan). Contoh : kayu, limbah pertanian, alkohol,sampah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 BIDIESEL Biodiesel merupakan sumber bahan bakar alternatif pengganti solar yang terbuat dari minyak tumbuhan atau lemak hewan. Biodiesel bersifat ramah terhadap lingkungan karena

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI 2.1 Pengertian Biogas Biogas adalah gas yang terbentuk melalui proses fermentasi bahan-bahan limbah organik, seperti kotoran ternak dan sampah organik oleh bakteri anaerob ( bakteri

Lebih terperinci

BAB II TINJAUAN LITERATUR

BAB II TINJAUAN LITERATUR BAB II TINJAUAN LITERATUR Motor bakar merupakan motor penggerak yang banyak digunakan untuk menggerakan kendaraan-kendaraan bermotor di jalan raya. Motor bakar adalah suatu mesin yang mengubah energi panas

Lebih terperinci

PENGARUH PERBANDINGAN SOLAR - BIODIESEL (MINYAK JELANTAH) TERHADAP EMISI GAS BUANG PADA MOTOR DIESEL

PENGARUH PERBANDINGAN SOLAR - BIODIESEL (MINYAK JELANTAH) TERHADAP EMISI GAS BUANG PADA MOTOR DIESEL JANATEKNIKA VOL.11 NO. 2/JULI 2009 PENGARUH PERBANDINGAN SOLAR - BIODIESEL (MINYAK JELANTAH) TERHADAP EMISI GAS BUANG PADA MOTOR DIESEL Dosen Jurusan Teknik Mesin Fakultas Teknik Universitas Janabadra

Lebih terperinci

1. Densitas, Berat Jenis. Gravitas API

1. Densitas, Berat Jenis. Gravitas API UJI MINYAK BUMI DAN PRODUKNYA 2 1. Densitas, Berat Jenis dan Gravitas API Densitas minyak adalah massa minyak persatuan volume pada suhu tertentu. Berat spesifik atau rapat relatif (relative density) minyak

Lebih terperinci

PEMBUATAN BIODIESEL SECARA SIMULTAN DARI MINYAK JELANTAH DENGAN MENGUNAKAN CONTINUOUS MICROWAVE BIODISEL REACTOR

PEMBUATAN BIODIESEL SECARA SIMULTAN DARI MINYAK JELANTAH DENGAN MENGUNAKAN CONTINUOUS MICROWAVE BIODISEL REACTOR PEMBUATAN BIODIESEL SECARA SIMULTAN DARI MINYAK JELANTAH DENGAN MENGUNAKAN CONTINUOUS MICROWAVE BIODISEL REACTOR Galih Prasiwanto 1), Yudi Armansyah 2) 1. Jurusan Teknik Kimia Fakultas Teknik Universitas

Lebih terperinci

Nugrah Rekto P 1, Eka Bagus Syahrudin 2 1,2

Nugrah Rekto P 1, Eka Bagus Syahrudin 2 1,2 Analisa Pengaruh Penggunaan Campuran Bahan Bakar Solar Dengan Minyak Goreng Bekas Terhadap Unjuk Kerja Motor Diesel Nugrah Rekto P 1, Eka Bagus Syahrudin 2 1,2 Teknik Mesin STT Wiworotomo Purwokerto, Jl.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Hidrogen Hidrogen adalah unsur kimia terkecil karena hanya terdiri dari satu proton dalam intinya. Simbol hidrogen adalah H, dan nomor atom hidrogen adalah 1. Memiliki berat

Lebih terperinci

: Dr. Rr. Sri Poernomo Sari ST., MT.

: Dr. Rr. Sri Poernomo Sari ST., MT. SKRIPSI/TUGAS AKHIR APLIKASI BAHAN BAKAR BIODIESEL M20 DARI MINYAK JELANTAH DENGAN KATALIS 0,25% NaOH PADA MOTOR DIESEL S-111O Nama : Rifana NPM : 21407013 Jurusan Pembimbing : Teknik Mesin : Dr. Rr. Sri

Lebih terperinci

Jurnal Flywheel, Volume 3, Nomor 1, Juni 2010 ISSN :

Jurnal Flywheel, Volume 3, Nomor 1, Juni 2010 ISSN : PENGARUH PENAMBAHAN KATALIS KALIUM HIDROKSIDA DAN WAKTU PADA PROSES TRANSESTERIFIKASI BIODIESEL MINYAK BIJI KAPUK Harimbi Setyawati, Sanny Andjar Sari, Hetty Nur Handayani Jurusan Teknik Kimia, Institut

Lebih terperinci

PENGARUH PENGGUNAAN CETANE PLUS DIESEL DENGAN BAHAN BAKAR SOLAR TERHADAP PERFORMANSI MOTOR DIESEL

PENGARUH PENGGUNAAN CETANE PLUS DIESEL DENGAN BAHAN BAKAR SOLAR TERHADAP PERFORMANSI MOTOR DIESEL PENGARUH PENGGUNAAN CETANE PLUS DIESEL DENGAN BAHAN BAKAR SOLAR TERHADAP PERFORMANSI MOTOR DIESEL SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik SABAM NUGRAHA TOBING

Lebih terperinci

BAB Latar Belakang Ketersediaan bahan bakar minyak yang berasal dari minyak bumi semakin hari semakin menipis, sedangkan kebutuhan akan bahan ba

BAB Latar Belakang Ketersediaan bahan bakar minyak yang berasal dari minyak bumi semakin hari semakin menipis, sedangkan kebutuhan akan bahan ba PENGARUH PENGGUNANANN BIODIESEL TERHADAP GAS BUANGG (CO, O2,, NOx) x x) PADA MOTOR DIESELL DISUSUN OLEHH ::: PARLIN ROJERNI SAPUTRA LGG NRP :6306.030.002 BAB 1 1.1 Latar Belakang Ketersediaan bahan bakar

Lebih terperinci

BAB III PROSES PEMBAKARAN

BAB III PROSES PEMBAKARAN 37 BAB III PROSES PEMBAKARAN Dalam pengoperasian boiler, prestasi yang diharapkan adalah efesiensi boiler tersebut yang dinyatakan dengan perbandingan antara kalor yang diterima air / uap air terhadap

Lebih terperinci

ABSTRAK. Kata kunci : Mesin diesel, minyak solar, Palm Methyl Ester, simulasi. 1. Pendahuluan

ABSTRAK. Kata kunci : Mesin diesel, minyak solar, Palm Methyl Ester, simulasi. 1. Pendahuluan Studi Perbandingan Performa Motor Diesel dengan Bahan Bakar Solar dan Palm Methyl Ester Berbasis Pada Simulasi Oleh Yahya Putra Anugerah 1), Semin Sanuri 2), Aguk Zuhdi MF 2) 1) Mahasiswa : Jurusan Teknik

Lebih terperinci

I. PENDAHULUAN. aktifitas yang diluar kemampuan manusia. Umumnya mesin merupakan suatu alat

I. PENDAHULUAN. aktifitas yang diluar kemampuan manusia. Umumnya mesin merupakan suatu alat I. PENDAHULUAN A. Latar Belakang Pembuatan mesin pada awalnya bertujuan untuk memberikan kemudahan dalam aktifitas yang diluar kemampuan manusia. Umumnya mesin merupakan suatu alat yang berfungsi untuk

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4.1 Identifikasi Kendaraan Gambar 4.1 Yamaha RX Z Spesifikasi Yamaha RX Z Mesin : - Tipe : 2 Langkah, satu silinder - Jenis karburator : karburator jenis piston - Sistem Pelumasan

Lebih terperinci

BAB I PENDAHULUAN. Isu kelangkaan dan pencemaran lingkungan pada penggunakan bahan

BAB I PENDAHULUAN. Isu kelangkaan dan pencemaran lingkungan pada penggunakan bahan BAB I PENDAHULUAN 1.1. Latar Belakang Isu kelangkaan dan pencemaran lingkungan pada penggunakan bahan bakar fosil telah banyak dilontarkan sebagai pemicu munculnya BBM alternatif sebagai pangganti BBM

Lebih terperinci

BAB 4 ANALISA DAN PEMBAHASAN

BAB 4 ANALISA DAN PEMBAHASAN BAB 4 ANALISA DAN PEMBAHASAN 4.1.Analisa Diameter Rata-rata Dari hasil simulasi yang telah dilakukan menghasilkan proses atomisasi yang terjadi menunjukan perbandingan ukuran diameter droplet rata-rata

Lebih terperinci

Nama Kelompok : MUCHAMAD RONGGO ADITYA NRP M FIKRI FAKHRUDDIN NRP Dosen Pembimbing : Ir. IMAM SYAFRIL, MT NIP.

Nama Kelompok : MUCHAMAD RONGGO ADITYA NRP M FIKRI FAKHRUDDIN NRP Dosen Pembimbing : Ir. IMAM SYAFRIL, MT NIP. Nama Kelompok : MUCHAMAD RONGGO ADITYA NRP. 2308 030 028 M FIKRI FAKHRUDDIN NRP. 2308 030 032 Dosen Pembimbing : Ir. IMAM SYAFRIL, MT NIP. 19570819 198701 1 001 Latar Belakang Bahan Bakar Solar Penggunaan

Lebih terperinci

BAB I PENDAHULUAN. I. 1. Latar Belakang. Secara umum ketergantungan manusia akan kebutuhan bahan bakar

BAB I PENDAHULUAN. I. 1. Latar Belakang. Secara umum ketergantungan manusia akan kebutuhan bahan bakar BAB I PENDAHULUAN I. 1. Latar Belakang Secara umum ketergantungan manusia akan kebutuhan bahan bakar yang berasal dari fosil dari tahun ke tahun semakin meningkat, sedangkan ketersediaannya semakin berkurang

Lebih terperinci

Gambar 1. Motor Bensin 4 langkah

Gambar 1. Motor Bensin 4 langkah PENGERTIAN SIKLUS OTTO Siklus Otto adalah siklus ideal untuk mesin torak dengan pengapian-nyala bunga api pada mesin pembakaran dengan sistem pengapian-nyala ini, campuran bahan bakar dan udara dibakar

Lebih terperinci

BAB III METODOLOGI PENELITIAN. 1. Persiapan bahan baku biodiesel dilakukan di laboratorium PIK (Proses

BAB III METODOLOGI PENELITIAN. 1. Persiapan bahan baku biodiesel dilakukan di laboratorium PIK (Proses BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Tempat 1. Persiapan bahan baku biodiesel dilakukan di laboratorium PIK (Proses Industri Kimia) selama 5 minggu. 2. Pengujian Kandungan Biodiesel dilakukan di

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Data Hasil Pengujian Variasi sudut kondensor dalam penelitian ini yaitu : sudut 0 0, 15 0, dan 30 0 serta aliran air dalam kondensor yaitu aliran air searah dengan laju

Lebih terperinci

II. TINJAUAN PUSTAKA. Hujan merupakan unsur iklim yang paling penting di Indonesia karena

II. TINJAUAN PUSTAKA. Hujan merupakan unsur iklim yang paling penting di Indonesia karena II. TINJAUAN PUSTAKA A. Defenisi Hujan Asam Hujan merupakan unsur iklim yang paling penting di Indonesia karena keragamannya sangat tinggi baik menurut waktu dan tempat. Hujan adalah salah satu bentuk

Lebih terperinci

KARAKTERISASI UNJUK KERJA MESIN DIAMOND TYPE Di 800 DENGAN SISTEM INJEKSI BERTINGKAT MENGGUNAKAN BIODIESEL B-20

KARAKTERISASI UNJUK KERJA MESIN DIAMOND TYPE Di 800 DENGAN SISTEM INJEKSI BERTINGKAT MENGGUNAKAN BIODIESEL B-20 KARAKTERISASI UNJUK KERJA MESIN DIAMOND TYPE Di 800 DENGAN SISTEM INJEKSI BERTINGKAT MENGGUNAKAN BIODIESEL B-20 M. Yasep Setiawan dan Djoko Sungkono K. Jurusan Teknik Mesin, Fakultas Teknologi Industri,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. METODE PENELITIAN Penelitian dilakukan untuk mengetahui fenomena yang terjadi pada mesin Otto dengan penggunaan bahan bakar yang ditambahkan aditif dengan variasi komposisi

Lebih terperinci

BAB 1 PENDAHULUAN. Energi listrik merupakan salah satu faktor yang sangat penting dalam

BAB 1 PENDAHULUAN. Energi listrik merupakan salah satu faktor yang sangat penting dalam BAB 1 PENDAHULUAN 1.1. Latar Belakang Energi listrik merupakan salah satu faktor yang sangat penting dalam menunjang pembangunan nasional. Penyediaan energi listrik secara komersial yang telah dimanfaatkan

Lebih terperinci

Pengolahan Minyak Bumi

Pengolahan Minyak Bumi Primary Process Oleh: Syaiful R. K.(2011430080) Achmad Affandi (2011430096) Allief Damar GE (2011430100) Ari Fitriyadi (2011430101) Arthur Setiawan F Pengolahan Minyak Bumi Minyak Bumi Minyak bumi adalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian Motor Bakar Motor bakar adalah motor penggerak mula yang pada prinsipnya adalah sebuah alat yang mengubah energi kimia menjadi energi panas dan diubah ke energi

Lebih terperinci

BAB II LANDASAN TEORI DAN HIPOTESIS

BAB II LANDASAN TEORI DAN HIPOTESIS BAB II LANDASAN TEORI DAN HIPOTESIS 2.1. Landasan Teori 2.1.1. Motor Diesel Motor Diesel adalah motor pembakaran dalam (internal combustion engine) yang beroperasi dengan menggunakan minyak gas atau minyak

Lebih terperinci

I. PENDAHULUAN. Indonesia merupakan negara dengan kebutuhan Bahan Bakar Minyak (BBM)

I. PENDAHULUAN. Indonesia merupakan negara dengan kebutuhan Bahan Bakar Minyak (BBM) I. PENDAHULUAN 1.1. Latar Belakang Indonesia merupakan negara dengan kebutuhan Bahan Bakar Minyak (BBM) yang tinggi dan selalu mengalami peningkatan (Husen, 2013). Saat ini Indonesia membutuhkan 30 juta

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi saat ini menjadikan teknologi otomotif juga semakin berkembang. Perkembangan terjadi pada sistem pembakaran dimana sistem tersebut

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 Pengujian Bahan Baku Sebelum digunakan sebagai bahan baku pembuatan cocodiesel, minyak kelapa terlebih dahulu dianalisa. Adapun hasil analisa beberapa karakteristik minyak

Lebih terperinci

I. PENDAHULUAN. Perkembangan teknologi otomotif saat ini semakin pesat, hal ini didasari atas

I. PENDAHULUAN. Perkembangan teknologi otomotif saat ini semakin pesat, hal ini didasari atas I. PENDAHULUAN A. Latar Belakang Perkembangan teknologi otomotif saat ini semakin pesat, hal ini didasari atas pemikiran dan kebutuhan manusia yang juga berkembang pesat. Atas dasar itulah penerapan teknologi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI 2.1 Pembakaran Pembakaran bisa didefinisikan sebagai reaksi secara kimiawi yang berlangsung dengan cepat antara oksigen dengan unsur yang mudah terbakar dari bahan bakar pada suhu

Lebih terperinci

BAB II DASAR TEORI 2.1 Motor Bakar 3.2 Hukum Utama Termodinamika Penjelasan Umum

BAB II DASAR TEORI 2.1 Motor Bakar 3.2 Hukum Utama Termodinamika Penjelasan Umum 4 BAB II DASAR TEORI 2.1 Motor Bakar Motor bakar adalah sebuah mekanisme yang menstransformasikan energi panas menjadi energi mekanik melalui sebuah konstruksi mesin. Perubahan, energi panas menjadi energi

Lebih terperinci

4 Pembahasan Degumming

4 Pembahasan Degumming 4 Pembahasan Proses pengolahan biodiesel dari biji nyamplung hampir sama dengan pengolahan biodiesel dari minyak sawit, jarak pagar, dan jarak kepyar. Tetapi karena biji nyamplung mengandung zat ekstraktif

Lebih terperinci

Denny Haryadhi N Motor Bakar / Tugas 2. Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel

Denny Haryadhi N Motor Bakar / Tugas 2. Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel Karakteristik Motor 2 Langkah dan 4 Langkah, Motor Wankle, serta Siklus Otto dan Diesel A. Karakteristik Motor 2 Langkah dan 4 Langkah 1. Prinsip Kerja Motor 2 Langkah dan 4 Langkah a. Prinsip Kerja Motor

Lebih terperinci

Ma ruf Ridwan K

Ma ruf Ridwan K 1 Pengaruh penambahan kadar air dalam bahan bakar solar dan tekanan pengabutan terhadap emisi kepekatan asap hitam motor diesel donfenk Oleh : Ma ruf Ridwan K 2502009 BAB I PENDAHULUAN A. Latar Belakang

Lebih terperinci

Uji Performance Mesin Diesel Menggunakan Biodiesel Dari Minyak Goreng Bekas

Uji Performance Mesin Diesel Menggunakan Biodiesel Dari Minyak Goreng Bekas Uji Performance Mesin Diesel Menggunakan Biodiesel Dari Minyak Goreng Bekas Isalmi Aziz Program Studi Kimia Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta emi_uin@yahoo.co.id Abstrak Biodiesel

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan Secara garis besar, penelitian ini dibagi dalam dua tahap, yaitu penyiapan aditif dan analisa sifat-sifat fisik biodiesel tanpa dan dengan penambahan aditif. IV.1 Penyiapan

Lebih terperinci