MATRIKS & TRANSFORMASI LINIER

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MATRIKS & TRANSFORMASI LINIER"

Transkripsi

1 MATRIKS & TRANSFORMASI LINIER Oleh : SRI ESTI TRISNO SAMI, ST, MMSI Daftar Referensi : 1. Kreyzig Erwin, Advance Engineering Mathematic, Edisi ke-7, John wiley, Spiegel, Murray R, Advanced Calculus, Shcaum s Series, mc. Graw Hill, Singapore, Spiegel, Murray R, Vektor Analysis, Shcaum s Series, mc. Graw Hill, Singapore, T. Sutojo, S.Si., dkk, Aljabar Linier & Matriks, Penerbit Andi, 2010

2 1. VEKTOR 1. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Besaran-besaran pada fisika banyak yang termasuk besaran vektor. Contohnya gaya, kecepatan, percepatan, perpindahan, momen gaya dan momentum.. Vektor jika digambar dilambangkan dengan tanda panah ( ). Besar vektor proporsional dengan panjang panah dan arahnya bertepatan dengan arah panah. Vektor dapat melambangkan perpindahan dari titik A ke B. Vektor sering ditandai sebagai Contoh: AB B A AB = notasi pada vektor AB Titik pangkal di A Titik ujung di B Arah vektor dari A menuju Besar vektor ditunjukkan oleh panjang garis AB Vektor-vektor yang mempunyai arah dan panjang yang sama dikatakan ekivalen Vektor yang panjangnya nol dinamakan vektor nol dan dinyatakan dengan 0. Penjumlahan dengan vektor nol didefinisikan 0 + v = v + 0 = v Jika v sebarang vektor tak nol, maka v (negatif v) adalah vektor yang mempunyai besaran sama seperti v tetapi arahnya berlawanan dengan v.

3 Selain cara di atas, vektor bisa juga diberi lambang huruf alfabet kecil, misalkan diberikan vektor a. Jika elemen-elemen ditulis berderet membentuk satu baris, disebut vektor baris. a = vektor kolom a = [ a 1, a 2, a 3,, a n ] vektor baris [ ] Latihan soal: 1. Berikut adalah gambar lima buah mobil yang diamati berdasarkan ciri-ciri yang dimilikinya yaitu massa, kecepatan, tinggi, panjang, dan harganya Misalkan data-data dari mobil tersebut adalah: Mobil ke : Massa (kg) Kecepatan (km/jam) Tinggi (m) Panjang (m) Harga (Juta Rp) ,7 3, ,5 2, , ,5 2,4 550 Nyatakan data-data di atas sebagai vektor baris. 2. Ada 5 citra yang akan dikenali menggunakan komputer. Beberapa ciri untuk mengenali citra tersebut adalah dilihat dari standar deviasi intensitas warna dalam tiaptiap citra σ, rata-ratanya μ, histogramnya h, dan entropinya e Maka vektor ciri 5 buah citra tersebut dapat dinyatakan sebagai

4 1. Ruang Vektor 1.1 Vektor di ruang R 2 dan R 3 Vektor Satuan dan Vektor Basis di Ruang R 2 Tinjau vektor-vektor berikut : y j=(0, 1) i=(1, 0) x Masing-masing vektor ini mempunyai panjang 1 dan terletak sepanjang sumbu koordinat. Vektor tersebut dinamakan vektor satuan di ruang R 2. Vektor basis di ruang R 2 pada sumbu x dinyatakan dengan i, vektor satuan pada sumbu y dinyatakan dengan j, atau dalam bentuk vektor baris ditulis sebagai berikut e 1 = (1, 0), e 2 = (0, 1) atau dalam bentuk vektor kolom berikut * + * + Oleh karena i dan j sebagai basis di ruang R 2, maka setiap vektor = (V 1, V 2 ) di ruang R 2 dapat dinyatakan dengan i dan j sebagai berikut : = (V 1, V 2 ) = V 1 (1, 0) + V 2 (0, 1) = V 1 i, V 2 j = V 1 * + + V 2 * + Contoh : Vektor artinya sama dengan * + [ ] ( ) ( ) * + * + Misalkan v suatu vektor pada bidang, titik awal v diletakkan pada pusat sistem koordinat, dan titik ujung v terletak pada koordinat (v 1,v 2 ), maka (v 1,v 2 ) dinamakan komponen dari v. Dalam hal ini ditulis v = (v 1,v 2 ).

5 Secara geometri v 1 menyatakan komponen pada sumbu x dan v 2 menyatakan komponen pada sumbu y. Jika v = (v 1,v 2 ) dan w = (w 1,w 2 ) adalah vektor-vektor pada bidang (R 2 ), maka v ekivalen dengan w jika dan hanya jika v 1 =w 1 dan v 2 =w 2. Jika v = (v 1,v 2 ) dan w = (w 1,w 2 ), maka berlaku 1. v + w = (v 1 +w 1, v 2 +w 2 ) 2. k v = (kv 1,kv 2 ) dengan k suatu skalar Contoh : Misalkan v = ( 2, 1) dan w = (1, 3), maka v + w = ( 2, 1) + (1, 3) = ( 2+1, 1+3) = ( 1, 4) 2v = 2( 2, 1) = (2.( 2), 2.1) = ( 4, 2) v w = ( 2, 1) (1, 3) = ( 2 1, 1 3) = ( 3, 2) w v = (1, 3) ( 2, 1) = (1 ( 2), 3 1) = (3, 2) Kadang-kadang vektor diletakkan sedemikian sehingga titik awalnya tidak terletak pada pusat koordinat. Misalkan titik awalnya adalah P 1 (x 1,y 1 ) dan titik ujungnya adalah P 2 (x 2,y 2 ) maka P P = (x 2 x 1, y 2 y 1 ). Komponen P P didapat dengan mengurangkan koordinat tititk awal dari koordinat titik ujung. Jika dijelaskan dengan gambar, didapat pula P P = P P = (x 2,y 2 ) (x 1,y 1 ) = (x 2 x 1, y 2 y 1 ).

6 Jika v = (v 1,v 2 ) adalah vektor di R 2 maka panjang vektor (disebut norm ) v didefinisikan sebagai v = v v Jika P 1 (x 1,y 1 ) dan P 2 (x 2,y 2 ) adalah dua titik di R 2, maka jarak dua titik tersebut didefinisikan sebagai norm dari vektor P P, yaitu d = ((x x ) (y y ) ) Vektor Satuan dan Basis di Ruang R 3 Tinjaulah vektor-vektor berikut : z k=(0,0,1) j=(0,1,0) y x i=(1,0,0) Masing-masing vektor ini mempunyai panjang 1 dan terletak sepanjang sumbu koordinat. Vektor tersebut dinamakan vektor satuan dan menjadi vektor basis di ruang R 3. Vektor basis (vektor satuan) di ruang R 3 pada sumbu x dinyatakan dengan i, vektor satuan pada sumbu y dinyatakan dengan j, sedang vektor satuan pada sumbu z dinyatakan dengan k, atau dalam bentuk vektor baris berikut : e 1 = (1,0,0), e 2 = (0,1,0), e 3 = (0,0,1) atau dalam bentuk vektor kolom berikut :

7 e 1 = [ ] e 2 = [ ] e 3 = [ ] Oleh karena i, j, dan k basis di ruang R 3, maka setiap vektor = (V 1, V 2, V 3 ) di ruang R 3 dinyatakan dengan i, j, k sebagai berikut : = (V 1, V 2, V 3 ) = V 1 (1,0,0) + V 2 (0,1,0) + V 3 (0,0,1) = V 1 i, V 2 j, V 3 k = V 1 [ ] + V 2 [ ] + V 3 [ ] Contoh : Vektor k artinya sama dengan [ ] [ ] ( ) ( ) ( ) [ ] [ ] [ ] Vektor di ruang R 2 dan R 3 diposisikan sedemikian rupa sehingga titik awalnya berada di titik asal sistem koordinat siku-siku, dan koordinat titik terminal tersebut dinamakan komponen-komponen vektor. Misalkan v suatu vektor pada ruang (R 3 ), maka komponen dari v adalah (v 1,v 2,v 3 ) yang secara geometri v 1 menyatakan komponen pada sumbu x dan v 2 menyatakan komponen pada sumbu y dan v 3 menyatakan komponen pada sumbu z. Jika v = (v 1,v 2,v 3 ), dan w = (w 1,w 2,w 3 ), maka: 1. v ekivalen dengan w jika dan hanya jika v 1 =w 1,v 2 =w 2,v 3 =w v + w = (v 1 +w 1,v 2 +w 2,v 3 +w 3 ) 3. k v = (kv 1,kv 2,kv 3 ) dengan k suatu skalar Jika P 1 (x 1,y 1,z 1 ) dan P 2 (x 2,y 2,z 2 ) adalah titik-titik di R 3, maka P P = (x 2 x 1, y 2 y 1, z 2 z 1 ) Jika w = (w 1,w 2,w 3 ) suatu vektor di R 3, maka panjang vektor (norm) w didefinisikan sebagai = (w w w )

8 Jika (x 1,y 1,z1) dan P 2 (x 2,y 2,z 2 ) adalah dua titik di R 3, maka jarak antara dua titik tersebut adalah norm dari vektor P P, yaitu Contoh : d = (x x ) (y y ) (z z ) Norma vektor v = (3, 4, 0) adalah v = ( )=5 Jarak di antara titik P1(2, 1, 0) dan P2(4, 3, 1) adalah d= (( ) ( ) ( ) )= ( ( ) )= 21. Latihan soal: Tentukan komponen vektor dari gambar berikut: 1. 2 j Y v 0 i 4 x 2. 6 z w k 5 i j 4 y 1.2 Vektor di ruang R n Pada saat pertama kali ilmu vektor dikembangkan, hanya dikenal vektor vektor di R 2 dan R 3 saja, tetapi dalam perkembangannya ternyata didapatkan permasalahan yang lebih kompleks sehingga dikembangkan vektor vektor di ruang berdimensi 4, 5 atau secara umum merupakan vektor vektor di R n. Secara geometris memang vektor vektor di R 4 dan seterusnya memang belum bisa digambarkan, tetapi dasar yang digunakan seperti operasi operasi vektor masih sama seperti operasi pada vektor vektor di R 2 dan R 3. Orang yang pertama kali mempelajari vektor vektor di R n adalah Euclidis sehingga vektor vektor yang berada di R n dikenal sebagai vektor Euclidis, sedangkan ruang vektornya disebut ruang n Euclidis.

9 Vektor di ruang R n dinyatakan sebagai [ ] Panjang sebuah vektor disebut juga norma dinyatakan dengan : a a a a a n Vektor satuan dalam arah adalah : e a a a a a a n Contoh : Tentukan panjang vektor = i + 2j 3k dan vektor satuan dalam arah a adalah : ( ) [ ] * + 2. Jarak Euclidean Antara Dua Vektor Jarak vektor [ ] dan vektor [ ] dinyatakan sebagai : ab (a b ) (a b ) (a b ) (a n b n ) Contoh : Jarak vektor k dan vektor k adalah ( ) ( ) ( ) Aplikasi Jarak Euclidean dalam Pengenalan Pola Wajah Contoh: Diketahui tiga buah citra wajah yaitu Citra 1 (Dila), Citra 2 (Agil), dan Citra 3 (Alim) yang akan digunakan sebagai basis data untuk pengenalan pola wajah menggunakan komputer.

10 1 2 3 Citra 1 : σ = 0,15 μ = 40 e = 1,25 Citra 2 : σ = 0,05 μ = 60 e = 2,35 Citra 3 : σ = 0,24 μ = 53 e = 0,85 Kemudian diambil satu citra lagi, yaitu citra ke-4 sebagai citra uji. Pada citra uji dihitung nilai-nilai ciri citra tersebut, diperoleh data berikut: Citra 4 : σ = 0,23 μ = 55 e = 0,82 Tentukan bagaimana komputer bisa mengenali citra ke-4? Dan siapakah nama dari citra ke-4 menurut hasil pengenalan komputer? Penyelesaian: Komputer bisa mengenali citra ke-4 menggunakan metode jarak dari euclidean. Pertama masing-masing basis data dari ciri citra dan citra uji dijadikan bentuk vektor berikut. C = [ ] C 1 = [ ] C 2 = [ ] C 3 = [ ] C 4 = [ ] d 14 = ( ) ( ) ( ) d 24 = ( ) ( ) ( ) d 34 = ( ) ( ) ( ) Dari hasil perhitungan jarak menunjukkan bahwa citra ke-3 dan citra ke-4 mempunyai jarak paling kecil. Artinya citra ke-4 sangat mirip dengan citra ke-3, dibanding dengan citra ke-1 dan ke-2. Sehingga dari hasil perhitungan ini komputer memutuskan bahwa nama dari cara uji (citra ke-4) adalah Alim. 3. Aljabar Vektor Operasi-operasi pada vektor : 1. Kesamaan Dua Vektor Dua vektor dan adalah sama jika mereka memiliki besar/panjang dan arah yang sama dimanapun titik awalnya; =

11 2. Negatif Sebuah Vektor Sebuah vektor dengan arah berlawanan terhadap vektor tetapi memiliki besar atau panjang yang sama dinyatakan sebagai Resultan Dua Buah Vektor Jumlah atau resultan vektor dan adalah sebuah vektor yang terbentuk dengan meletakkan titik awal pada titik akhir dan menghubungkan titik awal ke titik akhir. Jumlah ditulis sebagai +. Definisi ini sama dengan hukum jajargenjang untuk penjumlahan vektor. + + Perluasan terhadap jumlah lebih dari dua vektor dapat dilakukan secara langsung, contohnya : D 4. Selisih vektor Selisih vektor dan, direpresentasikan - adalah vektor yang ditambahkan ke menghasilkan. Secara ekuivalen - dapat didefinisikan sebagai + ( ). Jika =, maka - didefinisikan sebagai vektor kosong atau vektor nol. Vektor ini memiliki besar nol tetapi tidak memiliki arah. E

12 - +(- ) 5. Perkalian sebuah vektor dengan sebuah skalar Perkalian sebuah vektor dengan sebuah skalar m menghasilkan sebuah vektor m yang memiliki besar kali besar dan arah sama atau berlawanan dengan tergantung pada apakah m positif atau negatif. Jika m = 0, maka m = 0, berarti vektor nol. Contoh : Diketahui dua vektor a = i + 2j 3k dan b = 2i + 5j + 4k, maka: 5a = 5 (i + 2j 3k) = 5i + 10j 15k 2a + 4b = 2 (i + 2j 3k) + 4 (2i + 5j + 4k) = (2i + 4j 6k) + (8i + 20j + 16k) = 10i + 24j +10k Latihan soal: 1. Diketahui vektor A = 3i + 4j, gambarlah vektor 2A dan 1/2A 2. Momentum adalah besaran vektor yang didefinisikan oleh P = mv. Sebuah massa 10 kg bergerak dengan kecepatan v = (5i + 5j 20k) m/s. Tentukan momentum yang dimiliki oleh massa tersebut. Dalil pada Operasi vektor : 1. + = hukum komutatif penjumlahan 2. + ( ) = ( ) hukum asosiatif penjumlahan 3. m(n ) = (mn) = n(m ) hukum asosiatif perkalian 4. (m + n) = m + n hukum distributif 5. m( + ) = hukum distributif = 7. +(- ) = =

13 Operasi perkalian titik atau perkalian skalar : Bila A= [ ] dan B = [ ] adalah vektor di R n, ϴ adalah sudut antara dan (0 ) A A A= [ ] A n θ. B B B = [ ] B n Perkalian titik dari dua vektor dan, dilambangkan dengan. (dibaca dot ) didefinisikan sebagai perkalian dari besar dan dan cosinus sudut antara keduanya. Ini dituliskan :. = A 1 B 1 + A 2 B A n B n Sedangkan sudut antara dua vektor tersebut didefinisikan oleh : Sifat-sifat perkalian titik : Misalkan dan adalah vektor di ruang R n, 1. ( ) 2. k k v k k k y k k y k k y k Bukti : 1. Karena sudut di antara dan adalah 0, maka dapat diperoleh :

14 2. Karena 4. Cross Product Operasi perkalian silang atau perkalian vektor : θ Jika = (A 1, A 2, A 3 ) dan = (B 1, B 2, B 3 ) adalah vektor di ruang R 3, maka hasil kali x adalah vektor yang tegak lurus terhadap yang didefinisikan oleh determinan berikut. x k x ( ) x ( ) Contoh : Carilah A x B dimana ( ) ( ) Jawab : * + A x B = ( ) ( )

15 Teorema Jika adalah vektor dalam ruang R 3, maka : 1. A.(A x B) = 0 2. x (Identitas Lagrange) Jika adalah sudut di antara, maka A.B =, sehinga identitas Lagrange dapat dituliskan kembali sebagai : atau x ( ) x Jadi besar dari hasil perkalian silang antara dua vektor genjang yang sisi-sisinya adalah panjang vektor sama dengan luas jajaran Sifat-sifat hasil kali silang : 1. x = -( ) 2. x ( ) = ( x ) ( x ) 3. ( + )x = ( x ) ( x ) 4. k ( x ) = ( ) ( ) 5. x 0 = x 6. x = 0 Soal-soal latihan: 1. Carilah komponen-komponen vektor yang bertitik awal di P dan terminal di Q a. P(-4,6) dan Q(7,9) b. P(10,15,-8) dan Q(8,-8,-6) 2. Carilah vektor yang bertitik awal P(2,-4,3) yang mempunyai arah seperti v[1,3,1] 3. Carilah vektor yang bertitik terminal Q(4,0,-6) yang mempunyai arah berlawanan dengan v=[-4,6,8] 4. Misalkan P adalah titik (3,-3,4) dan Q adalah tititk (6,5,-1)

16 a. Carilah titk tengah dari segmen garis yang menghubungkan P dan Q b. Carilah titik pada segmen garis yang menghubungkan P & Q yang ¾ dari P dan Q 5. Hitunglah panjang v bila a. v = [2,2,6] b. v = [-6,-9,4] 6. Hitunglah jarak antara P dan Q bila a. P(4,2) dan Q(4,5) b. P(2,1,-4) dan Q(8,-4,4) 7. Diketahui tiga citra buah, yaitu Citra 1(jeruk), Citra 2(Apel), Citra 3(Pisang) yang akan digunakan sebagai basis data untuk pengenalan pola wajah menggunakan komputer Beberapa ciri untuk mengenali citra tersebut adalah dilihat dari standar deviasi intensitas warna dalam tiap-tiap citra σ, rata-ratanya μ, dan entropinya e. Setelah ketiga ciri tersebut dihitung diperoleh data berikut: Citra 1 : σ = 0,05 μ = 30 e = 1,42 Citra 2 : σ = 0,25 μ = 70 e = 1,65 Citra 3 : σ = 0,45 μ = 58 e = 2, 65 Kemudian diambil 1 citra lagi, yaitu citra ke-4 sebagai citra uji. Pada citra uji dihitung nilai-nilai ciri citra tersebut, diperoleh data berikut: Citra 4 : σ = 0,04 μ = 31 e = 1,41 Tentukan bagaimana komputer bisa mengenali citra ke-4? Dan apa nama buah dari citra ke-4 menurut hasil pengenalan komputer? 8. Sebuah massa 20 kg bergerak dengan kecepatan v = (-2i+8j -4k) m/s. tentuakan momentum yang dimiliki oleh massa tersebut. 9. Tentukan : a. a.b bila a = [4,8,-9] dan b = [-8,12,-4] b. Jarak A(4,6,6), B(-6,-8,1) c. Jarak vektor a = [2,8] dan b = [-7,-4] 10. a. Tentukan k supaya a = [3,k,-4,1] mempunyai panjang b. Berapa sudut antara a = [-1,4,8,-4] dan b = [2,0,4,0] c. Tentukan k supaya a = [2,k,-5] tegak lurus b =[0,-k,4]

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor

BESARAN VEKTOR. Gb. 1.1 Vektor dan vektor BAB 1 BESARAN VEKTOR Tujuan Pembelajaran 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahkan vektor secara grafis dan dengan vektor komponen 3. Melakukan

Lebih terperinci

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMAA TEKNIK 1 KODE / SKS : IT042220 / 2 SKS Pokok Bahasan Pertemuan dan 1 Vektor : pengertian vektor, operasi aljabar vektor ruang, vektor cross product serta

Lebih terperinci

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1

MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Mata : MATEMATIKA TEKNIK 1 Jurusan : TEKNIK ELEKTRO SKS : 2 Sks Kode Mata : KD-041205 MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Minggu Ke Pokok Bahasan dan TIU 1 Vektor tentang pengertian

Lebih terperinci

Matematika II : Vektor. Dadang Amir Hamzah

Matematika II : Vektor. Dadang Amir Hamzah Matematika II : Vektor Dadang Amir Hamzah sumber : http://www.whsd.org/uploaded/faculty/tmm/calc front image.jpg 2016 Dadang Amir Hamzah Matematika II Semester II 2016 1 / 24 Outline 1 Pendahuluan Dadang

Lebih terperinci

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si. VEKTOR 1 A. Definisi vektor Beberapa besaran Fisika dapat dinyatakan dengan sebuah bilangan dan sebuah satuan untuk menyatakan nilai besaran tersebut. Misal, massa, waktu, suhu, dan lain lain. Namun, ada

Lebih terperinci

Vektor Ruang 2D dan 3D

Vektor Ruang 2D dan 3D Vektor Ruang 2D dan D Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

BESARAN SKALAR DAN VEKTOR. Besaran Skalar. Besaran Vektor. Sifat besaran fisis : Skalar Vektor

BESARAN SKALAR DAN VEKTOR. Besaran Skalar. Besaran Vektor. Sifat besaran fisis : Skalar Vektor PERTEMUAN II VEKTOR BESARAN SKALAR DAN VEKTOR Sifat besaran fisis : Skalar Vektor Besaran Skalar Besaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh : waktu,

Lebih terperinci

BESARAN VEKTOR B A B B A B

BESARAN VEKTOR B A B B A B Besaran Vektor 8 B A B B A B BESARAN VEKTOR Sumber : penerbit cv adi perkasa Perhatikan dua anak yang mendorong meja pada gambar di atas. Apakah dua anak tersebut dapat mempermudah dalam mendorong meja?

Lebih terperinci

Ruang Vektor Euclid R 2 dan R 3

Ruang Vektor Euclid R 2 dan R 3 Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015

Lebih terperinci

Program Studi Teknik Mesin S1

Program Studi Teknik Mesin S1 SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMATIKA TEKNIK 2 KODE/SKS : IT042227 / 2 SKS Pertemuan Pokok Bahasan dan TIU 1 Pendahuluan Mahasiswa mengerti tentang mata kuliah Matematika Teknik 2 : bahan ajar,

Lebih terperinci

BESARAN, SATUAN & DIMENSI

BESARAN, SATUAN & DIMENSI BESARAN, SATUAN & DIMENSI Defenisi Apakah yang dimaksud dengan besaran? Besaran : segala sesuatu yang dapat diukur dan dinyatakan dengan angka (kuantitatif). Apakah yang dimaksud dengan satuan? Satuan

Lebih terperinci

Vektor di Bidang dan di Ruang

Vektor di Bidang dan di Ruang Vektor di Bidang dan di Ruang 4.1. Pengertian, notasi,dan operasi pada ektor Vektor merupakan istilah untuk menyatakan besaran yang mempunyai arah. Secara geometris, ektor dinyakan dengan segmen-segmen

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat,

Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat, VEKTOR Dalam mempelajari fisika kita selalu berhubungan dengan besaran, yaitu sesuatu yang dapat diukur dan dioperasikan. da besaran yang cukup dinyatakan dengan nilai (harga magnitude) dan satuannya saja,

Lebih terperinci

fi5080-by-khbasar BAB 1 Analisa Vektor 1.1 Notasi dan Deskripsi

fi5080-by-khbasar BAB 1 Analisa Vektor 1.1 Notasi dan Deskripsi BB 1 nalisa Vektor Vektor, dibedakan dari skalar, adalah suatu besaran yang memiliki besar dan arah. rtinya untuk mendeskripsikan suatu besaran vektor secara lengkap perlu disampaikan informasi tentang

Lebih terperinci

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Analisis vektor meliputi bidang matematika dan fisika sekaligus dalam pembahasannya Skalar dan Vektor Skalar Skalar ialah

Lebih terperinci

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah) Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya

Lebih terperinci

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Besaran skalar adalah besaran yang hanya memiliki nilai saja. Contoh :

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat.

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat. .. esaran Vektor Dan Skalar II V E K T O R da beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. da juga besaran fisis yang tidak cukup hanya

Lebih terperinci

BAB II BESARAN VEKTOR

BAB II BESARAN VEKTOR BAB II BESARAN VEKTOR.1. Besaran Skalar Dan Vektor Dalam fisika, besaran dapat dibedakan menjadi dua kelompok yaitu besaran skalar dan besaran vektor. Besaran skalar adalah besaran yang dinyatakan dengan

Lebih terperinci

a11 a12 x1 b1 Definisi Vektor di R 2 dan R 3

a11 a12 x1 b1 Definisi Vektor di R 2 dan R 3 a11 a12 x1 b1 a a x b 21 22 2 2 Definisi Vektor di R 2 dan R 3 a11 a12 x1 b1 a a x b 21 22 2 2 Pendahuluan Notasi dan Pengertian Dasar Skalar, suatu konstanta yang dituliskan dalam huruf kecil Vektor,

Lebih terperinci

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga;

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga; BAB I VEKTOR A. DEFINISI VEKTOR 1). Pada mulanya vektor adalah objek telaah dalam ilmu fisika. Dalam ilmu fisika vektor didefinisikan sebagai sebuah besaran yang mempunyai besar dan arah seperti gaya,

Lebih terperinci

Perkalian Titik dan Silang

Perkalian Titik dan Silang PERKALIAN TITIK DAN SILANG Materi pokok pertemuan ke 3: 1. Perkalian titik URAIAN MATERI Perkalian Titik Perkalian titik dari dua buah vektor dan dinyatakan oleh (baca: titik ). Untuk lebih jelas, berikut

Lebih terperinci

Aljabar Linier Elementer. Kuliah ke-9

Aljabar Linier Elementer. Kuliah ke-9 Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor

Lebih terperinci

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B Amran Shidik MATERI FISIKA KELAS X 11/13/2016 VEKTOR A. Vektor Vektor adalah jenis besaran yang mempunyai nilai dan arah. Besaran yang termasuk besaran vektor antara lain perpindahan, gaya, kecepatan,

Lebih terperinci

Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Definisi Secara Grafis : Dari gambar di samping, ada sebuah anak panah yang berawal

Lebih terperinci

Rudi Susanto, M.Si VEKTOR

Rudi Susanto, M.Si VEKTOR Rudi Susanto, M.Si VEKTOR ESRN SKLR DN VEKTOR esaran Skalar esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh Catatan : waktu, suhu, volume, laju, energi

Lebih terperinci

VEKTOR. Oleh : Musayyanah, S.ST, MT

VEKTOR. Oleh : Musayyanah, S.ST, MT VEKTOR Oleh : Musayyanah, S.ST, MT 1 2.1 ESRN SKLR DN VEKTOR Sifat besaran fisis : esaran Skalar Skalar Vektor esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan).

Lebih terperinci

Pesawat Terbang. gaya angkat. gaya berat

Pesawat Terbang. gaya angkat. gaya berat Sumber: www.staralliance.com Pesawat Terbang Terbayangkah kalian dengan teknologi pesawat terbang? Alat transportasi ini diciptakan dengan teknologi yang canggih. Salah satunya adalah saat merancang konstruksi

Lebih terperinci

VEKTOR YUSRON SUGIARTO

VEKTOR YUSRON SUGIARTO VEKTOR YUSRON SUGIARTO Jurusan Keteknikan Pertanian FTP UB 2013 2 3 B E S A R A N Skalar besaran yang hanya memiliki besar (panjang/nilai) Vektor memiliki besar dan arah Massa Waktu Kecepatan Percepatan

Lebih terperinci

BAB 2 ANALISIS VEKTOR

BAB 2 ANALISIS VEKTOR BAB ANALISIS VEKTOR A. Tujuan Umum Mahasiswa memahami pengertian vektor, operasi vektor, penjumlahan, pengurangan, perkalian dan kaedah aljabar vektor. B. Tujuan Khusus Mahasiswa dapat memahami konsep

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Prodi Matematika FMIPA Unsyiah September 9, 2011 Melalui pendekatan aljabar, vektor u dinyatakan oleh pasangan berurutan u 1, u 2. Disini digunakan notasi u 1, u 2 bukan (u 1, u 2 ) karena notasi (u 1,

Lebih terperinci

Bab 1 : Skalar dan Vektor

Bab 1 : Skalar dan Vektor Bab 1 : Skalar dan Vektor 1.1 Skalar dan Vektor Istilah skalar mengacu pada kuantitas yang nilainya dapat diwakili oleh bilangan real tunggal (positif atau negatif). x, y dan z kita gunakan dalam aljabar

Lebih terperinci

L mba b ng n g d a d n n n o n t o asi Ve V ktor

L mba b ng n g d a d n n n o n t o asi Ve V ktor ANALISIS VEKTOR Vektor dan Skalar Macam-macam macam kuantitas dalam fisika seperti: temperatur, volume, dan kelajuan dapat ditentukan dengan angka riil (nyata). Kuantitas seperti disebut dengan skalar.

Lebih terperinci

a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1

a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1 1. Koordinat Cartesius Sistem koordinat Cartesius terdiri dari dua garis yang saling tegak lurus yang disebut sumbu Sumbu horizontal disebut sumbu X dan sumbu vertikal disebut sumbu Y Tiap sumbu mempunyai

Lebih terperinci

Pengantar Teknologi dan Aplikasi Elektromagnetik. Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Pengantar Teknologi dan Aplikasi Elektromagnetik. Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Pengantar Teknologi dan Aplikasi Elektromagnetik Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Kelistrikan dan Kemagnetan Tanpa listrik dan magnet, maka dalam kehidupan jaman sekarang: tanpa motor

Lebih terperinci

VEKTOR YUSRON SUGIARTO

VEKTOR YUSRON SUGIARTO VEKTOR YUSRON SUGIARTO Jurusan Keteknikan Pertanian FTP UB 2012 2 3 B E S A R A N Skalar besaran yang hanya memiliki besar (panjang/nilai) massa, waktu, suhu, panjang, luas, volum Vektor memiliki besar

Lebih terperinci

BAB II V E K T O R. Drs. Pristiadi Utomo, M.Pd. FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. Drs. Pristiadi Utomo, M.Pd. 52

BAB II V E K T O R. Drs. Pristiadi Utomo, M.Pd. FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. Drs. Pristiadi Utomo, M.Pd. 52 FISIKA KELAS X Drs. Pristiadi Utomo, M.Pd. BAB II V E K T O R Pernahkah Kamu naik pesawat terbang? Antara penumpang dan pilot dan copilot di ruang kemudi dipisah dengan sekat. Tujuannya agar pilot dapat

Lebih terperinci

B a b 2. Vektor. Sumber:www.tallship.org

B a b 2. Vektor. Sumber:www.tallship.org a b 2 Vektor Sumber:www.tallship.org Pada bab ini, nda akan diajak untuk dapat menerapkan konsep besaran Fisika dan pengukurannya dengan cara melakukan penjumlahan vektor. Pernahkah nda mengarungi lautan

Lebih terperinci

BAB I BESARAN DAN SATUAN

BAB I BESARAN DAN SATUAN BAB I BESARAN DAN SATUAN A. STANDAR KOMPETENSI :. Menerapkan konsep besaran fisika, menuliskan dan menyatakannya dalam satuan dengan baik dan benar (meliputi lambang, nilai dan satuan). B. Kompetensi Dasar

Lebih terperinci

A x pada sumbu x dan. Pembina Olimpiade Fisika davitsipayung.com. 2. Vektor. 2.1 Representasi grafis sebuah vektor

A x pada sumbu x dan. Pembina Olimpiade Fisika davitsipayung.com. 2. Vektor. 2.1 Representasi grafis sebuah vektor . Vektor.1 Representasi grafis sebuah vektor erdasarkan nilai dan arah, besaran dibagi menjadi dua bagian aitu besaran skalar dan besaran vektor. esaran skalar adalah besaran ang memiliki nilai dan tidak

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Vektor Orthogonal Vektor-vektor yang saling tegak lurus juga sering disebut vektor orthogonal. Dua vektor disebut saling tegak lurus jika dan hanya jika hasil perkalian titik-nya

Lebih terperinci

PENGAJARAN HASIL KALI TITIK DAN HASIL KALI SILANG PADA VEKTOR SERTA BEBERAPA PENGEMBANGANNYA. Suwandi 1.

PENGAJARAN HASIL KALI TITIK DAN HASIL KALI SILANG PADA VEKTOR SERTA BEBERAPA PENGEMBANGANNYA. Suwandi 1. PENGAJARAN HASIL KALI TITIK DAN HASIL KALI SILANG PADA VEKTOR Suwandi 1 1 Mahasiswa Pasca Sarjana Matematika FMIPA Universitas Riau e-mail: suwandiwandi2323@gmail.com ABSTRACT Dot product and cross product

Lebih terperinci

9.1. Skalar dan Vektor

9.1. Skalar dan Vektor ANALISIS VEKTOR 9.1. Skalar dan Vektor Skalar Satuan yang ditentukan oleh besaran Contoh: panjang, voltase, temperatur Vektor Satuan yang ditentukan oleh besaran dan arah Contoh: gaya, velocity Vektor

Lebih terperinci

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world).

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world). 5 II. TINJAUAN PUSTAKA 2.1. Pemodelan Matematika Definisi pemodelan matematika : Pemodelan matematika adalah suatu deskripsi dari beberapa perilaku dunia nyata (fenomena-fenomena alam) ke dalam bagian-bagian

Lebih terperinci

----- Garis dan Bidang di R 2 dan R

----- Garis dan Bidang di R 2 dan R ----- Garis dan Bidang di R dan R 3 ----- Sifat Operasi Hasil Kali Titik pada Vektor Teorema: Hasil kali titik (dot product) u dan v dapat dinyatakan pula sebagai: A. Pendekatan Geometri: R u v cos ; u,

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

GESERAN atau TRANSLASI

GESERAN atau TRANSLASI GESERAN atau TRANSLASI Makalah ini disusun untuk memenuhi Tugas Geometri Transformasi Dosen Pembimbing : Havid Risyanto, S.Si., M.Sc. D I S U S U N O L E H 1. AMILIA 1111050031 2. HAIRUDIN 1111050153 3.

Lebih terperinci

L mba b ng n g d a d n n n o n t o asi Ve V ktor

L mba b ng n g d a d n n n o n t o asi Ve V ktor ANALISIS VEKTOR Vektor dan Skalar Macam-macammacam kuantitas dalam fisika seperti: temperatur, volume, dan kelajuan dapat ditentukan dengan angka riil (nyata). Kuantitas seperti itu disebut dengan skalar.

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Jurusan Matematika FMIPA Unsyiah September 9, 2011 Secara geometrik, vektor pada bidang dapat digambarkan sebagai ruas garis berarah (anak panah). Panjang dari anak panah merepresentasikan besaran (magnitude)

Lebih terperinci

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)

ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS

Lebih terperinci

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3

Pelabelan matriks menggunakan huruf kapital. kolom ke-n. kolom ke-3 MATRIKS a. Konsep Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegipanjang dan diletakkan di dalam kurung biasa ( ) atau

Lebih terperinci

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut.

BAB II TINJAUAN PUSTAKA. tegak, perlu diketahui tentang materi-materi sebagai berikut. BAB II TINJAUAN PUSTAKA Sebelum pembahasan mengenai irisan bidang datar dengan tabung lingkaran tegak, perlu diketahui tentang materi-materi sebagai berikut. A. Matriks Matriks adalah himpunan skalar (bilangan

Lebih terperinci

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut

Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut Matriks adalah susunan segi empat siku-siku dari objek yang diatur berdasarkan baris (row) dan kolom (column). Objek-objek dalam susunan tersebut dinamakan entri dalam matriks atau disebut juga elemen

Lebih terperinci

FISIKA UNTUK UNIVERSITAS OLEH

FISIKA UNTUK UNIVERSITAS OLEH FISIKA UNTUK UNIVERSITAS OLEH BAB I VEKTOR Pendahuluan B esaran adalah segala sesuatu yang dapat diukur dan dinyatakan dalam bentuk angkaangka. Besaran fisika dapat dibagi menjadi besaran pokok dan besaran

Lebih terperinci

Pengantar KULIAH MEDAN ELEKTROMAGNETIK MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT

Pengantar KULIAH MEDAN ELEKTROMAGNETIK MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT KULIAH MEDAN ELEKTROMAGNETIK Pengantar Definisi Arsitektur MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT Operasional Sinkronisasi Kesimpulan & Saran Muhamad Ali, MT Http://www.elektro-uny.net/ali Pengantar

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

VEKTOR II. Tujuan Pembelajaran

VEKTOR II. Tujuan Pembelajaran Kurikulum 03 Kelas X matematika PEMINATAN VEKTOR II Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami tentang pembagian vektor.. Memahami tentang

Lebih terperinci

PENGUKURAN BESARAN. x = ½ skala terkecil. Jadi ketelitian atau ketidakpastian pada mistar adalah: x = ½ x 1 mm = 0,5 mm =0,05 cm

PENGUKURAN BESARAN. x = ½ skala terkecil. Jadi ketelitian atau ketidakpastian pada mistar adalah: x = ½ x 1 mm = 0,5 mm =0,05 cm PENGUKURAN BESARAN A. Pengertian Mengukur Mengukur adalahmembandingkan suatu besaran dengan besaran lain yang dijadikan standar satuan. Misalnya kita mengukur panjang benda, dan ternyata panjang benda

Lebih terperinci

Bab 1 Vektor. A. Pendahuluan

Bab 1 Vektor. A. Pendahuluan Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang

Lebih terperinci

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK 1 KEGIATAN BELAJAR 4 KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK Setelah mempelajari kegiatan belajar 4 ini, mahasiswa diharapkan mampu: 1. Menentukan kedudukan dua garis lurus di bidang dan di ruang 2.

Lebih terperinci

Pertemuan 3 & 4 INTERPRETASI GEOMETRI DAN GENERALISASI VARIANS. Interpretasi Geometri pada Sampel. Generalisasi varians

Pertemuan 3 & 4 INTERPRETASI GEOMETRI DAN GENERALISASI VARIANS. Interpretasi Geometri pada Sampel. Generalisasi varians Pertemuan 3 & 4 INTERPRETASI GEOMETRI DAN GENERALISASI VARIANS Interpretasi Geometri pada Sampel Generalisasi varians , Interpretasi Geometri pada Sampel Sample Geometry and Random Sampling Data sampel

Lebih terperinci

DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR. Penyusun Ir. S. Waniwatining Astuti, M.T.I.

DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR. Penyusun Ir. S. Waniwatining Astuti, M.T.I. DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR Penyusun Ir. S. Waniwatining Astuti, M.T.I. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 24 KATA PENGANTAR Pertama-tama penulis mengucapkan

Lebih terperinci

Kata. Kunci. E ureka Jika kalian mempunyai rekaman terjadinya tsunami, tontonlah bersama teman-teman kalian. Kemudian, jawablah pertanyaanpertanyaan

Kata. Kunci. E ureka Jika kalian mempunyai rekaman terjadinya tsunami, tontonlah bersama teman-teman kalian. Kemudian, jawablah pertanyaanpertanyaan Kata Kunci Vektor Resultan vektor Penjumlahan vektor Penguraian vektor Dot product Cross product Di bab sebelumnya, kalian telah mempelajari besaran dan satuan. Pada bab ini, kita akan mempelajari pembagian

Lebih terperinci

BAB 1 Vektor. Fisika. Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

BAB 1 Vektor. Fisika. Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom A 1 Vektor Fisika Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sub Pokok ahasan Definisi Vektor Penjumlahan Vektor Vektor Satuan

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTT MTEMTIK II (VEKTOR) Drs.. NN PURNWN, M.T JURUSN PENDIDIKN TEKNIK MESIN FKULTS PENDIDIKN TEKNOLOGI DN KEJURUN UNIVERSITS PENDIDIKN INDONESI 004 VEKTOR I. PENDHULUN 1.1. PENGERTIN Sepotong garis berarah

Lebih terperinci

ALJABAR LINEAR DAN MATRIKS

ALJABAR LINEAR DAN MATRIKS ALJABAR LINEAR DAN MATRIKS VEKTOR Definisi Vektor Ada dua besaran yaitu: Vektor mempunyai besar dan arah Skalar mempunyai besar A B A : titik awal B : titik akhir Notasi vektor biasanya menggunakan huruf

Lebih terperinci

Aljabar Linear Elementer Part IV. Oleh : Yeni Susanti

Aljabar Linear Elementer Part IV. Oleh : Yeni Susanti Aljabar Linear Elementer Part IV Vektor di Ruang R 2, R 3 dan R n Oleh : Yeni Susanti Vektor di Ruang R 2, R 3 dan R n Vektor: besaran yang mempunyai besar dan arah. Vektor secara geometris bisa digambarkan

Lebih terperinci

Ruang Vektor Euclid R n

Ruang Vektor Euclid R n Ruang Vektor Euclid R n Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Oktober 2015 MZI (FIF Tel-U) Ruang Vektor R n Oktober 2015 1 / 38 Acknowledgements

Lebih terperinci

VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan :

VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : 1 SMA SANTA ANGELA VEKTOR A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : A B Keterangan : Titik A disebut titik Pangkal Titik B disebut titik Ujung Dinotasikan

Lebih terperinci

MENJUMLAH VEKTOR. No Besaran Skalar Besaran Vektor

MENJUMLAH VEKTOR. No Besaran Skalar Besaran Vektor MENJUMLAH VEKTOR Kompetensi Siswa 1. Menghayati dan mengamalkan ajaran agama yang dianutnya 2. Mengembangkan perilaku (jujur, disiplin, tanggung jawab, peduli, santun, ramah lingkungan, gotong royong,

Lebih terperinci

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka

Lebih terperinci

dengan vektor tersebut, namun nilai skalarnya satu. Artinya

dengan vektor tersebut, namun nilai skalarnya satu. Artinya 1. Pendahuluan Penggunaan besaran vektor dalam kehidupan sehari-hari sangat penting mengingat aplikasi besaran vektor yang luas. Mulai dari prinsip gaya, hingga bidang teknik dalam memahami konsep medan

Lebih terperinci

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu.

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu. VEKTOR Kata vektor berasal dari bahasa Latin yang berarti "pembawa" (carrier), yang ada hubungannya dengan "pergeseran" (diplacement). Vektor biasanya digunakan untuk menggambarkan perpindahan suatu partikel

Lebih terperinci

ALJABAR LINEAR DAN MATRIKS VEKTOR

ALJABAR LINEAR DAN MATRIKS VEKTOR ALJABAR LINEAR DAN MATRIKS VEKTOR Definisi Vektor Ada dua besaran yaitu: Vektor mempunyai besar dan arah Skalar mempunyai besar A AB B A : titik awal B : titik akhir Notasi vektor biasanya menggunakan

Lebih terperinci

VEKTOR. Makalah ini ditujukkan untuk Memenuhi Tugas. Disusun Oleh : PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN

VEKTOR. Makalah ini ditujukkan untuk Memenuhi Tugas. Disusun Oleh : PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN VEKTOR Makalah ini ditujukkan untuk Memenuhi Tugas Disusun Oleh : 1. Chrisnaldo noel (12110024) 2. Maria Luciana (12110014) 3. Rahmat Fatoni (121100) PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Vektor di Ruang N TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat mengetahui definisi dan dapat menghitung perkalian

Lebih terperinci

BESARAN, SATUAN DAN VEKTOR

BESARAN, SATUAN DAN VEKTOR I BESARAN, SATUAN DAN VEKTOR Tujuan umum perkuliahan yang dicapai setelah mempelajari bab ini adalah pemahaman dan kemampuan menganalisis serta mengaplikasikan konsep-konsep besaran satuan dan vektor pada

Lebih terperinci

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1

1 Mengapa Perlu Belajar Geometri Daftar Pustaka... 1 Daftar Isi 1 Mengapa Perlu Belajar Geometri 1 1.1 Daftar Pustaka.................................... 1 2 Ruang Euclid 3 2.1 Geometri Euclid.................................... 8 2.2 Pencerminan dan Transformasi

Lebih terperinci

BAB I MATRIKS DEFINISI : NOTASI MATRIKS :

BAB I MATRIKS DEFINISI : NOTASI MATRIKS : BAB I MATRIKS DEFINISI : Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun/dijajarkan berbentuk persegi panjang (menurut baris dan kolom). Skalar-skalar itu disebut elemen matriks.

Lebih terperinci

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III

ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS. Dosen Pengampu: DARMADI, S.Si, M.Pd. Oleh: Kelompok III ALJABAR LINEAR BASIS RUANG BARIS DAN BASIS RUANG KOLOM SEBUAH MATRIKS Dosen Pengampu: DARMADI, SSi, MPd Oleh: Kelompok III 1 Andik Dwi S (06411008) 2 Indah Kurniawati (06411090) 3 Mahfuat M (06411104)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini akan diberikan beberapa materi yang akan diperlukan di dalam pembahasan, seperti: matriks secara umum; matriks yang dipartisi; matriks tereduksi dan taktereduksi; matriks

Lebih terperinci

VII III II VIII HAND OUT PERKULIAHAN GEOMETRI ANALITIK

VII III II VIII HAND OUT PERKULIAHAN GEOMETRI ANALITIK HAND OUT PERKULIAHAN GEOMETRI ANALITIK A. Sistem Koordinat Tegak Lurus Suatu sistem koordinat tegak lurus disebut juga dengan sistem koordinat cartesian. Di dalam ruang, terdapat tiga buah garis lurus

Lebih terperinci

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA

SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.

Lebih terperinci

RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd.

RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd. RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd. Universitas Negeri Surabaya Oleh Abdul Hayyih (147785010) Kelas D PROGRAM

Lebih terperinci

8 MATRIKS DAN DETERMINAN

8 MATRIKS DAN DETERMINAN 8 MATRIKS DAN DETERMINAN Matriks merupakan pengembangan lebih lanjut dari sistem persamaan linear. Oleh karenanya aljabar matriks sering juga disebut dengan aljabar linear. Matriks dapat digunakan untuk

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

MATRIKS A = ; B = ; C = ; D = ( 5 )

MATRIKS A = ; B = ; C = ; D = ( 5 ) MATRIKS A. DEFINISI MATRIKS Matriks adalah suatu susunan bilangan berbentuk segi empat dari suatu unsur-unsur pada beberapa sistem aljabar. Unsur-unsur tersebut bisa berupa bilangan dan juga suatu peubah.

Lebih terperinci

PanGKas HaBis FISIKA. Vektor

PanGKas HaBis FISIKA. Vektor Vektor PanGKas HaBis FISIKA Mari kita pandang sebuah perahu yang mengarungi sebuah sungai. Perahu itu, misalnya, berangkat dari dermaga menuju pangkalan bahan bakar. Jika dermaga dipakai sebagai titik

Lebih terperinci

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.

MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j. MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun

Lebih terperinci

MAKALAH VEKTOR. Di Susun Oleh : Kelas : X MIPA III Kelompok : V Adisti Amelia J.M.L

MAKALAH VEKTOR. Di Susun Oleh : Kelas : X MIPA III Kelompok : V Adisti Amelia J.M.L MAKALAH VEKTOR Di Susun Oleh : Kelas : X MIPA III Kelompok : V Adisti Amelia J.M.L PEMERINTAHAN KABUPATEN BOGOR SMAN 1 PAMIJAHAN 017 KATA PENGANTAR Dengan menyebut nama Allah Yang Maha Pengasih lagi Maha

Lebih terperinci

ALJABAR LINEAR ELEMENTER

ALJABAR LINEAR ELEMENTER BAHAN AJAR ALJABAR LINEAR ELEMENTER Disusun oleh : Indah Emilia Wijayanti Al. Sutjijana Jurusan Matematika Fakultas MIPA Universitas Gadjah Mada Desember, 22 ii Daftar Isi Sistem Persamaan Linear dan Matriks.

Lebih terperinci

MATRIKS. Notasi yang digunakan NOTASI MATRIKS

MATRIKS. Notasi yang digunakan NOTASI MATRIKS MATRIKS Beberapa pengertian tentang matriks : 1. Matriks adalah himpunan skalar (bilangan riil atau kompleks) yang disusun atau dijajarkan secara empat persegi panjang menurut baris-baris dan kolom-kolom.

Lebih terperinci