Geometri pada Bidang, Vektor

Ukuran: px
Mulai penontonan dengan halaman:

Download "Geometri pada Bidang, Vektor"

Transkripsi

1 Prodi Matematika FMIPA Unsyiah September 9, 2011

2 Melalui pendekatan aljabar, vektor u dinyatakan oleh pasangan berurutan u 1, u 2. Disini digunakan notasi u 1, u 2 bukan (u 1, u 2 ) karena notasi (u 1, u 2 ) sudah digunakan sebagai selang terbuka dan juga sebagai titik pada bidang koordinat. Salah satu keuntungan menyatakan vektor dalam pendekatan aljabar adalah karena dapat dengan mudah dikembangkan untuk dimensi yang lebih tinggi.

3 Gambar: Vektor direpresentasikan sebagai pasangan berurutan u 1, u 2

4 Bilangan-bilangan u 1 dan u 2 disebut komponen (component) dari u = u 1, u 2. Dua vektor u = u 1, u 2 dan v = v 1, v 2 adalah sama jka dan hanya jika u 1 = v 1 dan u 2 = v 2. Untuk menjumlahkan u dan v, kita menjumlahkan komponen-komponen yang bersesuaian, yaitu u + v = u 1 + v 1, u 2 + v 2 Untuk mengalikan u dengan skalar c, kita kalikan setiap komponen dengan c. Jadi Secara khusus cu = uc = cu 1, cu 2 u = u 1, u 2 0 = 0u = 0, 0

5 Teorema Untuk sebarang vektor u, v dan w dan sebarang skalar a dan b, berlaku hubungan 1 u + v = v + u 2 (u + v) + w = u + (v + w) 3 u + 0 = 0 + u 4 u + ( u) = 0 5 a(bu) = (ab)u = u(ab) 6 a(u + v) = au + av 7 (a + b)u = au + bu 8 1u =u

6 Panjang (length) (atau besaran, magnutude) u dari suatu vektor u = u 1, u 2, dinyatakan dengan u = u u2 2 Perkalian dua vektor u dan v, disebut hasilkali titik (dot product) dan disimbolkan dengan u v didefinisikan sebagai u v = u 1 v 1 + u 2 v 2 Rumus lain untuk hasilkali titik diberikan oleh u v = u v cos θ dimana u dan v vektor-vektor taknol dan θ (0 θ π) adalah sudut antara u dan v.

7 Contoh 1. Misalkan a = 3, 1 dan b = 1, 1, tentukan vektor a b. Penyelesaian a = ( 1) 2 = 10 Jadi a b = 10b = 10 1, 1 = 10, 10

8 Contoh 1. Misalkan a = 3, 1 dan b = 1, 1, tentukan vektor a b. Penyelesaian a = ( 1) 2 = 10 Jadi a b = 10b = 10 1, 1 = 10, 10

9 Contoh 1. Misalkan a = 3, 1 dan b = 1, 1, tentukan vektor a b. Penyelesaian a = ( 1) 2 = 10 Jadi a b = 10b = 10 1, 1 = 10, 10

10 Contoh 1. Misalkan a = 3, 1 dan b = 1, 1, tentukan vektor a b. Penyelesaian a = ( 1) 2 = 10 Jadi a b = 10b = 10 1, 1 = 10, 10

11 Teorema Jika u, v dan w adalah vektor-vektor dan c adalah skalar, maka sifat-sifat berikut ini berlaku. 1 u v = v u 2 u (v + w) = u v + u w 3 c(u v) = (cu) v = u (cv) 4 0 u = 0 5 u u = u 2 Teorema Dua vektor u dan v saling tegak lurus jika dan hanya jika hasilkali titiknya u v adalah 0.

12 Contoh 2. Tentukan sudut antara u = 8, 6 dan v = 5, 12. Penyelesaian cos θ = u v (8)(5) + (6)(12) = = 112 0, 862 u v (10)(13) 130 Jadi θ = cos 1 (0, 862) 0, 532 (atau 30, 5 )

13 Contoh 2. Tentukan sudut antara u = 8, 6 dan v = 5, 12. Penyelesaian cos θ = u v (8)(5) + (6)(12) = = 112 0, 862 u v (10)(13) 130 Jadi θ = cos 1 (0, 862) 0, 532 (atau 30, 5 )

14 Contoh 2. Tentukan sudut antara u = 8, 6 dan v = 5, 12. Penyelesaian cos θ = u v (8)(5) + (6)(12) = = 112 0, 862 u v (10)(13) 130 Jadi θ = cos 1 (0, 862) 0, 532 (atau 30, 5 )

15 Contoh 2. Tentukan sudut antara u = 8, 6 dan v = 5, 12. Penyelesaian cos θ = u v (8)(5) + (6)(12) = = 112 0, 862 u v (10)(13) 130 Jadi θ = cos 1 (0, 862) 0, 532 (atau 30, 5 )

16 Misalkan i = 1, 0 dan j = 0, 1, dan perhatikan bahwa kedua vektor ini saling tegak lurus dan mempunyai panjang satu. Vektor-vektor seperti ini disebut vektor basis (basis vector), karena sebarang vektor u = u 1, u 2 dapat direpresentasikan secara unik dalam bentuk i dan j, yaitu, u = u 1, u 2 = u 1 1, 0 + u 2 0, 1 = u 1 i + u 2 j Gambar: Interprestasi geometrik dari vektor basis

17 Misalkan u dan v adalah vektor, dan misalkan θ adalah sudut antara kedua vektor tersebut. Selanjutnya, kita asumsikan 0 θ π/2. Misalkan w adalah vektor pada arah v yang mempunyai besaran u cos θ. Karena w mempunyai arah yang sama dengan v, maka kita tahu bahwa w = cv untuk suatu skalar c positif. Di sisi lain, besaran w haruslah u cos θ. Jadi, u cos θ = w = cv = c v Dengan demikian, konstanta c adalah Jadi c = u v cos θ = u v w = u v u v = u v v 2 ( ) u v v 2 v

18 Gambar: vektor u pada vektor v

19 Untuk π/2 < θ π, kita mendefinisikan w sebagai vektor pada garis yang ditentukan oleh v, tetapi dengan mengarah pada arah yang berlawanan dengan v. Besaran vektor ini adalah w = u cos θ = c v untuk beberapa skalar c positif. Jadi, c = ( u cos θ)/( v ) = u v/ v 2, Karena w mempunyai arah yang berlawanan dengan v, maka kita memperoleh w = cv = (u v/ v 2 )v. Jadi, pada kedua kasus ini kita mempunyai w = (u v/ v 2 )v. Vektor w disebut proyeksi vektor u pada v, atau kadang-kadang hanya disebut proyeksi u pada v, dan dinotasikan dengan pr v u: pr v u = ( u v v 2 ) v.

20 Proyeki skalar u pada v didefinisikan sebagai u cos θ. Hasilnya bisa positif, nol, atau negatif, bergantung pada apakah sudut θ lancip, biasa, atau tumpul. Ketika 0 θ π/2 maka proyeksi skalar akan sama dengan besaran dari pr v u, dan ketika π/2 < θ π, maka proyeksi skalar akan berlawanan dengan besaran dari pr v u.

21

Aljabar Linier Elementer. Kuliah ke-9

Aljabar Linier Elementer. Kuliah ke-9 Aljabar Linier Elementer Kuliah ke-9 Materi kuliah Hasilkali Titik Proyeksi Ortogonal 7/9/2014 Yanita, FMIPA Matematika Unand 2 Hasilkali Titik dari Vektor-Vektor Definisi Jika u dan v adalah vektor-vektor

Lebih terperinci

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika

Outline Vektor dan Garis Koordinat Norma Vektor Hasil Kali Titik dan Proyeksi Hasil Kali Silang. Geometri Vektor. Kusbudiono. Jurusan Matematika Jurusan Matematika 1 Nopember 2011 1 Vektor dan Garis 2 Koordinat 3 Norma Vektor 4 Hasil Kali Titik dan Proyeksi 5 Hasil Kali Silang Definisi Vektor Definisi Jika AB dan CD ruas garis berarah, keduanya

Lebih terperinci

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga;

Definisi Jumlah Vektor Jumlah dua buah vektor u dan v diperoleh dari aturan jajaran genjang atau aturan segitiga; BAB I VEKTOR A. DEFINISI VEKTOR 1). Pada mulanya vektor adalah objek telaah dalam ilmu fisika. Dalam ilmu fisika vektor didefinisikan sebagai sebuah besaran yang mempunyai besar dan arah seperti gaya,

Lebih terperinci

Vektor di ruang dimensi 2 dan ruang dimensi 3

Vektor di ruang dimensi 2 dan ruang dimensi 3 Vektor di ruang dimensi 2 dan ruang dimensi 3 Maulana Malik 1 (maulana.malik@sci.ui.ac.id) 1 Departemen Matematika FMIPA UI Kampus Depok UI, Depok 16424 2014/2015 1/21 maulana.malik@sci.ui.ac.id Vektor

Lebih terperinci

Ruang Vektor Euclid R 2 dan R 3

Ruang Vektor Euclid R 2 dan R 3 Ruang Vektor Euclid R 2 dan R 3 Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U September 2015 MZI (FIF Tel-U) Ruang Vektor R 2 dan R 3 September 2015

Lebih terperinci

VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = =

VEKTOR. Notasi Vektor. Panjang Vektor. Penjumlahan dan Pengurangan Vektor (,, ) (,, ) di atas dapat dinyatakan dengan: Matriks = Maka = = VEKTOR Notasi Vektor (,, ) (,, ) Vektor atau Matriks Maka di atas dapat dinyatakan dengan: Kombinasi linear vektor basis maka; ( ) + ( ) + ( ) + + (,, ) Panjang Vektor Misalkan + + (,, ), maka panjang

Lebih terperinci

Kalkulus Multivariabel I

Kalkulus Multivariabel I dan Gradien dan Gradien Statistika FMIPA Universitas Islam Indonesia dan Gradien Turunan-turunan parsial f x (x, y) dan f y (x, y) mengukur laju perubahan (dan kemiringan garis singgung) pada arah sejajar

Lebih terperinci

BAB II VEKTOR DAN GERAK DALAM RUANG

BAB II VEKTOR DAN GERAK DALAM RUANG BAB II VEKTOR DAN GERAK DALAM RUANG 1. KOORDINAT CARTESIUS DALAM RUANG DIMENSI TIGA SISTEM TANGAN KANAN SISTEM TANGAN KIRI RUMUS JARAK,,,, 16 Contoh : Carilah jarak antara titik,, dan,,. Solusi :, Persamaan

Lebih terperinci

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah)

Pengantar Vektor. Besaran. Vektor (Mempunyai Arah) Skalar (Tidak mempunyai arah) Pengantar Vektor Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a =

19. VEKTOR. 2. Sudut antara dua vektor adalah θ. = a 1 i + a 2 j + a 3 k; a. a = 19. VEKTOR A. Vektor Secara Geometri 1. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah θ 3. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a1 1. Komponen dan panjang vektor: a = a =

Lebih terperinci

01-Pengenalan Vektor. Dosen: Anny Yuniarti, M.Comp.Sc Gasal Anny2011 1

01-Pengenalan Vektor. Dosen: Anny Yuniarti, M.Comp.Sc Gasal Anny2011 1 01-Pengenalan Vektor Dosen: Anny Yuniarti, M.Comp.Sc Gasal 2011-2012 Anny2011 1 Agenda Bagian 1: Vektor dan Kombinasi Linier Bagian 2: Panjang Vektor dan Perkalian Titik (Dot Products) Bagian 3: Matriks

Lebih terperinci

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor

BAB 1 BESARAN VEKTOR. A. Representasi Besaran Vektor BAB 1 BESARAN VEKTOR TUJUAN PEMBELAJARAN 1. Menjelaskan definisi vektor, dan representasinya dalam sistem koordinat cartesius 2. Menjumlahan vektor secara grafis dan matematis 3. Melakukan perkalian vektor

Lebih terperinci

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain

BAB III RUANG VEKTOR R 2 DAN R 3. Bab ini membahas pengertian dan operasi vektor-vektor. Selain BAB III RUANG VEKTOR R DAN R 3 Bab ini membahas pengertian dan operasi ektor-ektor. Selain operasi aljabar dibahas pula operasi hasil kali titik dan hasil kali silang dari ektor-ektor. Tujuan Instruksional

Lebih terperinci

ALJABAR LINEAR DAN MATRIKS

ALJABAR LINEAR DAN MATRIKS ALJABAR LINEAR DAN MATRIKS VEKTOR Definisi Vektor Ada dua besaran yaitu: Vektor mempunyai besar dan arah Skalar mempunyai besar A B A : titik awal B : titik akhir Notasi vektor biasanya menggunakan huruf

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili

Jika titik O bertindak sebagai titik pangkal, maka ruas-ruas garis searah mewakili 4.5. RUMUS PERBANDINGAN VEKTOR DAN KOORDINAT A. Pengertian Vektor Posisi dari Suatu Titik Misalnya titik A, B, C Dan D. adalah titik sebarang di bidang atau di ruang. Jika titik O bertindak sebagai titik

Lebih terperinci

9.1. Skalar dan Vektor

9.1. Skalar dan Vektor ANALISIS VEKTOR 9.1. Skalar dan Vektor Skalar Satuan yang ditentukan oleh besaran Contoh: panjang, voltase, temperatur Vektor Satuan yang ditentukan oleh besaran dan arah Contoh: gaya, velocity Vektor

Lebih terperinci

Ruang Vektor Euclid R n

Ruang Vektor Euclid R n Ruang Vektor Euclid R n Kuliah Aljabar Linier Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University FIF Tel-U Oktober 2015 MZI (FIF Tel-U) Ruang Vektor R n Oktober 2015 1 / 38 Acknowledgements

Lebih terperinci

Geometri pada Bidang, Vektor

Geometri pada Bidang, Vektor Jurusan Matematika FMIPA Unsyiah September 9, 2011 Secara geometrik, vektor pada bidang dapat digambarkan sebagai ruas garis berarah (anak panah). Panjang dari anak panah merepresentasikan besaran (magnitude)

Lebih terperinci

Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat,

Arahnya diwakili oleh sudut yang dibentuk oleh A dengan ketigas umbu koordinat, VEKTOR Dalam mempelajari fisika kita selalu berhubungan dengan besaran, yaitu sesuatu yang dapat diukur dan dioperasikan. da besaran yang cukup dinyatakan dengan nilai (harga magnitude) dan satuannya saja,

Lebih terperinci

VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan :

VEKTOR 2 SMA SANTA ANGELA. A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : 1 SMA SANTA ANGELA VEKTOR A. Pengertian Vektor Vektor adalah besaran yang memiliki besar dan arah. Dilambangkan dengan : A B Keterangan : Titik A disebut titik Pangkal Titik B disebut titik Ujung Dinotasikan

Lebih terperinci

DIKTAT MATEMATIKA II

DIKTAT MATEMATIKA II DIKTT MTEMTIK II (VEKTOR) Drs.. NN PURNWN, M.T JURUSN PENDIDIKN TEKNIK MESIN FKULTS PENDIDIKN TEKNOLOGI DN KEJURUN UNIVERSITS PENDIDIKN INDONESI 004 VEKTOR I. PENDHULUN 1.1. PENGERTIN Sepotong garis berarah

Lebih terperinci

Aljabar Linier Elementer

Aljabar Linier Elementer Aljabar Linier Elementer Kuliah 15 dan 16 11/11/2014 1 Materi Kuliah Kebebasan Linier Basis dan Dimensi 11/11/2014 Yanita, Matematika Unand 2 5.3 Kebebasan Linier Definisi Jika S = v 1, v 2,, v r adalah

Lebih terperinci

Aljabar Linear Elementer Part IV. Oleh : Yeni Susanti

Aljabar Linear Elementer Part IV. Oleh : Yeni Susanti Aljabar Linear Elementer Part IV Vektor di Ruang R 2, R 3 dan R n Oleh : Yeni Susanti Vektor di Ruang R 2, R 3 dan R n Vektor: besaran yang mempunyai besar dan arah. Vektor secara geometris bisa digambarkan

Lebih terperinci

DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR. Penyusun Ir. S. Waniwatining Astuti, M.T.I.

DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR. Penyusun Ir. S. Waniwatining Astuti, M.T.I. DIKTAT ALJABAR LINIER DAN MATRIKS VEKTOR Penyusun Ir. S. Waniwatining Astuti, M.T.I. SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER GLOBAL INFORMATIKA MDP 24 KATA PENGANTAR Pertama-tama penulis mengucapkan

Lebih terperinci

Geometri dalam Ruang, Vektor

Geometri dalam Ruang, Vektor Prodi Matematika FMIPA Unsyiah September 29, 2011 Singgung terhadap Kurva Sebuah kurva ruang (space curve) dapat ditentukan oleh tiga persamaan parametrik. x = f(t), y = g(t), z = h(t), t I dengan f, g,

Lebih terperinci

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor)

TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Outline TRANSFORMASI LINIER (Kajian Fungsi antar Ruang Vektor) Drs. Antonius Cahya Prihandoko, M.App.Sc PS. Pendidikan Matematika PS. Sistem Informasi University of Jember Indonesia Jember, 2009 Outline

Lebih terperinci

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu.

VEKTOR. Besaran skalar (scalar quantities) : besaran yang hanya mempunyai nilai saja. Contoh: jarak, luas, isi dan waktu. VEKTOR Kata vektor berasal dari bahasa Latin yang berarti "pembawa" (carrier), yang ada hubungannya dengan "pergeseran" (diplacement). Vektor biasanya digunakan untuk menggambarkan perpindahan suatu partikel

Lebih terperinci

ALJABAR LINEAR DAN MATRIKS VEKTOR

ALJABAR LINEAR DAN MATRIKS VEKTOR ALJABAR LINEAR DAN MATRIKS VEKTOR Definisi Vektor Ada dua besaran yaitu: Vektor mempunyai besar dan arah Skalar mempunyai besar A AB B A : titik awal B : titik akhir Notasi vektor biasanya menggunakan

Lebih terperinci

MATRIKS & TRANSFORMASI LINIER

MATRIKS & TRANSFORMASI LINIER MATRIKS & TRANSFORMASI LINIER Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 082334051324 Daftar Referensi : 1. Kreyzig Erwin, Advance Engineering Mathematic, Edisi ke-7, John wiley,1993 2. Spiegel, Murray R, Advanced

Lebih terperinci

Aljabar Linier & Matriks

Aljabar Linier & Matriks Aljabar Linier & Matriks 1 Vektor Orthogonal Vektor-vektor yang saling tegak lurus juga sering disebut vektor orthogonal. Dua vektor disebut saling tegak lurus jika dan hanya jika hasil perkalian titik-nya

Lebih terperinci

PENGANTAR KALKULUS PEUBAH BANYAK. 1. Pengertian Vektor pada Bidang Datar

PENGANTAR KALKULUS PEUBAH BANYAK. 1. Pengertian Vektor pada Bidang Datar PENGANTAR KALKULUS PEUBAH BANYAK ERIDANI 1. Pengertian Vektor pada Bidang Datar Misalkan R menyatakan sistem bilangan real, yaitu himpunan bilangan real yang dilengkapi dengan empat operasi baku (tambah,

Lebih terperinci

KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA

KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA Prosiding Seminar Nasional Volume 02, Nomor 1 ISSN 2443-1109 KONSTRUKSI PERSAMAAN GARIS LURUS MELALUI ANALISIS VEKTORIS DALAM RUANG BERDIMENSI DUA Rio Fabrika Pasandaran 1, Patmaniar 2 Universitas Cokroaminoto

Lebih terperinci

a11 a12 x1 b1 Definisi Vektor di R 2 dan R 3

a11 a12 x1 b1 Definisi Vektor di R 2 dan R 3 a11 a12 x1 b1 a a x b 21 22 2 2 Definisi Vektor di R 2 dan R 3 a11 a12 x1 b1 a a x b 21 22 2 2 Pendahuluan Notasi dan Pengertian Dasar Skalar, suatu konstanta yang dituliskan dalam huruf kecil Vektor,

Lebih terperinci

Vektor Ruang 2D dan 3D

Vektor Ruang 2D dan 3D Vektor Ruang 2D dan D Besaran Skalar (Tidak mempunyai arah) Vektor (Mempunyai Arah) Vektor Geometris Skalar (Luas, Panjang, Massa, Waktu dan lain - lain), merupakan suatu besaran yang mempunyai nilai mutlak

Lebih terperinci

VEKTOR Matematika Industri I

VEKTOR Matematika Industri I VEKTOR TIP FTP UB Pokok Bahasan Pendahuluan: Kuantitas skalar dan vektor Representasi vektor Komponen-komponen vektor yang diketahui Vektor dalam ruang Kosinus arah Hasilkali skalar dari dua vektor Hasilkali

Lebih terperinci

18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real:

18. VEKTOR. 2. Sudut antara dua vektor adalah. a = a 1 i + a 2 j + a 3 k; a = 2. Penjumlahan, pengurangan, dan perkalian vektor dengan bilangan real: 8. VEKTOR A. Vektor Secara Geometri. Ruas garis berarah AB = b a. Sudut antara dua vektor adalah. Bila AP : PB = m : n, maka: B. Vektor Secara Aljabar a. Komponen dan panjang vektor: a = a a a = a = a

Lebih terperinci

PERSAMAAN BIDANG RATA

PERSAMAAN BIDANG RATA 1 KEGIATAN BELAJAR 5 PERSAMAAN BIDANG RATA Setelah mempelajari kegiatan belajar 5 ini, mahasiswa diharapkan mampu: 1. Menentukan persamaan vektoris bidang rata 2. Menentukan persamaan linier bidang rata

Lebih terperinci

VEKTOR. Oleh : Musayyanah, S.ST, MT

VEKTOR. Oleh : Musayyanah, S.ST, MT VEKTOR Oleh : Musayyanah, S.ST, MT 1 2.1 ESRN SKLR DN VEKTOR Sifat besaran fisis : esaran Skalar Skalar Vektor esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan).

Lebih terperinci

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B

VEKTOR A. Vektor Vektor B. Penjumlahan Vektor R = A + B Amran Shidik MATERI FISIKA KELAS X 11/13/2016 VEKTOR A. Vektor Vektor adalah jenis besaran yang mempunyai nilai dan arah. Besaran yang termasuk besaran vektor antara lain perpindahan, gaya, kecepatan,

Lebih terperinci

Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Aljabar Linear dan Matriks (Persamaan Linear dan Vektor) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. . Matriks dan Sistem Persamaan Linear Definisi Persamaan dalam variabel dan y dapat ditulis dalam

Lebih terperinci

RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd.

RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd. RANGKUMAN MATERI VEKTOR Diajukan untuk Memenuhi Tugas Mata Kuliah Matematika Sekolah Dosen Pembina: Dr. Tatag Yuli Eko Siswono, M.Pd. Universitas Negeri Surabaya Oleh Abdul Hayyih (147785010) Kelas D PROGRAM

Lebih terperinci

fi5080-by-khbasar BAB 1 Analisa Vektor 1.1 Notasi dan Deskripsi

fi5080-by-khbasar BAB 1 Analisa Vektor 1.1 Notasi dan Deskripsi BB 1 nalisa Vektor Vektor, dibedakan dari skalar, adalah suatu besaran yang memiliki besar dan arah. rtinya untuk mendeskripsikan suatu besaran vektor secara lengkap perlu disampaikan informasi tentang

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR VEKTOR DAN SKALAR Materi pokok pertemuan ke I: 1. Vektor dan skalar 2. Komponen vektor 3. Operasi dasar aljabar vektor URAIAN MATERI Masih ingatkah Anda tentang vektor? Apa beda vektor dengan skalar? Ya,

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

BAB 6 RUANG HASIL KALI DALAM. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 6 RUANG HASIL KALI DALAM. Dr. Ir. Abdul Wahid Surhim, MT. BAB 6 RUANG HASIL KALI DALAM Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Hasil Kali Dalam 2. Sudut dan Keortogonalan pada Ruang Hasil Kali Dalam 3.Basis Ortogonal, Proses Gram-Schmidt 4.Perubahan

Lebih terperinci

BAB 1 Vektor. Fisika. Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

BAB 1 Vektor. Fisika. Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom A 1 Vektor Fisika Tim Dosen Fisika 1, Ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sub Pokok ahasan Definisi Vektor Penjumlahan Vektor Vektor Satuan

Lebih terperinci

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F

BAB IV TRANSFORMASI LINEAR. sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka kita mengatakan F BAB IV TRANSFORMASI LINEAR 4.. Transformasi Linear Jika V dan W adalah ruang vektor dan F adalah sebuah fungsi yang mengasosiasikan sebuah vektor yang unik di dalam W dengan sebuah vektor di dalam V, maka

Lebih terperinci

Perkalian Titik dan Silang

Perkalian Titik dan Silang PERKALIAN TITIK DAN SILANG Materi pokok pertemuan ke 3: 1. Perkalian titik URAIAN MATERI Perkalian Titik Perkalian titik dari dua buah vektor dan dinyatakan oleh (baca: titik ). Untuk lebih jelas, berikut

Lebih terperinci

VEKTOR Matematika Industri I

VEKTOR Matematika Industri I VEKTOR TIP FTP UB Pokok Bahasan Pendahuluan: Kuantitas skalar dan vektor Representasi vektor Komponen-komponen vektor yang diketahui Vektor dalam ruang Kosinus arah Hasilkali skalar dari dua vektor Hasilkali

Lebih terperinci

Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan II) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Definisi Secara Grafis : Dari gambar di samping, ada sebuah anak panah yang berawal

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

Materi Aljabar Linear Lanjut

Materi Aljabar Linear Lanjut Materi Aljabar Linear Lanjut TRANSFORMASI LINIER DARI R n KE R m ; GEOMETRI TRANSFORMASI LINIER DARI R 2 KE R 2 Disusun oleh: Dwi Lestari, M.Sc email: dwilestari@uny.ac.id JURUSAN PENDIDIKAN MATEMATIKA

Lebih terperinci

BAB 5 RUANG VEKTOR A. PENDAHULUAN

BAB 5 RUANG VEKTOR A. PENDAHULUAN BAB 5 RUANG VEKTOR A. PENDAHULUAN 1. Definisi-1. Suatu ruang vektor adalah suatu himpunan objek yang dapat dijumlahkan satu sama lain dan dikalikan dengan suatu bilangan, yang masing-masing menghasilkan

Lebih terperinci

ALJABAR LINEAR ELEMENTER

ALJABAR LINEAR ELEMENTER BAHAN AJAR ALJABAR LINEAR ELEMENTER Disusun oleh : Indah Emilia Wijayanti Al. Sutjijana Jurusan Matematika Fakultas MIPA Universitas Gadjah Mada Desember, 22 ii Daftar Isi Sistem Persamaan Linear dan Matriks.

Lebih terperinci

ALJABAR LINEAR DAN MATRIKS. MODUL 9 Vektor dalam Ruang Euklidian

ALJABAR LINEAR DAN MATRIKS. MODUL 9 Vektor dalam Ruang Euklidian ALJABAR LINEAR DAN MATRIKS MODUL 9 Vektor dalam Ruang Euklidian Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2007 年 12 月 16 日 ( 日 ) Vektor dalam Ruang Euklidian Sebelum kita menginjak

Lebih terperinci

BESARAN VEKTOR B A B B A B

BESARAN VEKTOR B A B B A B Besaran Vektor 8 B A B B A B BESARAN VEKTOR Sumber : penerbit cv adi perkasa Perhatikan dua anak yang mendorong meja pada gambar di atas. Apakah dua anak tersebut dapat mempermudah dalam mendorong meja?

Lebih terperinci

a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1

a menunjukkan jumlah satuan skala relatif terhadap nol pada sumbu X Gambar 1 1. Koordinat Cartesius Sistem koordinat Cartesius terdiri dari dua garis yang saling tegak lurus yang disebut sumbu Sumbu horizontal disebut sumbu X dan sumbu vertikal disebut sumbu Y Tiap sumbu mempunyai

Lebih terperinci

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Analisis Vektor. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Analisis Vektor Analisis vektor meliputi bidang matematika dan fisika sekaligus dalam pembahasannya Skalar dan Vektor Skalar Skalar ialah

Lebih terperinci

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK

KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK 1 KEGIATAN BELAJAR 4 KEDUDUKAN DUA GARIS LURUS, SUDUT DAN JARAK Setelah mempelajari kegiatan belajar 4 ini, mahasiswa diharapkan mampu: 1. Menentukan kedudukan dua garis lurus di bidang dan di ruang 2.

Lebih terperinci

MODUL 3 BIDANG RATA. [Program Studi Pendidikan Matematika STKIP PGRI Sumatera Barat]

MODUL 3 BIDANG RATA. [Program Studi Pendidikan Matematika STKIP PGRI Sumatera Barat] 1 MODUL 3 BIDANG RATA Setelah mempelajari modul 1 dan 2 anda akan melanjutkan mempelajari modul 3 tentang bidang rata. Materi bidang rata ini berkaitan dengan materi pada modul sebelumnya. Pada modul 3

Lebih terperinci

----- Garis dan Bidang di R 2 dan R

----- Garis dan Bidang di R 2 dan R ----- Garis dan Bidang di R dan R 3 ----- Sifat Operasi Hasil Kali Titik pada Vektor Teorema: Hasil kali titik (dot product) u dan v dapat dinyatakan pula sebagai: A. Pendekatan Geometri: R u v cos ; u,

Lebih terperinci

BAB 2 ANALISIS VEKTOR

BAB 2 ANALISIS VEKTOR BAB ANALISIS VEKTOR A. Tujuan Umum Mahasiswa memahami pengertian vektor, operasi vektor, penjumlahan, pengurangan, perkalian dan kaedah aljabar vektor. B. Tujuan Khusus Mahasiswa dapat memahami konsep

Lebih terperinci

MODUL 2 GARIS LURUS. Mesin Antrian Bank

MODUL 2 GARIS LURUS. Mesin Antrian Bank 1 MODUL 2 GARIS LURUS Gambar 4. 4 Mesin Antrian Bank Persamaan garis lurus sangat berperan penting terhadap kemajuan teknologi sekarang ini. Bagi programmer handal, banyak aplikasi yang membutuhkan persamaan

Lebih terperinci

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world).

II. TINJAUAN PUSTAKA. nyata (fenomena-fenomena alam) ke dalam bagian-bagian matematika yang. disebut dunia matematika (mathematical world). 5 II. TINJAUAN PUSTAKA 2.1. Pemodelan Matematika Definisi pemodelan matematika : Pemodelan matematika adalah suatu deskripsi dari beberapa perilaku dunia nyata (fenomena-fenomena alam) ke dalam bagian-bagian

Lebih terperinci

VEKTOR GAYA. Gambar 1. Perkalian dan pembagian vektor

VEKTOR GAYA. Gambar 1. Perkalian dan pembagian vektor VEKTOR GAYA Perkalian dan Pembagian vektor dengan scalar Jika vektor dikalikan dengan nilai positif maka besarnya meningkat sesuai jumlah pengalinya. Perkalian dengan bilangan negatif akan mengubah besar

Lebih terperinci

Rudi Susanto, M.Si VEKTOR

Rudi Susanto, M.Si VEKTOR Rudi Susanto, M.Si VEKTOR ESRN SKLR DN VEKTOR esaran Skalar esaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh Catatan : waktu, suhu, volume, laju, energi

Lebih terperinci

TINJAUAN PUSTAKA Analisis Biplot Biasa

TINJAUAN PUSTAKA Analisis Biplot Biasa TINJAUAN PUSTAKA Analisis Biplot Biasa Analisis biplot merupakan suatu upaya untuk memberikan peragaan grafik dari matriks data dalam suatu plot dengan menumpangtindihkan vektor-vektor dalam ruang berdimensi

Lebih terperinci

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4)

LIMIT FUNGSI. A. Menentukan Limit Fungsi Aljabar A.1. Limit x a Contoh A.1: Contoh A.2 : 2 4) LIMIT FUNGSI A. Menentukan Limit Fungsi Aljabar A.. Limit a Contoh A.:. ( ) 3 Contoh A. : 4 ( )( ) ( ) 4 Latihan. Hitunglah nilai it fungsi-fungsi berikut ini. a. (3 ) b. ( 4) c. ( 4) d. 0 . Hitunglah

Lebih terperinci

BESARAN SKALAR DAN VEKTOR. Besaran Skalar. Besaran Vektor. Sifat besaran fisis : Skalar Vektor

BESARAN SKALAR DAN VEKTOR. Besaran Skalar. Besaran Vektor. Sifat besaran fisis : Skalar Vektor PERTEMUAN II VEKTOR BESARAN SKALAR DAN VEKTOR Sifat besaran fisis : Skalar Vektor Besaran Skalar Besaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh : waktu,

Lebih terperinci

BAB XIV V E K T O R Pengertian Vektor adalah besaran yang mempunyai arah. Tafsiran geometri sebuah vektor dilukiskan sebagai panah.

BAB XIV V E K T O R Pengertian Vektor adalah besaran yang mempunyai arah. Tafsiran geometri sebuah vektor dilukiskan sebagai panah. XIV V E K T O R 4. engertian adalah esaran yang mempunyai arah. Tafsiran geometri seuah vektor dilukiskan seagai panah. dengan titik pangkal (a x, a y, a z ) dan titik ujung ( x, y, z ) dinotasikan dengan.

Lebih terperinci

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat.

BAB II V E K T O R. Untuk menyatakan arah vektor diperlukan sistem koordinat. .. esaran Vektor Dan Skalar II V E K T O R da beberapa besaran fisis yang cukup hanya dinyatakan dengan suatu angka dan satuan yang menyatakan besarnya saja. da juga besaran fisis yang tidak cukup hanya

Lebih terperinci

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor

Matematika Lanjut 1. Sistem Persamaan Linier Transformasi Linier. Matriks Invers. Ruang Vektor Matriks. Determinan. Vektor Matematika Lanjut 1 Vektor Ruang Vektor Matriks Determinan Matriks Invers Sistem Persamaan Linier Transformasi Linier 1 Dra. D. L. Crispina Pardede, DE. Referensi [1]. Yusuf Yahya, D. Suryadi. H.S., gus

Lebih terperinci

PERSAMAAN GARIS LURUS

PERSAMAAN GARIS LURUS 1 KEGIATAN BELAJAR 3 PERSAMAAN GARIS LURUS Setelah mempelajari kegiatan belajar 3 ini, mahasiswa diharapkan mampu: 1. menentukan persamaan gradien garis lurus, 2. menentukan persamaan vektoris dan persamaan

Lebih terperinci

Pengantar KULIAH MEDAN ELEKTROMAGNETIK MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT

Pengantar KULIAH MEDAN ELEKTROMAGNETIK MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT KULIAH MEDAN ELEKTROMAGNETIK Pengantar Definisi Arsitektur MATERI I ANALISIS VEKTOR DAN SISTEM KOORDINAT Operasional Sinkronisasi Kesimpulan & Saran Muhamad Ali, MT Http://www.elektro-uny.net/ali Pengantar

Lebih terperinci

BAB III TENSOR. Berdasarkan uraian bab sebelumnya yang telah menjelaskan beberapa

BAB III TENSOR. Berdasarkan uraian bab sebelumnya yang telah menjelaskan beberapa BAB III TENSOR Berdasarkan uraian bab sebelumnya yang telah menjelaskan beberapa istilah dan materi pendukung yang berkaitan dengan tensor, pada bab ini akan dijelaskan pengertian dasar dari tensor. Tensor

Lebih terperinci

FISIKA UNTUK UNIVERSITAS OLEH

FISIKA UNTUK UNIVERSITAS OLEH FISIKA UNTUK UNIVERSITAS OLEH BAB I VEKTOR Pendahuluan B esaran adalah segala sesuatu yang dapat diukur dan dinyatakan dalam bentuk angkaangka. Besaran fisika dapat dibagi menjadi besaran pokok dan besaran

Lebih terperinci

L mba b ng n g d a d n n n o n t o asi Ve V ktor

L mba b ng n g d a d n n n o n t o asi Ve V ktor ANALISIS VEKTOR Vektor dan Skalar Macam-macam macam kuantitas dalam fisika seperti: temperatur, volume, dan kelajuan dapat ditentukan dengan angka riil (nyata). Kuantitas seperti disebut dengan skalar.

Lebih terperinci

PanGKas HaBis FISIKA. Vektor

PanGKas HaBis FISIKA. Vektor Vektor PanGKas HaBis FISIKA Mari kita pandang sebuah perahu yang mengarungi sebuah sungai. Perahu itu, misalnya, berangkat dari dermaga menuju pangkalan bahan bakar. Jika dermaga dipakai sebagai titik

Lebih terperinci

PENDAHULUAN LANDASAN ANALISIS

PENDAHULUAN LANDASAN ANALISIS 10 PENDAHULUAN Latar Belakang Biplot merupakan metode eksplorasi analisis data peubah ganda yang dapat memberikan gambaran secara grafik tentang kedekatan antar objek, keragaman peubah, korelasi antar

Lebih terperinci

Modul 6 berisi pengertian integral garis (kurva), sifat-sifat dan penerapannya. Pengintegralan sepanjang kurva, kita harus memperhatikan arah kurva,

Modul 6 berisi pengertian integral garis (kurva), sifat-sifat dan penerapannya. Pengintegralan sepanjang kurva, kita harus memperhatikan arah kurva, ix T Tinjauan Mata Kuliah ujuan mempelajari mata kuliah ini adalah agar Anda memiliki kemampuan dalam menjelaskan aljabar vektor, turunan dan integral fungsi vektor, serta mampu menerapkannya dalam geometri

Lebih terperinci

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd

IKIP BUDI UTOMO MALANG. Analytic Geometry TEXT BOOK. Alfiani Athma Putri Rosyadi, M.Pd IKIP BUDI UTOMO MALANG Analytic Geometry TEXT BOOK Alfiani Athma Putri Rosyadi, M.Pd 2012 DAFTAR ISI 1 VEKTOR 1.1 Vektor Pada Bidang... 4 1.2 Vektor Pada Ruang... 6 1.3 Operasi Vektor.. 8 1.4 Perkalian

Lebih terperinci

VEKTOR YUSRON SUGIARTO

VEKTOR YUSRON SUGIARTO VEKTOR YUSRON SUGIARTO Jurusan Keteknikan Pertanian FTP UB 2013 2 3 B E S A R A N Skalar besaran yang hanya memiliki besar (panjang/nilai) Vektor memiliki besar dan arah Massa Waktu Kecepatan Percepatan

Lebih terperinci

Pesawat Terbang. gaya angkat. gaya berat

Pesawat Terbang. gaya angkat. gaya berat Sumber: www.staralliance.com Pesawat Terbang Terbayangkah kalian dengan teknologi pesawat terbang? Alat transportasi ini diciptakan dengan teknologi yang canggih. Salah satunya adalah saat merancang konstruksi

Lebih terperinci

Aljabar Linier Elementer. Kuliah 26

Aljabar Linier Elementer. Kuliah 26 Aljabar Linier Elementer Kuliah 26 Materi Kuliah Transformasi Linier Umum Kernel dan Range 10/11/2014 Yanita, Matematika FMIPA Unand 2 Transformasi Linier Umum Definisi Misalkan V dan W adalah ruang vektor

Lebih terperinci

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom.

MATRIKS. Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Page- MATRIKS Definisi: Matriks adalah susunan bilangan-bilangan yang berbentuk segiempat siku-siku yang terdiri dari baris dan kolom. Notasi: Matriks dinyatakan dengan huruf besar, dan elemen elemennya

Lebih terperinci

BAB II BESARAN VEKTOR

BAB II BESARAN VEKTOR BAB II BESARAN VEKTOR.1. Besaran Skalar Dan Vektor Dalam fisika, besaran dapat dibedakan menjadi dua kelompok yaitu besaran skalar dan besaran vektor. Besaran skalar adalah besaran yang dinyatakan dengan

Lebih terperinci

Pengantar Teknologi dan Aplikasi Elektromagnetik. Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY

Pengantar Teknologi dan Aplikasi Elektromagnetik. Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Pengantar Teknologi dan Aplikasi Elektromagnetik Dr. Ramadoni Syahputra Jurusan Teknik Elektro FT UMY Kelistrikan dan Kemagnetan Tanpa listrik dan magnet, maka dalam kehidupan jaman sekarang: tanpa motor

Lebih terperinci

Bab 1 Vektor. A. Pendahuluan

Bab 1 Vektor. A. Pendahuluan Bab 1 Vektor A. Pendahuluan Dalam mata kuliah Listrik Magnet A, maupun mata kuliah Listrik Magnet B sebagaii lanjutannya, penyajian konsep dan pemecahan masalah akan banyak memerlukan pengetahuan tentang

Lebih terperinci

VEKTOR. maka a c a c b d b d. , maka panjang (besar/nilai) vector u ditentukan dengan rumus. maka panjang vector

VEKTOR. maka a c a c b d b d. , maka panjang (besar/nilai) vector u ditentukan dengan rumus. maka panjang vector VEKTOR Bab a. Penjumlahan dan Pengurangan Vektor. OA a ; OB b maka OA AB OB AB OB OA AB b a a u b dan c v d maka a c a c u v b d b d Contoh : Tentukan nilai x dan y dari x y + y = 8 Jawab : x + 8 + y =

Lebih terperinci

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN 05 yosprens.wordpres.com SOAL DAN PEMBAHASAN MATA UJI MATEMATIKA TKD SAINTEK SBMPTN 05 Berikut ini 5 soal mata uji matematika beserta pembahasannya yang diujikan

Lebih terperinci

BESARAN, SATUAN & DIMENSI

BESARAN, SATUAN & DIMENSI BESARAN, SATUAN & DIMENSI Defenisi Apakah yang dimaksud dengan besaran? Besaran : segala sesuatu yang dapat diukur dan dinyatakan dengan angka (kuantitatif). Apakah yang dimaksud dengan satuan? Satuan

Lebih terperinci

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 4 RUANG VEKTOR EUCLID. Dr. Ir. Abdul Wahid Surhim, MT. BAB 4 RUANG VEKTOR EUCLID Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN 1. Ruang n Euclid 2. Transformasi Linier dari R n dan R m 3. Sifat-sifat Transformasi Linier 4.1 RUANG N EUCLID Jika di bab

Lebih terperinci

PENGAJARAN HASIL KALI TITIK DAN HASIL KALI SILANG PADA VEKTOR SERTA BEBERAPA PENGEMBANGANNYA. Suwandi 1.

PENGAJARAN HASIL KALI TITIK DAN HASIL KALI SILANG PADA VEKTOR SERTA BEBERAPA PENGEMBANGANNYA. Suwandi 1. PENGAJARAN HASIL KALI TITIK DAN HASIL KALI SILANG PADA VEKTOR Suwandi 1 1 Mahasiswa Pasca Sarjana Matematika FMIPA Universitas Riau e-mail: suwandiwandi2323@gmail.com ABSTRACT Dot product and cross product

Lebih terperinci

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan.

Kata Pengantar. Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. i Kata Pengantar Puji syukur kehadirat Yang Maha Kuasa yang telah memberikan pertolongan hingga modul ajar ini dapat terselesaikan. Modul ajar ini dimaksudkan untuk membantu penyelenggaraan kuliah jarak

Lebih terperinci

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR

Program Studi Pendidikan Matematika STKIP PGRI SUMBAR DIFERENSIASI VEKTOR Materi pokok pertemuan ke 5 : 1. Turunan biasa fungsi vektor URAIAN MATERI Fungsi Vektor Jika sembarang nilai skalar t dikaitkan dengan suatu vektor, maka bisa dinyatakan sebagai fungsi

Lebih terperinci

Bab 1 Sistem Bilangan Kompleks

Bab 1 Sistem Bilangan Kompleks Bab 1 Sistem Bilangan Kompleks Bab 1 ini direncanakan akan disampaikan dalam 3 kali pertemuan, dengan perincian sebagai berikut: (1) Pertemuan I: Pengertian bilangan kompleks, Sifat-sifat aljabat, dan

Lebih terperinci

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si.

VEKTOR. Gambar 1.1 Gambar 1.2 Gambar 1.3. Liduina Asih Primandari, S.Si., M.Si. VEKTOR 1 A. Definisi vektor Beberapa besaran Fisika dapat dinyatakan dengan sebuah bilangan dan sebuah satuan untuk menyatakan nilai besaran tersebut. Misal, massa, waktu, suhu, dan lain lain. Namun, ada

Lebih terperinci

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd

SUBRUANG VEKTOR. Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier. Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd SUBRUANG VEKTOR Disusun Untuk Memenuhi Mata Kuliah Aljabar Linier Dosen Pembimbing: Abdul Aziz Saefudin, M.Pd Disusun Oleh : Kelompok 6/ III A4 1. Nina Octaviani Nugraheni 14144100115 2. Emi Suryani 14144100126

Lebih terperinci

erkalian Silang, Garis & Bidang dalam Dimensi 3

erkalian Silang, Garis & Bidang dalam Dimensi 3 erkalian Silang, Garis & Bidang dalam Dimensi 3 TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan : Dapat menghitung perkalian silang dari suatu vektor dan mengetahui

Lebih terperinci