MODUL PRAKTIKA KOMPUTER UNTUK RISET PASAR DAN PENJUALAN Semester Ganjil 2015/2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "MODUL PRAKTIKA KOMPUTER UNTUK RISET PASAR DAN PENJUALAN Semester Ganjil 2015/2016"

Transkripsi

1 MODUL PRAKTIKA KOMPUTER UNTUK RISET PASAR DAN PENJUALAN Semester Ganjil 2015/2016 Disusun Oleh: 1. Ganjar Mohammad Disastra, SH., MM 2. Widya Sastika, ST., MM NAMA : NPM : KELAS : D3 MANAJEMEN PEMASARAN TELKOM APPLIED SCIENCE SCHOOL TELKOM UNIVERSITY 2015

2 Jadwal perkuliahan Praktika Komputer Untuk Riset Pasar dan Penjualan 2015/2016: Pertemuan Topik Mata Kuliah Pertemuan I Pertemuan II Pertemuan III Pertemuan IV Pertemuan V Pertemuan VI Pertemuan VII Pertemuan VIII Pertemuan IX Pertemuan X Pertemuan XI Pertemuan XII Pengenalan Software SPSS Deskriptif Statistik Menggunakan SPSS Uji Validitas & reliabilitas Kuesioner Korelasi Regresi Linier Sederhana Regresi Linier Berganda Regersi Linier dengan Variabel Dummy Trend Linier Autoregressive Uji Beda 2 Sampel Berhubungan ANOVA Analisis Faktor CATATAN: 1. Keterlambatan maksimal 15 menit. 2. Berpakaian Rapi (Kemeja, Sepatu Tertutup). 3. Ketidakhadiran Max 3 kali (apapun alasannya), jika lebih maka nilainya E 4. Buku Referensi: a. Step By Step IBM SPSS 21 : Analisis Data Statistik, C Trihendradi, b. Statistik itu mudah, SPSS 16, Jonathan Sarwono, D3 Manajemen Pemasaran Page 2

3 Pertemuan ke 1 PENGENALAN SOFTWARE SPSS SPSS atau singkatan Statistical Product and Service Solution merupakan program aplikasi yang digunakan untuk melakukan penghitungan statistic dengan menggunakan computer. Kelebihan program ini adalah kita dapat melakukan secara lebih cepat semua perhitungan statistic dari yang sederhana sampai yang rumit sekalipun yang jika kita lakukan secara manual akan memakan waktu yang lebih lama. Menu dalam SPSS dibagi menjadi dua kategori, yaitu menu utama dan submenu. Menu pada dasarnya dibagi menjadi dua bagian besar, yaitu menu untuk perintah operasi dan menu untuk analisis statistic. Pada menu yang berfungsi untuk operasi program sebagian besar mempunyai fungsi sama dengan perintah- perintah di Microsoft Office, misalnya fungsi submenu- submenu pada menu file dan edit. Menu yang penting pada SPSS terletak pada menu analyze karena pada menu ini semua teknik- teknik analisis yang disediakan SPSS. Menu- menu tersebut terdiri atas : a. Menu File Menu file dipergunakan untuk membuka, menutup file, dan lain lain yang berkaitan dengan pemrosesan file. b. Menu Edit Menu edit dipergunakan untuk proses editing, misalnya copy, delete, undo, dan lain- lain. c. Menu View Menu view digunakan untuk melihat tampilan SPSS. d. Menu Data Menu data digunakan untuk melakukan pemrosesan data. e. Menu Transforn Menu transform digunakan untuk melakukan perubahan- perubahan atau penambahan data. f. Menu Analyse Menu Analyse merupakan menu di mana kita melakukan analisis data yang telah kita masukkan ke dalam computer. Menu ini merupakan menu terpenting karena semua pemrosesan dan analisis data dilakukan dengan menggunakan menu hari. g. Menu Graphs Menu graphs dipergunakan untuk membuat grafik. D3 Manajemen Pemasaran Page 3

4 h. Menu Utilities Menu utilities dipergunakan untuk mengetahui informasi variable, informasi file, dan lain- lain. i. Menu Add- ons Menu add- ons digunakan untuk memberikan perintah kepada SPSS jika kita ingin menggunakan aplikasi tambahan, misalnya menggunakan aplikasi Amos, SPSS data entry, text analysis dan sebagainya. j. Menu Windows Menu Windows dipergunakan untuk melakukan perpindahan dari satu file ke file lainnya. k. Menu Help Menu help dipergunakan untuk membantu pengguna dalam memahami perintah SPSS jika pengguna mengalami kesulitan. perintah- CARA MEMULAI SPSS Cara memulai SPSS adalah sebagai berikut : a. Pilih menu Start dari Windows b. Selanjutnya, pilih menu Program c. Pilih IBM SPSS 21 d. SPSS siap dipergunakan. Jika ingin membuka file, silahkan pilih nama file dan klik Open. Jika akan memulai mendesain variable dan memasukkan data, pilihlah Cancel. Gambar 1.1 Kotak Dialog IBM SPSS Statistic 21 D3 Manajemen Pemasaran Page 4

5 CARA MENDESAIN VARIABEL 1. Memberi Nama Variabel Sebelum pengguna memasukkan data dan memprosesnya, pengguna SPSS harus memberi nama variable dan mendefinisikannya. Memberi nama variable sebaiknya secara singkat dan jelas, misalnya nama tunjangan, lama kerja, gender, dan lain- lain. Yang perlu diingat bagi pengguna adalah pemberian nama variable di SPSS harus secara singkat dengan menggunakan karakter atau kombinasi antara karakter dan angka dan tidak boleh dengan spasi. 2. Menyusun Definisi Variabel Untuk menyusun definisi variable, posisi tampilan SPSS harus berada pada Variabel View. Lakukan pilihan submenu Variabel View di sebelah kiri bawah. Setelah tampilan pada posisi tersebut, kita dapat menyusun definisi variable dengan cara sebagai berikut : Name : Pilihan Name untuk memasukkan nama variable, misalnya Nama. Type : Pilihan Type untuk mendefinisikan tipe variable apakah itu bersifat numeric atau string. Width : Pilihan Width untuk menuliskan panjang pendek variable. Decimal : Pilihan Decimal untuk menuliskan jumlah decimal di belakang koma. Label : Pilihan Label untuk menuliskan label variable. Values : Pilihan Values untuk menuliskan nilai kuantitatif dari variable yang skala pengukurannya ordinal dan nominal bukan scale. Missing : Pilihan Missing untuk menuliskan ada dan tidaknya jawaban kosong. Columns : Pilihan Columns untuk menuliskan lebar kolom. Align : Pilihan Align untuk menuliskan rata kanan, kiri atau tengah penempatan teks atau angka di Data View. Measure : Pilihan Measure untuk menentukan skala pengukuran variable misalnya nominal, ordinal, atau Scale. Gambar 1.2 Sheet Variable View D3 Manajemen Pemasaran Page 5

6 3. Contoh Desain Variabel Dalam contoh ini kita mempunyai 2 variabel yaitu nama dan gender. Kedua variable tersebut akan kita deskripsikan sebagai berikut : Nama (variable 1) Gender (variable 2) dengan diberi nilai atau values : pria = 1, dan wanita = 2. Jika kedua variable tersebut akan dimasukkan ke dalam Variabel View, maka ketentuannya sebagai berikut : Gambar 1.3 Kotak Dialog Value Labels CARA MENGISIKAN DATA Untuk proses pengisian data, di bawah ini contoh berupa data profil responden yang kita teliti akan kita masukkan ke dalam desain variable di atas. Data di atas dapat dipahami sebagai berikut : Jumlah data sebanyak 10 atau disebut jumlah yang dalam SPSS disebut baris. Jumlah variable sebanyak 2 yang dalam SPSS disebut kolom. Untuk memasukkan data, pilihlah perintah Data View. Setelah itu masukkan data mulai dari data ke - 1 sampai data ke Gambar 1.4 Sheet Data View D3 Manajemen Pemasaran Page 6

7 CARA MENGANALISIS Menganalisis data dapat dilakukan setelah semua data dimasuukkan ke dalam computer sebagaimana keterangan di atas. Dalam menganalisis data, pengguna SPSS harus mengetahui jenis teknik analisis data apa yang akan digunakan untuk menganalisis data yang sudah ada, misalnya korelasi, Uji T, atau regresi. Setelah mengetahui teknik analisis data apa yang akan digunakan, pilihlah Menu Analyse, maka model- model teknik yang dimaksud sudah disediakan oleh SPSS. Contoh : Klik : Analyze Klik Correlate..dan selanjutnya. D3 Manajemen Pemasaran Page 7

8 Pertemuan ke 2 STATISTIK DESKRIPTIF Statistik deskriptif lebih berkenaan dengan pengumpulan dan peringkasan data, serta penyajian hasil peringkasan tersebut. Data- data statistik, yang bisa diperoleh hasil sensus, survei, jajak pendapat atau pengamatan lainnya umumnya masih bersifat acak, mentah dan tidak terorganisir dengan baik (raw data). Data- data tersebut harus diringkas dengan baik dan teratur, baik dalam bentuk tabel atau presentasi grafis yang berguna sebagai dasar dalam proses pengambilan keputusan (statistik inferensi). Penyajian tabel dan grafis yang digunakan dalam statistik deskriptif dapat berupa: 1. Distribusi frekuensi 2. Presentasi grafis seperti histogram, Pie chart dan sebagainya. Selain tabel dan grafik, untuk mengetahui deskripsi data diperlukan ukuran yang lebih eksak, yang biasa disebut summary statistics (ringkasan statistik). Dua ukuran penting yang sering dipakai dalam pengambilan keputusan adalah: 1. Mencari central tendency (kecenderungan memusat), seperti Mean, Median, dan Modus. 2. Mencari ukuran dispersion, seperti Standar Deviasi dan Varians. Selain central tendency dan dispersion, ukuran lain yang dipakai adalah Skewness dan Kurtosis yang berfungsi untuk mengetahui kemiringan data (gradien data). Kali ini akan dibahas menu dari SPSS yang berhubungan dengan statistik deskriptif, yaitu Summarize. Dalam menu ini terdapat beberapa submenu sebagai berikut: A. Frequencies Menu ini membahas beberapa penjabaran ukuran statistik deskriptif seperti Mean, Median, Kuartil, Persentil, Standar Deviasi dan lainnya. D3 Manajemen Pemasaran Page 8

9 Menu Frequencies Contoh penggunaan Frequencies Misalkan kita memiliki data tentang tinggi badan 25 orang mahasiswa (dalam centimeter) yang diambil secara acak. No Tinggi Gender No Tinggi Gender Pria Wanita Pria Wanita Pria Wanita Pria Wanita Wanita Pria Wanita Wanita Pria Wanita Pria Pria Pria Pria Wanita Wanita Wanita Wanita Wanita Wanita Pria D3 Manajemen Pemasaran Page 9

10 Langkah- langkahnya adalah sebagai berikut. a. Dari baris menu, pilih menu Analyze, lalu pilih submenu Descriptive Statistics, lalu pilih lagi submenu Frequencies (untuk menampilkan tabel frekuensi). Lalu akan tampil gambar berikut ini. Gambar 2.1 Kotak Dialog Frequencies b. Kolom Variables(s) harus diisi dengan jenis- jenis variabel apa yang ingin kita analisis. c. Klik pilihan Statistics, maka akan tampil di layar gambar berikut: Gambar 2.2 Kotak Dialog Frequencies : Statistics D3 Manajemen Pemasaran Page 10

11 d. Pilihan Statistics meliputi berbagai ukuran untuk menggambarkan data, antara lain sebagai berikut: Percentiles Values. Untuk keseragaman klik Quartiles dan Percentile(s). Dispersion atau penyebaran data. Untuk keseragaman, semua atau keenam jenis pengukuran Dispersion dipilih semua. Central Tendency atau pengukuran pusat data, untuk keseragaman pilih Mean dan Median. Distribution atau bentuk distribusi data. Untuk keseragaman, klik Skewness dan Kurtosis. e. Pilihan Charts juga diklik, maka akan tampil gambar berikut ini. Gambar 2.3 Kotak Dialog Frequencies : Charts Menu Charts berkenaan dengan jenis grafik yang ingin kita pilih. Dari Chart Type, untuk keseragaman kita pilih Histogram. Lalu menu With normal curve- nya akan hidup, maka kita klik juga With normal curve. Lalu klik Continue. Sekarang editor akan kembali ke tampilan editor Frequencies seperti awal, selanjutnya kita akan memilih menu Format. f. Setelah menu Format diklik, maka akan tampil gambar berikut: Gambar 2.4 Kotak Dialog Frequencies : Format D3 Manajemen Pemasaran Page 11

12 Pada submenu Order by (data output akan disusun seperti apa?) kita seragamkan saja dengan memilih output akan disusun naik (dari data terkecil ke data terbesar). Untuk itu pilih Ascending values. Selanjutnya klik OK. Maka semua proses pengisian dan pengolahan data telah selesai, dan kita akan lihat hasilnya (outputnya) pada editor Output. Output SPSS dan Analisisnya Selanjutnya data yang telah kita olah tersebut akan kita lihat outputnya. Berikut ini adalah output dari Descriptive. Frequencies Statistics Tinggi N Mean Std. Error of Mean Median Std. Deviation Variance Skewness Std. Error of Skewness Kurtosis Std. Error of Kurtosis Range Minimum Maximum Percentiles Valid Missing Gambar 2.5 Hasil Statistics Output Bagian Pertama (Statistics) N atau jumlah data yang valid adalah 25 buah, sedangkan data yang hilang (missing) adalah nol. Ini artinya semua data bisa diproses. Mean atau rata- rata tinggi badan adalah 170,12 cm dengan standard error adalah 1,20655 cm. Penggunaan standard error of Mean adalah untuk memeriksa besar rata- rata populasi yang diperkirakan dari sampel. Untuk itu, dengan standard error of Mean tertentu dan pada tingkat kepercayaan 95% (SPSS sebagian besar menggunakan angka ini sebagai stanadar), rata- rata populasi tinggi badan menjadi: Rata- rata Populasi = Rata- rata ± 2 standard error of Mean = 170,12 ± (2 x 1,20655) cm = (170, ) sampai (170, ) = 172,5331cm sampai 167, 7069 cm (Angka 2 digunakan karena tingkat kepercayaan 95%) D3 Manajemen Pemasaran Page 12

13 Median atau titik tengah data jika semua data diurutkan dan dibagi 2 sama besar. Angka median 170,20 cm menunjukkan bahwa 50% tinggi badan adalah 170,20 cm ke atas, dan 50%- nya 170,20 cm ke bawah. Standar Deviasi adalah 6,03276 cm dan variansinya adalah 36,394 cm. Penggunaan standar deviasi adalah untuk menilai dispersi rata- rata dari sampel. Untuk itu, dengan standar deviasi tertentu dan pada tingkat kepercayaan 95%, rata- rata tinggi badan menjadi: Rata- rata tingi badan = Rata- rata ± 2 x Standar Deviasi = 170,12 ± (2 x 6,03276) cm = cm sampai 170,12 cm Perhatikan bahwa kedua batas angka berbeda tipis dengan nilai minimum dan maksimum, ini artinya sebaran data adalah baik. Data minimum adalah 159,60 cm sedangkan data maksimum adalah 186,60 cm Range data = Data maksimum Data minimum adalah 27,00 cm. Angka Persentil: o o o o o Rata- rata tinggi badan 10% responden di bawah 160,62 cm Rata- rata tinggi badan 25% responden di bawah 167,20 cm Rata- rata tinggi badan 50% responden di bawah 170,20 cm Rata- rata tinggi badan 75% responden di bawah 172,50 cm Rata- rata tinggi badan 90% responden di bawah 178,62 cm Valid Total Tinggi Cumulative Frequency Percent Valid Percent Percent Gambar 2.6 Hasil Analisis Frequencies : Tinggi D3 Manajemen Pemasaran Page 13

14 Output bagian kedua (Tinggi) Output ini merupakan gambaran tinggi badan responden dalam tabel frekuensi. Histogram 10 8 Frequency Tinggi Mean = Std. Dev. = N = 25 Gambar 2.7 Grafik Histrogram D3 Manajemen Pemasaran Page 14

15 Pertemuan ke 3 UJI VALIDITAS DAN UJI RELIABILITAS UJI VALIDITAS Uji Validitas menunjukkan apakah kuesioner tersebut mampu mengukur apa yang harus diukur. Misal kuesioner untuk mengukur tingkat kepuasaan, apakah masing- masing pertanyaan mampu mengukur tingkat kepuasan yang dimaksud? Sebagai contoh, Anda mengukur tingkat kepuasan pelanggan akan produk baru yang diluncurkan perusahaan. Ada sepuluh pertanyaan untuk mengukur tingkat kepuasan tersebut dan Anda mengambil sampel sejumlah tiga puluh. Datanya sebagai berikut: Gambar 3.1 Sheet Data View Gambar 3.2 Sheet Variabel View D3 Manajemen Pemasaran Page 15

16 Langkah pertama sebelum melakukan analisis korelasi adalah membuat variabel baru yang merupakan penjumlahan total dari kesepuluh pertanyaan kuesioner : a. Klik Transform Compute Variable pada menu sehingga muncul kotak dialog Compute Variable. b. Masukkan dan jumlahkan semua variabel dari pertanyaan 1 sampai pertanyaan 10 pada kotak Numeric Expression. c. Klik OK, sehingga Output SPSS menampilkan variabel baru, yaitu total. Gambar 3.3 Kotak Dialog Compute Variable D3 Manajemen Pemasaran Page 16

17 Gambar 3.4 Sheet Data View dengan variabel baru (Total) Setelah Anda memperoleh variabel baru (total), lakukan analisis korelasi antara variabel total dengan kesepuluh pertanyaan tersebut. Langkah- langkahnya : a. Klik Analyze Correlations Bivariate pada menu sehingga muncul kotak dialog Bivariate Correlation. Gambar 3.5 Kotak Dialog Bivariate Correlations b. Masukkan semua variabel pertanyaan, termasuk variabel total pada kotak Variabels. c. Cek Pearson pada Correlation Coefficients dan cek Flaq significant correlations. d. Klik OK D3 Manajemen Pemasaran Page 17

18 HASIL ANALISIS HASIL Tabel tersebut merupakan sebagaian output hasil analisis korelasi. Selanjutnya amati nilai korelasi antar variabel pertanyaan, apakah ada yang memiliki nilai korelasi sangat tinggi atau sebaliknya memiliki nilai korelasi sangat rendah. Gambar 3.6 Data Hasil Analisis Korelasi Kriteria validitas dapat ditentukan dengan melihat nilai Pearson Correlation dan Sig. (2- tailed). Jika nilai pearson correlation lebih besar daripada nilai pembanding berupa r- kritis, maka item tersebut valid, Atau jika nilai Sig. (2- tailed) kurang dari 0.05 berarti item tersebut valid dengan derajat kepercayaan 95%. Dari hasil analisis kita dapat melihat pada baris Total di mana nilai sig 2 tailed pada item P lebih kecil dari nilai kritis α = 0.05 maka data pada item P1 sudah dianggap valid. Begitu juga untuk item data selanjutnya Kriteria validitas dapat juga ditentukan dengan nilai Pearson Correlation dibandingkan dengan nilai r- kritis. Nilai koefisien korelasi pearson product moment r- tabel misalnya untuk jumlah N=30 dengan taraf signifikan 5% (α = 0.05) adalah 0.361, maka Jika nilai r hitung r tabel (valid) Jika nilai r hitung <r tabel (tidak valid) D3 Manajemen Pemasaran Page 18

19 UJI RELIABILITAS Uji reliabilitas menunjukkan konsistensi atas hasil ukuran, walaupun digunakan untuk mengukur berkali- kali. Instrumen kuesioner harus andal (reliable). Andal berarti instrumen tersebut menghasilkan ukuran yang konsisten apabila digunakan untuk mengukur berulang kali. Jika nilai alpha > 0,70 artinya reliabilitas mencukupi (sufficient reliability) sementara jika alpha > 0,80 ini mensugestikan seluruh item reliabel dan seluruh tes secara konsisten secara internal karena memiliki reliabilitas yang kuat. Atau, ada pula yang memaknakannya sebagai berikut : Jika alpha > 0,90 maka reliabilitas sempurna. Jika alpha antara 0,70 0,90 maka reliabilitas tinggi. Jika alpha antara 0,50 0,70 maka reliabilitas moderat. Jika alpha < 0,50 maka reliabilitas rendah. ANALISIS a. Klik Analyze Scale Reliability Analysis pada menu sehingga muncul kotak dialog Reliability Analysis. b. Masukkan variabel dari pertanyaan 1 sampai pertanyaan 10 pada kotak Items. Gambar 3.7 Kotak Dialog Reliability Analysis D3 Manajemen Pemasaran Page 19

20 c. Klik Statistics maka akan muncul kotak dialog Reliability Analysis : Gambar 3.8 Kotak Dialog Reliability Analysis : Statistics d. Pada kotak Descriptive for, cek Scale if item deleted. e. Klik Continue sehingga kembali ke kotak dialog Reliability Analysis. f. Klik OK HASIL ANALISIS Nilai alpha Cronbach instrumen kuesioner adalah Nilai tersebut berada pada alpha antara 0,70 0,90 maka reliabilitas tinggi. Gambar 3.9 Hasil dari Analisis Reliability D3 Manajemen Pemasaran Page 20

21 Pertemuan ke 4 KORELASI Analisis hubungan antarvariabel secara garis besar ada dua, yaitu analisis korelasi dan analisis regresi. Analisis korelasi menyatakan derajat keeratan hubungan antara variable. Korelasi bermanfaat untuk mengukur kekuatan hubungan antara dua variable dengan skala- skala tertentu, misalnya Pearson data harus berskala interval dan rasio; sedangkan Spearman menggunakan skala ordinal. Kuat lemahnya hubungan diukur di antara jarak 0 sampai dengan 1 atau 0 sampai dengan - 1. Tanda positif dan negative menunjukkan arah hubungan. Tanda positif menunjukkan arah hubungan searah. Jika satu variable naik, variable yang lain juga naik. Tanda negative menunjukkan hubungan yang berlawanan. Jika satuu variable naik, variable yang lain malah turun. Tabel 4.1 Pedoman Koefisien Korelasi Nilai Koefisien Tingkat Hubungan 0 Tidak ada korelasi antara dua variable > Korelasi sangat lemah > Korelasi cukup > Korelasi kuat > Korelasi sangat kuat 1 Korelasi sempurna Korelasi Pearson Product Moment dengan taraf signifikansi 5% (α = 0.05). Nilai koefisien korelasi product moment r- tabel Jika nilai r hitung r tabel (valid) Jika nilai r hitung <r tabel (tidak valid) D3 Manajemen Pemasaran Page 21

22 1. KORELASI BIVARIATE PEARSON PRODUCT MOMENT Uji Bivariate pearson yang digunakan untuk mengukur hubungan dengan data berskala interval. Contoh : Anda melakukan pengamatan terhadap hubungan antara jenis produk baru dengan jumlah penjualan produk tersebut. Datanya sebagai berikut : Gambar 4.1 Data Jenis Produk dan Jumlah Penjualan ANALISIS a. Klik Analyze Correlate Bivariate pada menu sehingga muncul kotak dialog Bivariate Correlations. Gambar 4.2 Kotak Dialog Bivariate Correlations D3 Manajemen Pemasaran Page 22

23 b. Masukkan variabel Produk dan variabel Penjualan pada kotak Variables, pilih Pearson pada Correlation Coefficients. c. Klik OK HASIL ANALISIS Gambar 4.3 Hasil Analisis Correlations Jika dilihat dari hasil perhitungan, maka korelasi antara variabel produk dengan penjualan menunjukkan angka sebesar 0.961; angka ini menunjukkan adanya korelasi yang sangat kuat dan searah. Ini berarti, jika variabel produk besar, maka variabel penjualan akan semakin besar pula. Menentukan Signifikansi Hasil Korelasi : Untuk mengetahui apakah angkakorelasi tersebut signifikan atau tidak. Kita lakukan langkah- langkah sebagai berikut: Tentukan Hipotesis H0 : Hubungan antara variabel produk dan penjualan tidak signifikan H1 : Hubungan antara variabel produk dan penjualan signifikan Signifikansi hubungan dua variabel dapat dianalisis dengan ketentuan sebagai berikut : Jika probabilitas atau signifikansi < 0.05, hubungan kedua variabel signifikan (H0 ditolak dan H1 diterima). Jika probabilitas atau signifikansi > 0.05, hubungan kedua variabel tidak signifikan (H0 diterima dan H1 ditolak). Angka probabilitas dari hasil perhitungan sebesar 0.00 < 0.05 (digunakan angka 0.01 bukan 0.05 karena output ada tanda bintang yang artinya korelasi signifikan pada D3 Manajemen Pemasaran Page 23

24 taraf 0.01), maka H0 ditolak. Artinya ada hubungan signifikan antara produk dan penjualan. Kesimpulan : Kesimpulan yang dapat diambil adalah : Hubungan anatar produk dan penjualan sangat kuat, signifikan dan searah. Dengan kata lain, jika produk mempunyai kualitas tinggi, maka penjualan akan semakin meningkat. 2. KORELASI BIVARIATE RANK SPEARMAN Korelasi Rank Spearman digunakan untuk mengetahui ada dan tidaknya hubungan dua variable atau lebih berskala ordinal. Untuk mendapatkan data berskala ordinal pertanyaan- pertanyaan dalam kuesioner hendaknya menggunakan opsi jawaban model skala Likert. Pada umumnya opsi jawaban terdiri atas 5 (lima) opsi sebagai berikut : a. Sangat Setuju b. Setuju c. Netral d. Tidak Setuju e. Sangat Tidak Setuju Untuk kepentingan pengolahan data di SPSS, opsi- opsi yang berupa teks tersebut harus dikuantifikasi (diberi symbol angka) sebagai berikut : a. Sangat Setuju diberi nilai 5 b. Setuju diberi nilai 4 c. Netral diberi nilai 3 d. Tidak Setuju diberi nilai 2 e. Sangat Tidak Setuju diberi nilai 1 Angka 1 sampai dengan 5 tersebut hanya merupakan symbol atau bukan angka sebenarnya dan bersifat relatif. D3 Manajemen Pemasaran Page 24

25 Contoh : Peneliti ingin mengetahui ada atau tidaknya hubungan antara desain kemasan produk dengan minat beli konsumen. Data hasil penelitian tersebut adalah : Gambar 4.4 Data Desain Produk dan Minat Beli Konsumen ANALISIS a. Klik Analyze Correlate Bivariate pada menu sehingga muncul kotak dialog Bivariate Correlations. b. Masukkan variabel Produk dan variabel Penjualan pada kotak Variables, pilih Spearman pada Correlation Coefficients. c. Klik OK Gambar 4.5 Kotak Dialog Bivariate Correlations D3 Manajemen Pemasaran Page 25

26 HASIL ANALISIS Gambar 4.6 Hasil Analisis Correlations 3. KORELASI PARTIAL Korelasi parsial menghitung koefisien korelasi yang menggambarkan hubungan linier antara dua variable dengan melakukan pengontrolan efek yang muncul karena satu atau dua penambahan variable lain. Korelasi digunakan untuk mengukur hubungan linier dua variable. Pada dasarnya dua variable dapat mempunyai hubungan korelasi yang sempurna. Sekalipun demikian jika hubungan kedua variable tidak linier, maka koefisien korelasi tidak cocok untuk mengukur hubungan kedua variable tersebut. Contoh, Anda melakukan pengamatan hubungan antara gaji, tunjangan, dan lama kerja pada suatu perusahan. Datanya sebagai berikut : Gambar 4.7 Data Gaji, Tunjangan, dan masa kerja D3 Manajemen Pemasaran Page 26

27 ANALISIS a. Klik Analize Correlate Partial pada menu sehingga muncul kotak dialog Partial Correlations. b. Anda dapat melakukan tiga macam uji korelasi partial dengan mengganti secara bergiliran ketiga variabel menjadi variabel kontrol. Pertama adalah korelasi variabel Gaji Tunjangan Gaji variabel Gaji Masa kerja dengan variabel kontrol Tunjangan Gaji. Ketiga adalah korelasi variabel Tunjangan Gajji Masa Kerja dengan varabel kontrol adalah Gaji. c. Klik OK Gambar 4.8 Kotak Dialog Partial Correlations HASIL ANALISIS Gambar 4.9 Hasil Analisis Correlations D3 Manajemen Pemasaran Page 27

28 Pertemuan ke 5 REGRESI LINIER SEDERHANA Uji regresi digunakan untuk meramalkan suatu variabel independen (Y) berdasarkan satu variabel independen (X) dalam suatu persamaan linier. Formula persamaan linear Y = a + b X. Contoh : Anda melakukan analisis regresi untuk meramalkan besarnya tunjangan yang diberikan berdasarkan gaji. ANALISIS Berikut langkah- langkah untuk melakukan analisis regresi : a. Klik Analyze Regression Linear pada menu sehingga muncul kotak dialog Linear Regression Gambar 5.1 Kotak Dialog Linear Regression b. Masukkan variabel Gaji pada kotak Independent(s) dan variabel Tunjangan Gaji pada kotak Dependent. c. Klik tombol Statistics sehingga muncul kotak dialog Linear Regression : Statistic. Secara default Estimates dan Model fit terpilih. Anda dapat menambahkan uji statistik bila perlu. D3 Manajemen Pemasaran Page 28

29 Gambar 5.2 Kotak Dialog Linear Regression : Statistics d. Klik tombol Continue e. Klik tombol Options sehingga muncul kotak dialog Linear Regression : Options. Pilih Use probability of F, kemudian masukkan nilai tingkat kepercayaan pada kotak Entry. f. Klik tombol Continue g. Klik OK Gambar 5.3 Kotak Dialog Linear Regression : Options HASIL ANALISIS Gambar 5.4 Hasil Analisis D3 Manajemen Pemasaran Page 29

30 Tabel Variables Entered Removed menunjukkan metode regresi linear yang dipilih yaitu Enter. Pemilihan metode memungkinkan Anda menentukan bagaimana variabel independen (Gaji) dimasukkan untuk dianalisis. Metode Enter memasukkan semua variabel independen sekaligus untuk dianalisis. Pada analisis regresi linear satu variabel independen, perbedaan antar metode tidak tampak. Gambar 5.5 Hasil Analisi R Square Tabel Model Summary menunjukkan nilai koefisien korelasi (R) yang menunjukkan tingkat hubungan antar variabel (0.974). R Square atau koefisien determinasi memiliki arti Tunjangan gaji dapat dijelaskan dari variabel Gaji. Adjusted R square sama dengan R square dengan menyesuaikan numerator maupun denumerator dengan derajat kebebasan masing- masing. Std Error of the Estimate mengukur dispersi titik- titik pasangan X dan Y dari garis duga regresi. R square menunjukkan besarnya koefisien determinasi yang berfungsi untuk mengetahui besarnya presentase variabel tergantung penjualan yang dapat diprediksi dengan menggunakan variabel bebas pameran. Koefisien determinasi digunakan untuk menghitung besarnya peranan atau pengaruh variabel bebas terhadap variabel tergantung. Koefisien determinasi dihitung dengan cara mengkuadratkan hasil korelasi, kemudian dikalikan dengan 100% (r2 x 100%). Angka R Square (angka korelasi yang dikuadratkan atau 0,974 2 ) sebesar Angka R Square disebut juga sebagai koefisien Determinasi. Besarnya angka Koefisien Determinasi, atau sama dengan 94,8%. Angka tersebut berarti bahwa sebesar 94.8% tunjangan gaji yang diterima dapat dijelaskan dengan menggunakan variabel jumlah gaji regular yang diterima. Sedang sisanya, yaitu 5.2% (100%- 94.8%) harus dijelaskan oleh faktor- faktor penyebab lainnya. Untuk diketahui bahwa besarnya R square berkisar antara 0-1 yang berarti semakin kecil besarnya R Square, maka hubungan kedua variabel semakin lemah. Sebaliknya, jika R Square semakin mendekati 1, maka hubungan kedua variabel semakin kuat. D3 Manajemen Pemasaran Page 30

31 Gambar 5.6 Hasil Analisis Uji F Tabel ANOVA memaparkan uji kelinearan. Hipotesis : Ho : Model linear antara variabel Gaji dengan variabel Tunjangan Gaji tidak signifikan H1 : Model linear antara variabel Gaji dengan variabel Tunjangan Gaji signifikan. F hitung ( ) > F tabel (1;18;0.05) adalah sehingga Ho ditolak. Jadi, model linear antara variabel Gaji dengan variabel Tunjangan Gaji signifikan. Di samping menggunakan perbandingan F hitung dan F tabel, Anda dapat melakukan perbandingan Sig dengan α. Sig (0.000) < α maka Ho ditolak. Gambar 5.6 Hasil Analisis Uji t Tabel Coefficients memaparkan nilai konstanta a dan b dari persamaan linear : Y = X Hipotesis : Uji koefisien a Ho : koefisien a tidak signifikan H1 : koefisien a signifikan t hitung mutlak (10.082) > t tabel (18; 0.05) adalah maka Ho ditolak, koefisien a signifikan. Di samping menggunakan perbandingan t hitung dan t tabel, Anda dapat melakukan perbandingan Sig dengan Sig (0.000) < α sehingga Ho ditolak. Hipotesis : uji koefisien b Ho : koefisien b tidak signifikan H1 : koefisien b signifikan t hitung mutlak (18.090) > t tabel (18;0.05) adalah maka Ho ditolak, koefisien a signifikan. D3 Manajemen Pemasaran Page 31

32 Pertemuan ke 6 REGRESI LINEAR BERGANDA Analisis regresi linier berganda adalah hubungan secara linear antara dua atau lebih variabel independen (X 1, X 2,.X n ) dengan variabel dependen (Y). Analisis ini untuk mengetahui arah hubungan antara variabel independen dengan variabel dependen apakah masing- masing variabel independen berhubungan positif atau negatif dan untuk memprediksi nilai dari variabel dependen apabila nilai variabel independen mengalami kenaikan atau penurunan. Data yang digunakan biasanya berskala interval atau rasio. Persamaan regresi linear berganda sebagai berikut: Y = a + b 1 X 1 + b 2 X b n X n Keterangan: Y = Variabel dependen (nilai yang diprediksikan) X 1 dan X 2 = Variabel independen a = Konstanta (nilai Y apabila X 1, X 2..X n = 0) b = Koefisien regresi (nilai peningkatan ataupun penurunan) Contoh kasus: Kita mengambil contoh kasus pada uji normalitas, yaitu sebagai berikut: Seorang mahasiswa bernama Bambang melakukan penelitian tentang faktor- faktor yang mempengaruhi harga saham pada perusahaan di BEJ. Bambang dalam penelitiannya ingin mengetahui hubungan antara rasio keuangan PER dan ROI terhadap harga saham. Dengan ini Bambang menganalisis dengan bantuan program SPSS dengan alat analisis regresi linear berganda. Dari uraian di atas maka didapat variabel dependen (Y) adalah harga saham, sedangkan variabel independen (X 1 dan X 2 ) adalah PER dan ROI. Data- data yang di dapat berupa data rasio dan ditabulasikan sebagai berikut: Tabel 6.1 Tabulasi Data Tahun Harga Saham (Rp) PER (%) ROI (%) D3 Manajemen Pemasaran Page 32

33 ANALISIS Berikut langkah- langkah untuk melakukan analisis regresi : a. Klik Analyze Regression Linear pada menu sehingga muncul kotak dialog Linear Regression b. Masukkan variabel PER dan ROI pada kotak Independent(s) dan variabel Harga Saham pada kotak Dependent. c. Klik tombol Statistics sehingga muncul kotak dialog Linear Regression : Statistic. Secara default Estimates dan Model fit terpilih. Anda dapat menambahkan uji statistik bila perlu. d. Klik tombol Continue e. Klik tombol Options sehingga muncul kotak dialog Linear Regression : Options. Pilih Use probability of F, kemudian masukkan nilai tingkat kepercayaan pada kotak Entry. f. Klik tombol Continue g. Klik OK D3 Manajemen Pemasaran Page 33

34 HASIL ANALISIS Gambar 6.1 Hasil Analisis Regresi Linear Berganda Persamaan regresinya sebagai berikut: Y = a + b 1 X 1 + b 2 X 2 Y = 4662,491 + (- 74,482)X ,107X 2 Y = 4662,491-74,482X ,107X 2 Keterangan: Y = Harga saham yang diprediksi (Rp) a = konstanta b 1,b 2 = koefisien regresi X 1 = PER (%) X 2 = ROI (%) Persamaan regresi di atas dapat dijelaskan sebagai berikut: - Konstanta sebesar 4662,491; artinya jika PER (X 1 ) dan ROI (X 2 ) nilainya adalah 0, maka harga saham (Y ) nilainya adalah Rp.4662, Koefisien regresi variabel PER (X 1 ) sebesar - 74,482; artinya jika variabel independen lain nilainya tetap dan PER mengalami kenaikan 1%, maka harga saham (Y ) akan mengalami penurunan sebesar Rp.74,482. Koefisien bernilai negatif artinya terjadi hubungan negatif antara PER dengan harga saham, semakin naik PER maka semakin turun harga saham. D3 Manajemen Pemasaran Page 34

35 - Koefisien regresi variabel ROI (X 2 ) sebesar 692,107; artinya jika variabel independen lain nilainya tetap dan ROI mengalami kenaikan 1%, maka harga saham (Y ) akan mengalami peningkatan sebesar Rp.692,107. Koefisien bernilai positif artinya terjadi hubungan positif antara ROI dengan harga saham, semakin naik ROI maka semakin meningkat harga saham. a. Analisis Korelasi Ganda (R) Analisis ini digunakan untuk mengetahui hubungan antara dua atau lebih variabel independen (X 1, X 2, X n ) terhadap variabel dependen (Y) secara serentak. Koefisien ini menunjukkan seberapa besar hubungan yang terjadi antara variabel independen (X 1, X 2, X n ) secara serentak terhadap variabel dependen (Y). nilai R berkisar antara 0 sampai 1, nilai semakin mendekati 1 berarti hubungan yang terjadi semakin kuat, sebaliknya nilai semakin mendekati 0 maka hubungan yang terjadi semakin lemah. Tabel 6.2 Pedoman Koefisien Korelasi Nilai Koefisien Tingkat Hubungan 0 Tidak ada korelasi antara dua variable > Korelasi sangat lemah > Korelasi cukup > Korelasi kuat > Korelasi sangat kuat 1 Korelasi sempurna Dari hasil analisis regresi, lihat pada output moddel summary dan disajikan sebagai berikut: Gambar 6.2 Hasil analisis korelasi ganda D3 Manajemen Pemasaran Page 35

36 Berdasarkan tabel di atas diperoleh angka R sebesar 0,879. Hal ini menunjukkan bahwa terjadi hubungan yang sangat kuat antara PER dan ROI terhadap harga saham. b. Analisis Determinasi (R 2 ) Analisis determinasi dalam regresi linear berganda digunakan untuk mengetahui prosentase sumbangan pengaruh variabel independen (X 1, X 2, X n ) secara serentak terhadap variabel dependen (Y). Koefisien ini menunjukkan seberapa besar prosentase variasi variabel independen yang digunakan dalam model mampu menjelaskan variasi variabel dependen. R 2 sama dengan 0, maka tidak ada sedikitpun prosentase sumbangan pengaruh yang diberikan variabel independen terhadap variabel dependen, atau variasi variabel independen yang digunakan dalam model tidak menjelaskan sedikitpun variasi variabel dependen. Sebaliknya R 2 sama dengan 1, maka prosentase sumbangan pengaruh yang diberikan variabel independen terhadap variabel dependen adalah sempurna, atau variasi variabel independen yang digunakan dalam model menjelaskan 100% variasi variabel dependen. Dari hasil analisis regresi, lihat pada output moddel summary dan disajikan sebagai berikut: Gambar 6.3 Hasil analisis determinasi Berdasarkan tabel di atas diperoleh angka R 2 (R Square) sebesar 0,772 atau (77,2%). Hal ini menunjukkan bahwa prosentase sumbangan pengaruh variabel independen (PER dan ROI) terhadap variabel dependen (harga saham) sebesar 77,2%. Atau variasi variabel independen yang digunakan dalam model (PER dan ROI) mampu menjelaskan sebesar 77,2% variasi variabel dependen (harga saham). Sedangkan sisanya sebesar 22,8% dipengaruhi atau dijelaskan oleh variabel lain yang tidak dimasukkan dalam model penelitian ini. Adjusted R Square adalah nilai R Square yang telah disesuaikan, nilai ini selalu lebih kecil dari R Square dan angka ini bisa memiliki harga negatif. Menurut Santoso (2001) bahwa untuk D3 Manajemen Pemasaran Page 36

37 regresi dengan lebih dari dua variabel bebas digunakan Adjusted R 2 sebagai koefisien determinasi. Standard Error of the Estimate adalah suatu ukuran banyaknya kesalahan model regresi dalam memprediksikan nilai Y. Dari hasil regresi di dapat nilai 870,80 atau Rp.870,80 (satuan harga saham), hal ini berarti banyaknya kesalahan dalam prediksi harga saham sebesar Rp.870,80. Sebagai pedoman jika Standard error of the estimate kurang dari standar deviasi Y, maka model regresi semakin baik dalam memprediksi nilai Y. c. Uji Koefisien Regresi Secara Bersama- sama (Uji F) Uji ini digunakan untuk mengetahui apakah variabel independen (X 1,X 2.X n ) secara bersama- sama berpengaruh secara signifikan terhadap variabel dependen (Y). Atau untuk mengetahui apakah model regresi dapat digunakan untuk memprediksi variabel dependen atau tidak. Signifikan berarti hubungan yang terjadi dapat berlaku untuk populasi (dapat digeneralisasikan), misalnya dari kasus di atas populasinya adalah 50 perusahaan dan sampel yang diambil dari kasus di atas 18 perusahaan, jadi apakah pengaruh yang terjadi atau kesimpulan yang didapat berlaku untuk populasi yang berjumlah 50 perusahaan. Dari hasil output analisis regresi dapat diketahui nilai F seperti pada tabel 2 berikut ini. Gambar 6.4 Hasil Uji F Tahap- tahap untuk melakukan uji F adalah sebagai berikut: 1. Merumuskan Hipotesis Ho : Tidak ada pengaruh secara signifikan antara PER dan ROI secara bersama- sama terhadap harga saham. Ha : Ada pengaruh secara signifikan antara PER dan ROI secara bersama- sama terhadap harga saham. D3 Manajemen Pemasaran Page 37

38 2. Menentukan tingkat signifikansi Tingkat signifikansi menggunakan a = 5% (signifikansi 5% atau 0,05 adalah ukuran standar yang sering digunakan dalam penelitian) 3. Menentukan F hitung Berdasarkan tabel diperoleh F hitung sebesar 25, Menentukan F tabel Dengan menggunakan tingkat keyakinan 95%, a = 5%, df 1 (jumlah variabel 1) = 2, dan df 2 (n- k) atau 18-3 = 15 (n adalah jumlah kasus dan k adalah jumlah variabel), hasil diperoleh untuk F tabel sebesar 3, Kriteria pengujian - Ho diterima bila F hitung < F tabel - Ho ditolak bila F hitung > F tabel 6. Membandingkan F hitung dengan F tabel. Nilai F hitung > F tabel (25,465 > 3,683), maka Ho ditolak. 7. Kesimpulan Karena F hitung > F tabel (25,465 > 3,683), maka Ho ditolak, artinya ada pengaruh secara signifikan antara price earning ratio (PER) dan return on investmen (ROI) secara bersama- sama terhadap terhadap harga saham. Jadi dari kasus ini dapat disimpulkan bahwa PER dan ROI secara bersama- sama berpengaruh terhadap harga saham pada perusahaan di BEJ. d. Uji Koefisien Regresi Secara Parsial (Uji t) Uji ini digunakan untuk mengetahui apakah dalam model regresi variabel independen (X 1, X 2,..X n ) secara parsial berpengaruh signifikan terhadap variabel dependen (Y). Dari hasil analisis regresi output dapat disajikan sebagai berikut: Gambar 6.5 Uji t D3 Manajemen Pemasaran Page 38

39 Langkah- langkah pengujian sebagai berikut: Pengujian koefisien regresi variabel PER 1. Menentukan Hipotesis Ho : Secara parsial tidak ada pengaruh signifikan antara PER dengan harga saham. Ha : Secara parsial ada pengaruh signifikan antara PER dengan harga saham 2. Menentukan tingkat signifikansi Tingkat signifikansi menggunakan a = 5% 3. Menentukan t hitung Berdasarkan tabel diperoleh t hitung sebesar - 1, Menentukan t tabel Tabel distribusi t dicari pada a = 5% (uji 2 sisi) dengan derajat kebebasan (df) n- k atau 18-3 = 15 (n adalah jumlah kasus dan k adalah jumlah variabel). Dengan pengujian 2 sisi hasil diperoleh untuk t tabel sebesar 2, Kriteria Pengujian Ho diterima jika - t tabel < t hitung < t tabel Ho ditolak jika - t hitung < - t tabel atau t hitung > t tabel 6. Membandingkan thitung dengan t tabel Nilai - t hitung > - t tabel (- 1,259 > - 2,131) maka Ho diterima 7. Kesimpulan Oleh karena nilai - t hitung > - t tabel (- 1,259 > - 2,131) maka Ho diterima, artinya secara parsial tidak ada pengaruh signifikan antara PER dengan harga saham. Jadi dari kasus ini dapat disimpulkan bahwa secara parsial PER tidak berpengaruh terhadap harga saham pada perusahaan di BEJ. Pengujian koefisien regresi variabel ROI 1. Menentukan Hipotesis Ho : Secara parsial tidak ada pengaruh signifikan antara ROI dengan harga saham Ha : Secara parsial ada pengaruh signifikan antara ROI dengan harga saham 2. Menentukan tingkat signifikansi Tingkat signifikansi menggunakan a = 5%. 3. Menentukan t hitung Berdasarkan tabel diperoleh t hitung sebesar 5, Menentukan t tabel D3 Manajemen Pemasaran Page 39

40 Tabel distribusi t dicari pada a = 5% (uji 2 sisi) dengan derajat kebebasan (df) n- k atau 18-3 = 15 (n adalah jumlah kasus dan k adalah jumlah variabel). Dengan pengujian 2 sisi hasil diperoleh untuk t tabel sebesar 2, Kriteria Pengujian Ho diterima jika - t tabel t hitung t tabel Ho ditolak jika - t hitung < - t tabel atau t hitung > t tabel 6. Membandingkan thitung dengan t tabel Nilai t hitung > t tabel (5,964 > 2,131) maka Ho ditolak 7. Kesimpulan Oleh karena nilai t hitung > t tabel (5,964 > 2,131) maka Ho ditolak, artinya secara parsial ada pengaruh signifikan antara ROI dengan harga saham. Jadi dari kasus ini dapat disimpulkan bahwa secara parsial ROI berpengaruh positif terhadap harga saham pada perusahaan di BEJ. D3 Manajemen Pemasaran Page 40

41 Pertemuan ke 7 REGRESI LINIER DENGAN VARIABEL DUMMY Regresi variabel dummy menggunakan variabel bebas yang mempunyai skala nominal digunakan untuk memprediksi variabel tergantung yang mempunyai skala interval. Contoh variabel berskala nominal misalnya pendidikan, gender, agama, dan lain sebagainya. Variabel berskala nominal disebut juga sebagai variabel kualitatif, variabel kategorikal atau variabel dummy. Kegunaannya ialah untuk menghitung pengaruh variabel bebas berskala nominal terhadap variabel tergantung skala interval. Sebagai contoh, kita ingin mengetahui apakah gender mempengaruhi besarnya penghasilan dalam suatu perusahaan atau apakah suku mempengaruhi besarnya penghasilan dalam suatu kelompok pedangan tertentu. Catatan penting untuk menggunakan regresi variabel dummy adalah variabel bebas bersifat kategorikal. Jadi, hanya ada dua kemungkinan nilai (values) yang diberikan untuk variabel tersebut. Dalam kasus gender, maka gender diberi nilai sebagai berikut : yaitu pria mempunyai nilai 1 dan wanita mempunyai nilai 2, sedangkan dalam kasus kedua : suku A diberi nilai 1 dan suku B diberi nilai 2. Uji regresi digunakan untuk meramalkan suatu variabel independen (Y) berdasarkan satu variabel independen (X) dalam suatu persamaan linier. Formula persamaan linear Y = a + b X. CONTOH SOAL: Penjualan Kemasan Menarik Biasa Menarik Biasa Menarik Biasa Menarik D3 Manajemen Pemasaran Page 41

42 Biasa Menarik Biasa Pertanyaan: 1. Berapa besar hubungan dan pengaruh kemasan terhadap penjualan produk tersebut? 2. Tentukan persamaan regresi linear sederhana terhadap penjualan produk? 3. Berapa besar standar error of estimate/rata- rata kesalahan baku dari persamaan tersebut? 4. Berapa besarnya penjualan masing- masing untuk kemasan menarik dan kemasan biasa? D3 Manajemen Pemasaran Page 42

43 D3 Manajemen Pemasaran Page 43

44 ANALISIS Untuk menghitung besarnya HUBUNGAN variabel kemasan terhadap penjualan, gunakanlah angka R Untuk menghitung besarnya PENGARUH variabel kemasan terhadap penjualan, gunakanlah angka R Square Persamaan Regresi: Y = a + bx Y = 13,900,000-1,100,000 X Dimana: Y: Penjualan X: Kemasan Standar error of estimate/rata- rata kesalahan baku = ,94 Penjualan rata- rata produk dengan kemasan MENARIK: Y = 13,900,000 (1,100,000 x 1) = 12,800,000 Penjualan rata- rata produk dengan kemasan BIASA: Y = 13,900,000 (1,100,000 x 2) = 11,700,000 Perbedaan rata- rata penjualan kemasan menarik dan biasa adalah: 12,800,000-11,700,000 = 1,100,000 D3 Manajemen Pemasaran Page 44

STATISTIKA DESKRIPTIF

STATISTIKA DESKRIPTIF STATISTIKA DESKRIPTIF 1 Statistika deskriptif berkaitan dengan penerapan metode statistika untuk mengumpulkan, mengolah, menyajikan dan menganalisis data kuantitatif secara deskriptif. Statistika inferensia

Lebih terperinci

Memulai SPSS dan Mengelola File

Memulai SPSS dan Mengelola File MODUL 1 Memulai SPSS dan Mengelola File A. MEMULAI SPSS Untuk memulai SPSS for Windows langkah yang harus dilakukan adalah: Klik menu Start Programs SPSS for Windows SPSS for Windows. Kemudian akan ditampilkan

Lebih terperinci

MODUL V REGRESI, KORELASI, ANALISIS VARIAN, VALIDITAS DAN RELIABILITAS

MODUL V REGRESI, KORELASI, ANALISIS VARIAN, VALIDITAS DAN RELIABILITAS REGRESI, KORELASI, ANALISIS VARIAN, VALIDITAS DAN RELIABILITAS A. TUJUAN PRAKTIKUM Dengan adanya Praktikum Statistika Industri Modul V tentang Regresi, Korelasi, Analisis Varian, Validitas dan Reliabilitas

Lebih terperinci

BUKU KERJA PRAKTIKA KOMPUTER UNTUK RISET PASAR DAN PENJUALAN Semester Ganjil 2015/2016

BUKU KERJA PRAKTIKA KOMPUTER UNTUK RISET PASAR DAN PENJUALAN Semester Ganjil 2015/2016 BUKU KERJA PRAKTIKA KOMPUTER UNTUK RISET PASAR DAN PENJUALAN Semester Ganjil 2015/2016 Disusun Oleh: 1. Ganjar Mohammad Disastra, SH., MM 2. Widya Sastika, ST., MM NAMA : NPM : KELAS : D3 MANAJEMEN PEMASARAN

Lebih terperinci

Pengantar Pengolahan Data Statistik Menggunakan SPSS 22. Isram Rasal ST, MMSI, MSc

Pengantar Pengolahan Data Statistik Menggunakan SPSS 22. Isram Rasal ST, MMSI, MSc Pengantar Pengolahan Data Statistik Menggunakan SPSS 22 Isram Rasal ST, MMSI, MSc Statistika Statistika Statistika adalah ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi,

Lebih terperinci

SPSS FOR WINDOWS BASIC. By : Syafrizal

SPSS FOR WINDOWS BASIC. By : Syafrizal SPSS FOR WINDOWS BASIC By : Syafrizal SPSS merupakan software statistik yang paling populer, fasilitasnya sangat lengkap dibandingkan dengan software lainnya, penggunaannya pun cukup mudah Langkah pertama

Lebih terperinci

BAB IV HASIL PENELITIAN. A. Penyajian Statistik Deskripsi Hasil Penelitian. kecenderungan jawaban responden dari tiap-tiap variabel, baik mengenai

BAB IV HASIL PENELITIAN. A. Penyajian Statistik Deskripsi Hasil Penelitian. kecenderungan jawaban responden dari tiap-tiap variabel, baik mengenai 61 BAB IV HASIL PENELITIAN A. Penyajian Statistik Deskripsi Hasil Penelitian Statistik deskriptif ini digunakan sebagai dasar untuk menguraikan kecenderungan jawaban responden dari tiap-tiap variabel,

Lebih terperinci

STATISTIK DESKRIPTIF. Abdul Rohman, S.E

STATISTIK DESKRIPTIF. Abdul Rohman, S.E LOGO STATISTIK DESKRIPTIF Konsep Statistika STATISTIKA : Kegiatan untuk : mengumpulkan data menyajikan data menganalisis data dengan metode tertentu menginterpretasikan hasil analisis KEGUNAAN? Melalui

Lebih terperinci

BELAJAR SPSS. Langkah pertama yang harus dilakukan adalah dengan cara menginstal terlebih dahulu software SPSS

BELAJAR SPSS. Langkah pertama yang harus dilakukan adalah dengan cara menginstal terlebih dahulu software SPSS BELAJAR SPSS SPSS merupakan software statistik yang paling populer, fasilitasnya sangat lengkap dibandingkan dengan software lainnya, penggunaannya pun cukup mudah. Langkah pertama yang harus dilakukan

Lebih terperinci

KORELASI. Alat hitung koefisien korelasi Pearson (data kuantitatif dan berskala rasio) Kendall, Spearman (data kualitatif dan berskala ordinal)

KORELASI. Alat hitung koefisien korelasi Pearson (data kuantitatif dan berskala rasio) Kendall, Spearman (data kualitatif dan berskala ordinal) KORELASI Pada SPSS korelasi ada pada menu Correlate dengan submenu: 1. BIVARIATE Besar hubungan antara dua (bi) variabel. a. Koefisien korelasi bivariate/product moment Pearson Mengukur keeratan hubungan

Lebih terperinci

BAB IV DESKRIPSI DAN ANALISI DATA

BAB IV DESKRIPSI DAN ANALISI DATA BAB IV DESKRIPSI DAN ANALISI DATA A. Deskripsi Data Hasil Penelitian 1. Deskripsi Data Umum Penelitian Deskripsi data umum berisi mengenai gambaran umum tempat penelitian yakni di SMP N 1 Pamotan. SMP

Lebih terperinci

Kuesioner Biaya Transportasi

Kuesioner Biaya Transportasi 64 Lampiran 1 Kuesioner Biaya Transportasi Kuesioner Biaya Transportasi Mohon anda mengisi dan memilih jawaban yang disediakan! 1. Jenis kelamin : a. wanita b. pria 2. Fakultas : a. Sastra b. Psikologi

Lebih terperinci

BAB IV DESKRIPSI DAN ANALISIS DATA

BAB IV DESKRIPSI DAN ANALISIS DATA BAB IV DESKRIPSI DAN ANALISIS DATA A. Deskripsi Data Hasil Penelitian 1. Deskripsi Data Umum Deskripsi data umum berisi mengenai gambaran umum tempat penelitian yakni di MTs N 1 Kudus. MTs N 1 Kudus beralamatkan

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN 143 BAB IV HASIL PENELITIAN Pada bab ini diuraikan tentang: a) deskripsi data; b) uji prasyarat analisis; dan c) pengujian hipotesis penelitian. A. Deskripsi Data Penyajian statistik deskripsi hasil penelitian

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN BAB IV HASIL PENELITIAN A. Penyajian Data Hasil Penelitian Penjelasan dari setiap variabel yang diperoleh dari penelitian dalam data akan dijelas secara rinci pada tiap-tiap variabel. Hasil penelitian

Lebih terperinci

STATISTIK DESKRIPTIF

STATISTIK DESKRIPTIF PERTEMUAN KE-3 STATISTIK DESKRIPTIF Ringkasan Materi: Pengukuran Deskriptif Pengukuran deskriptif pada dasarnya memaparkan secara numerik ukuran tendensi sentral, dispersi dan distribusi suatu data. Tendensi

Lebih terperinci

BAB V ANALISA. Pada penelitian yang dilakukan di restoran Nasi Uduk Kebon Kacang Hj.

BAB V ANALISA. Pada penelitian yang dilakukan di restoran Nasi Uduk Kebon Kacang Hj. BAB V ANALISA Pada penelitian yang dilakukan di restoran Nasi Uduk Kebon Kacang Hj. Ellya, penulis mengajukan seperangkat kuesioner kepada responden yang berjumlah 100 orang, kuesioner ini terdiri dari

Lebih terperinci

BAB 11 ANALISIS REGRESI LINIER BERGANDA

BAB 11 ANALISIS REGRESI LINIER BERGANDA BAB 11 ANALISIS REGRESI LINIER BERGANDA Selain regresi linier sederhana, metode regresi yang juga banyak digunakan adalah regresi linier berganda. Regresi linier berganda digunakan untuk penelitian yang

Lebih terperinci

KORELASI DAN ASOSIASI

KORELASI DAN ASOSIASI KORELASI DAN ASOSIASI Kata korelasi diambil dari bahasa Inggris, yaitu correlation artinya saling hubungan atau hubungan timbal balik. Dalam ilmu statistika istilah korelasi diberi pengertian sebagai hubungan

Lebih terperinci

BAB 4 HASIL PENELITIAN

BAB 4 HASIL PENELITIAN BAB 4 HASIL PENELITIAN 4.1 Penyajian Data Penelitian 4.1.1 Analisis Karakteristik Responden Responden yang diteliti dalam penelitian ini adalah konsumen pengguna PT. Mega Auto Finance cabang Kedoya. Penjelasan

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN BAB IV HASIL PENELITIAN Empat bagian penting yaitu bagian deskripsi data, pengujian persyaratan analisis, pengujian hipotesis penelitian, dan bagian keterbatasan penelitian akan disajikan di sini, dan

Lebih terperinci

MATERI APLIKASI KOMPUTER LANJUT UJI RELIABILITAS DAN VALIDITAS

MATERI APLIKASI KOMPUTER LANJUT UJI RELIABILITAS DAN VALIDITAS MATERI APLIKASI KOMPUTER LANJUT UJI RELIABILITAS DAN VALIDITAS Jika kita akan melakukan penelitian yang menggunakan kuisioner, setelah kuisioner diisi oleh responden dan sudah tabulasi data, maka langkah

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN. syarat, jika harga koefisien rhitung 0,300 (Riduwan, 2005:109;

BAB IV ANALISA DAN PEMBAHASAN. syarat, jika harga koefisien rhitung 0,300 (Riduwan, 2005:109; BAB IV ANALISA DAN PEMBAHASAN 4.1 Uji Validitas dan Realiabilitas Hasil uji coba instrumen dilakukan pada 25 responden. Suatu instrument/angket atau bahan test dinyatakan valid atau dianggap memenuhi syarat,

Lebih terperinci

ANALISIS DATA ASOSIATIF

ANALISIS DATA ASOSIATIF PERTEMUAN KE-7 Ringkasan Materi : ANALISIS DATA ASOSIATIF Analisis data asosiatif merupakan alat statistik yang digunakan untuk menguji hipotesis asosiatif/hubungan, disebut juga dengan teknik korelasi.

Lebih terperinci

Pengaruh Kualitas Pelayanan Dan Tingkat Harga Terhadap Peningkatan Penjualan Mie Ayam Keriting Permana di Perumahan Harapan Baru 1

Pengaruh Kualitas Pelayanan Dan Tingkat Harga Terhadap Peningkatan Penjualan Mie Ayam Keriting Permana di Perumahan Harapan Baru 1 Pengaruh Kualitas Pelayanan Dan Tingkat Harga Terhadap Peningkatan Penjualan Mie Ayam Keriting Permana di Perumahan Harapan Baru 1 Nama :Farah Npm :122100606 Jurusan :Manajemen Pembimbing :Rooswhan Budhi

Lebih terperinci

BAB IV HASIL PENELITIAN

BAB IV HASIL PENELITIAN BAB IV HASIL PENELITIAN A. Deskripsi Data Statistik deskriptif ini digunakan sebagai dasar untuk menguraikan kecenderungan jawaban responden dari tiap-tiap variabel, baik mengenai kompetensi profesional

Lebih terperinci

BAB IV HASIL PENELITIAN. kecenderungan jawaban responden dari tiap-tiap variabel, tentang budaya. religius dan pembentukan karakter peserta didik.

BAB IV HASIL PENELITIAN. kecenderungan jawaban responden dari tiap-tiap variabel, tentang budaya. religius dan pembentukan karakter peserta didik. 101 BAB IV HASIL PENELITIAN A. Deskripsi Data Statistik deskriptif ini digunakan sebagai dasar untuk menguraikan kecenderungan jawaban responden dari tiap-tiap variabel, tentang budaya religius dan pembentukan

Lebih terperinci

Statistik Deskriptif untuk Data Nominal dan Ordinal

Statistik Deskriptif untuk Data Nominal dan Ordinal Statistik Deskriptif untuk Data Nominal dan Ordinal Salah satu ciri utama sehingga sebuah data harus diproses dengan metode nonparametrik adalah jika tipe data tersebut semuanya adalah data nominal atau

Lebih terperinci

BAB IV ANALISIS PENGARUH PERHATIAN ORANG TUA TERHADAP PEMBENTUKAN KEPRIBADIAN ANAK DI DESA PROTO KEDUNGWUNI PEKALONGAN

BAB IV ANALISIS PENGARUH PERHATIAN ORANG TUA TERHADAP PEMBENTUKAN KEPRIBADIAN ANAK DI DESA PROTO KEDUNGWUNI PEKALONGAN BAB IV ANALISIS PENGARUH PERHATIAN ORANG TUA TERHADAP PEMBENTUKAN KEPRIBADIAN ANAK DI DESA PROTO KEDUNGWUNI PEKALONGAN A. Analisis Uji Validitas dan Reliabilitas Pembahasan pada bab ini merupakan hasil

Lebih terperinci

BAB 10 ANALISIS REGRESI LINIER SEDERHANA

BAB 10 ANALISIS REGRESI LINIER SEDERHANA BAB 10 ANALISIS REGRESI LINIER SEDERHANA Analisis regresi linier merupakan salah satu jenis metode regresi yang paling banyak digunakan. Regresi linier sederhana terdiri atas satu variabel terikat (dependent)

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN Data yang penulis berhasil dikumpulkan kemudian akan diolah dengan metode regresi linier berganda untuk menguji pengaruh variabel independen yaitu persepsi kualitas

Lebih terperinci

BAB IV HASIL PENELITIAN. kecenderungan jawaban responden dari tiap-tiap variabel, baik mengenai

BAB IV HASIL PENELITIAN. kecenderungan jawaban responden dari tiap-tiap variabel, baik mengenai BAB IV HASIL PENELITIAN A. Deskripsi Data Statistik deskriptif digunakan sebagai dasar untuk menguraikan kecenderungan jawaban responden dari tiap-tiap variabel, baik mengenai kompetensi guru, motivasi

Lebih terperinci

UJI PERSYARATAN INSTRUMEN

UJI PERSYARATAN INSTRUMEN PERTEMUAN KE-5 UJI PERSYARATAN INSTRUMEN Materi : 1. Uji Validitas Validitas adalah ketepatan atau kecermatan suatu instrumen dalam mengukur apa yang ingin dukur. Dalam pengujian instrumen pengumpulan

Lebih terperinci

LANGKAH-LANGKAH PENGUJIAN INSTRUMEN UJI VALIDITAS DAN RELIABILITAS

LANGKAH-LANGKAH PENGUJIAN INSTRUMEN UJI VALIDITAS DAN RELIABILITAS LANGKAH-LANGKAH PENGUJIAN INSTRUMEN UJI VALIDITAS DAN RELIABILITAS Oleh: Aftoni Sutanto UJI VALIDITAS Berikut langkah-langkah uji validitas. Dengan menggunakan contoh data sebagai berikut: 1. Uji Validitas

Lebih terperinci

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

BAB IV PENGUMPULAN DAN PENGOLAHAN DATA BAB IV PENGUMPULAN DAN PENGOLAHAN DATA 4.1 PENGUMPULAN DATA Pengumpulan data merupakan salah satu aspek yang sangat berperan dalam kelancaran dan keberhasilan dalam suatupenelitian. Dalam penelitian ini

Lebih terperinci

BAB V HASIL PENELITIAN DAN PEMBAHASAN. 5.1 Karakteristik Responden Penelitian ini dilakukan dengan maksud untuk melihat kuat pengaruh

BAB V HASIL PENELITIAN DAN PEMBAHASAN. 5.1 Karakteristik Responden Penelitian ini dilakukan dengan maksud untuk melihat kuat pengaruh BAB V HASIL PENELITIAN DAN PEMBAHASAN 5.1 Karakteristik Responden Penelitian ini dilakukan dengan maksud untuk melihat kuat pengaruh MSDM, motivasi terhadap kinerja Karyawan dengan melakukan penyebaran

Lebih terperinci

BAB 4 HASIL PENELITIAN. Tabel 4.1 Hasil Kuesioner. Public Relations. membantu anda dalam menentukan jenis cetakan yang akan anda pilih?

BAB 4 HASIL PENELITIAN. Tabel 4.1 Hasil Kuesioner. Public Relations. membantu anda dalam menentukan jenis cetakan yang akan anda pilih? 30 BAB 4 HASIL PENELITIAN 4.1 Hasil Kuesioner Tabel 4.1 Hasil Kuesioner Public Relations Setujukah anda bahwa Public Relations PT. Uvindo Prima Cemerlang sangat membantu anda dalam menentukan jenis cetakan

Lebih terperinci

BAB IV HASIL PENELITIAN. A. Deskripsi Data Penelitian ini dilakukan terhadap siswa di MAN se Kabupaten Blitar

BAB IV HASIL PENELITIAN. A. Deskripsi Data Penelitian ini dilakukan terhadap siswa di MAN se Kabupaten Blitar BAB IV HASIL PENELITIAN A. Deskripsi Data Penelitian ini dilakukan terhadap siswa di MAN se Kabupaten Blitar yang berjumlah 92 responden, untuk mengetahui seberapa besar pengaruh keterampilan dasar mengajar

Lebih terperinci

BAB IV ANALISIS KORELASI ANTARA NILAI BTQ DENGAN PRESTASI BELAJAR MAPEL PAI DI SD KANDANG PANJANG 01 PEKALONGAN

BAB IV ANALISIS KORELASI ANTARA NILAI BTQ DENGAN PRESTASI BELAJAR MAPEL PAI DI SD KANDANG PANJANG 01 PEKALONGAN BAB IV ANALISIS KORELASI ANTARA NILAI BTQ DENGAN PRESTASI BELAJAR MAPEL PAI DI SD KANDANG PANJANG 01 PEKALONGAN A. Analisis Data tentang Nilai BTQ SD Kandang Panjang 01 Pekalongan Setelah dikumpulkan dengan

Lebih terperinci

BAB IV HASIL PENELITIAN. kecenderungan jawaban responden dari tiap-tiap variabel, baik mengenai

BAB IV HASIL PENELITIAN. kecenderungan jawaban responden dari tiap-tiap variabel, baik mengenai BAB IV HASIL PENELITIAN A. Deskripsi Data Statistik deskriptif ini digunakan sebagai dasar untuk menguraikan kecenderungan jawaban responden dari tiap-tiap variabel, baik mengenai kinerja guru, motivasi

Lebih terperinci

MEMBANGUN DATA. 4. Membuka program SPSS Cara 1: Klik start > all program > IBM SPSS Statistic > IBM SPSS Statistic 21

MEMBANGUN DATA. 4. Membuka program SPSS Cara 1: Klik start > all program > IBM SPSS Statistic > IBM SPSS Statistic 21 PERTEMUAN KE-2 MEMBANGUN DATA Ringkasan Materi : SPSS (Statistical Product And Service Solution) merupakan program yang digunakan untuk melakukan perhitungan statistik menggunakan komputer. Kelebihan program

Lebih terperinci

PENGENALAN APLIKASI STATISTICAL PRODUCT AND SERVICE SOLUTIONS (SPSS)

PENGENALAN APLIKASI STATISTICAL PRODUCT AND SERVICE SOLUTIONS (SPSS) MODUL 8 PENGENALAN APLIKASI STATISTICAL PRODUCT AND SERVICE SOLUTIONS (SPSS) Tujuan Praktikum : Mahasiswa mengenal aplikasi pengolah data statistik yaitu SPSS Mahasiswa dapat menggunakan aplikasi SPSS

Lebih terperinci

BAB IV ANALISA DAN HASIL PENELITIAN

BAB IV ANALISA DAN HASIL PENELITIAN BAB IV ANALISA DAN HASIL PENELITIAN 4.1 Instrumen dan Responden Hasil penelitian didapatkan dari kuesioner-kuesioner yang disebarkan secara acak langsung kepada para responden melalui hardcopy dan softcopy

Lebih terperinci

MEMBACA HASIL ANALISIS DENGAN SPSS

MEMBACA HASIL ANALISIS DENGAN SPSS MEMBACA HASIL ANALISIS DENGAN SPSS Oleh : Teguh Wahyono, S.Kom Staff Pengajar Teknik Informatika UKSW 1. ANALISA TABEL FREKUENSI Berikut adalah contoh data hasil penelitian tentang tinggi badan 20 orang

Lebih terperinci

Tabel 4.1 Demografi responden berdasarkan jenis kelamin. Jenis kelamin Jumlah Presentase. Pria (P) 63 63% Wanita (W) 37 37% Total %

Tabel 4.1 Demografi responden berdasarkan jenis kelamin. Jenis kelamin Jumlah Presentase. Pria (P) 63 63% Wanita (W) 37 37% Total % BAB IV PEMBAHASAN 4.1 Penyajian Data Penelitian 4.1.1 Profil Responden Karakteristik demografi responden pada penelitian ini dibedakan menurut jenis kelamin, usia, dan pekerjaan. a. Berdasarkan jenis kelamin

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Pengujian Validitas Variabel Validitas menunjukkan seberapa nyata suatu pengujian mengukur apa yang seharusnya diukur. Dalam Ghozali (2005:45) dinyatakan suatu kuesioner

Lebih terperinci

BAB IV HASIL PENELITIAN. Mei 2016 terhadap siswa pada mata pelajaran Akidah akhlak di MTsN Kunir

BAB IV HASIL PENELITIAN. Mei 2016 terhadap siswa pada mata pelajaran Akidah akhlak di MTsN Kunir 133 BAB IV HASIL PENELITIAN Pada bab ini diuraikan tentang: a) Deskripsi Data; b) Uji Persyratan Analisis; c) Pengujian Hipotesis Penelitian. A. Deskripsi Data Penelitian ini dilakukan pada tanggal 01

Lebih terperinci

BAB IV. Statistik Parametrik. Korelasi Product Moment. Regresi Linear Sederhana Regresi Linear Ganda Regresi Logistik

BAB IV. Statistik Parametrik. Korelasi Product Moment. Regresi Linear Sederhana Regresi Linear Ganda Regresi Logistik BAB IV Statistik Parametrik Korelasi Product Moment Regresi Linear Sederhana Regresi Linear Ganda Regresi Logistik Korelasi Product Moment Korelasi product moment disebut juga korelasi Pearson adalah teknik

Lebih terperinci

Contoh Analisis Data Korelasi Kecerdasan Emosi terhadap Stress Kerja 1. Sebaran Data Kecerdasan Emosi Hasil Skoring Kuesioner

Contoh Analisis Data Korelasi Kecerdasan Emosi terhadap Stress Kerja 1. Sebaran Data Kecerdasan Emosi Hasil Skoring Kuesioner Contoh Analisis Data Korelasi Kecerdasan Emosi terhadap Stress Kerja 1. Sebaran Data Kecerdasan Emosi Hasil Skoring Kuesioner 1. Sebaran Data Stress Kerja Hasil Skoring Kuesioner 2. Jumlah Skor Setiap

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Gambaran Umum Responden Sebagaimana yang sudah dijelaskan sebelumnya, bahwa responden yang menjadi subyek dalam penelitian ini adalah mahasiswa pada Universitas

Lebih terperinci

BAB V HASIL PENELITIAN DAN PEMBAHASAN

BAB V HASIL PENELITIAN DAN PEMBAHASAN BAB V HASIL PENELITIAN DAN PEMBAHASAN Pengujian hipotesis pada penelitian ini dilakukan dengan menggunakan regresi linier sederhana dan regresi linier berganda. Tujuan analisis penelitian ini adalah menjawab

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Penyajian Data Penelitian Untuk mengumpulkan data yang diperlukan dalam penelitian ini, penulis menyebarkan kuesioner kepada mahasiswa Marketing Communication Binus University

Lebih terperinci

BAB IV HASIL PENELITIAN. Dalam penelitian ini data yang dianaisis adalah Fasilitas belajar (X 1 ),

BAB IV HASIL PENELITIAN. Dalam penelitian ini data yang dianaisis adalah Fasilitas belajar (X 1 ), BAB IV HASIL PENELITIAN Dalam penelitian ini data yang dianaisis adalah Fasilitas belajar (X 1 ), disiplin belajar (X 2 ) dan Hasil belajar Pengukuran Dasar Survey.(Y). berdasarkan pengelohan data, maka

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1 Hasil Pengumpulan Data Pada penelitian ini, pengumpulan data dilakukan dengan cara menyebarkan kuesioner kepada para responden yang merupakan karyawan pada PT. BKR yang berada

Lebih terperinci

BAB 4 HASIL PENELITIAN DAN PEMBAHASAN Gambaran Umum Responden Penelitian. Jumlah responden yang berpartisipasi dalam penelitian survei ini

BAB 4 HASIL PENELITIAN DAN PEMBAHASAN Gambaran Umum Responden Penelitian. Jumlah responden yang berpartisipasi dalam penelitian survei ini BAB 4 HASIL PENELITIAN DAN PEMBAHASAN 4.1 Penyajian Data Penelitian 4.1.1 Gambaran Umum Responden Penelitian Jumlah responden yang berpartisipasi dalam penelitian survei ini seluruhnya berjumlah 100 orang.

Lebih terperinci

BAB IV DESKRIPSI DAN ANALISIS DATA

BAB IV DESKRIPSI DAN ANALISIS DATA BAB IV DESKRIPSI DAN ANALISIS DATA A. Deskripsi data Hasil Penelitian Data Pengamalan PAI dan Perilaku seks bebas peserta didik SMA N 1 Dempet diperoleh dari hasil angket yang telah diberikan kepada responden

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. website, uji validitas dan reabilitas, uji asumsi, analisis regresi linear berganda.

BAB IV HASIL DAN PEMBAHASAN. website, uji validitas dan reabilitas, uji asumsi, analisis regresi linear berganda. BAB IV HASIL DAN PEMBAHASAN Pada bab ini akan membahas mengenai hasil dari analisis yang dilakukan. Hasil dan pembahasan ini terdiri dari gambaran umum responden, kualitas website, uji validitas dan reabilitas,

Lebih terperinci

BAB 4 ANALISIS DAN BAHASAN. Untuk memperoleh data dalam pengujian ini, penulis telah membagikan

BAB 4 ANALISIS DAN BAHASAN. Untuk memperoleh data dalam pengujian ini, penulis telah membagikan BAB 4 ANALISIS DAN BAHASAN 4.1 Profil Responden Untuk memperoleh data dalam pengujian ini, penulis telah membagikan kuesioner kepada 60 responden. Jumlah responden tersebut dihasilkan dari rumus perhitungan

Lebih terperinci

BAB IV ANALISIS DATA

BAB IV ANALISIS DATA BAB IV ANALISIS DATA A. Pengujian Hipotesis Sebelum menjabarkan tentang analisis data dalam bentuk perhitungan menggunakan program SPSS, penulis membuat hipotesis sebagaimana yang telah ada pada pokok

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN Analisis pada bab ini dilakukan dari hasil kuisioner yang telah dikumpulkan. Responden dalam penelitian ini adalah pelanggan yang memiliki hubungan kerja dalam pemanfaatan

Lebih terperinci

Langkah-Langkah Perhitungan Berikut diberikan data penjualan mobil Bima selama tahun 2000:

Langkah-Langkah Perhitungan Berikut diberikan data penjualan mobil Bima selama tahun 2000: BAB 1 STATISTIK DESKRIPTIF Statistik deskriptif lebih berhubungan dengan pengumpulan dan peringkatan data, serta penyajian hasil peringkasan tersebut. Data statistik yang bisa diperoleh dari hasil sensus,

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1 Hipotesis Gambar 4.1 Hubungan variabel bebas dan variabel terikat Keterangan : X 1 = Kompensasi X 2 = Iklim Organisasi Y = Kepuasan Kerja Hipotesis : 1. H 0 : r y1 = 0 H

Lebih terperinci

BAB 4 PEMBAHASAN HASIL PENELITIAN

BAB 4 PEMBAHASAN HASIL PENELITIAN BAB 4 PEMBAHASAN HASIL PENELITIAN 41 Hasil Uji Statistik 411 Statistik Deskriptif Pada bagian ini akan dibahas mengenai hasil pengolahan data statistik deskriptif dari variabel-variabel yang diteliti Langkah

Lebih terperinci

BAB 4 HASIL PENELITIAN. bab ini. Penelitian ini bertujuan untuk mengetahui efektivitas social media twitter

BAB 4 HASIL PENELITIAN. bab ini. Penelitian ini bertujuan untuk mengetahui efektivitas social media twitter BAB 4 HASIL PENELITIAN 4.1 Penyajian Data Penelitian Hasil dari analisis data yang telah peneliti lakukan, akan diuraikan pada bab ini. Penelitian ini bertujuan untuk mengetahui efektivitas social media

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. diperoleh dari penyebaran kuesioner pada konsumen.

BAB IV HASIL DAN PEMBAHASAN. diperoleh dari penyebaran kuesioner pada konsumen. 56 BAB IV HASIL DAN PEMBAHASAN A. Gambaran Umum Responden 1. Tempat dan Waktu Penelitian Pada bab ini, penulis melakukan analisis secara keseluruhan mengenai pengaruh citra merek dan kepercayaan merek

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN A. Gambaran Umum Grogol Petamburan Jakarta Barat merupakan salah satu kecamatan di wilayah Jakarta Barat, wilayah ini tidak hanya digunakan sebagai kawasan tempat tinggal namun

Lebih terperinci

BAB 13 ANALISIS LINTAS (PATH ANALISIS)

BAB 13 ANALISIS LINTAS (PATH ANALISIS) BAB 13 ANALISIS LINTAS (PATH ANALISIS) Berbagai macam penelitian yang dilakukan pada tanaman umumnya hanya mengkorelasikan sifat-sifat tanaman secara umum. Namun demikian, untuk mendapatkan gambaran tentang

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. Jenis dan Pendekatan Penelitian Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian kuantitatif. Penelitian kuantitatif adalah suatu proses menemukan pengetahuan

Lebih terperinci

BAB IV HASIL PENELITIAN, ANALISIS DAN PEMBAHASAN

BAB IV HASIL PENELITIAN, ANALISIS DAN PEMBAHASAN BAB IV HASIL PENELITIAN, ANALISIS DAN PEMBAHASAN 4.1. Gambaran Umum Subjek Penelitian Pada bagian ini akan dijelaskan mengenai data-data deskriptif yang diperoleh dari responden. Data deskriptif yang menggambarkan

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN. 4.1 Analisis Data Laporan Keuangan PT Mayora Indah Tbk. Tabel. 4.1 Data Laporan Keuangan PT Mayora Indah Tbk.

BAB IV ANALISIS DAN PEMBAHASAN. 4.1 Analisis Data Laporan Keuangan PT Mayora Indah Tbk. Tabel. 4.1 Data Laporan Keuangan PT Mayora Indah Tbk. BAB IV ANALISIS DAN PEMBAHASAN 4.1 Analisis Data Laporan Keuangan PT Mayora Indah Tbk. Berikut adalah data laporan keuangan PT Mayora Indah Tbk (dalam juta Rupiah), selama tahun 2007 sampai dengan 2010.

Lebih terperinci

Skala pengukuran dan Ukuran Pemusatan. Ukuran Pemusatan

Skala pengukuran dan Ukuran Pemusatan. Ukuran Pemusatan Skala Pengukuran Nominal (dapat dikelompokkan, tidak punya urutan) Ordinal (dapat dikelompokkan, dapat diurutkan, jarak antar nilai tidak tetap sehingga tidak dapat dijumlahkan) Interval (dapat dikelompokkan,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. yang telah dilakukan. Hasil dan pembahasan ini terdiri dari kualitas website, uji

BAB IV HASIL DAN PEMBAHASAN. yang telah dilakukan. Hasil dan pembahasan ini terdiri dari kualitas website, uji BAB IV HASIL DAN PEMBAHASAN Pada bab ini akan membahas mengenai hasil dan pembahasan dari analisis yang telah dilakukan. Hasil dan pembahasan ini terdiri dari kualitas website, uji validitas dan reliabilitas,

Lebih terperinci

BAB IV HASIL PENELITIAN. salah satunya menggambarkan karakteristik responden yaitu : Jenis kelamin, usia,

BAB IV HASIL PENELITIAN. salah satunya menggambarkan karakteristik responden yaitu : Jenis kelamin, usia, BAB IV HASIL PENELITIAN 4.1 Penyajian Data Penelitian 4.1.1 Analisis Karakteristik Responden Peneliti memperoleh data primer dengan menyebarkan kuisioner yang dimana salah satunya menggambarkan karakteristik

Lebih terperinci

BAB 4 HASIL PENELITIAN. Data-data yang diolah dalam penelitian ini adalah kuesioner yang

BAB 4 HASIL PENELITIAN. Data-data yang diolah dalam penelitian ini adalah kuesioner yang BAB 4 HASIL PENELITIAN 4.1 Data Responden Data-data yang diolah dalam penelitian ini adalah kuesioner yang desebarkan kepada pengguna website Kreavi.com melalui email admin. Dari kuesioner diperoleh data

Lebih terperinci

Uji Validitas Instrumen. by Ifada Novikasari

Uji Validitas Instrumen. by Ifada Novikasari Uji Validitas Instrumen by Ifada Novikasari Institut Agama Islam Negeri Purwokerto 2016 Uji Validitas Instrumen a. Validitas Isi/Konten Validitas isi yang akan dilakukan dalam penelitian ini adalah validitas

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN Dalam penelitian ini, analisis data yang dilakukan menggunakan pendekatan kuantitatif yaitu dengan menggunakan analisis regresi sederhana, dan perhitungannya menggunakan

Lebih terperinci

BAB 4 HASIL PENELITIAN. dengan menggunakan rumus Slovin atas jumlah seluruh pelanggan spring bed

BAB 4 HASIL PENELITIAN. dengan menggunakan rumus Slovin atas jumlah seluruh pelanggan spring bed 54 BAB 4 HASIL PENELITIAN 4.1 Identitas Responden Responden yang digunakan dalam penelitian ini adalah pelanggan spring bed Airland PT. Dinamika Indonusa Prima showroom Hayam Wuruk yang berjumlah 100 orang.

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1 Hasil Pengumpulan Data Teknik Pengumpulan data dalam menguji validitas dan reliabilitas faktor-faktor dan variabel penelitian Kepuasan Kerja karyawan ini dilakukan memakai

Lebih terperinci

BAB IV PELAKSANAAN DAN HASILPENELITIAN

BAB IV PELAKSANAAN DAN HASILPENELITIAN BAB IV PELAKSANAAN DAN HASILPENELITIAN Pengumpulan data penelitian ini di lakukan pada tanggal 18 Mei 2014 sampai tanggal 21 Mei 2014. Sampel yang digunakan adalah mahasiswa Fakultas Keguruan Ilmu Pendidikan

Lebih terperinci

ANALISIS PENGARUH KUALITAS PELAYANAN DAN KEPUASAN TERHADAP LOYALITAS KONSUMEN PADA BELANJA ONLINE ELEVENIA STUDI KASUS MAHASISWA UNIVERSITAS GUNADARMA

ANALISIS PENGARUH KUALITAS PELAYANAN DAN KEPUASAN TERHADAP LOYALITAS KONSUMEN PADA BELANJA ONLINE ELEVENIA STUDI KASUS MAHASISWA UNIVERSITAS GUNADARMA ANALISIS PENGARUH KUALITAS PELAYANAN DAN KEPUASAN TERHADAP LOYALITAS KONSUMEN PADA BELANJA ONLINE ELEVENIA STUDI KASUS MAHASISWA UNIVERSITAS GUNADARMA Nama : Fusi Windi Haqima Npm : 13213604 Kelas : 3EA29

Lebih terperinci

BAB IV ANALISIS HASIL DAN PEMBAHASAN

BAB IV ANALISIS HASIL DAN PEMBAHASAN 37 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Statistik Deskriptif Variabel yang digunakan dalam penelitian ini adalah Laba Bersih dan Arus Kas Operasi sebagai variabel independen (X) dan Dividen Kas sebagai

Lebih terperinci

MODUL PENGGUNAAN SPSS UNTUK ANALISIS

MODUL PENGGUNAAN SPSS UNTUK ANALISIS MODUL PENGGUNAAN SPSS UNTUK ANALISIS A. Uji Questionare: Reliabilitas dan Validitas Sebelum questinare benar-benar dibagikan kepada responden dengan sampel yang besar, hendaknya diuji coba kepada sampel

Lebih terperinci

BAB 4 HASIL PENELITIAN. Dari sejumlah kuesioner yang telah disebarkan sebanyak 63, diambil dan diolah,

BAB 4 HASIL PENELITIAN. Dari sejumlah kuesioner yang telah disebarkan sebanyak 63, diambil dan diolah, BAB 4 HASIL PENELITIAN 4.1 Data Responden Dari sejumlah kuesioner yang telah disebarkan sebanyak 63, diambil dan diolah, maka terdapat data-data responden dari warga Alam Indah Rt001/07. Data-data tersebut

Lebih terperinci

Lampiran 1. Langkah perhitungan Uji Validitas di SPSS.

Lampiran 1. Langkah perhitungan Uji Validitas di SPSS. 121 Lampiran 1. Langkah perhitungan Uji Validitas di SPSS. 1. Pilih program SPSS for Windows pada komputer anda. Setelah itu, pilih Cancel. 2. Pada variable view, ketik: Nomor1 (Nomor2, Nomor3,, Nomor20)

Lebih terperinci

TABEL 3 DATA PENELITIAN

TABEL 3 DATA PENELITIAN Analisis Regresi Linier Bentuk LN (Logaritma Natural) Pengubahan data ke bentuk LN dimaksudkan untuk meniadakan atau meminimalkan adanya pelanggaran asumsi normalitas dan asumsi klasik regresi. Jika data-data

Lebih terperinci

BAB IV ANALISIS HASIL PEMBAHASAN

BAB IV ANALISIS HASIL PEMBAHASAN BAB IV ANALISIS HASIL PEMBAHASAN 4.1 Analisis Profil Responden 4.1.1 Statistik Deskriptif Statistik deskriptif digunakan untuk melihat gambaran secara umum data yang telah dikumpulkan dalam penelitian

Lebih terperinci

BAB V HASIL PENELITIAN DAN PEMBAHASAN

BAB V HASIL PENELITIAN DAN PEMBAHASAN 78 BAB V HASIL PENELITIAN DAN PEMBAHASAN Hasil penelitian yang dilakukan di PT. Kiyokuni Indonesia ini terkait untuk menganalisis dan menjelaskan gaya kepemimpinan, motivasi dan disiplin berpengaruh signifikan

Lebih terperinci

BAB IV ANALISIS DATA. bebas dan variabel terikat, kemudian data tersebut di analisis dengan

BAB IV ANALISIS DATA. bebas dan variabel terikat, kemudian data tersebut di analisis dengan BAB IV ANALISIS DATA A. Pengujian Hipotesis Setelah diperoleh masing-masing jumlah dari kategori variabel bebas dan variabel terikat, kemudian data tersebut di analisis dengan menggunakan analisis kuantitatif,

Lebih terperinci

BAB IV DESKRIPSI DAN ANALISIS DATA

BAB IV DESKRIPSI DAN ANALISIS DATA BAB IV DESKRIPSI DAN ANALISIS DATA A. Deskripsi Data Data penelitian ini diperoleh dari siswa kelas V SD Islam Al Madina Semarang tahun pelajaran 2015/2016 sebagai subyek penelitian dan merupakan populasi

Lebih terperinci

ANALISIS DATA PREDIKTIF (Analisis Regresi)

ANALISIS DATA PREDIKTIF (Analisis Regresi) PERTEMUAN KE-9 ANALISIS DATA PREDIKTIF (Analisis Regresi) Ringkasan Materi : Analisis regresi digunakan untuk memprediksi (prediktif). Variabel X hasil pengukuran yang disebut prediktor digunakan untuk

Lebih terperinci

Validitas dan Reliabilitas

Validitas dan Reliabilitas 1 Pendahuluan Tujuan pengukuran suatu obyek adalah menghasilkan informasi yang akurat dan obyektif mengenai obyek tersebut. Pengukuran berat suatu logam mulia bertujuan mengetahui berapa gram bobot logam

Lebih terperinci

Berikut ini akan dijelaskan batasan variabel penelitian dan indikatornya, seperti dalam Tabel. 1, berikut ini:

Berikut ini akan dijelaskan batasan variabel penelitian dan indikatornya, seperti dalam Tabel. 1, berikut ini: METODA PENELITIAN Obyek Penelitian Penelitian ini dilakukan pada auditor internal IGE Timor Leste, alasannya bahwa IGE merupakan satu-satunya internal auditor pemerintah di Timor Leste. Desain Penelitian

Lebih terperinci

Data Deskriptif Keterangan Jumlah %

Data Deskriptif Keterangan Jumlah % BAB 4 ANALISIS DAN BAHASAN 4.1 Gambaran Umum Responden Gambaran umum responden dapat dilihat melalui profil responden. Profil responden pada penelitian ini meliputi kepemilikan NPWP, jenis kelamin, usia,

Lebih terperinci

BAB 4 HASIL dan ANALISIS PENELITIAN. Sebelum membagikan kuesioner kepada 100 responden, dilakukan uji validitas dan

BAB 4 HASIL dan ANALISIS PENELITIAN. Sebelum membagikan kuesioner kepada 100 responden, dilakukan uji validitas dan BAB 4 HASIL dan ANALISIS PENELITIAN 4.1 Penyajian Data Penelitian 4.1.1 Uji Validitas Sebelum membagikan kuesioner kepada 100 responden, dilakukan uji validitas dan reliabilitas pertanyaan kuesioner kepada

Lebih terperinci

Program Studi Pendidikan Ekonomi FE UNY

Program Studi Pendidikan Ekonomi FE UNY LEMBAR KERJA Topik: Uji Homosedastisitas Tujuan: Digunakan untuk mengetahui kesamaan varians error untuk setiap nilai X. Error = residu = e = Y Y Lawan homosedastisitas adalah heterosedastisitas. Analisis

Lebih terperinci

BAB IV ANALISA HASIL DAN PEMBAHASAN

BAB IV ANALISA HASIL DAN PEMBAHASAN 58 BAB IV ANALISA HASIL DAN PEMBAHASAN A. Analisis Hasil 1. Statistik Deskriptif a. Analisis Deskriptif Statistik Deskriptif digunakan untuk melihat gambaran secara umum data yang telah dikumpulkan dalam

Lebih terperinci

ANGKET PENELITIAN ANALISIS PENGARUH STRES KERJA DAN MOTIVASI TERHADAP KINERJA KARYAWAN PT. PANCA MENARA MITRA SKRIPSI. Fika Aditya Pradipta

ANGKET PENELITIAN ANALISIS PENGARUH STRES KERJA DAN MOTIVASI TERHADAP KINERJA KARYAWAN PT. PANCA MENARA MITRA SKRIPSI. Fika Aditya Pradipta L1 Lampiran 1 Kuesioner ANGKET PENELITIAN ANALISIS PENGARUH STRES KERJA DAN MOTIVASI TERHADAP KINERJA KARYAWAN PT. PANCA MENARA MITRA SKRIPSI Fika Aditya Pradipta 1200980122 L2 SURAT PENGANTAR Responden

Lebih terperinci

BAB IV ANALISIS DATA DAN PEMBAHASAN

BAB IV ANALISIS DATA DAN PEMBAHASAN 37 BAB IV ANALISIS DATA DAN PEMBAHASAN Penelitian ini bertujuan untuk meneliti adanya pengaruh Kualitas Pelayanan Dan Citra Merek Terhadap Kepuasan Pelanggan PT PLN (Persero) pada Perumahan Pondok Bahar

Lebih terperinci

Bhina Patria

Bhina Patria Entry Data Bhina Patria inparametric@yahoo.com Dalam proses entry data aturan pertama yang harus di perhatikan adalah bahwa setiap baris mewakili satu kasus atau 1 responden, sedangkan masing-masing kolom

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. penelitian yang terdiri dari variabel terikat (dependen) yaitu tingkat

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. penelitian yang terdiri dari variabel terikat (dependen) yaitu tingkat BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Statistik Deskriptif Statistik deskriptif memberikan gambaran atau deskripsi suatu data yang dilihat dari nilai rata rata (Mean), standar deviasi, maksimum, minimum,

Lebih terperinci