METODA PEMBUKTIAN DALAM MATEMATIKA

Save this PDF as:

Ukuran: px
Mulai penontonan dengan halaman:

Download "METODA PEMBUKTIAN DALAM MATEMATIKA"

Transkripsi

1 METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan HERNADI & Uki Suhendar, S.Pd (Asrul dan Enggar) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 8 FONDASI MATEMATIKA

2 Matematika Bukan Sekedar Angka Persepsi bahwa matematika identik dengan angka-angka dan operasi hitung (tambah, kali, bagi,kurang, pangkat, dll) tidak selamanya benar. Matematika berhubungan juga dengan penalaran karena matematika matematika merupakan hasil abstraksi (pemikiran) manusia terhadap objek-objek sekitar. Produk utama matematika berupa pernyataan-pernyataan berupa denisi, teorema, akibat, keonjektur, dll. Angka dan operasi aritmatika yang menyertainya merupakan produk turunan matematika. Matematika sebagai ilmu dasar (basic science): teori-teori yang ada di dalam matematika digunakan sebagai landasan untuk pengembangan ilmu terapan dan teknologi. Kebenaran pernyataan dalam matematika perlu dibuktikan.

3 Pernyataan Dalam Matematika dan Pembuktiannya Denisi adalah kesepakatan bersama mengenai pengertian atau batasan suatu istilah. Misalnya bilangan prima adalah bilangan lebih besar dari 1 yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Teorema adalah pernyataan yang kebenarannya dapat dibuktikan. Teorema dapat berupa kalimat berkuantor yang memuat konektivitas dengan satu atau beberapa premis dan satu konklusi. Teorema Pythagoras: Jika ABC segitiga siku-siku dengan sudut siku-siku di B maka berlaku AB 2 + BC 2 = AC 2. Proposisi merupakan teorema kecil dimana tingkat signikansinya lebih rendah dari Teorema. Contoh: perkalian antara dua bilangan ganjil menghasilkan sebuah bilangan ganjil. Fakta kadang digunakan untuk menyatakan Teorema atau Proposisi tetapi kebenarannya dapat dipahami langsung dan mudah. Contoh: 2 adalah satu-satunya bilangan genap yang sekaligus prima. Pembuktian (proof ) adalah serangkaian argumen logis yang menjelaskan kebenaran suatu pernyataan.

4 Lanjutan jenis pernyataan Aksioma atau postulat adalah pernyataan yang menjadi asumsi dasar dalam penyusunan suatu konsep dalam matematika. Aksioma biasa digunakan untuk membangun denisi, atau untuk membuktikan Teorema. Contoh: melalui dua titik berlainan dapat dibuat sebuah garis. Lemma adalah teorema kecil yang biasanya digunakan untuk membuktikan Teorema. Akibat (collorary) merupakan fakta yang diturunkan langsung dari Teorema dimana kebenarannya dapat dibuktikan dari Teorema langsung. Contoh: jika salah satu sisi pada segitiga siku-siku adalah ganjil maka terdapat satu lagi sisinya yang juga ganjil. (Akibat dari teorema Pythagoras). Konjektur adalah pernyataan yang diduga benar berdasarkan data empiris (evidence), argumen heuristik, atau intuisi para ahli; tetapi belum berdasarkan argumen valid. Bila konjektur dapat dibuktikan dengan argmen yang valid maka ia berubah menjadi Teorema atau proposisi. Kelompok pernyataan dan urgensi pembuktiannya Pernyataan yang harus dibuktikan: Teorema, Proposisi, Fakta, Lemma, Akibat. Pernyataan yang tidak perlu dibuktikan: Denisi, Aksioma/Postulat. Pernyataan yang dianjurkan untuk dibuktikan: Konjektur.

5 Pola Berpikir Dalam Matematika It is with logic that one proves, it is with intuition that one invents" (Henri Poincaré). Matematika sebagai ilmu pengetahuan dengan penalaran deduktif mengandalkan logika dalam meyakinkan akan kebenaran suatu pernyataan. Proses penemuan dalam matematika: pencarian pola dan struktur, contoh kasus dan objek matematika lainnya. melalui semua informasi dan fakta yang terkumpul disusun suatu konjektur. Konjektur dibuktikan kebenarannya, dihasilkan sebuah teorema. Dua macam cara berpikir: logically thinking dan algorithm thinking

6 Mengapa Perlu Membuktian Motivasi mengapa orang perlu membuktikan teorema (Making mathematics, To establish a fact with certainty To gain understanding To communicate an idea to others For the challenge to feel the real beauty of mathematics To construct a large mathematical theory Penelitian matematika pada level lanjutan menuntut dihasilkannya suatu teorema baru yang buktinya dapat diuji oleh orang lain. Motto PERUM Pegadaian "mengatasi masalah tanpa masalah", Motto PENELITIAN MATEMATIKA "memecahkan masalah, menimbulkan masalah baru". Masalah dalam matematika tidak bermakna negatif, tapi malah menambah kaya ilmu matematika itu sendiri. Matematika bekembang dari dua arah: internal dan eksternal (adanya tuntutan ilmu terapan yang membutuhkan matematika).

7 Pembuktian Pernyataan Berbentuk Implikasi p q 1 Bukti langsung: membuktikan kebenaran proposisi/teorema yang berbentuk implikasi p q, berangkat dari asumsi p benar dan ditunjukkan q benar. Contoh: Buktikan kebenaran jika x bilangan ganjil maka x 2 ganjil. 2 Bukti taklangsung: membuktikan kebenaran suatu implikasi p q melaui kontraposisinya q p. Contoh: Buktikan, jika x 2 bilangan ganjil maka x bilangan ganjil. 3 Bukti kosong: membuktikan kebenaran suatu implikasi p q dengan cara membuktikan bahwa p salah. Contoh: Diberikan denisi: himpunan A dikatakan bagian dari himpunan B, ditulis A B jika kondisi berikut dipenuhi: x A x B. Buktikan: adalah himpunan bagian dari semua himpunan. 4 Bukti trivial: membuktikan kebenaran suatu implikasi p q dengan cara membuktikan bahwa q benar. Contoh: Buktikan kebenaran Jika pinguin dapat terbang maka = 5.

8 Pembuktian dengan Kontradiksi Prosedur: 1 Identikasilah konklusi sebuah proposisi. 2 Andaikan konklusi tersebut salah. 3 Temukan kontradiksi. 4 Simpulkan bahwa pengandaian salah. 5 Proposisi terbukti. Example Buktikan bahwa 2 adalah bilangan irrasional. Proof. Kesimpulannya: 2 bil irrasional. Andai 2 rasional. Gunakan denisi bil rasional, dan seterusnya. Pada perjalanan temukan kontradiksi, yaitu dua pernyataan yang saling bertentangan. Simpulkan.

9 Pembuktian dengan Contoh Pengingkar Untuk membuktikan ketidakbenaran sebuah pernyataan, umumnya masih berupa konjektur. Ditunjukkan sebuah contoh yang membuat pernyataan tersebut tidak benar. Example Bilangan berpola F n := 2 2n + 1, n 0 merupakan bilangan prima. Proof. F 0 = = 2 benar prima, F 1 = = 5 benar prima, F 2 = = 17 prima, F 3 = = 257 prima, F 4 = = juga prima. Perhatikan F 5 = 2 32 = = bukan prima. Kesimpulan: pernyataan ini adalah salah dengan contoh pengingkar F 5. Masih ada bukti eksistensi dan ketunggalan, bukti dua arah (biimplikasi), bukti ekuivalensi multiarah, dan metoda Induksi Matematika. Dilanjutkan pada perkuliahan berikutnya.

10 PEMBUKTIAN DUA ARAH Karena sesungguhnya bi-implikasi p q terdiri dari dua implikasi p q dan q p maka pembuktiannya mengikuti pola pembuktian implikasi tetapi dilakukan dua arah. Example Misalkan n bilangan positif. Buktikan: n genap bila hanya bila 7n + 4 genap. Proof. ( )Diketahui n genap maka dapat ditulis n = 2m, m Z. Diperoleh 7n + 4 = 7(2m) + 4 = 2(7m + 2) = 2m 1, m 1 := 7m + 2 Z. Sebaliknya diketahui 7n + 4 genap, dibuktikan n genap. Ada 2 cara membuktikan ini 1 langsung, mis 7n + 4 = 2m maka dapat dibentuk (n + 6n) + 4 = 2m n = 2m 6n 4 = 2(m 3n 2) = 2m 2, m 2 := m 3n 2 Z. 2 kontraposisi, mis n ganjil maka dapat ditulis n = 2m + 1. Diperoleh 7n + 4 = 7(2m + 1) + 4 = 14m = 2(7m + 5) + 1 = 2m sebuah bil ganjil.

11 PEMBUKTIAN MULTI ARAH Jika p q r maka p, q dan r disebut ekuivalen. Pernyataan p q r dapat dibuktikan dengan menggunakan berbagai rute, mis : p q r p, p r q, dll. Example Buktikan tiga pernyataan berikut ekuivalen: 1 a < b 2 rata-rata a dan b lebih dari a 3 rata-rata a dan b kurang dari b. Proof. Rata-rata a dan b didenisikan r(a, b) := 1 (a + b). 2 (1) (2): Karena a < b maka a + a < a + b. Diperoleh 2a < (a + b) 1 (a + b) > a. 2 (2) (1): Diketahui 1 (a + b) > a maka mudah ditunjukkan a < b. 2 (1) (3): Karena a < b maka a + b < b + b. Diperoleh a + b < 2b 1 (a + b) < b. 2 (3) (1): Diketahui 1 (a + b) < b maka mudah ditunjukkan a < b. 2

12 BUKTI EKSISTENSI Bukti eksistensi adalah bukti adanya objek (matematika) yang memenuhi syarat tertentu. Dua macam bukti eksistensi, yaitu 1 Eksistensi dengan konstruksi, objek yang dicari harus nampak secara eksplisit. 2 Eksistensial tanpa konstruksi, objek yang dicari tidak harus nampak tetapi secara logika diyakini ada. Buktikan di antara sebarang dua bilangan real selalu terdapat bilangan rasional r. Ini bukti eksistensi dengan konstruksi. Lihat paper Julan HERNADI (Metoda Pembuktian dalam Matematika). Buktikan ada bilangan irrasional x dan y sedemikian hingga x y rasional. Bukti: Sudah dibuktikan 2 irrasional. Perhatikan ( 2 ) 2. Ada dua kemungkinan. Bila bilangan ini rasional maka selesai, yaitu x = y = 2. ( ( 2 ) 2) 2 Bila bilangan ini irrasional, ambil = ( ) 2 2 = 2 rasional. Bila kemungkin kedua yang terjadi maka diambil x = ( 2 ) 2 dan y = 2.

13 BUKTI KETUNGGALAN Selain eksistensi, ketunggalan objek (matematika) yang memenuhi syarat tertentu perlu diketahui secara jelas. Membuktikan ketunggalan hanya x objek yang dimaksud: 1 Diambil sebarang objek y, ditunjukkan y = x, atau 2 Misalkan ada objek lain y x, ditemukan kontradiksi. Example Buktikan sistem persamaan 2x + y = 4 dan x 2y = 3 mempunyai penyelesaian tunggal. Pertama dibuktikan eksistensi penyelesaiannya. Dengan eliminasi misalnya, diperoleh (x = 1, y = 2) adalah penyelesaian. Ambil (x 1, y 1) sebarang penyelesaian maka haruslah memenuhi 2x 1 + y 1 = 4 dan x 1 2y 1 = 3. Dengan cara yang sama akan diperoleh x 1 = x dan y 1 = y. Terbukti penyelesaiannya tunggal. Buktikan bahwa 2 adalah satu-satunya bilangan prima yang genap. Misalkan ada prima p > 2 dan p genap maka p mempunyai faktor selain dirinya dan 1, yaitu 2. Kontradiksi dengan denisi bilangan prima. Disimpulkan hanya ada satu (tunggal ) bilangan prima genap.

14 SOAL-SOAL PEMBUKTIAN 1 1 Buktikan bahwa kuadrat bilangan genap adalah genap dengan menggunakan metoda pembuktian langsung, tidak langsung dan kontradiksi. 2 Buktikan bahawa jika n bulat dan n ganjil maka n genap dengan menggunakan metoda pembuktian taklangsung dan kontradiksi. 3 Buktikan bahwa jumlahan bilangan rasional dan irrasional adalah irrasional (gunakan metoda kontradiksi) 4 Terbukti atau tidak pernyataan berikut 1 Hasil kali dua bilangan irrasional adalah irrasional 2 Hasil kali bilangan rasional taknol dengan bilangan irrasional adalah irrasional. 5 Buktikan paling sedikit 10 hari dari 64 hari yang dipilih bebas dari kalender adalah jatuh pada hari pasaran masehi yang sama. Ingat ada 7 hari pasaran masehi, yaitu senin, selasa, rabu, kamis, jumat, sabtu dan minggu. Kalau pasaran Jawa ada 5 hari. 6 Buktikan paling sedikit ada 3 hari dari 25 hari yang dipilih bebas dari kalendar jatuh pada bulan yang sama. 7 Jika x dan y bilangan real, buktikan max(x, y) + min(x, y) = x + y. 8 Buktikan bahwa bilangan kuadrat pasti berakhir dengan angka 0, 1, 4 atau 5.

15 SOAL-SOAL PEMBUKTIAN 2 1 Buktikan m 2 = n 2 bila hanya bila m = n atau m = n. 2 Terbukti atau tidak! Jika m dan n bulat dan mn = 1, maka m = 1 dan n = 1, atau m = 1 dan n = 1. 3 Buktikan! 3x + 2 genap x + 5 ganjil x 2 genap. 4 Tunjukkan pernyataan berikut adalah ekuivalen: (i) x rasional, (ii) x 2 rasional, (iii) 3x 1 rasional. 5 Misalkan a, b dan c bilangan real dengan a 0, buktikan persamaan ax + b = c mempunyai penyelesaian tunggal. 6 Misalkan a b, buktikan terdapat dengan tunggal bilangan bulat c yang memenuhi a c = b c. 7 Tunjukkan bahwa jika n ganjil maka terdapat dengan tunggal bil bulat k sehingga n adalah jumlahan dari k 2 dan k Misalkan r irrasional. Buktikan terdapat dengan tunggal bilangan bulat n sehingga jarak antara n dan r kurang dari Buktikan pernyataan berikut ekuivalen: (i) n 2 ganjil, (ii) 1 n genap, (iii) n 3 ganjil, (iv) n genap.

16 Tindak Lanjut Soal-soal latihan tersebut sebagian dibahas waktu kuliah minggu ini. Soal-soal yang tidak dapat diselesaikan dijadikan tugas terstruktur untuk dikumpul minggu depan. Masih ada 1 topik bab metoda pembuktian ini, yaitu Induksi Matematika. Materi ini akan disampaikan pekan depan. Diharapkan mahasiswa dapat mempelajari bahan kuliah ini sebelum perkuliahan tatap muka agar ada modal pemahaman yang memadai, tidak nol. Lebih khusus kepada mahasiswa yang merasa lambat dalam memahami pelajaran.

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan HERNADI & Uki Suhendar, S.Pd (Asrul dan Enggar) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 8 FONDASI MATEMATIKA Matematika Bukan Sekedar

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA 1 1 Program Studi Pend Matematika FKIP UM Ponorogo October 29, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA 1 1 Program Studi Pend Matematika FKIP UM Ponorogo January 12, 2011 Jenis Pernyataan dalam Matematika Denisi (Denition) Kesepakatan mengenai pegertian suatu istilah. Teorema (Theorem) Pernyataan yang dapat

Lebih terperinci

METODA PEMBUKTIAN DALAM MATEMATIKA

METODA PEMBUKTIAN DALAM MATEMATIKA METODA PEMBUKTIAN DALAM MATEMATIKA Dr. Julan Hernadi julan hernadi@yahoo.com ABSTRAK Di dalam matematika, bukti adalah serangkaian argumen logis yang menjelaskan kebenaran suatu pernyataan. Argumen-argumen

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita belum tahu apa-apa tentang

Lebih terperinci

1.6 RULES OF INFERENCE

1.6 RULES OF INFERENCE 1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir

Lebih terperinci

KALIMAT MAJEMUK DAN KONEKTIVITAS

KALIMAT MAJEMUK DAN KONEKTIVITAS KALIMAT MAJEMUK DAN KONEKTIVITAS Dosen & Asisten Dr. Julan HERNADI & (Asrul dan Enggar) Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 2 FONDASI MATEMATIKA DEFINISI DAN MACAM KONEKTIVITAS

Lebih terperinci

PENALARAN DALAM MATEMATIKA

PENALARAN DALAM MATEMATIKA PENALARAN DALAM MATEMATIKA A. PENDAHULUAN Siswa belajar dimulai dari mengamati contoh-contoh atau fenomena Dari informasi-informasi yang diperoleh secara khusus siswa mencoba melakukan generalisasi secara

Lebih terperinci

SISTEM BILANGAN REAL

SISTEM BILANGAN REAL DAFTAR ISI 1 SISTEM BILANGAN REAL 1 1.1 Sifat Aljabar Bilangan Real..................... 1 1.2 Sifat Urutan Bilangan Real..................... 6 1.3 Nilai Mutlak dan Jarak Pada Bilangan Real............

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL 1 SISTEM BILANGAN REAL Bilangan real sudah dikenal dengan baik sejak masih di sekolah menengah, bahkan sejak dari sekolah dasar. Namun untuk memulai mempelajari materi pada BAB ini anggaplah diri kita

Lebih terperinci

INTERSECTIONS JOURNAL

INTERSECTIONS JOURNAL INTERSECTIONS JOURNAL Jurnal Pendidikan Matematika dan Matematika Fakultas Keguruan dan Ilmu Pendidikan Universitas Cokroaminoto Yogyakarta Volume 1 September 2017 ISSN : - Diterbitkan Oleh : Fakultas

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 3 DEFINISI DAN PERISTILAHAN MATEMATIKA (c) Hendra Gunawan (2015) 2 Ingat PROPOSISI Ini? Proposisi. Jika segitiga siku-siku XYZ dengan

Lebih terperinci

1 SISTEM BILANGAN REAL

1 SISTEM BILANGAN REAL Pertemuan Standar kompetensi: mahasiswa memahami cara membangun sistem bilangan real, aturan dan sifat-sifat dasarnya. Kompetensi dasar Memahami aksioma atau sifat aljabar bilangan real Memahami fakta-fakta

Lebih terperinci

PENALARAN INDUKTIF DAN DEDUKTIF

PENALARAN INDUKTIF DAN DEDUKTIF Unit 6 PENALARAN INDUKTIF DAN DEDUKTIF Wahyudi Pendahuluan U nit ini membahas tentang penalaran induktif dan deduktif yang berisi penarikan kesimpulan dan penalaran indukti deduktif. Dalam penalaran induktif

Lebih terperinci

PEMBUKTIAN, PENALARAN, DAN KOMUNIKASI MATEMATIK. OLEH: DADANG JUANDI JurDikMat FPMIPA UPI 2008

PEMBUKTIAN, PENALARAN, DAN KOMUNIKASI MATEMATIK. OLEH: DADANG JUANDI JurDikMat FPMIPA UPI 2008 PEMBUKTIAN, PENALARAN, DAN KOMUNIKASI MATEMATIK OLEH: DADANG JUANDI JurDikMat FPMIPA UPI 2008 PEMBUKTIAN DALAM MATEMATIKA Bukti menurut Educational Development Center (2003) adalah suatu argumentasi logis

Lebih terperinci

1.6 RULES OF INFERENCE

1.6 RULES OF INFERENCE 1.6 RULES OF INFERENCE 1 Argumen Argumen dalam logika adalah kumpulan sejumlah proposisi. Seluruh proposisi dalam suatu argumen, kecuali proposisi terakhir, disebut premis. Sedangkan proposisi terakhir

Lebih terperinci

Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan

Unit 5 PENALARAN/LOGIKA MATEMATIKA. Wahyudi. Pendahuluan Unit 5 PENALARAN/LOGIKA MATEMATIKA Wahyudi Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan. Penalaran matematika menjadi pedoman atau tuntunan sah atau tidaknya

Lebih terperinci

Lembar Kerja Mahasiswa 1: Teori Bilangan

Lembar Kerja Mahasiswa 1: Teori Bilangan Lembar Kerja Mahasiswa 1: Teori Bilangan N a m a : NIM/Kelas : Waktu Kuliah : Kompetensi Dasar dan Indikator: 1. Memahami pengertian faktor dan kelipatan bilangan bulat. a) Menuliskan denisi faktor suatu

Lebih terperinci

Keterbagian Pada Bilangan Bulat

Keterbagian Pada Bilangan Bulat Latest Update: March 8, 2017 Pengantar Teori Bilangan (Bagian 1): Keterbagian Pada Bilangan Bulat Muhamad Zaki Riyanto Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Lebih terperinci

Rohmah, Analisis Kesalahan Mahasiswa Dalam Menyelesaikan Soal Pembuktian

Rohmah, Analisis Kesalahan Mahasiswa Dalam Menyelesaikan Soal Pembuktian 1 Analisis Kesalahan Mahasiswa dalam Menyelesaikan Soal Pembuktian Berdasarkan Newman s Error Analysis (NEA) Rohmah Indahwati Email: indbeckzbecky@gmail.com Program Studi Pendidikan Matematika FKIP Universitas

Lebih terperinci

EKUIVALENSI LOGIS. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 3 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo

EKUIVALENSI LOGIS. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 3 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 3 FONDASI MATEMATIKA Variasi bentuk implikasi Berangkat dari implikasi p q kita dapat membentuk tiga pernyataan implikasi relevan yang

Lebih terperinci

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya.

PEMBAHASAN. Teorema 1. Tidak ada bilangan asli N yang lebih besar dari semua bilangan bulat lainnya. PEMAHAAN 1. Pengertian Kontradiksi Kontradiksi adalah dua pernyataan yang bernilai salah untuk setiap nilai kebenaran dari setiap komponen-komponennya. 2. Pembuktian dengan Kontradiksi Kontradiksi merupakan

Lebih terperinci

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016 Hendra Gunawan Matematika & Analisis Real Matematika berurusan dengan gagasan, yang mungkin merupakan abstraksi atau sari dari sesuatu yang terdapat

Lebih terperinci

FONDASI MATEMATIKA Dasar berfikir deduktif dalam matematika. Julan HERNADI

FONDASI MATEMATIKA Dasar berfikir deduktif dalam matematika. Julan HERNADI FONDASI MATEMATIKA Dasar berfikir deduktif dalam matematika Julan HERNADI FONDASI MATEMATKA Julan HERNADI October 2, 2011 BUKU TEKS WAJIB Pada Program Studi Pendidikan Matematika FKIP UNMUH PONOROGO DAFTAR

Lebih terperinci

I. PERNYATAAN DAN NEGASINYA

I. PERNYATAAN DAN NEGASINYA 1 I. PERNYATAAN DAN NEGASINYA A. Pernyataan. Pernyataan adalah suatu kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus keduanya. Benar atau salahnya suatu pernyataan dapat ditunjukkan

Lebih terperinci

BAB IV PENALARAN MATEMATIKA

BAB IV PENALARAN MATEMATIKA BAB IV PENALARAN MATEMATIKA A. Pendahuluan Materi penalaran matematika merupakan dasar untuk mempelajari materimateri logika matematika lebih lanjut. Logika tidak dapat dilepaskan dengan penalaran, karena

Lebih terperinci

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351)

II. SISTEM BILANGAN RIIL. Handout Analisis Riil I (PAM 351) II. SISTEM BILANGAN RIIL Handout Analisis Riil I (PAM 351) Sifat Aljabar (Aksioma Lapangan) dari Bilangan Riil Bagian ini akan membicarakan struktur aljabar bilangan riil dengan terlebih dahulu memberikan

Lebih terperinci

Logika Pembuktian. Matematika Informatika 3 Onggo

Logika Pembuktian. Matematika Informatika 3 Onggo Logika Pembuktian Matematika Informatika 3 Onggo Wr @OnggoWr Metode Pembuktian 1. Metode Pembuktian Langsung (Direct Proof) 2. Metode Pembuktian Tak-Langsung (Indirect Proof) a. Proof by Contrapositive

Lebih terperinci

BAB I DASAR-DASAR LOGIKA

BAB I DASAR-DASAR LOGIKA BAB I DASAR-DASAR LOGIKA 11 Pendahuluan Logika adalah suatu displin yang berhubungan dengan metode berpikir Pada tingkat dasar, logika memberikan aturan-aturan dan teknik-teknik untuk menentukan apakah

Lebih terperinci

Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses.

Unit 6 PENALARAN MATEMATIKA. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar, semoga Anda sukses. Unit 6 PENALARAN MATEMATIKA Clara Ika Sari Budhayanti Pendahuluan D alam menyelesaikan permasalahan matematika, penalaran matematis sangat diperlukan baik di bidang aritmatika, aljabar, geometri dan pengukuran,

Lebih terperinci

FONDASI MATEMATIKA Dasar berfikir deduktif dalam matematika. Julan HERNADI

FONDASI MATEMATIKA Dasar berfikir deduktif dalam matematika. Julan HERNADI FONDASI MATEMATIKA Dasar berfikir deduktif dalam matematika Julan HERNADI FONDASI MATEMATKA Julan HERNADI October 10, 2011 BUKU TEKS WAJIB Pada Program Studi Pendidikan Matematika FKIP UNMUH PONOROGO DAFTAR

Lebih terperinci

ANALISIS REAL 1. Muhammad Subhan. O l e h : Jurusan Matematika. Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Negeri Padang

ANALISIS REAL 1. Muhammad Subhan. O l e h : Jurusan Matematika. Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Negeri Padang ANALISIS REAL 1 O l e h : Muhammad Subhan Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Padang 2017 Analisis Real 1 i Analisis Real 1 ii Kata Pengantar Analisis Real

Lebih terperinci

Metoda Pembuktian: Induksi Matematika

Metoda Pembuktian: Induksi Matematika Metoda Pembuktian: 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo January 14, 011 ILUSTRASI Figure: Ilustrasi Induksi Reaksi Berantai Pada ilustrasi di atas, kartu-kartu disusun

Lebih terperinci

LOGIKA MATEMATIKA (Pendalaman Materi SMA)

LOGIKA MATEMATIKA (Pendalaman Materi SMA) LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT

Lebih terperinci

BAB I NOTASI, KONJEKTUR, DAN PRINSIP

BAB I NOTASI, KONJEKTUR, DAN PRINSIP BAB I NOTASI, KONJEKTUR, DAN PRINSIP Kompetensi yang akan dicapai setelah mempelajari bab ini adalah sebagai berikut. (1) Dapat memberikan sepuluh contoh notasi dalam teori bilangan dan menjelaskan masing-masing

Lebih terperinci

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN

BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN BAB II TAUTOLOGI DAN PRINSIP-PRINSIP PEMBUKTIAN 2.1 Pendahuluan Pada bab ini akan dibicarakan rumus-rumus tautologi dan prinsip-prinsip pembuktian yang tidak saja digunakan di bidang matematika, tetapi

Lebih terperinci

Sistem Bilangan Real

Sistem Bilangan Real TUGAS I ANALISIS REAL I Sistem Bilangan Real Tugas 1 Analisis Real I Disusun oleh : Nariswari Setya D. Kartini Marvina Puspito M0108022 M0108050 M0108056 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika Bilangan prima telah dikenal sejak sekolah dasar, yaitu bilangan yang tidak mempunyai faktor selain dari 1 dan dirinya sendiri. Bilangan prima memegang peranan penting karena pada dasarnya konsep apapun

Lebih terperinci

CHAPTER 5 INDUCTION AND RECURSION

CHAPTER 5 INDUCTION AND RECURSION CHAPTER 5 INDUCTION AND RECURSION 5.1 MATHEMATICAL INDUCTION Jumlah n Bilangan Ganjil Positif 1 = 1 1 + 3 = 4 1 + 3 + 5 = 9 1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25 Tebakan: Jumlah dari n bilangan ganjil

Lebih terperinci

FONDASI MATEMATKA. Julan HERNADI. October 15, BUKU TEKS WAJIB Pada Program Studi Pendidikan Matematika FKIP UNMUH PONOROGO

FONDASI MATEMATKA. Julan HERNADI. October 15, BUKU TEKS WAJIB Pada Program Studi Pendidikan Matematika FKIP UNMUH PONOROGO FONDASI MATEMATKA Julan HERNADI October 15, 2011 BUKU TEKS WAJIB Pada Program Studi Pendidikan Matematika FKIP UNMUH PONOROGO DAFTAR ISI 1 PROPOSISI DAN KONEKTIVITAS 1 1.1 Proposisi dan nilai kebenaran......................

Lebih terperinci

DASAR-DASAR MATEMATIKA

DASAR-DASAR MATEMATIKA DASAR-DASAR MATEMATIKA Manfaat Matematika Pengertian Karakteristik Matematika Perbedaan matematika dan Pendidikan Matematika Refleksi Pengantar Dasar Matematika 1 MANFAAT MEMPELAJARI MATEMATIKA PERDAGANGAN

Lebih terperinci

1 INDUKSI MATEMATIKA

1 INDUKSI MATEMATIKA 1 INDUKSI MATEMATIKA Induksi Matematis Induksi matematis merupakan teknik pembuktian yang baku di dalam matematika. Melalui induksi matematis maka dapat mengurangi langkah-langkah pembuktian bahwa semua

Lebih terperinci

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun MA3231 Pengantar Analisis Real Semester II, Tahun 2016-2017 Hendra Gunawan, Ph.D. Tentang Mata Kuliah MA3231 Mata kuliah ini merupakan mata kuliah wajib bagi mahasiswa program studi S1 Matematika, dengan

Lebih terperinci

FONDASI MATEMATIKA. Julan HERNADI. December 13, 2011 BUKU TEKS WAJIB. (Dasar berpikir deduktif dalam matematika)

FONDASI MATEMATIKA. Julan HERNADI. December 13, 2011 BUKU TEKS WAJIB. (Dasar berpikir deduktif dalam matematika) FONDASI MATEMATIKA (Dasar berpikir deduktif dalam matematika) Julan HERNADI December 13, 2011 BUKU TEKS WAJIB DAFTAR ISI 1 PROPOSISI DAN KONEKTIVITAS 1 1.1 Proposisi dan nilai kebenaran......................

Lebih terperinci

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

n suku Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai Contents 1 TEORI KETERBAGIAN 2 1.1 Algoritma Pembagian............................. 3 1.2 Pembagi persekutuan terbesar......................... 6 1.3 Algoritma Euclides............................... 11

Lebih terperinci

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai

1 TEORI KETERBAGIAN. Jadi himpunan bilangan asli dapat disajikan secara eksplisit N = { 1, 2, 3, }. Himpunan bilangan bulat Z didenisikan sebagai 1 TEORI KETERBAGIAN Bilangan 0 dan 1 adalah dua bilangan dasar yang digunakan dalam sistem bilangan real. Dengan dua operasi + dan maka bilangan-bilangan lainnya didenisikan. Himpunan bilangan asli (natural

Lebih terperinci

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X

LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi

Lebih terperinci

Pembahasan Soal-Soal Latihan 1.1

Pembahasan Soal-Soal Latihan 1.1 Pembahasan Soal-Soal Latihan. Oleh : Fendi Alfi Fauzi Anda pasti masih ingat bagaimana memanipulasi bilangan, tetapi tidak ada salahnya untuk mengulang kembali sejenak. Dalam Soal-soal 0, sederhanakanlah

Lebih terperinci

Contoh-contoh soal induksi matematika

Contoh-contoh soal induksi matematika Contoh-contoh soal induksi matematika Buktikan bahwa 2 n > n + 20 untuk setiap bilangan bulat n 5. (i) Basis induksi : Untuk n = 5, kita peroleh 2 5 > 5 + 20 adalah suatu pernyataan yang benar. (ii) Langkah

Lebih terperinci

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo

Teori Dasar Himpunan. Julan HERNADI. December 27, Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo 1 Program Studi Pendidikan Matematika Universitas Muhammadiyah, Ponorogo December 27, 2012 PENGERTIAN DASAR Denition Himpunan merupakan koleksi objek-objek yang disebut anggota atau elemen himpunan tersebut.

Lebih terperinci

Pengantar Teori Bilangan. Kuliah 4

Pengantar Teori Bilangan. Kuliah 4 Pengantar Teori Bilangan Kuliah 4 Materi Kuliah Bilangan Prima dan Distribusinya Teorema Fundamental Aritmatika Saringan Eratosthenes 22/2/2014 Yanita, FMIPA Matematika Unand 2 Bilangan Prima dan Komposit

Lebih terperinci

TEKNIK PEMBUKTIAN. (Yus Mochamad Cholily)

TEKNIK PEMBUKTIAN. (Yus Mochamad Cholily) TEKNIK PEMBUKTIAN (Yus Mochamad Cholily) Pembuktian merupakan aktifitas yang tidak bisa dipisahkan dengan Matematika. Hal ini disebabkan produk matematika pada umumnya berbentuk teorema yang harus dibuktikan

Lebih terperinci

FONDASI MATEMATIKA. Julan HERNADI. September 9, 2012 BUKU TEKS WAJIB. (Dasar berpikir deduktif dalam matematika)

FONDASI MATEMATIKA. Julan HERNADI. September 9, 2012 BUKU TEKS WAJIB. (Dasar berpikir deduktif dalam matematika) FONDASI MATEMATIKA (Dasar berpikir deduktif dalam matematika) Julan HERNADI September 9, 2012 BUKU TEKS WAJIB DAFTAR ISI 1 PROPOSISI DAN KONEKTIVITAS 1 1.1 Proposisi dan nilai kebenaran......................

Lebih terperinci

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.

Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu

Lebih terperinci

EKSKLUSIF OR (XOR) DEFINISI

EKSKLUSIF OR (XOR) DEFINISI Logika Matematik EKSKLUSIF OR (XOR) DEFINISI : Misalkan p dan q adalah proposisi. Proposisi salah satu p atau q ditulis p q adalah proposisi yang bernilai benar jika tepat satu diantara p atau q BENAR,

Lebih terperinci

PENGANTAR LOGIKA MATEMATIKA

PENGANTAR LOGIKA MATEMATIKA PENGANTAR LOGIKA MATEMATIKA Induksi Matematika Resmawan Universitas Negeri Gorontalo Oktober 017 Resmawan (Matematika UNG) Induksi Matematika Oktober 017 1 / 0 Induksi Matematika Resmawan (Matematika UNG)

Lebih terperinci

KONSTRUKSI SISTEM BILANGAN

KONSTRUKSI SISTEM BILANGAN KONSTRUKSI SISTEM BILANGAN KEVIN MANDIRA LIMANTA 1. Konstruksi Aljabar 1.1. Bilangan Natural. Himpunan bilangan paling primitif adalah bilangan natural N, yang dicacah dengan aturan sebagai berikut: (1)

Lebih terperinci

Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI.

Modul ke: Logika Matematika. Proposisi & Kuantor. Fakultas FASILKOM BAGUS PRIAMBODO. Program Studi SISTEM INFORMASI. Modul ke: 5 Logika Matematika Proposisi & Kuantor Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id Materi Pembelajaran Kalkulus Proposisi Konjungsi Disjungsi

Lebih terperinci

LOGIKA MATEMATIKA I. PENDAHULUAN

LOGIKA MATEMATIKA I. PENDAHULUAN LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan

Lebih terperinci

NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3)

NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) NEGASI KALIMAT DAN KALIMAT MAJEMUK (Minggu ke-3) 1 1 Kata Penghubung Kalimat 1. Konjungsi: menggunakan kata penghubung: dan 2. Disjungsi: menggunakan kata penghubung: atau 3. Implikasi: menggunakan kata

Lebih terperinci

Unit 7 PENALARAN INDUKTIF DAN DEDUKTIF. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar dan tetap bersemangat, semoga Anda sukses.

Unit 7 PENALARAN INDUKTIF DAN DEDUKTIF. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar dan tetap bersemangat, semoga Anda sukses. Unit 7 PENALARAN INDUKTIF DAN DEDUKTIF Pendahuluan Clara Ika Sari Budhayanti U nit penalaran induktif dan deduktif ini akan membahas mengenai penarikan kesimpulan dan penalaran indukti deduktif. Dalam

Lebih terperinci

BAB I PENDAHULAN. formal dan logis yang dimulai dengan aksioma dan bergerak maju melalui. langkah-langkah logis sampai pada suatu kesimpulan.

BAB I PENDAHULAN. formal dan logis yang dimulai dengan aksioma dan bergerak maju melalui. langkah-langkah logis sampai pada suatu kesimpulan. BAB I PENDAHULAN A. Latar Belakang Seorang matematikawan tidak akan mempercayai apapun tanpa ada bukti, sementara fisikawan akan mempercayai segalanya sebelum dibuktikan salah. 1 Ungkapan tersebut menggambarkan

Lebih terperinci

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan

MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 9-10 METODE KONTRADIKSI & METODE KONTRAPOSISI (c) Hendra Gunawan (2015) 2 Metode Pembuktian Lainnya Pada bab-bab sebelumnya kita telah

Lebih terperinci

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan (Semester I Tahun 2011-2012) Analysis and Geometry Group, FMIPA-ITB E-mail: hgunawan@math.itb.ac.id. http://personal.fmipa.itb.ac.id/hgunawan August 8, 2011 Di sekolah menengah telah dipelajari apa yang

Lebih terperinci

Jadi penting itu baik, tapi jadi baik jauh lebih penting

Jadi penting itu baik, tapi jadi baik jauh lebih penting LOGIKA MATEMATIKA Logika Matematika - Pernyataan, Nilai Kebenaran, dan Kalimat Terbuka - Pernyataan Majemuk - Konvers, Invers, dan Kontraposisi - Kuantor Universal dan Kuantor Eksistensial - Ingkaran dari

Lebih terperinci

KATA PENGANTAR. Assalamu alaikum Wr. Wb.

KATA PENGANTAR. Assalamu alaikum Wr. Wb. KATA PENGANTAR Assalamu alaikum Wr. Wb. Matematika tidak dapat terlepas dalam kehidupan manusia sehari-hari, baik saat mempelajari matematika itu sendiri maupun mata kuliah lainnya. Mata kuliah Pengantar

Lebih terperinci

STUDI PENALARAN DEDUKTIF MAHASISWA PGMI STAIN PURWOKERTO DITINJAU DARI KEMAMPUAN PEMBUKTIAN MATEMATIKA. Mutijah

STUDI PENALARAN DEDUKTIF MAHASISWA PGMI STAIN PURWOKERTO DITINJAU DARI KEMAMPUAN PEMBUKTIAN MATEMATIKA. Mutijah Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 18 Mei 2013 STUDI PENALARAN DEDUKTIF MAHASISWA PGMI STAIN PURWOKERTO DITINJAU DARI KEMAMPUAN

Lebih terperinci

LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a.

LOGIKA MATEMATIKA. d. 6 + a > -4 e. 7 adalah faktor dari 63. c. 4 x 6 2. Tentukan variabel dan himpunan penyelesaian dari: a. LOGIKA MATEMATIKA A. Definisi 1). Pernyataan Pernyataan adalah suatu kalimat yang bernilai benar atau salah, tetapi tidak sekaligus benar dan salah. Air laut rasanya asin, adalah bilangan prima, urabaya

Lebih terperinci

TEKNIK BUKTI: I Drs. C. Jacob, M.Pd

TEKNIK BUKTI: I Drs. C. Jacob, M.Pd TEKNIK BUKTI: I Drs C Jacob, MPd Email: cjacob@upiedu Dalam dua bagian pertama kita memperkenalkan suatu kata-kata sukar logika dan matematika Tujuannya adalah tentu, agar mampu untuk membaca dan menulis

Lebih terperinci

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca.

PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. PENDAHULUAN INDUKSI MATEMATIKA Di dalam Matematika, sebuah pernyataan atau argumen dan bahkan sebuah rumus sekalipun tidak hanya sekedar dibaca. Karena hampir semua rumus dan hukum yang berlaku tidak tercipta

Lebih terperinci

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40

DAFTAR ISI 3 TEORI KONGRUENSI 39 4 TEOREMA FERMAT DAN WILSON 40 DAFTAR ISI 1 TEORI KETERBAGIAN 1 1.1 Algoritma Pembagian............................. 2 1.2 Pembagi persekutuan terbesar........................ 5 1.3 Algoritma Euclides.............................. 12

Lebih terperinci

PENGANTAR ANALISIS REAL

PENGANTAR ANALISIS REAL Seri Analisis dan Geometri No. 1 (2009), -15 158 (173 hlm.) PENGANTAR ANALISIS REAL Oleh Hendra Gunawan Edisi Pertama Bandung, Januari 2009 2000 Dewey Classification: 515-xx. Kata Kunci: Analisis matematika,

Lebih terperinci

Pengantar : Induksi Matematika

Pengantar : Induksi Matematika Pengantar : Induksi Matematika Analisis Real /2 SKS/ Ega Gradini, M.Sc Induksi Matematika adalah cara standar dalam membuktikan bahwa sebuah pernyataan tertentu berlaku untuk setiap bilangan asli. Pembuktian

Lebih terperinci

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear

PERSAMAAN KUADRAT. Persamaan. Sistem Persamaan Linear Persamaan Sistem Persamaan Linear PENGERTIAN Definisi Persamaan kuadrat adalah kalimat matematika terbuka yang memuat hubungan sama dengan yang pangkat tertinggi dari variabelnya adalah 2. Bentuk umum

Lebih terperinci

Kata Pengantar. Terima kasih atas kesediaan Bapak atau Ibu guru yang menggunakan buku Matematika Aplikasi SMA Kelas X XII. Hormat kami, Tim Penyusun

Kata Pengantar. Terima kasih atas kesediaan Bapak atau Ibu guru yang menggunakan buku Matematika Aplikasi SMA Kelas X XII. Hormat kami, Tim Penyusun Kata Pengantar Perjalanan panjang proses penilaian buku Matematika SMA oleh Pusat Perbukuan dan Badan Standar Nasional Pendidikan (BSNP) Departemen Pendidikan Nasional telah usai bersamaan dengan diterbitkannya

Lebih terperinci

PENGEMBANGAN METODE INDUKSI MATEMATIKA DAN PENERAPANNYA DALAM RUANG LINGKUP MATEMATIKA DISKRIT

PENGEMBANGAN METODE INDUKSI MATEMATIKA DAN PENERAPANNYA DALAM RUANG LINGKUP MATEMATIKA DISKRIT PENGEMBANGAN METODE INDUKSI MATEMATIKA DAN PENERAPANNYA DALAM RUANG LINGKUP MATEMATIKA DISKRIT Dimas Yusuf Danurwenda NIM : 13505002 Program Studi Teknik Informatika, Institut Teknologi Bandung Jl. Ganesha

Lebih terperinci

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan. 2. Grup Definisi 1.3 Suatu grup < G, > adalah himpunan tak-kosong G bersama-sama dengan operasi biner pada G sehingga memenuhi aksioma- aksioma berikut: a. operasi biner bersifat asosiatif, yaitu a, b,

Lebih terperinci

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I

KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN MATEMATIKA KELAS X ( 1 ) SEMESTER I KRITERIA KETUNTASAN MINIMAL ( KKM ) MATA PELAJARAN: MATEMATIKA Sekolah : SMA/MA... Kelas : X Semester : I (SATU) KKM

Lebih terperinci

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012

Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012 Jurusan Informatika FMIPA Unsyiah September 26, 2012 yang diharapkan Dasar: Menggunakan logika matematika. Indikator Esensial: 1 Mengidentifikasi suatu tautologi 2 Menentukan ingkaran suatu pernyataan

Lebih terperinci

Pengantar Teori Bilangan

Pengantar Teori Bilangan Pengantar Teori Bilangan Kuliah 2 2/2/2014 Yanita, FMIPA Matematika Unand 1 Materi Kuliah 2 Teori Pembagian dalam Bilangan Bulat Algoritma Pembagian Pembagi Persekutuan Terbesar 2/2/2014 2 Algoritma Pembagian

Lebih terperinci

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum

SEKILAS TENTANG KONSEP. dengan grup faktor, dan masih banyak lagi. Oleh karenanya sebelum Bab I. Sekilas Tentang Konsep Dasar Grup antonius cp 2 1. Tertutup, yakni jika diambil sebarang dua elemen dalam G maka hasil operasinya juga akan merupakan elemen G dan hasil tersebut adalah tunggal.

Lebih terperinci

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6)

RUMUS-RUMUS TAUTOLOGI. (Minggu ke-5 dan 6) RUMUS-RUMUS TAUTOLOGI (Minggu ke-5 dan 6) 1 1 Rumus-rumus tautologi Rumus 1.1 (Komutatif) 1. p q q p 2. p q q p Bukti: p q p q q p T T T T T F F F F T F F F F F F 2 Rumus 1.2 (Distributif) 1. p (q r) (p

Lebih terperinci

LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B

LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B LOGIKA MATEMATIKA A. Pernyataan, kalimat terbuka, dan ingkaran pernyataan. 1. Pernyataan Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya. a. Hasil kali

Lebih terperinci

PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd.

PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd. Doc Logika Matematika PGSD Maulana 1 PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321 BOBOT SKS : 2 (DUA) TAHUN AKADEMIK : 2007/2008 PROGRAM : PGSD S-1 KELAS SEMESTER : GANJIL

Lebih terperinci

BAHAN AJAR LOGIKA MATEMATIKA

BAHAN AJAR LOGIKA MATEMATIKA 1 BAHAN AJAR LOGIKA MATEMATIKA DI SUSUN OLEH : DRS. ABD. SALAM,MM KELAS X BM & PAR SMK NEGERI 1 SURABAYA LOGIKA MATEMATIKA Standar Kompetensi : Menerapkan logika matematika dalam pemecahan masalah yang

Lebih terperinci

Contoh : 1..Buktikan bahwa untuk semua bilangan bulat n, jika n adalah bilangan ganjil, maka n 2 adalah bilangan ganjil! Jawab :

Contoh : 1..Buktikan bahwa untuk semua bilangan bulat n, jika n adalah bilangan ganjil, maka n 2 adalah bilangan ganjil! Jawab : PEMBUKTIAN LANGSUNG Untuk menunjukan pernyataan (p=>q) benar dapat dilakukan dengan menggunakan premis p untuk mendapatkan konklusi q. Metode pembuktian yang termasuk bukti langsung antara lain modus ponens,

Lebih terperinci

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi

1.3 Pembuktian Tautologi dan Kontradiksi. Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi 1.3 Pembuktian 1.3.1 Tautologi dan Kontradiksi Pernyataan majemuk yang selalu bernilai benar bagaimanapun nilai proposisi yang membentuknya disebut toutologi, sedangkan proposisi yang selalu bernilai salah

Lebih terperinci

Matematika Industri I

Matematika Industri I LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai

Lebih terperinci

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN

BAHAN AJAR TEORI BILANGAN. DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN BAHAN AJAR TEORI BILANGAN DOSEN PENGAMPU RINA AGUSTINA, S. Pd., M. Pd. NIDN. 0212088701 PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUHAMMADIYAH METRO 2015 KATA PENGANTAR ب

Lebih terperinci

BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?

BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat? BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti

Lebih terperinci

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA

LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Nama Siswa Kelas : : LEMBAR AKTIVITAS SISWA INDUKSI MATEMATIKA Latihan 1 1. A. NOTASI SIGMA 1. Pengertian Notasi Sigma Misalkan jumlah n suku pertama deret aritmatika adalah S n = U 1 + U 2 + U 3 + + U

Lebih terperinci

Drs. Slamin, M.Comp.Sc., Ph.D. Program Studi Sistem Informasi Universitas Jember

Drs. Slamin, M.Comp.Sc., Ph.D. Program Studi Sistem Informasi Universitas Jember Penalaran Dalam Matematika Drs. Slamin, M.Comp.Sc., Ph.D Program Studi Sistem Informasi Universitas Jember Outline Berpikir Kritis 1 p 2 Penalaran Induktif 3 Bekerja dengan Pola Pola Bilangan Pola Geometri

Lebih terperinci

ATURAN INFERENSI. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 6 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo

ATURAN INFERENSI. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 6 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 6 FONDASI MATEMATIKA Masalah Penarikan Kesimpulan Kesimpulan apa yang dapat diambil dari deskripsi berikut 1 Jika seseorang kuliah di perguruan

Lebih terperinci

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit

DASAR-DASAR LOGIKA. Pertemuan 2 Matematika Diskrit DASAR-DASAR LOGIKA Pertemuan 2 Matematika Diskrit 25-2-2013 Materi Pembelajaran 1. Kalimat Deklaratif 2. Penghubung kalimat 3. Tautologi dan Kontradiksi 4. Konvers, Invers, dan Kontraposisi 5. Inferensi

Lebih terperinci

Pembuktian Tidak Langsung

Pembuktian Tidak Langsung Pembuktian Tidak Langsung Fadjar Shadiq, M.App.Sc (fadjar_p3g@yahoo.com & www.fadjarp3g.wordpress.com) Bukti (proof) adalah argumen dari suatu premis ke suatu kesimpulan yang dapat meyakinkan orang lain

Lebih terperinci

Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi

Selamat datang di Perkuliahan LOGIKA MATEMATIKA Logika Matematika Teori Himpunan Teori fungsi Selamat datang di Perkuliahan LOGIKA MAEMAIKA Logika Matematika eori Himpunan eori fungsi Dosen : Dr. Julan HERNADI PUSAKA : Kenneth H Rossen, Discrete mathematics and its applications, fifth edition.

Lebih terperinci

KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks

KONSEP DASAR LOGIKA MATEMATIKA. Riri Irawati, M.Kom Logika Matematika - 3 sks KONSEP DASAR LOGIKA MATEMATIKA Riri Irawati, M.Kom Logika Matematika - 3 sks Agenda 2 Pengantar Logika Kalimat pernyataan (deklaratif) Jenis-jenis pernyataan Nilai kebenaran Variabel dan konstanta Kalimat

Lebih terperinci

UNIVERSITAS GADJAH MADA. Bahan Ajar:

UNIVERSITAS GADJAH MADA. Bahan Ajar: UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN

Lebih terperinci