TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian.

Ukuran: px
Mulai penontonan dengan halaman:

Download "TURBIN AIR. Turbin air mengubah energi kinetik. mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara. dan ketinggian."

Transkripsi

1 MESIN-MESIN FLUIDA TURBIN AIR

2 TURBIN AIR Turbin air mengubah energi kinetik dan potensial dari air menjadi tenaga mekanik. Energi kinetik dari air tergantung dari massa dan ketinggian air. Sementara energi potensial tergantung ng dari jumlah air dan ketinggian. Diklasifikasikan sebagai berikut : a. Jumlah air yang melimpah dan head tinggi b. Jumlah air yang sedikit dan head tinggi c. Jumlah air yang melimpah dan head rendah d. Jumlah air sedikit pada head rendah

3 KLASIFIKASI DARI TURBIN 1. Berdasarkan gerak air pada sudu yang bergerak a. Turbin Impul : Energi tekanan seluruhnya diubah menjadi energi kinetik, air menumbuk sudu pada tekanan atmosfer sehingga tidak ada perubahan tekaanan antara inlet dan outlet. Turbin ini juga disebut sebagai Velocity Turbine b. Turbin reaksi : Bekerja berdasarkan tekanan pada inlet dan outlet dari turbin pressure turbin energi kinetik dan tekanan memutar sudu turbin

4 . Berdasarkan nama penemu Pelton wheel, Turgo, Girard, Banki T. Impuls Francis, Kaplan, Thomson T. Reaksi 3. Berdasarkan Head dan jumlah air yang tersedia : High head ( >00m ) jumlah air sedikit contohnya : turbin impuls ( Pelton) Medium head ( 30-00m ), jumlah air sedang, contohnya : turbin reaksi (Francis) Low Head ( <30m ), jumlah air besar contohnya : turbin reaksi ( Kaplan, turbin propeller )

5 4. Berdasarkan posisi poros : Dibedakan menjadi dua yaitu mendatar (pelton) dan vertikal(kaplan, francis) 5. Berdasarkan arah aliran dalam runner : a. Radial flow : air yang mengalir dalam arah radial (inward / outward). b. Tangensial flow : air mengenai runner dalam arah tangensial contohnya turbin Pelton. c. Axial flow : air masuk dan keluar runner / poros turbin. d. Mixed flow : air masuk radial dan keluar aksial.

6 6. Kecepatan Spesifik : Kecepatan spesifik ialah dasar untuk menentukan besaran-besaran selanjutnya. Jadi untuk mendapatkan tinggi air jatuh yang maksimum, jumlah sudu roda turbin, perbandingan b/d ( lebar roda/diameter roda ), randemen yang diharapkan, kondisi kerja turbin. Kecepatan spesifik ini sangat penting untuk konstruktor, sebab jika kita mengetahui kecepatan spesifik maka secara garis besar dapat diketahui pula kondisi turbin secara keseluruhan Turbin air berdasarkan kecepatan spesifiknya : : Turbin Pelton (single jet) : Turbin Pelton ( double jet) : Turbin Francis : Turbin Kaplan

7 TURBIN PELTON Turbin ini pertama kali ditemukan oleh insinyur dari Amerika yaitu Lester A. Pelton pada tahun turbin ini dioperasikan pada head sampai 1800 m, turbin ini relatif membutuhkan jumlah air lebih sedikit dan biasanya porosnya dalam posisi mendatar. Air mengalir dalam penstock ( pipa pesat ), sampai ujung bawah masuk nosel ( energi kinetic naik ), keluar mengenai sudu-sudu ( yang terpasang pada runner ). Pengaturan jumlah air dapat dengan regulator / governor (untuk instalasi yang besar) atau dengan tangan /manual (instalasi yang kecil)

8 Komponen Utama dari pelton 1. Nozzle, Energi tekanan dari air pada reservoir sewaktu melewati penstock sebagian dirubah menjadi energi kinetik dan energi kinetik ini makin lama meningkat oleh karena nozzle pada tekanan atmosfer pada casing. Ketika air menabrak buckets maka dihasilkan energi mekanik. Untuk turbin dengan kapasitas yang kecil menggunakan single jet. Dan untuk turbin yang memproduksi tenaga besar, jumlah jet harus lebih banyak.

9 Buckets. Buckets, buckets dari pelton wheel mempunyai bentuk double hemispherical cup.pancaran dari air yang datang mengenai bucket bagian tengah yang ada pemisahnya terbagi menjadi dua bagian dan setelah meluncur pada pemukaan bagian dalam bucket berubah 160 sampai 170 lalu meninggalkan bucket. Buckets ini terbuat dari cast iron (head rendah), Cast steel atau dari stainless steel (head tinggi). Permukaan bagian dalam di poles sedemikian rupa untuk menghindari gesekan yang besar.

10 3. Casing. Berfungsi untuk menghindari deburan air, serta untuk mengarahkan air ke tail race dan sebagai keamanan. 4. Rem Hidrolik. Untuk menghentikan turbin, walaupun pancaran air telah berhenti, runner tetap akan berputar untuk waktu yang lama. Untuk menghentikannya diperlukan rem nozzle yang kecil, dimana arah air dari rem ini berlawanan arah dengan putaran runner.

11 Kerja oleh Pelton Wheel. V = Kecepatan horizontal jet u = kecepatan dari bucket di inlet D = Diameter dari pitch circle V r &V r1 = Kecepatan relative pada inlet dan outlet V f1 = Kecepatan sekeliling aliran pada outlet Vw 1 = Kecepatan putaran pada outlet t Φ = Sudut dari bucket pada outlet dengan tangent U 1 = Kecepatan sekeliling dari outlet U 1 = u, karena inlet dan outlet bucket punya jarak yang sama dari pusat poros V1 = Kecepatan Abs. air pada outlet dan membentuk sudut β dengan wheel tangent

12 (1) Inlet velocity diagram Ketika air masuk secara tangensial karena itu pada diagram kecepatan ditunjukkan garis lurus seperti gambar diatas. θ = 0 dan β =0 V r =V u V w = V = gh Vf = 0 () Outlet velocity diagram Sewaktu air melewati permukaan melengkung dari bucket, Vr1 <<< Vr mengacu pada kerugian gesek dan oleh karena itu Vr1 = kvr, akan tetapi secara umum rugi gesek ini diabaikan. Vr1 = Vr Dan Vw1 = Vr1 cosφ -u1 Vw1 = Vr1 cos Φ u

13 (3) Kerja yang dilakukan Ketika Vwt ialah ve, maka kerja oleh Pelton wheel Tetapi u1 = u1 Jadi kerja = Vwu Vw 1u1 = + kg / sec g g Vw u ( Vr cosφ u) u + g g = V. u [( V u)cosφu] g + u = = g u V u + V g g V. ( V u) = [( ) ( u) cosφ] u u cosφ g u u g = ( V u)( 1+ cosφ)

14 (4) Eff. Hidrolik η = W. D./ sec K. E. darijet / sec η h = u g ( V u)( 1+ cosφ) V g = u ( V u)( 1+ cos Φ) V Untuk mencari kondisi maksimum ηh diturunkan terhadap u = nol dη ( d Vu u )( 1+ cosφ) = du du V ( V u)( 1+ cos Φ) V = 0 V = u = 0

15 (5) Effisiensi Maximum. = ( u u )( 1 + cos Φ ) u Φ 1 4u = ( 1+ cos Φ) Effisiensi maximum = 100% atau 1 ketika Φ =0, akan tetapi kenyataan tidak mungkin tercapai untuk mencapai Φ = 0. Effisiensi maximum berkisar 90% - 95%

16 Jumlah bucket dari Pelton Wheel Z = Jumlah Bucket R = Mean radius dari bucket γ = Sudut antara bucket d = Dia. dari jet Depth dari bucket = 1, d Ketika posisi bucket seperti gambar, bucket telah mencapai posisi P dan yang terdahulu ialah bucket 1 pada Q diatas P, bagian air mengenai bagian kanan bucket kemudian menumbuk bucket 1. ketika kecepatan dari jet mencapai kali kecepatan dari bucket, maka posisi P akan berubah ke S dan pada waktu yang sama bucket Q berubah ke posisi S

17 Mengacu pada ΔOPQ OP = OQ = Cos γ = 1 B + 1 R + R R + + 0,5d 0,6 d depth of bucket =R + 0,6 d dia of jet = R + 0,5 d.1 Dari persamaan 1 sudut dari γ dapat ditentukan dan jumlah dari bucket, 360 Z= γ Hubungan empiris untuk jumlah bucket D d Z = 0, dimana D d Z = ialah jet rasio D 5,4 d

18 Working Proporsion (1) kecepatan sekeliling dari wheel, 0,44 gh 0,46 gh u= to rasio u gh sebagai rasio kecepatan = 0,44 0,46 () Sudut bagian ujung dari bucket Φ =10 sampai 0 (3) Rasio D/d ialah jet rasio ( 11 sampai 18) (4) Lebar dari bucket = 3d sampai 5d (5) Kedalaman bucket = 1, d D (6) Jumlah dari bucket, Z = 0, d

19 Effisiensi dari Pelton Wheel (a) Effisiensi hidrolis V V g η H = H 1 ialah hidrolis input nosel. Jika CV = 1 maka H = V g dapat juga η H = W ( V V1 ) / 75 g WH 75 catatan : input turbin V V g 1 V u = g V u w w1 1 g

20 (b) effisiensi mekanik ηmech = kerja poros / kerja oleh wheel = S.H.P atau B.H.P / H.P dari wheel B. H. P = W ( V u V u w w1 1 ) g 75 (c) effisiensi keseluruhan ηo =ηh Xηmech

21 Tipe lain dari turbin impuls (a) Turbin Jonval Merupakan turbin dengan aliran aksial. Terdiri dari 1 buah horizontal ring moving blade. Air diarahkan oleh ring ini. Arah aliran air dikontrol oleh horizontal sluice. Turbin Jonval

22 (b) Turbin Girard Mempunyai tipe : (i) aksila flow (ii) radial flow. Digunakan untuk head 500 m dan mempunyai effisiensi keseluruhan 75%. Turbin ini mirip dengan turbin jonval. Turbin Girard (c) Turbin Turgo Dipergunakan untuk head 80 m dan kecepatan 000 r.p.m. Pada turbin tipe ini air disuplai ke runner melalui nosel. Turbin tipe ini mempunya runner dengan diameter kecil. Turbin Turgo

23 d) Turbin Banki Merupakan turbin dengan aliran radial. Seperti pada gambar air datang dari nosel N, kemudian menumbuk sudu A dan setelah melakukan kerja, kemudian menabrak sudu B, lalu meninggalkan turbin. Turbin ini mempunyai tingkat effisiensi % Turbin Banki

melalui sudu. Ketika air mengalir melalui sudu, tekanan berubah menjadi kecepatan. Air meninggalkan sudu dengan kecepatan relatif yang besar

melalui sudu. Ketika air mengalir melalui sudu, tekanan berubah menjadi kecepatan. Air meninggalkan sudu dengan kecepatan relatif yang besar Mesin-Mesin fluida TURBIN AIR REAKSI Pendahuluan Pada turbin reaksi kiair masuk ke impeller dengan tekanan dan mengalir melalui sudu. Ketika air mengalir melalui sudu, tekanan berubah menjadi kecepatan.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan +

a. Turbin Impuls Turbin impuls adalah turbin air yang cara kerjanya merubah seluruh energi air(yang terdiri dari energi potensial + tekanan + Turbin air adalah alat untuk mengubah energi potensial air menjadi menjadi energi mekanik. Energi mekanik ini kemudian diubah menjadi energi listrik oleh generator.turbin air dikembangkan pada abad 19

Lebih terperinci

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar.

Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Turbin Air 117 Gambar 9. Segitiga kecepatan untuk turbin reaksi aliran ke luar. Contoh soal Sebuah turbin reaksi aliran keluar mempunyai diameter dalam dan diameter luar berturut-turut 1 meter dan 2 meter.

Lebih terperinci

1. OVERSHOT WATER WHEEL

1. OVERSHOT WATER WHEEL MESIN-MESIN FLUIDA KINCIR AIR 1 PENDAHULUAN Sejarah kincir air Roda air radial dengan mekanisme, pertama kali ditemukan oleh ilmuwan Prancis Burdin pada 1824. kemudian Fourneyron mengembangkan desain tersebut

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Umum Turbin Air Secara sederhana turbin air adalah suatu alat penggerak mula dengan air sebagai fluida kerjanya yang berfungsi mengubah energi hidrolik dari aliran

Lebih terperinci

Turbin Reaksi Aliran Ke Luar

Turbin Reaksi Aliran Ke Luar Turbin Reaksi Aliran Ke Luar Turbin reaksi aliran keluar adalah turbin reaksi dimana air masuk di tengah roda dan kemudian mengalir ke arah luar melalui sudu (gambar 8). Gambar 8. Turbin reaksi aliran

Lebih terperinci

HYDRO POWER PLANT. Prepared by: anonymous

HYDRO POWER PLANT. Prepared by: anonymous HYDRO POWER PLANT Prepared by: anonymous PRINSIP DASAR Cara kerja pembangkit listrik tenaga air adalah dengan mengambil air dalam jumlah debit tertentu dari sumber air (sungai, danau, atau waduk) melalui

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pembangkit Listrik Tenaga Air Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Tenaga Uap Pada mesin uap dan turbin uap, air sebagai benda kerja mengalami deretan peubahan keadaan. Untuk merubah air menjadi uap digunakan suatu alat dinamakan boiler

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro

BAB II TINJAUAN PUSTAKA. 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori Pembangkit Listrik Tenaga Mikro Hidro Pembangunan sebuah PLTMH harus memenuhi beberapa kriteria seperti, kapasitas air yang cukup baik dan tempat yang memadai untuk

Lebih terperinci

BAB IV TURBIN UAP. Secara umum, sebuah turbin uap secara prinsip terdiri dari dua komponen berikut:

BAB IV TURBIN UAP. Secara umum, sebuah turbin uap secara prinsip terdiri dari dua komponen berikut: BAB IV TURBIN UAP Turbin uap adalah penggerak mula dimana gerak putar diperoleh dengan perubahan gradual dari momentum uap. Pada turbin uap, gaya dibangkitkan pada sudu (blade) karena kecepatan uap. Ini

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA 5 BAB II KAJIAN PUSTAKA 2.1 Tinjauan Mutakhir Penelitian ini di peruntukan untuk tugas akhir dengan judul Studi Analisis Pengaruh Sudu Turbin Pada Pembangkit Listrik Tenaga Mikro Hidro.Penelitian ini mengacu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Potensi Tenaga Air Air merupakan sumber energi yang murah dan relatif mudah didapat, karena pada air tersimpan energi potensial (pada air jatuh) dan energi kinetik (pada air

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dasar dalam pemilihan bahan Bahan merupakan syarat utama sebelum melakukan perhitungan komponen pada setiap perencanaan pada suatu mesin atau peralatan harus dipertimbangkan

Lebih terperinci

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal

II. TINJAUAN PUSTAKA. Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal II. TINJAUAN PUSTAKA A. Pengertian Mikrohidro Pemanfaatan tenaga air untuk berbagai kebutuhan daya (energi ) telah dikenal sejak lama, mulai dengan teknologi sederhana seperti kincir air ( water wheel),

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu

BAB II TINJAUAN PUSTAKA. Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu 23 BAB II TINJAUAN PUSTAKA Dalam suatu sistem PLTA dan PLTMH, turbin air merupakan salah satu peralatan utama selain generator. Turbin air adalah alat untuk mengubah energi air menjadi energi puntir. Energi

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Latar Belakang Seiring dengan perkembang teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam

Lebih terperinci

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK

BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK BAB IV DESAIN STRUKTUR MEKANIKAL ELEKTRIKAL PLTMH JORONG AIA ANGEK Perangkat elektro mekanik merupakan salah satu komponen utama yang diperlukan oleh suatu PLTMH untuk menghasilkan energi listrik Proses

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat pembangkit listrik

Lebih terperinci

pesawat konversi, untuk mengkonversikan energi potensial fluida menjadi energi

pesawat konversi, untuk mengkonversikan energi potensial fluida menjadi energi BAB II TINJAUAN PUSTAKA II.1. Pengertian Turbin Turbin adalah salah satu mesin pengerak dimana mesin tersebut merupakan pesawat konversi, untuk mengkonversikan energi potensial fluida menjadi energi kinetis

Lebih terperinci

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Tenaga air merupakan sumber daya energi yang penting setelah tenaga uap atau panas. Hampir 30% dari seluruh kebutuhan tenaga di dunia dipenuhi oleh pusat pusat listrik tenaga air.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

1. Tekanan pada Plat Diam

1. Tekanan pada Plat Diam MESIN-MESIN FLUIDA Mech. En. Depth. Gadjah Mada University 1 Mesin-Mesin Fluida : Pendahuluan an Mesin yan diperunakan untuk menubah eneri mekanik menjadi eneri aliran atau sebaliknya. Contohnya : E. Mekanik

Lebih terperinci

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU

KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU KARAKTERISASI DAYA TURBIN PELTON MIKRO DENGAN VARIASI BENTUK SUDU Bono 1) dan Indarto ) 1) Mahsiswa Program Pascasarjana Teknik Mesin dan Industri, Fakultas Teknik Universitas Gadjah Mada, Jalan Grafika

Lebih terperinci

Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online MahsiswaTeknikMesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH SUDUT SUDU DAN DEBIT ALIRAN TERHDAP PERFORMA TURBIN KAPLAN Frisca Anugra Putra 421204243

Lebih terperinci

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi

Tekanan Dan Kecepatan Uap Pada Turbin Reaksi Perbandingan Antara Turbin Impuls Dan Turbin Reaksi Turbin Uap 71 1. Rumah turbin (Casing). Merupakan rumah logam kedap udara, dimana uap dari ketel, dibawah tekanan dan temperatur tertentu, didistribusikan disekeliling sudu tetap (mekanisme pengarah) di

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut:

Turbin Parson adalah jenis turbin reaksi yang paling sederhana dan banyak digunakan. Turbin mempunyai komponen-komponen utama sebagai berikut: B. TURBIN REAKSI Pada turbin reaksi, uap masuk ke roda dengan tekanan tertentu dan mengalir pada sudu. Uap ketika meluncur, memutar sudu dan membuatnya bergerak. Kenyataannya, runner turbin berotasi karena

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka Energi listrik yang disediakan oleh perusahaan listrik Negara (PLN), masih belum dirasakan secara menyeluruh oleh masyarakat terutama masyarakat pedesaan yang

Lebih terperinci

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi

II. TINJAUAN PUSTAKA. Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi II. TINJAUAN PUSTAKA.1. Potensi Pemanfaatan Mikrohidro Kebutuhan listrik menjadi masalah yang tidak ada habisnya. Listrik menjadi kebutuhan yang mendasar saat ini, namun penyebarannya tidak merata terutama

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Tinjauan Pustaka (Chen, J., et al., 2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan Power Generation untuk aliran air dalam

Lebih terperinci

TURBIN AIR A. TURBIN IMPULS. Roda Pelton

TURBIN AIR A. TURBIN IMPULS. Roda Pelton 6 TURBIN AIR A. TURBIN IMPULS Turbin impuls adalah turbin dimana bererak karena adanya impuls dari air. Pada turbin impuls, air dari sebuah bendunan dialirkan melalui pipa, dan kemudian melewati mekanisme

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dan Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Mikrohidro atau biasa disebut dengan Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik

Lebih terperinci

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018)

Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) Publikasi Online Mahsiswa Teknik Mesin Universitas 17 Agustus 1945 Surabaya Volume 1 No. 1 (2018) ANALISA PENGARUH JUMLAH SUDU DAN LAJU ALIRAN TERHADAP PERFORMA TURBIN KAPLAN Ari Rachmad Afandi 421204156

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

BAB II DASAR TEORI 2.1. Tinjauan Pustaka BAB II DASAR TEORI 2.1. Tinjauan Pustaka Chen, dkk (2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan power generation untuk aliran air dalam pipa. Tujuannya

Lebih terperinci

PENGUJIAN TURBIN AIR FRANCIS

PENGUJIAN TURBIN AIR FRANCIS PENGUJIAN TURBIN AIR FRANCIS BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan perkembangan teknologi yang semakin maju, banyak diciptakan peralatan peralatan yang inovatif serta tepat guna. Dalam bidang

Lebih terperinci

Panduan Praktikum Mesin-Mesin Fluida 2012

Panduan Praktikum Mesin-Mesin Fluida 2012 PERCOBAAN TURBIN PELTON A. TUJUAN PERCOBAAN Tujuan dari pelaksanaan percobaan ini adalah untuk mempelajari prinsip kerja dan karakteristik performance turbin air (pelton). Karakteristik performance turbin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Turbin Air Turbin air termasuk dalam kelompok mesin fluida yaitu, mesin yang berfungsi untuk mengubah energi fluida (energi potensial dan energi kinetis air) menjadi energi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 TURBIN AIR Turbin air termasuk dalam kelompok mesin-mesin fluida yaitu, mesin-mesin yang berfungsi untuk merubah energi fluida (energi potensial dan energi kinetis air) menjadi

Lebih terperinci

1. TURBIN AIR. 1.1 Jenis Turbin Air. 1.1.1 Turbin Impuls

1. TURBIN AIR. 1.1 Jenis Turbin Air. 1.1.1 Turbin Impuls 1. TURBIN AIR Dalam suatu sistim PLTA, turbin air merupakan salah satu peralatan utama selain generator. Turbin air adalah alat untuk mengubah energi air menjadi energi puntir. Energi puntir ini kemudian

Lebih terperinci

NOZZLE DAN SUDUT BUANG SUDU TERHADAP DAYA DAN EFISIENSI MODEL TURBIN PELTON DI LAB. FLUIDA

NOZZLE DAN SUDUT BUANG SUDU TERHADAP DAYA DAN EFISIENSI MODEL TURBIN PELTON DI LAB. FLUIDA Mekanika Jurnal Teknik Mesin, Volume 1 No. 1, 2015 NOZZLE DAN SUDUT BUANG SUDU TERHADAP DAYA DAN EFISIENSI MODEL TURBIN PELTON DI LAB. FLUIDA Supardi 1, Endra Prasetya 2 Program Studi Teknik Mesin Fakultas

Lebih terperinci

BAB III TURBIN UAP PADA PLTU

BAB III TURBIN UAP PADA PLTU BAB III TURBIN UAP PADA PLTU 3.1 Turbin Uap Siklus Renkine setelah diciptakan langsung diterima sebagai standar untuk pembangkit daya yang menggunakan uap (steam ). Siklus Renkine nyata yang digunakan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

Potensi Tenaga Air di Indonesia Selama ini telah beberapa kali dilakukan studi potensi tenaga air di negara kita. Pada tahun 1968 Lembaga Masalah Ketenagaan- PLN (LMK) mencatat potensi tenaga air sebesar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI digilib.uns.ac.id BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka Eksplorasi intensif dari berbagai alternatif dan sumber daya energi terbarukan saat ini sedang dilakukan di seluruh dunia. Listrik pico hydro

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2010 RANCANGAN NOSEL DENGAN KATUP PENGATURAN DEBIT AIR PENGGERAK TURBIN OSSBEGER DAYA TURBIN = 2,6 KW HEAD = 12 METER SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana H E R D Y

Lebih terperinci

TUGAS AKHIR. Rancang Bangun Kincir Air Irigasi. Sebagai Pembangkit Listrik di Desa Talawaan

TUGAS AKHIR. Rancang Bangun Kincir Air Irigasi. Sebagai Pembangkit Listrik di Desa Talawaan TUGAS AKHIR Rancang Bangun Kincir Air Irigasi Sebagai Pembangkit Listrik di Desa Talawaan Diajukan Untuk Memenuhi Salah Satu Persyaratan Dalam Menyelesaikan Pendidikan Diploma IV Program Studi Teknik Listrik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB I PENGUJIAN TURBIN AIR FRANCIS

BAB I PENGUJIAN TURBIN AIR FRANCIS BAB I PENGUJIAN TURBIN AIR FRANCIS 1.1 Pendahuluan 1.1.1 Tinjauan Umum Praktikan sangat membantu dalam mendapatkan gambaran yang nyata tentang alat/mesin yang telah dipelajari di bangku kuliah. Dengan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pembangkit Listrik Tenaga Mikrohidro. Pembangkit listrik kecil yang dapat menggunakan tenaga air pada saluran

BAB II DASAR TEORI. 2.1 Pembangkit Listrik Tenaga Mikrohidro. Pembangkit listrik kecil yang dapat menggunakan tenaga air pada saluran BAB II DASAR TEORI 2.1 Pembangkit Listrik Tenaga Mikrohidro Mikrohidro adalah istilah yang digunakan untuk instalasi pembangkit listrik yang mengunakan energi air. Kondisi air yang bisa dimanfaatkan sebagai

Lebih terperinci

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA

SESSION 8 HYDRO POWER PLANT. 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA SESSION 8 HYDRO POWER PLANT 1. Potensi PLTA 2. Jenis PLTA 3. Prinsip Kerja 4. Komponen PLTA 5. Perencanaan PLTA 6. Kelebihan dan Kekurangan PLTA 1. POTENSI PLTA Teoritis Jumlah potensi tenaga air di permukaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

KARAKTERISASI DAYA TURBIN PELTON MIKRO SUDU SETENGAH SILINDER DENGAN VARIASI BENTUK PENAMPANG NOSEL

KARAKTERISASI DAYA TURBIN PELTON MIKRO SUDU SETENGAH SILINDER DENGAN VARIASI BENTUK PENAMPANG NOSEL KARAKTERISASI DAYA TURBIN PELTON MIKRO SUDU SETENGAH SILINDER DENGAN VARIASI BENTUK PENAMPANG NOSEL Bono Jurusan Teknik Mesin Politeknik Negeri Semarang Jl. Prof. H. Sudarto, S.H., Tembalang, Kotak Pos

Lebih terperinci

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL

KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Eksergi Jurnal Teknik Energi Vol 8 No. 1 Januari 2012; 14-19 KAJIAN EKSPERIMENTAL TURBIN TURGO DENGAN VARIASI SUDUT NOSEL Bono Prodi Teknik Konversi Energi, Jurusan Teknik Mesin, Politeknik Negeri Semarang

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Pengertian PLTMH Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) adalah suatu instalasi pembangkit listrik skala kecil yang menggunakan energi air sebagai tenaga penggeraknya seperti

Lebih terperinci

RANCANG BANGUN MODEL TURBIN PELTON MINI SEBAGAI MEDIA SIMULASI/PRAKTIKUM MATA KULIAH KONVERSI ENERGI DAN MEKANIKA FLUIDA

RANCANG BANGUN MODEL TURBIN PELTON MINI SEBAGAI MEDIA SIMULASI/PRAKTIKUM MATA KULIAH KONVERSI ENERGI DAN MEKANIKA FLUIDA RANCANG BANGUN MODEL TURBIN PELTON MINI SEBAGAI MEDIA SIMULASI/PRAKTIKUM MATA KULIAH KONVERSI ENERGI DAN MEKANIKA FLUIDA Hadimi, Supandi dan Agus Rohermanto Dosen Jurusan Teknik Mesin Politeknik Negeri

Lebih terperinci

Makalah Pembangkit listrik tenaga air

Makalah Pembangkit listrik tenaga air Makalah Pembangkit listrik tenaga air Di susun oleh : Muhamad Halfiz (2011110031) Robi Wijaya (2012110003) Alhadi (2012110093) Rari Ranjes Noviko (2013110004) Sulis Tiono (2013110008) Jurusan Teknik Mesin

Lebih terperinci

Pembuatan dan Pengujian Pembangkit Listrik Tenaga Mikrohidro Turbin Banki Daya 200 Watt

Pembuatan dan Pengujian Pembangkit Listrik Tenaga Mikrohidro Turbin Banki Daya 200 Watt Jurnal Mekanikal, Vol. 3 No. : Januari 0: 45-53 ISSN 086-3403 Pembuatan dan Pengujian Pembangkit Listrik Tenaga Mikrohidro Turbin Banki Daya 00 Watt Andi Ade Larasakti, Syukri Himran dan A. Syamsul Arifin

Lebih terperinci

Stabilitas Konstruksi Bendungan

Stabilitas Konstruksi Bendungan Stabilitas Konstruksi Bendungan Merupakan perhitungan konstruksi untuk menentukan ukuran (dimensi) bendungan, agar mampu menahan muatan-muatan dan gaya-gaya yang bekerja dalam keadaan apapun, (angin, gempa,

Lebih terperinci

BAB VI TURBIN AIR A. TURBIN IMPULS

BAB VI TURBIN AIR A. TURBIN IMPULS BAB I TURBIN AIR A. TURBIN IMPULS Turbin impuls adalah turbin dimana bererak karena adanya impuls dari air. Pada turbin impuls, air dari sebuah bendunan dialirkan melalui pipa, dan kemudian melewati mekanisme

Lebih terperinci

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24 PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 24 Armansyah Munthe *), Rahmawaty, ST, MT Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan 2015 *) E-mail : arman.munthe@yahoo.com

Lebih terperinci

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20

PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20 PENGUJIAN UNJUK KERJA TURBIN CROSSFLOW SKALA LABORATORIUM DENGAN JUMLAH SUDU 20 Muhammad tohari *), Ir. Husin Ibrahim Lubis, MT Jurusan Teknik Mesin Sekolah Tinggi Teknik Harapan 2015 *) E-mail :hari_boy03@yahoo.co.id

Lebih terperinci

II. TINJAUAN PUSTAKA. Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro

II. TINJAUAN PUSTAKA. Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro II. TINJAUAN PUSTAKA A. Tinjauan Umum PLTMH Mikrohidro hanyalah sebuah istilah. Mikro artinya kecil sedangkan Hidro artinya air. Dalam prakteknya istilah ini tidak merupakan sesuatu yang baku namun Mikro

Lebih terperinci

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m)

BAB II DASAR TEORI. E p = Energi potensial (joule) m =Massa benda (kg) g = Percepatan gravitasi (m/s 2 ) h = Ketinggian benda (m) BAB II DASAR TEORI 2.1 Sumber Energi 2.1.1 Energi Potensial Energi potensial adalah energi yang dimiliki suatu benda akibat pengaruh tempat atau kedudukan dari benda tersebut Rumus yang dipakai dalam energi

Lebih terperinci

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI

PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI PERENCANAAN SERTA PEMBUATAN PROTOTIPE TURBIN AIR TERAPUNG BERSUDU LENGKUNG DENGAN MEMANFAATKAN KECEPATAN ALIRAN AIR SUNGAI SKRIPSI Skripsi Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA Pengertian dan Klasifikasi Pembangkit Listrik Tenaga Air

BAB II TINJAUAN PUSTAKA Pengertian dan Klasifikasi Pembangkit Listrik Tenaga Air 5 BAB II TINJAUAN PUSTAKA 2.1 PEMBANGKIT LISTRIK TENAGA AIR 2.1.1 Pengertian dan Klasifikasi Pembangkit Listrik Tenaga Air Tenaga air merupakan sumberdaya terpenting setelah tenaga uap/panas, pemanfaatan

Lebih terperinci

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO

KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO EKSERGI Jurnal Teknik Energi Vol 11 No. 3 September 2015; 69-74 KARAKTERISTIK TURBIN KAPLAN PADA SUB UNIT PEMBANGKIT LISTRIK TENAGA AIR KEDUNGOMBO Mulyono, Suwarti Program Studi Teknik Konversi Energi,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Penelitian Terdahulu Menurut Muhammad As ad Abidin, Rudy Soenoko, Djoko Sutikno [2], pada penelitiannya mengenai pengaruh besar sudut kelengkungan sudu terhadap unjuk kerja

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Pompa Pompa adalah suatu mesin yang digunakan untuk memindahkan fluida dari satu tempat ketempat lainnya, melalui suatu media aluran pipa dengan cara menambahkan energi

Lebih terperinci

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA. BAB II LANDASAN TEORI 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro Pembangkit Listrik Tenaga Mikrohydro atau biasa disebut PLTMH adalah pembangkit listrik tenaga air sama halnya dengan PLTA, hanya

Lebih terperinci

Perancangan Turbin Pelton

Perancangan Turbin Pelton Perancangan Turbin Pelton Anjar Susatyo, Lukman Hakim Puslit Tenaga Listrik dan Mekatronik-LIPI ABSTRAK Turbin Pelton adalah turbin reaksi di mana satu atau lebih pancaran air menumbuk roda yang terdapat

Lebih terperinci

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK

ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON ABSTRAK ANALISA PENGARUH SUDUT KELUAR SUDU TERHADAP PUTARAN TURBIN PELTON Ali Thobari, Mustaqim, Hadi Wibowo Faculty of Engineering, Universitas Pancasakti Tegal Jl. Halmahera KM. 1 Kota Tegal 52122 Telp./Fax.

Lebih terperinci

KAJI EKSPERIMENTAL KINERJA TURBIN CROSSFLOW BERBASIS KONSTRUKSI SILINDER (DRUM) POROS VERTIKAL UNTUK POTENSI ARUS SUNGAI

KAJI EKSPERIMENTAL KINERJA TURBIN CROSSFLOW BERBASIS KONSTRUKSI SILINDER (DRUM) POROS VERTIKAL UNTUK POTENSI ARUS SUNGAI B.10. Kaji eksperimental kinerja turbin crossflow... (Sahid) KAJI EKSPERIMENTAL KINERJA TURBIN CROSSFLOW BERBASIS KONSTRUKSI SILINDER (DRUM) POROS VERTIKAL UNTUK POTENSI ARUS SUNGAI Sahid Program Studi

Lebih terperinci

KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZEL DAN JUMLAH SUDU TERHADAP DAYA DAN EFFISIENSI PADA PROTOTYPE TURBIN PELTON DI LAB.

KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZEL DAN JUMLAH SUDU TERHADAP DAYA DAN EFFISIENSI PADA PROTOTYPE TURBIN PELTON DI LAB. Mekanika Jurnal Teknik Mesin, Volume 1 No. 1, 2015 KAJI EKSPERIMENTAL PENGARUH VARIASI DIAMETER NOZZEL DAN JUMLAH SUDU TERHADAP DAYA DAN EFFISIENSI PADA PROTOTYPE TURBIN PELTON DI LAB. FLUIDA Supardi 1,Moh.

Lebih terperinci

BAB I PENDAHULUAN. misalnya untuk mengisi ketel, mengisi bak penampung (reservoir) pertambangan, satu diantaranya untuk mengangkat minyak mentah

BAB I PENDAHULUAN. misalnya untuk mengisi ketel, mengisi bak penampung (reservoir) pertambangan, satu diantaranya untuk mengangkat minyak mentah BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari, penggunaan pompa sangat luas hampir disegala bidang, seperti industri, pertanian, rumah tangga dan sebagainya. Pompa merupakan alat yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi

II. TINJAUAN PUSTAKA. digalakan penemuan-penemuan atau pemanfatan-pemanfaatan energi-energi II. TINJAUAN PUSTAKA A. Energi Secara global telah diketahui bersama bahwa sumber energi tak terbaharui semakin berkurang keberadaannya maka sudah selayaknya untuk dicari dan digalakan penemuan-penemuan

Lebih terperinci

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air

BAB II 2 LANDASAN TEORI. 2.1 Turbin Air BAB II 2 LANDASAN TEORI 2.1 Turbin Air Turbin air atau pada mulanya kincir air adalah suatu alat yang sudah sejak lama digunakan untuk keperluan industri. Pada mulanya yang dipertimbangkan adalah ukuran

Lebih terperinci

58. Pada tail race masih terdapat kecelakaan air 1m/det serta besarnya K = 0,1. Hitung : 1) Hidrolik Losses!

58. Pada tail race masih terdapat kecelakaan air 1m/det serta besarnya K = 0,1. Hitung : 1) Hidrolik Losses! TURBIN AIR 1. Jelaskan secara singkat tentang sejarah diketemukannya turbin air sebagai tenaga penggerak mula? 2. Jelaskan perbedaan antara pembangkit tenaga listrik dengan tenaga air dan tenaga diesel?

Lebih terperinci

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL

UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL UNJUK KERJA TURBIN AIR TIPE CROSS FLOW DENGAN VARIASI DEBIT AIR DAN SUDUT SERANG NOSEL Yudi Setiawan, Irfan Wahyudi, Erwin Nandes Jurusan Teknik Mesin, Universitas Bangka Belitung Jl.Merdeka no. 04 Pangkalpinang

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN

Lebih terperinci

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan Kata Pengantar Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa karena dengan rahmat, karunia, serta taufik dan hidayah-nya kami dapat menyelesaikan makalah tentang turbin uap ini dengan baik meskipun

Lebih terperinci

KAJIAN EKSPERIMENTAL OPTIMASI TIPE LEKUK SUDU TURBIN PELTON SUDU BASIS KONSTRUKSI ELBOW PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

KAJIAN EKSPERIMENTAL OPTIMASI TIPE LEKUK SUDU TURBIN PELTON SUDU BASIS KONSTRUKSI ELBOW PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO A.11. Kajian Eksperimental Optimasi Tipe Lekuk Sudu Turbin Pelton... (Sahid) KAJIAN EKSPERIMENTAL OPTIMASI TIPE LEKUK SUDU TURBIN PELTON SUDU BASIS KONSTRUKSI ELBOW PADA PEMBANGKIT LISTRIK TENAGA MIKROHIDRO

Lebih terperinci

BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA AIR SKALA PIKO

BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA AIR SKALA PIKO BAB II DASAR TEORI PEMBANGKIT LISTRIK TENAGA AIR SKALA PIKO 2.1. Pengertian PLTA Skala Piko Berdasarkan output yang dihasilkan, pembangkit listrik tenaga air dibedakan atas : 1. Large-hydro : lebih dari

Lebih terperinci

POMPA SENTRIFUGAL. Oleh Kelompok 2

POMPA SENTRIFUGAL. Oleh Kelompok 2 POMPA SENTRIFUGAL Oleh Kelompok 2 M. Salman A. (0810830064) Mariatul Kiptiyah (0810830066) Olyvia Febriyandini (0810830072) R. Rina Dwi S. (0810830075) Suwardi (0810830080) Yayah Soraya (0810830082) Yudha

Lebih terperinci

PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON. Dr. Sri Poernomo Sari, ST., MT.

PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON. Dr. Sri Poernomo Sari, ST., MT. PENGARUH UKURAN DIAMETER NOZZLE 7 DAN 9 mm TERHADAP PUTARAN SUDU DAN DAYA LISTRIK PADA TURBIN PELTON Dr. Sri Poernomo Sari, ST., MT.*), Ryan Fasha**) *) Dosen Teknik Mesin Universitas Gunadarma **) Mahasiswa

Lebih terperinci

PENGEMBANGAN TURBIN AIR TYPE CROSS-FLOW DIAMETER RUNNER 400 MM

PENGEMBANGAN TURBIN AIR TYPE CROSS-FLOW DIAMETER RUNNER 400 MM Pusat Penelitian Informatika - LIPI PENGEMBANGAN TURBIN AIR TYPE CROSS-FLOW DIAMETER RUNNER 400 MM Anjar Susatyo Pusat Penelitian Tenaga Listrik Dan Mekatronik Lembaga Ilmu Pengetahuan Indonesia ABSTRAK

Lebih terperinci

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump). BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci

2. TINJAUAN LITERATUR

2. TINJAUAN LITERATUR 2. TINJAUAN LITERATUR 2.1. Pemodelan Sistem Model merupakan representasi suatu sistem dan dipergunakan sebagai alat peramalan dan pengendalian. Fungsi utama suatu model adalah kemampuannya untuk menjelaskan

Lebih terperinci

Perancangan dan Pembuatan Turbin Pelton

Perancangan dan Pembuatan Turbin Pelton Perancangan dan Pembuatan Turbin Pelton Oleh : Tiar Riptahadi W. K. 2106 030 065 Dosen Pembimbing : Dr.Ir. Heru Mirmanto,MT 132 135 223 LOGO Contents You can briefly add outline of this slide page in this

Lebih terperinci

Oleh: ADITIYA DANI CHURNIAWAN Dosen Pembimbing: Dr. Ir. HERU MIRMANTO,MT D III TEKNIK MESIN FTI-ITS

Oleh: ADITIYA DANI CHURNIAWAN Dosen Pembimbing: Dr. Ir. HERU MIRMANTO,MT D III TEKNIK MESIN FTI-ITS Oleh: ADITIYA DANI CHURNIAWAN 2106030072 Dosen Pembimbing: Dr. Ir. HERU MIRMANTO,MT D III TEKNIK MESIN FTI-ITS Latar Belakang Listrik merupakan kebutuhan utama manusia dalam segala aktifitas. PLTMH merupakan

Lebih terperinci

TUGAS KHUSUS POMPA SENTRIFUGAL

TUGAS KHUSUS POMPA SENTRIFUGAL AUFA FAUZAN H. 03111003091 TUGAS KHUSUS POMPA SENTRIFUGAL Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

Turbin Uap BOILER. 1 4 konderser

Turbin Uap BOILER. 1 4 konderser Turbin Uap Siklus Renkine setelah diciptakan langsung diterima sebagai standar untuk pembangkit daya yang menggunakan uap (steam ). Siklus Renkine nyata yang digunakan dalam instalasi pembangkit daya jauh

Lebih terperinci

BAB I PENDAHULUAN. memindahkan fluida dari suatu tempat yang rendah ketempat yang. lebih tinggi atau dari tempat yang bertekanan yang rendah ketempat

BAB I PENDAHULUAN. memindahkan fluida dari suatu tempat yang rendah ketempat yang. lebih tinggi atau dari tempat yang bertekanan yang rendah ketempat 1 BAB I PENDAHULUAN 1.1 Pandangan Umum Pompa Pompa adalah suatu jenis mesin yang digunakan untuk memindahkan fluida dari suatu tempat yang rendah ketempat yang lebih tinggi atau dari tempat yang bertekanan

Lebih terperinci