BAB II LANDASAN TEORI. λ = f (Re, ε/d)... (2.1)

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TEORI. λ = f (Re, ε/d)... (2.1)"

Transkripsi

1 BAB II LANDASAN TEORI 2.1 DASAR TEORI Persamaan Dasar Aliran Fluida Dalam Pipa Perbandingan antara wall shear stress, τw terhadap energi kinetik persatuan volume (ρv/2gc), akan menghasilkan bilangan tak berdimensi. Penurunan tekanan merupakan fungsi dari faktor gesekan (λ) dan kekasaran relatif dari dinding pada (ε/d) yang disebut sebagai faktor gesekan. λ = f (Re, ε/d).... (2.1) Bilangan Reynold digunakan sebagai parameter untuk membedakan antara aliran laminar dangan aliran turbulen.umumnya batas antara aliran laminar dengan turbulen terjadi pada bilangan Reynold sebesar Berdasarkan hasil pengujian dari HGL. Hagen (1839), penurunan tekanan berubah secara linier dengan kecepatan (U) sampai kira kira 0,33 m/s. Namun di atas sekitar 0,66 m/s penurunan tekanan hampir sebanding dengan kuadrat kecepatan (ΔP U1.75). Pada tahun 1883 Osborne Reynolds menunjukan bahwa penurunan tekanan tergantung pada parameter: kerapatan (ρ), kecepatan (U), diameter (D) dan viskositas (μ) absolut yang selanjutnya disebut dengan bilangan Reynolds.Bilangan Reynold dapat mendefinisikan karakteristik dari aliran laminar dan turbulen, dengan persamaan ;... ( 2.2) Dimana: V = Kekentalan kinematik fluida ( m2/s ) D = Diameter pipa (m) r = jari jari pipa ( m ) ρ = Kerapatan massa jenis fluida(kg/m3 ) v = Kecepatan rata rata ( m/s ) μ = Kekentalan absolute ( Pa.s ) Densitas campuran dihitung dari persamaan:... (2. 3) Laporan Tugas Akhir 4

2 Untuk menghitung penurunan tekanan karena gesekan dapat digunakan persamaan Fanning ( )... (2.4) cf = 16 /Re untuk aliran laminar cf = 0,3164. Re-0,25 untuk aliran turbulen Perubahan aliran dua fasa, dapat dianaliasis dari kecepatan superficial gas ( U G ) dan kecepatan liquid nya ( U C ), untuk menganalisannya dibutuhkan variable variable sebagai berikut. Laju aliran massa total melalui tabung adalah jumlah dari massa tahap aliran dua fasa ṁ = ṁ G + ṁ L... ( 2.5) Dimana; ṁ = massa laju alir total ( kg/s ) ṁ G = massa laju alir gas ( kg/s ) ṁ L = massa laju alir air ( kg/s ) Cross section area keseluruhan, didapat dengan menjumlahkan cross section gas dan cross section liquid. A = A G + A L... (2.6) Dimana ; A = Luas area total ( m 2 ) A G = Luas area fasa gas ( m 2 ) A L = Luas area fasa air ( m 2 ) Laju massa dapat dihitung dengan persamaan;... ( 2.7)... (2. 8)... ( 2.9) Volume aliran dinyatakan sebagai berikut, Laporan Tugas Akhir 5

3 Q G = A G. u G = G G.v G... (2.10) Q L = A L. u L = G L.v L... (2.11) Rasio massa aliran, dapat disebut pula kualitas dari fraksi, dinyatakan dengan rumus sebagai berikut;...(2.12) Sehingga untuk mendapatkan kecepatan superficial gas dan liquid, digunakan persamaan, = G G.v G... (2.13) G L.v L...(2.14) Dimana ; x = fraksi dari kualitas atau kekeringan ṁ = laju aliran massa ( kg/s ) v L = volume spesifik air ( m 3 /kg ) v G = volume spesifik udara ( m 3 /kg ) G L = kecepatan massa aliran air ( kg/m 2.s ) G G = kecepatan massa aliran udara( kg/m 2.s ) Penentuan Konfigurasi Aliran Metode modelisasi diagram pola aliran dengan sistem koordinat Taitel dan Dukler Taitel dan Dukler membagi aliran horizontal menjadi 6 tipe, berdasarkan analisa mekanisme transisi dan mengusulkan diagram pada gambar 2.7 sesuai dengan Observasi berikut : Transisi A, antara aliran strata dengan cincin atau peralihan (intermittent) Transisi ini timbul bila terjadi gelombang pada permukaan bebas dimana likuid menjadi tidak stabil. Ketidakstabilan ini merupakan efek pengisapan diatas gelombang terhadap efek gravitasi Jika Re < 2000, maka Cf = 16/Re...(2.15) Laporan Tugas Akhir 6

4 Re > 2000, maka Cf = 0,079 Re -1/ (2.16) =...(2.17) Untuk Gas, Re g =...(2.18) C fg = 0,079 Re -1/4...(2.19) =...(2.20) Untuk likuid, Re l =...(2.21) C fl = 0,079 Re -1/4...(2.22) =...(2.23) Modelisasi dilakukan dengan sistem koordinat : X = ( ) 1/2...(2.24) F = ( ( ) )...(2.25) Keterangan : = Massa jenis gas (kerapatan), kg/m 3 = Massa jenis liquid (kerapatan), kg/m 3 U g = kecepatan Superfisial gas (m/s) Laporan Tugas Akhir 7

5 d = diameter (m) Dengan d, diameter tube dan penurunan tekanan akibat gesekan likuid dan gas yang diukur bila likuid atau gas sendiri yang mengalir dalam saluran Transisi B, Antara aliran peralihan dengan cincin. Mulai dari aliran strata kita dapatkan aliran peralihan bila level permukaan bebas berada di atas tube. Bila tidak, maka akan kita dapatkan aliran cincin. Transisi C, antara aliran strata licin dengan strata gelombang, Taitler dan Dukler menggunakan teori Jeffrey relatif terhadap timbulnya gelombang permukaan bebas. Transisi ini dinyatakan dengan : K = F...(2.26) K= ( )...(2.27) Keterangan : = Massa jenis gas (kerapatan), kg/m 3 = Massa jenis liquid (kerapatan), kg/m 3 U g U l = kecepatan Superfisial gas (m/s) = kecepatan Superfisial liquid (m/s) = viskositas kinematik, m 3 /kg g = Gaya gravitasi, 9,81 m/s 2 Transisi D, antara aliran peralihan dengan aliran gelembung timbul pada saat agitasi turbulen menghalangi gas untuk mempertahankan ketinggiannya dalam tube karena efek mampu ambang. Taitler dan Dukler sampai pada sebuah transisi dengan koordinat sebagai berikut : T = ( )...(2.28) Laporan Tugas Akhir 8

6 Gambar 2.1 Diagram pola aliran Untuk pipa Horizontal (Taitel dan Dukler, 1976) Gambar 2.2 Diagram pola aliran Untuk pipa Horizontal (Taitel dan Dukler, 1976) Laporan Tugas Akhir 9

7 2.2 TINJAUAN PUSTAKA Pola Aliran Pada Pipa Horizontal a. Pola Aliran Dua Fasa Macam pola alir tersebut diantaranya ; a) Aliran gelembung (Bubble), dimana gelembung gas cenderung untuk mengalir pada bagian atas tube. Gambar 2.3 Aliran gelembung b) Aliran kantung (Plug), dimana gelembung gas kecil bergabung membentuk kantung gas. Gambar 2.4 Aliran kantung c) Aliran strata (Stratified), dimana permukaan bidang sentuh cairan gas sangat halus, tetapi pola aliran seperti ini biasanya tidak terjadi. Batas fasanya hampir selalu bergelombang. Gambar 2.5 Aliran strata d) Aliran strata bergelombang (Stratified-Wave), di mana amplitudo gelombang meningkat karena kenaikan kecepatan gas. Gambar 2.6 Aliran strata bergelombang e) Aliran sumbat (Slug), dimana Amplitudo gelombang biasanya besar hingga menyentuh bagian atas tube. Gelembung terbentuk dengan ukuran sebesar diameter kolom. Gelembung-gelembung kecil mengikuti dibelakangknya. Laporan Tugas Akhir 10

8 Gambar 2.7 Aliran sumbat f) Aliran cincin (Annular), sama dengan pada tabung vertikal hanya liquid film lebih tebal didasar tabung dari pada bagian atas. Gambar 2.8 Aliran cincin Pola Aliran dalam Kecepatan Superficial Weisman dkk ( 1979 ) mengkaji sifat benda yang mengalir dalam pipa (Kekentalan cairan, kepadatan cairan, tegangan permukaan, dan kepadatan gas) dan diameter pipa dalam ( 1,27 cm to 5,08 ( 0,5 in sampai 2 in)) pada dua fasa pada pipa horizontal. Data pola aliran pipa dua fasa dapat ditunjukan seperti pada gambar 2.7 secara keseluruhan digambarkan dengan U SG dan U S, dan hubungan tersebut ditujukan dalam memprediksi batas peralihan fasa. Gambar 2.9 Weisman et al. (1979) map for horizontal flow Laporan Tugas Akhir 11

9 2.2.3 Pola Aliran Pada Pipa Vertikal a. Pola Aliran Dua Fasa Gelembung Sumbat Acak Cincin Cincin Kabut Gambar 2.10 Pola Aliran Pada Pipa Vertikal (Sumber : Widya Permana, Sugandi. 2011) 1. Aliran gelembung, dalam aliran gelembung, fasa gas tersebar dan selalu menuju ke sumbu saluran dalam fasa cairan secara kontinyu dan memiliki ukuran yang uniform. Pada gambar 2.9, fasa gas tersebar sebagai gelembung dalam cairan. Dengan bertambahnya laju aliran gas ukuran gelembung bertambah dan cenderung untuk menempati pusat saluran. Aliran gelembung ini dibedakan dua pola, yaitu gelembung yang tersebar serta tidak berhubungan satu dengan lainnya dan gelembung yang bersama dalam ikatan yang kuat satu dengan lainnya. Pada aliran ke bawah juga dijumpai aliran gelembung tetapi kurang stabil dibandingkan dengan ke atas, dan biasanya berkumpul di pusat saluran (untuk aliran ke atas, gelembung biasanya tersebar). 2. Aliran sumbat/kantung, Bila laju aliran gas diperbesar, gelembung akan menyatu dan mempunyai ukuran hampir mendekati pipa, wujud gelembung berbentuk bulat seperti kepala topi yang memanjang dan gas dalam gelembung dipisahkan dari dinding pipa dengan lapisan film yang turun secara perlahan-lahan. Aliran cairan dipisahkan oleh adanya gelembung secara terus-menerus. Aliran sumbat ini bergerak sepanjang saluran, cairan di depannya terdorong bergerak berlawanan dengan sumbat gas menuju ke bawah pada keadaan ini masih dapat dibedakan batas kantung udara yang tidak terisi oleh cairan. 3. Aliran acak bila kecepatan gas ditambah maka sumbat gas cenderung untuk bersatu dengan lainnya dan menjadi berbuih dalam aliran turbulen yang tinggi. Cairan menepi ke dinding dan berulang-ulang kembali ke tengah. Pola aliran ini ditandai dengan beberapa fluktuasi tekanan. Pada aliran saluran berdiameter besar, ketidakstabilan ini Laporan Tugas Akhir 12

10 akhirnya mengakibatkan hancurnya aliran sumbat dan sebagai gantinya timbul aliran acak. 4. Aliran cincin, dalam aliran cincin lapisan film akan muncul pada dinding pipa sedangkan gas atau uap pada bagian tengah pipa secara kontinyu. Film cairan mungkin berisi gelembung dan inti gas mampu mengangkut butir cairan. Gelombang dapat muncul di permukaan film cairan dan ini merupakan sumber pengangkutan butir cairan, yaitu dengan adanya film cairan yang turun pada dinding saluran 5. Aliran gumpalan-cincin, dimana konsentrasi tetesan dalam gas bertambah dan akhirnya bergabung membentuk gumpalan. b. Pemetaan Flow Regime Aliran Dua Fasa Gas-Liquid Pada Pipa Vertikal Diagram Taitel dan Dukler (gambar 2.9) paling sering digunakan untuk menentukan konfigurasi pola aliran pada pipa vertikal. Taitel dan Dukler (1976) melakukan penelitian pada pipa vertikal berdiameter dalam 2,5 cm untuk mendapatakan flow regime maps. Pada konfigurasi pola aliran pada pipa vertikal ini menggunakan sistem koordinat, dimana koordinat absis sebagai kecepatan superficial gas (m/s), dan koordinat ordinat sebagai kecepatan superficial liquid (m/s) dengan titik koordinat ini kita dapat menentukan peta aliran yang terjadi berdasarkan kecepatan superficial gas (m/s) dan kecepatan superfisial liquid (m/s). Gambar 2.11 Peta flow regime dua fasa untuk pipa vertikal (Sumber : Taitel dan Dukler, 1976) Laporan Tugas Akhir 13

11 c. Aliran Dua fasa pada Pipa vertikal Dari Hasil Penelitian Aliran Dua Fasa pada pipa vertikal dengan diameter 46mm yang Dilakukan oleh Sugandi Widia Permana (2011) Dihasilkan data sebagai berikut: Gambar 2.12 Flow Regime Maps Pipa Vertikal (Sumber : Widya Permana, Sugandi. 2011) Dari Peta pola aliran pipa vertical di atas dapat diketahui nilai Usl yaitu antara 0,19 0,26 m/s sedangkan nilai Usg berkisar antara 4-8,9 m/s. Gelembung Sumbat Acak Cincin Cincin Kabut Gambar 2.13 Konfigurasi bentuk pola aliran pada pipa vertical (Sumber : Widya Permana, Sugandi. 2011) Laporan Tugas Akhir 14

12 d. Aliran Dua fasa pada Pipa Horizontal Dari Hasil Penelitian Aliran Dua Fasa pada pipa horizontal dengan diameter 46mm yang Dilakukan oleh Antariksta Pebriani (2011) Dihasilkan data sebagai berikut: Peta Aliran Pipa Horizontal UsL (m/s) 0,26 0,25 0,24 0,23 0,22 0,21 0,2 0,19 0,18 0,17 0,16 0,15 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 USG (m/s) statified wave slug plug bubble Gambar 2.14 Grafik Pola Aliran Pipa Horizontal (Sumber : Pebrianti, Antariksta. 2011) Dari Peta pola aliran pipa horizontal di atas dapat diketahui nilai Usl yaitu antara 0,19 0,255 m/s sedangkan nilai Usg berkisar antara 0,5-9 m/s. Gelembung Sumbat Strata Kantung Gambar 2.15 Konfigurasi bentuk pola aliran pada pipa Horizontal (Sumber : Pebrianti, Antariksta. 2011) Laporan Tugas Akhir 15

13 e. Aliran dua Fasa Pada Belokan Yudi Sukmono (2009) Studi Eksperimental dan Numerik Tentang Karakteristik Aliran Dua Fase (Air Udara) Melewati Elbow 90 dari ArahVertikal MenujuHorizontal. Yudi Sukmono (2009) meneliti tentang Pengaruh belokan belokan 90 0 dengan R/D = 0,6 terhadap pressure drop, pola aliran dan distribusi void fraction terhadap aliran dua fase pada pipa vertikal menuju horisontal, dilakukan secara eksperimental dan numerik. Pipa transparan (Plexiglas) dengan diameter dalam 36 mm, panjang 3000 mm dengan air dan udara sebagai fluida kerja digunakan dalam penelitiannya. Variasi superficial liquid velocity (Usl) mulai 0,3 m/s 1,1 m/s serta variasi β 0,05 0,2 sehingga dapat dilihat perubahan pola aliran yang terjadi. Hasil pengukuran pressure drop didapat beberapa hasil yaitu pressure drop pipa vertikal akan semakin turun pada β yang semakin tinggi pada setiap variasi Usl. Sedangkan pressure drop pada belokan menuju pipa horizontal memiliki kecenderungan naik pada Usl dengan β yang semakin besar tetapi turun pada Usl rendah. Untuk nilai pressure drop pada pipa horizontal memiliki kecenderungan naik pada setiap Usl dengan nilai β yang semakin besar akibat pengaruh belokan yang kuat setelah keluar dari outlet belokan yang ditunjukkan pada hasil visualisasi. Gambar 2.14 Grafik hasil penelitian (sumber : Sukmono, Yudi. 2009) Laporan Tugas Akhir 16

14 Gambar 2.16 Instalasi Percobaan (sumber : Sukmono, Yudi. 2009) Benard (2006) meneliti aliran dua fase melewati belokan 90 0 pada pipa vertikal menuju pipa horisontal dengan diameter dalam pipa yang digunakan adalah 0,026 m. Pressure drop pada posisi vertical inlet tangent menunjukkan beberapa perbedaan yang signifikan pada pipa vertikal. Karena adanya belokan yang menyebabkan aliran inlet terhambat sehingga menaikkan tekanan dan jumlah fase liquid pada vertical inlet riser dan perbedaan struktur dari flow regime dibandingkan dengan pipa vertikal lurus tanpa adanya gangguan belokan. Sedangkan horizontal outlet tangent memberikan hasil yang sesuai dengan literatur pada umumnya. Sebuah korelasi empiris untuk pressure drop pada belokan dihasilkan dari persamaan Reynolds number. Tetapi penelitian ini hanya terbatas pada R/D=0,6539 dan D = 24 mm serta batasan Reynolds number pada ReSG= dan ReSL= Seungjin Kim (2007) meneliti tentang pengaruh geometri dari belokan 90 0 pada distribusi dari parameter lokal aliran dua fase dan karakteristrik transport-nya di horizontal bubbly flow. Untuk akurasi data agar lebih detail penggunaan parameter lokal aliran dua fase dengan double-sensor conductivity probe pada empat lokasi axial yang berbeda. Pengaruh belokan tampak jelas pada kedua distribusi dan perkembangan dari paramater lokal. Belokan menaikkan dengan jelas interaksi gelembung yang signifikan pada perubahan di daerah konsentrasi interfacial. Selanjutnya, pengaruh belokan yang signifikan menyebabkan osilasi Laporan Tugas Akhir 17

15 aliran di kedua arah vertikal dan horisontal dari pipa melintang. Hal yang perlu ditambahkan adalah pengamatan secara visual dengan alat visualisasi kamera atau teknik pengamatan lain sehingga pola aliran yang terjadi dapat dianalisa dan dihubungkan dengan parameter lain. Seungjin Kim (2008) menemukan sebuah investigasi pressure drop minor losses aliran dua fase melewati belokan 45 0 dan 90 0 pada aliran buble horizontal. Diameter dalam pipa yang digunakan 50,3 mm dan untuk belokan 45 0 terpasang pada L/D = 353,5 dari inlet campuran aliran dua fase. Ada 15 kondisi aliran yang diujikan. Pada penelitian ini persamaan yang digunakan konvensi Lockhart-Martenelli dengan parameter C= 30 pada belokan 45 0 dan 90 0 memprediksi cukup baik untuk aliran dua fase frictional pressure loss antara inlet dan exit dari belokan 45 0 dan 90 0 secara eksperimen. Meskipun untuk memprediksi aliran belokan kurang bagus karena tidak menghitung penambahan loss pada flow restrictions. Pada persamaan baru dengan parameter C = 65 dan minor loss factor k = 0,58 dan k = 0,35 untuk belokan 45 0 dan 90 0 diperoleh data yang baik. Dibandingkan dengan data eksperimen dan persamaan baru adalah ±2,1% dan ±1,3% untuk belokan 45 0 dan Tetapi penelitian yang dilakukan masih dalam posisi horisontal dan tidak menampilkan visualisasi. Nay Zar Aung (2009) melakukan penelitian secara eksperimen dan numerik terhadap aliran dua fase (udara-air) setelah melewati belokan 90 0 dari vertikal menuju harisontal. Menggunakan pipa acrylic horisontal dan vertikal yang dihubungkan dengan belokan yang mempunyai R/D=2,5. Dengan variasi kecepatan superficial cairan (USL) dari 0,3 m/s sampai dengan 1,1 m/s dan volumetric gas quality (β) dari 0,05 sampai dengan 0,2. Hasil penelitian menunjukkan bahwa efek dari belokan terhadap flow pattern sangat jelas pada kecepatan superficial liquid tinggi. Fase liquid dan gas mengalami separasi mulai dari inlet belokan. Fase liquid dengan kecepatan tinggi mengenai outer surface dari belokan bend, sementara fase gas akan terkonsentrasi pada sisi inner surface. Terdapat aliran bubbly sampai jarak tertentu pada pipa horisontal. Berdasar pada visualisasi pola aliran, teridentifikasi adanya daerah mixed flow patterns yang menerangkan adanya efek pada belokan bend terhadap flow pattern transition. Pressure drop di bidang uji vertikal bertambah dengan meningkatnya bilangan Reynolds superficial gas (ReSG) dan berkurang dengan volumetric gas quality pada bilangan Reynolds yang sama. Pressure drop di bidang uji horisontal bertambah dengan bertambahnya bilangan Reynolds superficial gas (ReSG) dan volumetric gas quality. Efek belokan terhadap pressure drop kelihatan pada bidang uji horisontal. Laporan Tugas Akhir 18

16 Priyo Heru Adiwibowo (2009) meneliti tentang Pengaruh belokan belokan 45 0 dengan R/D = 0,7 terhadap pressure drop, pola aliran dan distribusi void fraction terhadap aliran dua fase pada pipa vertikal menuju miring 45 0, dilakukan secara eksperimental dan numerik. Pipa transparan (Plexiglas) dengan diameter dalam 36 mm, panjang 3000 mm dengan air dan udara sebagai fluida kerja digunakan dalam penelitiannya. Variasi yang dilakukan kecepatan superficial cairan mulai 0,3 m/s 1,1 m/s dan variasi β adalah 0,05 0,2. Hasil penelitan dapat disimpulkan bahwa pengaruh belokan 45 0 pada transisi flow patern setelah belokan dipengaruhi oleh kecepatan superficial cairan. Pressure drop pada pipa uji vertikal terjadi penurunan dengan bertambahnya kualitas volumetrik gas. Sedangkan pressure drop pada belokan 45 O terjadi penurunan dengan bertambahnya kualitas volumetrik gas tetapi tidak sebesar pada pipa vertikal. Dengan bertambahnya kualitas volumetrik gas pada pipa miring terjadi penurunan pressure drop untuk setiap kecepatan superficial cairan. Abd. Halim (2009) melakukan penelitian tentang Pengaruh belokan belokan 90 0 dengan meter bend (R/D = 0) terhadap pressure drop dan distribusi void fraction berdasarkan flow patern pada aliran dua fase pada pipa vertikal menuju horisontal, dilakukan secara eksperimental dan numerik. Pipa transparan (Plexiglas) dengan diameter dalam 36 mm, panjang 3000 mm dengan air dan udara sebagai fluida kerja digunakan dalam penelitiannya. Pengujian dilakukan dengan memberikan variasi superficial liquid velocity (Usl) mulai 0,5 m/s 1,1 m/s serta variasi volumetric gas quality (β) adalah 0,05 0,2. Hasil pengamatan menunjukkan bahwa pengaruh belokan pada formasi flow patern akan sangat tampak pada kecepatan superficial liquid yang tinggi, fase liquid dengan kecepatan tinggi mengenai outer surface dari belokan bend, sementara fase gas akan terkonsentrasi pada sisi inner surface disebabkan tekanan yang tinggi pada outer surface. Gaya sentrifugal dan secondary flow akibat dari efek belokan bend akan mempercepat gelembung bergerak keluar dari belokan tanpa dapat saling bergabung satu sama lain sampai jarak sejauh 10D dari downstream belokan. Pressure drop di bidang uji vertikal menurun dengan meningkatnya bilangan Reynolds superficial gas (ReSG). Pressure drop karakteristik belokan meter bend dan bidang uji horisontal mengalami peningkatan dengan meningkatnya bilangan Reynolds liquid dan volumetric gas quality. Efek belokan sangat berpengaruh terhadap pressure drop di bidang uji horisontal. Antariksta Pebriani (2011), melakukan penelitian tentang aliran dua fasa liquid gas pada pipa horizontal diameter 46 mm. Penelitian bertujuan membuat visualisasi gambar pola aliran pipa Horizontal saat aliran dua fasa dalam pipa. Selanjutnya mendeskripsikan bentuk bentuk gelembung yang ditemukan dalam aliran dengan metode eksperimen. Hasil Laporan Tugas Akhir 19

17 visualisasi pola aliran dua fase pada kecepatan superfisial liquid (USL) dengan range yang sama USL m/s sampai m/s untuk ke empat jenis aliran USG 0,878 m/s sampai 2,052 m/s membentuk pola aliran Gelembung, pada USG ; 4,977 m/s sampai 5,855 m/s membentuk pola aliran Sumbat, pada USG ; 1,757 m/s sampai 2,049 m/s membentuk pola aliran kantung, pada Usg ; 4,648 m/s sampai 8,783 m/s membentuk Pola aliran Strata. Sugandi widya permana (2011), melakukan penelitian tentang aliran dua fasa liquid gas dalam pipa vertikal diameter 46 mm. Penelitian bertujuan membuat visualisasi gambar pola aliran pipa vertikal saat aliran dua fasa dalam pipa. Selanjutnya mendeskripsikan bentuk bentuk gelembung yang ditemukan dalam aliran dengan metode eksperimen. Hasil visualisasi pola aliran dua fase pada kecepatan superfisial liquid (USL) dengan range yang sama USL 0.193m/s sampai m/s untuk ke empat jenis aliran USG 4,099 m/s sampai 5,855 m/s membentuk pola aliran gelembung, pada USG ; 5,563 m/s sampai 7,319 m/s membentuk pola aliran sumbat, pada USG ; 6,148 m/s sampai 7,905 m/s membentuk pola aliran acak, pada USG ; 6,411 m/s sampai 8,198 m/s pola aliran cincin dan pada USG ; 7,319 m/s sampai 8,783 m/s membentuk pola aliran cincin kabut tetes likuid. Eksperimen pada pipa vertikal ini sesuai dengan eksperimen yang telah dilakukan oleh Hewitt. Laporan Tugas Akhir 20

BAB II DASAR TEORI. Gambar 2.1 Daerah lapisan batas diatas plat rata

BAB II DASAR TEORI. Gambar 2.1 Daerah lapisan batas diatas plat rata BAB II DASAR TEORI 2.1 Klasifikasi Aliran Fluida Fluida adalah zat yang terus menerus mengalami deformasi dibawah penerapan tegangan geser (tangensial) tidak peduli seberapa kecil tegangan geser. Sehingga

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI

BAB II KAJIAN PUSTAKA DAN DASAR TEORI BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Ristiyanto (2003) menyelidiki tentang visualisasi aliran dan penurunan tekanan setiap pola aliran dalam perbedaan variasi kecepatan cairan dan kecepatan

Lebih terperinci

STUDI EKSPERIMENTAL DAN NUMERIK ALIRAN DUA FASE (AIR-UDARA) MELEWATI ELBOW 60 o DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 30 o

STUDI EKSPERIMENTAL DAN NUMERIK ALIRAN DUA FASE (AIR-UDARA) MELEWATI ELBOW 60 o DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 30 o STUDI EKSPERIMENTAL DAN NUMERIK ALIRAN DUA FASE (AIR-UDARA) MELEWATI ELBOW 60 o DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 30 o Agus Dwi Korawan 1, Triyogi Yuwono 2 Program Pascasarjana, Jurusan

Lebih terperinci

STUDI EKSPERIMENTAL DAN NUMERIK KARAKTERISTIK ALIRAN DUA FASE AIR-UDARA MELEWATI ELBOW 75⁰ DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 15

STUDI EKSPERIMENTAL DAN NUMERIK KARAKTERISTIK ALIRAN DUA FASE AIR-UDARA MELEWATI ELBOW 75⁰ DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 15 STUDI EKSPERIMENTAL DAN NUMERIK KARAKTERISTIK ALIRAN DUA FASE AIR-UDARA MELEWATI ELBOW 75⁰ DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 15 I Kadek Ervan Hadi Wiryanta 1, Triyogi Yuwono 2 Program

Lebih terperinci

STUDI EKSPERIMENTAL DAN NUMERIK ALIRAN DUA FASE ( AIR - UDARA ) MELEWATI ELBOW 30 DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 60

STUDI EKSPERIMENTAL DAN NUMERIK ALIRAN DUA FASE ( AIR - UDARA ) MELEWATI ELBOW 30 DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 60 STUDI EKSPERIMENTAL DAN NUMERIK ALIRAN DUA FASE ( AIR - UDARA ) MELEWATI ELBOW 30 DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 60 Gede Widayana 1) dan Triyogi Yuwono 2) 1) Dosen Universitas Pendidikan

Lebih terperinci

POLA ALIRAN DUA FASE (AIR+UDARA) PADA PIPA HORISONTAL DENGAN VARIASI KECEPATAN SUPERFISIAL AIR

POLA ALIRAN DUA FASE (AIR+UDARA) PADA PIPA HORISONTAL DENGAN VARIASI KECEPATAN SUPERFISIAL AIR 57 POLA ALIRAN DUA FASE (AIR+UDARA) PADA PIPA HORISONTAL DENGAN VARIASI KECEPATAN SUPERFISIAL AIR Agus Dwi Korawan Staf Pengajar Jurusan Teknik Mesin Sekolah Tinggi Teknologi Ronggolawe Cepu Keywords :

Lebih terperinci

PENGARUH REYNOLD NUMBER ( RE ) TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA ( BERJARI JARI DAN PATAH )

PENGARUH REYNOLD NUMBER ( RE ) TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA ( BERJARI JARI DAN PATAH ) PENGARUH REYNOLD NUMBER ( RE ) TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA ( BERJARI JARI DAN PATAH ) Mustakim 1), Abd. Syakura 2) Program Studi Teknik Pendingin dan Tata Udara, Politeknik Tanjungbalai.

Lebih terperinci

VOID FRACTION DAN PEMETAAN POLA ALIRAN DUA FASE (AIR-UDARA) MELEWATI ELBOW 75 DARI PIPA VERTIKAL MENUJU PIPA MIRING 15

VOID FRACTION DAN PEMETAAN POLA ALIRAN DUA FASE (AIR-UDARA) MELEWATI ELBOW 75 DARI PIPA VERTIKAL MENUJU PIPA MIRING 15 JURNAL LOGIC. VOL. 15. NO. 2 JULI 2015 82 VOID FRACTION DAN PEMETAAN POLA ALIRAN DUA FASE (AIR-UDARA) MELEWATI ELBOW 75 DARI PIPA VERTIKAL MENUJU PIPA MIRING 15 I Kadek Ervan Hadi Wiryanta Jurusan Teknik

Lebih terperinci

PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA

PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA PENGARUH DEBIT ALIRAN TERHADAP HEAD LOSSES PADA VARIASI JENIS BELOKAN PIPA Syofyan Anwar Syahputra 1, Aspan Panjaitan 2 1 Program Studi Teknik Pendingin dan Tata Udara, Politeknik Tanjungbalai Sei Raja

Lebih terperinci

`BAB II KAJIAN PUSTAKA DAN DASAR TEORI

`BAB II KAJIAN PUSTAKA DAN DASAR TEORI 4 `BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Adiwibowo (2010) melakukan penelitian tentang saluran pipa vertikal yang akan sering dipakai untuk penghubung pipa. Pada penelitian ini bertujuan

Lebih terperinci

(TESIS) STUDI EKSPERIMENTAL DAN NUMERIK ALIRAN DUA FASE (AIR UDARA) MELEWATI ELBOW

(TESIS) STUDI EKSPERIMENTAL DAN NUMERIK ALIRAN DUA FASE (AIR UDARA) MELEWATI ELBOW (TESIS) STUDI EKSPERIMENTAL DAN NUMERIK ALIRAN DUA FASE (AIR UDARA) MELEWATI ELBOW 60 DARI PIPA VERTIKAL MENUJU PIPA DENGAN SUDUT KEMIRINGAN 30 (Studi Kasus Elbow dengan R/D = 0,7) AGUS DWI KORAWAN 2108202001

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

Eksperimental Karakterisitik Pressure Drop pada Aliran Dua Fase Gas-Cairan Melewati Pipa Vertikal

Eksperimental Karakterisitik Pressure Drop pada Aliran Dua Fase Gas-Cairan Melewati Pipa Vertikal Eksperimental Karakterisitik Pressure Drop pada Aliran Dua Fase Gas-Cairan Melewati Pipa Vertikal Priyo Heru Adiwibowo Jurusan Teknik Mesin, Fakultas Teknik Universitas Negeri Surabaya Email : apriyoheru@gmail.com

Lebih terperinci

BAB IV PEMBAHASAN DAN ANALISA

BAB IV PEMBAHASAN DAN ANALISA BAB IV PEMBAHASAN DAN ANALISA 4.1. Hasil Hasil pengujian dan pengambilan data dalam penelitian aliran dua fasa pipa vertikal dengan air dan udara dengan arah berlawanan, diperoleh data yang kemudian dilakukan

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

KARAKTERISITIK FLOW PATERN PADA ALIRAN DUA FASE GAS-CAIRAN MELEWATI PIPA VERTIKAL

KARAKTERISITIK FLOW PATERN PADA ALIRAN DUA FASE GAS-CAIRAN MELEWATI PIPA VERTIKAL KARAKTERISITIK FLOW PATERN PADA ALIRAN DUA FASE GAS-CAIRAN MELEWATI PIPA VERTIKAL Priyo Heru Adiwibowo Jurusan Teknik Mesin, Fakultas Teknik Universitas Negeri Surabaya E-mail: apriyoheru@gmail.com ABSTRAK

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1. KLASIFIKASI FLUIDA Fluida dapat diklasifikasikan menjadi beberapa bagian, tetapi secara garis besar fluida dapat diklasifikasikan menjadi dua bagian yaitu :.1.1 Fluida Newtonian

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA.1 PERHITUNGAN DATA Dari percobaan yang telah dilakukan, didapatkan data mentah berupa temperatur kerja fluida pada saat pengujian, perbedaan head tekanan, dan waktu

Lebih terperinci

Pengaruh Variasi Diameter Injektor Konvergen Udara Terhadap Fenomena Flooding Dalam Aliran Dua Fase Gas-Cair Berlawanan Arah Pada Pipa Vertikal

Pengaruh Variasi Diameter Injektor Konvergen Udara Terhadap Fenomena Flooding Dalam Aliran Dua Fase Gas-Cair Berlawanan Arah Pada Pipa Vertikal Pengaruh Variasi Diameter Injektor Konvergen Udara Terhadap Fenomena Flooding Dalam Aliran Dua Fase Gas-Cair Berlawanan Arah Pada Pipa Vertikal Noorsakti Wahyudi, Rudy Soenoko, Slamet Wahyudi Jurusan Teknik

Lebih terperinci

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Konsep Aliran Fluida Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa

Lebih terperinci

JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: ( Print) B36

JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: ( Print) B36 B36 Simulasi Numerik Aliran Tiga Dimensi Melalui Rectangular Duct dengan Variasi Bukaan Damper Edo Edgar Santosa Putra dan Wawan Aries Widodo Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa. Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto

Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa. Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto Analisis Aliran Fluida Terhadap Fitting Serta Satuan Panjang Pipa Nisa Aina Fauziah, Novita Elvianti, dan Verananda Kusuma Ariyanto Jurusan teknik kimia fakultas teknik universitas Sultan Ageng Tirtayasa

Lebih terperinci

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

BAB III PERALATAN DAN PROSEDUR PENGUJIAN BAB III PERALATAN DAN PROSEDUR PENGUJIAN 3.1 PERANCANGAN ALAT PENGUJIAN Desain yang digunakan pada penelitian ini berupa alat sederhana. Alat yang di desain untuk mensirkulasikan fluida dari tanki penampungan

Lebih terperinci

POSITRON, Vol. IV, No. 2 (2014), Hal ISSN :

POSITRON, Vol. IV, No. 2 (2014), Hal ISSN : Simulasi Aliran Fluida Crude Palm Oil (CPO) dan Air Pada Pipa Horizontal Menggunakan Metode Volume Hingga Bedry Yuveno Denny 1*), Yoga Satria Putra 1), Joko Sampurno 1), Agato 2) 1) Jurusan Fisika Fakultas

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

Pengaruh Variasi Sudut Water Injector Berbentuk Diffuser Terhadap Fenomena Flooding Pada Aliran Dua Fase Cair Udara Vertikal Berlawanan Arah

Pengaruh Variasi Sudut Water Injector Berbentuk Diffuser Terhadap Fenomena Flooding Pada Aliran Dua Fase Cair Udara Vertikal Berlawanan Arah Pengaruh Variasi Sudut Water Injector Berbentuk Diffuser Terhadap Fenomena Flooding Pada Aliran Dua Fase Cair Udara Vertikal Berlawanan Arah Azamataufiq Budiprasojo, Rudy Soenoko, Slamet Wahyudi Jurusan

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... PRAKATA... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR LAMPIRAN...

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... PRAKATA... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR LAMPIRAN... DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... PRAKATA... DAFTAR ISI...... DAFTAR GAMBAR...... DAFTAR LAMPIRAN...... ARTI LAMBANG DAN SINGKATAN...... INTISARI...... ABSTRACT......

Lebih terperinci

SIMULASI CFD ALIRAN ANNULAR

SIMULASI CFD ALIRAN ANNULAR SIMULASI CFD ALIRAN ANNULAR AIR-UDARA SEARAH PADA PIPA HORIZONTAL Sukamta 1, Thoharuddin 2, Achmad Virza Mubarraqah 3 1,2,3 Program Studi Teknik Mesin, Fakultas Teknik Universitas Muhammadiyah Yogyakarta

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Fasa (phase) adalah kondisi atau wujud dari suatu zat, yang dapat berupa padat, cair, atau gas. Aliran multi fasa (multiphase flow) adalah aliran simultan dari beberapa

Lebih terperinci

Aliran Turbulen (Turbulent Flow)

Aliran Turbulen (Turbulent Flow) Aliran Turbulen (Turbulent Flow) A. Laminer dan Turbulen Laminer adalah aliran fluida yang ditunjukkan dengan gerak partikelpartikel fluidanya sejajar dan garis-garis arusnya halus. Dalam aliran laminer,

Lebih terperinci

DAFTAR NOTASI. A : sebuah konstanta, pada Persamaan (5.1)

DAFTAR NOTASI. A : sebuah konstanta, pada Persamaan (5.1) DAFTAR NOTASI A : sebuah konstanta, pada Persamaan (5.1) a c a m1 / 3 a m /k s B : Koefisien-koefisien yang membentuk elemen matrik tridiagonal dan dapat diselesaikan dengan metode eliminasi Gauss : amplitudo

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

PENGARUH KONSENTRASI GARAM TERHADAP KARAKTERISITIK ALIRAN DUA FASE GAS DAN AIR 3

PENGARUH KONSENTRASI GARAM TERHADAP KARAKTERISITIK ALIRAN DUA FASE GAS DAN AIR 3 PENGARUH KONSENTRASI GARAM TERHADAP KARAKTERISITIK ALIRAN DUA FASE GAS DAN AIR 1*, 2 3 Edi Widodo, Ali Akbar, Supriyanto Universitas Muhammadiyah Sidoarjo Kampus II Jl. Raya Gelam 250, Candi, Sidoarjo,

Lebih terperinci

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI).

KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). KEHILANGAN HEAD ALIRAN AKIBAT PERUBAHAN PENAMPANG PIPA PVC DIAMETER 12,7 MM (0,5 INCHI) DAN 19,05 MM (0,75 INCHI). Tugas Akhir, Jurusan Teknik Mesin, Fakultas Teknologi Industri Universitas Gunadarma,,2013

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 HASIL PERHITUNGAN PARAMETER PENSTOCK

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 HASIL PERHITUNGAN PARAMETER PENSTOCK 40 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 HASIL PERHITUNGAN PARAMETER PENSTOCK Diameter pipa penstock yang digunakan dalam penelitian ini adalah 130 mm, sehingga luas penampang pipa (Ap) dapat dihitung

Lebih terperinci

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan)

Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) Panduan Praktikum Fenomena Dasar 010 A. Tujuan Percobaan: Percobaan 5 Losses in Bends and Fittings (Kerugian energi pada belokan dan sambungan) 1. Mengamati kerugian tekanan aliran melalui elbow dan sambungan.

Lebih terperinci

Karakterisasi Pressure Drops Pada Aliran Bubble dan Slug Air Udara Searah Vertikal Ke Atas Melewati Sudden Contraction

Karakterisasi Pressure Drops Pada Aliran Bubble dan Slug Air Udara Searah Vertikal Ke Atas Melewati Sudden Contraction Karakterisasi Pressure Drops Pada Aliran Bubble dan Slug Air Udara Searah Vertikal Ke Atas Melewati Sudden Contraction Indra Koto Jurusan Teknik Mesin, Fakultas Teknik Universitas Negeri Medan koto.indra@gmail.com

Lebih terperinci

MODUL PRAKTIKUM MEKANIKA FLUIDA

MODUL PRAKTIKUM MEKANIKA FLUIDA MODUL PRAKTIKUM MEKANIKA FLUIDA LABORATORIUM TEKNIK SUMBERDAYA ALAM dan LINGKUNGAN JURUSAN KETEKNIKAN PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA MALANG 2013 MATERI I KALIBRASI SEKAT UKUR

Lebih terperinci

Boundary condition yang digunakan untuk proses simulasi adalah sebagai berikut :

Boundary condition yang digunakan untuk proses simulasi adalah sebagai berikut : BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Penelitian Hasil dari simulasi penelitian fluktuasi tekanan pada kondensasi Steam pada pipa konsentrik dengan pendinginan searah pada ruang anulus dengan menggunakan

Lebih terperinci

KOEFISIEN PERPINDAHAN KALOR DUA FASA UDARA DAN AIR SEARAH DALAM PIPA VERTIKAL PADA DAERAH ALIRAN KANTUNG (SLUG FLOW)

KOEFISIEN PERPINDAHAN KALOR DUA FASA UDARA DAN AIR SEARAH DALAM PIPA VERTIKAL PADA DAERAH ALIRAN KANTUNG (SLUG FLOW) KOEFISIEN PERPINDAHAN KALOR DUA FASA UDARA DAN AIR SEARAH DALAM PIPA VERTIKAL PADA DAERAH ALIRAN KANTUNG (SLUG FLOW) Imam Syofii, Nuryo Suwito, Kunarto, Deendarlianto Jurusan Teknik Mesin, UGM Email: syofii_imam@yahoo.com

Lebih terperinci

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena BAB II LANDASAN TEORI 2.1 Mekanika Fluida Mekanika fluida adalah subdisiplin dari mekanika kontinyu yang mempelajari tentang fluida (dapat berupa cairan dan gas). Fluida sendiri merupakan zat yang bisa

Lebih terperinci

PERNYATAAN. Yogyakarta, Februari Penulis. Achmad Virza Mubarraqah. iii

PERNYATAAN. Yogyakarta, Februari Penulis. Achmad Virza Mubarraqah. iii PERNYATAAN Saya menyatakan dengan sesungguhnya bahwa Tugas Akhir ini adalah asli hasil karya saya dan tidak terdapat karya yang pernah diajukan untuk memperoleh gelar sarjana di Perguruan Tinggi dan sepanjang

Lebih terperinci

JUDUL TUGAS AKHIR ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI

JUDUL TUGAS AKHIR  ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI JUDUL TUGAS AKHIR http://www.gunadarma.ac.id/ ANALISA KOEFISIEN GESEK PIPA ACRYLIC DIAMETER 0,5 INCHI, 1 INCHI, 1,5 INCHI ABSTRAKSI Alat uji kehilangan tekanan didalam sistem perpipaan dibuat dengan menggunakan

Lebih terperinci

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng

ALIRAN FLUIDA. Kode Mata Kuliah : Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng ALIRAN FLUIDA Kode Mata Kuliah : 2035530 Bobot : 3 SKS Oleh MARYUDI, S.T., M.T., Ph.D Irma Atika Sari, S.T., M.Eng Apa yang kalian lihat?? Definisi Fluida Definisi yang lebih tepat untuk membedakan zat

Lebih terperinci

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut.

HUKUM STOKES. sekon (Pa.s). Fluida memiliki sifat-sifat sebagai berikut. HUKUM STOKES I. Pendahuluan Viskositas dan Hukum Stokes - Viskositas (kekentalan) fluida menyatakan besarnya gesekan yang dialami oleh suatu fluida saat mengalir. Makin besar viskositas suatu fluida, makin

Lebih terperinci

ALIRAN FLUIDA DALAM PIPA TERTUTUP

ALIRAN FLUIDA DALAM PIPA TERTUTUP MAKALAH MEKANIKA FLUIDA ALIRAN FLUIDA DALAM PIPA TERTUTUP Disusun Oleh: Nama : Juventus Victor HS NPM : 3331090796 Jurusan Dosen : Teknik Mesin-Reguler B : Yusvardi Yusuf, ST.,MT JURUSAN TEKNIK MESIN FAKULTAS

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA 4.1 DATA Selama penelitian berlangsung, penulis mengumpulkan data-data yang mendukung penelitian serta pengolahan data selanjutnya. Beberapa data yang telah terkumpul

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

Karakterisasi Transisi Regime Aliran 2 Fase (Gas-Liquid) Dalam Round Canal dan Rectangular Canal

Karakterisasi Transisi Regime Aliran 2 Fase (Gas-Liquid) Dalam Round Canal dan Rectangular Canal Prosiding Seminar Nasional Teknik Kimia Kejuangan ISSN 693 4393 Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia Yogyakarta, 22 Februari 20 Karakterisasi Transisi Regime Aliran

Lebih terperinci

KAJI EKSPERIMENTAL RUGI TEKAN (HEAD LOSS) DAN FAKTOR GESEKAN YANG TERJADI PADA PIPA LURUS DAN BELOKAN PIPA (BEND)

KAJI EKSPERIMENTAL RUGI TEKAN (HEAD LOSS) DAN FAKTOR GESEKAN YANG TERJADI PADA PIPA LURUS DAN BELOKAN PIPA (BEND) TUGAS SARJANA BIDANG KONVERSI ENERGI KAJI EKSPERIMENTAL RUGI TEKAN (HEAD LOSS) DAN FAKTOR GESEKAN YANG TERJADI PADA PIPA LURUS DAN BELOKAN PIPA (BEND) Diajukan Sebagai Syarat Memperoleh Gelar Kesarjanaan

Lebih terperinci

BAB 2 DASAR TEORI. [CO 2 ] = H. pco 2 (2.1) pco 2 = (mol % CO 2 ) x (gas pressure) (2.2)

BAB 2 DASAR TEORI. [CO 2 ] = H. pco 2 (2.1) pco 2 = (mol % CO 2 ) x (gas pressure) (2.2) iv BAB 2 DASAR TEORI Sistem produksi minyak dan gas terutama untuk anjungan lepas pantai memerlukan biaya yang tinggi untuk pemasangan, pengoperasian dan perawatan. Hal ini diakibatkan faktor geografis

Lebih terperinci

DAFTAR ISI Novie Rofiul Jamiah, 2013

DAFTAR ISI Novie Rofiul Jamiah, 2013 DAFTAR ISI ABSTRAK... i KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR GAMBAR... vii DAFTAR TABEL... ix DAFTAR NOTASI... xi BAB I PENDAHULUAN 1.1 Latar Belakang... 1 1.2 Batasan

Lebih terperinci

Studi Eksperimen Aliran Melalui Square Duct dan Square Elbow 90º dengan Double Guide Vane pada Variasi Sudut Bukaan Damper

Studi Eksperimen Aliran Melalui Square Duct dan Square Elbow 90º dengan Double Guide Vane pada Variasi Sudut Bukaan Damper B-62 JURNAL TEKNIK ITS Vol. 5 No. 2 (216) ISSN: 2337-3539 (231-9271 Print) Studi Eksperimen Aliran Melalui Square Duct dan Square Elbow 9º dengan Double Guide Vane pada Variasi Sudut Bukaan Damper Andrew

Lebih terperinci

ANALISIS DEBIT FLUIDA PADA PIPA ELBOW 90 DENGAN VARIASI DIAMETER PIPA

ANALISIS DEBIT FLUIDA PADA PIPA ELBOW 90 DENGAN VARIASI DIAMETER PIPA 48 ANALISIS DEBIT FLUIDA PADA PIPA ELBOW 90 DENGAN VARIASI DIAMETER PIPA Sandi Setya Wibowo 1), Kun Suharno 2), Sri Widodo 3) 1 Jurusan Teknik Mesin, Fakultas Teknik, Universitas Tidar email:sandisetya354@gmail.com

Lebih terperinci

THE EFFECT OF THE CONCENTRATION OF THE SALT SOLUTION TO THE CHARACTERISTICS OF TWO PHASE FLOW AIR WATER

THE EFFECT OF THE CONCENTRATION OF THE SALT SOLUTION TO THE CHARACTERISTICS OF TWO PHASE FLOW AIR WATER THE EFFECT OF THE CONCENTRATION OF THE SALT SOLUTION TO THE CHARACTERISTICS OF TWO PHASE FLOW AIR WATER Edi Widodo 1*,, Ali Akbar 2, Supriyanto 3 ) Universitas Muhammadiyah Sidoarjo Kampus II Jl. Raya

Lebih terperinci

BAB I. PENDAHULUAN Latar Belakang

BAB I. PENDAHULUAN Latar Belakang BAB I. PENDAHULUAN 1.1. Latar Belakang Aliran dua fasa berlawanan arah, banyak dijumpai pada aplikasi reaktor nuklir, jaringan pipa, minyak dan gas. Aliran dua fasa ini juga memiliki karakteristik yang

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 Skema pressurized water reactor (http://www.world-nuclear.org/, September 2015)

BAB I PENDAHULUAN. Gambar 1.1 Skema pressurized water reactor (http://www.world-nuclear.org/, September 2015) BAB I PENDAHULUAN 1.1. Latar Belakang Aliran multifase merupakan salah satu fenomena penting yang banyak ditemukan dalam kegiatan industri. Kita bisa menemukannya di dalam berbagai bidang industri seperti

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN:

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 1 STUDI EKSPERIMEN DAN NUMERIK ALIRAN DIDALAM RECTANGULAR ELBOW 90 o YANG DILENGKAPI DENGAN ROUNDED LEADING AND TRAILING EDGES GUIDE VANE Studi Kasus Untuk Bilangan Reynolds, Re Dh = 2,1 x 10 4 Adityas

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

Analisis Aliran Fluida Dua Fase (Udara-Air) melalui Belokan 45 o

Analisis Aliran Fluida Dua Fase (Udara-Air) melalui Belokan 45 o Analisis Aliran Fluida Dua Fase (-Air) melalui Belokan 45 o Awaluddin, Slamet Wahyudi dan Agung Sugeng Widodo Jurusan Teknik Mesin Fakultas Teknik Universitas Brawijaya Jalan MT. Haryono 167, Malang 65145,

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

DETEKSI MULAI TERBENTUKNYA ALIRAN CINCIN PADA PIPA HORISONTAL MENGGUNAKAN SENSOR ELEKTRODE Hermawan

DETEKSI MULAI TERBENTUKNYA ALIRAN CINCIN PADA PIPA HORISONTAL MENGGUNAKAN SENSOR ELEKTRODE Hermawan DETEKSI MULAI TERBENTUKNYA ALIRAN CINCIN PADA PIPA HORISONTAL MENGGUNAKAN SENSOR ELEKTRODE Hermawan Jurusan Teknik Mesin Dan Industri Fakultas Teknik Universitas Gadjah Mada Indonesia hermawan_ugm@yahoo.com

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Kecepatan dan Kapasitas Aliran Fluida Penentuan kecepatan disejumlah titik pada suatu penampang memungkinkan untuk membantu dalam menentukan besarnya kapasitas aliran sehingga

Lebih terperinci

STUDI EKSPERIMEN STRUKTUR ANTAR MUKA ALIRAN STRATIFIED PADA ALIRAN DUA FASA ADIABATIS SEARAH BERDASAR NILAI BEDA TEKANAN

STUDI EKSPERIMEN STRUKTUR ANTAR MUKA ALIRAN STRATIFIED PADA ALIRAN DUA FASA ADIABATIS SEARAH BERDASAR NILAI BEDA TEKANAN STUDI EKSPERIMEN STRUKTUR ANTAR MUKA ALIRAN STRATIFIED PADA ALIRAN DUA FASA ADIABATIS SEARAH BERDASAR NILAI BEDA TEKANAN Rianto Wibowo *, Akhmad Zidni Hudaya, Masruki Kabib Program Teknik Mesin, Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. Tekanan Atmosfer Tekanan atmosfer adalah tekanan yang ditimbulkan oleh bobot udara di atas suatu titik di permukaan bumi. Pada permukaan laut, atmosfer akan menyangga kolom air

Lebih terperinci

SIMULASI CFD ALIRAN STRATIFIED AIR-UDARA SEARAH PADA PIPA HORISONTAL

SIMULASI CFD ALIRAN STRATIFIED AIR-UDARA SEARAH PADA PIPA HORISONTAL SIMULASI CFD ALIRAN STRATIFIED AIR-UDARA SEARAH PADA PIPA HORISONTAL Sukamta 1), Thoharudin 2), Dedy Meilanto Nugroho 3), 123) Program Studi Teknik Mesin, Fakultas Teknik Universitas Muhammadiyah Yogyakarta,

Lebih terperinci

18/08/2014. Fluid Transport MATA KULIAH: DASAR KETEKNIKAN PENGOLAHAN. Nur Istianah-THP-FTP-UB-2014

18/08/2014. Fluid Transport MATA KULIAH: DASAR KETEKNIKAN PENGOLAHAN. Nur Istianah-THP-FTP-UB-2014 18/08/014 Fluid Transport MATA KULIAH: DASAR KETEKNIKAN PENGOLAHAN 1 18/08/014 Energy losses Item Pipa lurus Fitting Contraction Enlargment f EF Laminar/ Turbulen(pipa halus/kasar) - - - - - K f (V 1 )

Lebih terperinci

Jl. Grafika No. 2 Yogyakarta 55281, Indonesia ABSTRAK

Jl. Grafika No. 2 Yogyakarta 55281, Indonesia ABSTRAK Pengaruh Tegangan Permukaan Terhadap Fraksi Liquid (Liquid Hold-Up) dan Kecepatan Gelombang Aliran Cincin (Annular flow) Cair-Gas Pada Pipa Horisontal sebagai Aplikasi Aliran Fluida pada Pipa PRASETYO

Lebih terperinci

STUDI DISTRIBUSI TEKANAN ALIRAN MELALUI PENGECILAN SALURAN SECARA MENDADAK DENGAN BELOKAN PADA PENAMPANG SEGI EMPAT

STUDI DISTRIBUSI TEKANAN ALIRAN MELALUI PENGECILAN SALURAN SECARA MENDADAK DENGAN BELOKAN PADA PENAMPANG SEGI EMPAT STUDI DISTRIBUSI TEKANAN ALIRAN MELALUI PENGECILAN SALURAN SECARA MENDADAK DENGAN BELOKAN PADA PENAMPANG SEGI EMPAT Sarjito, Subroto, Arif Kurniawan Jurusan Teknik Mesin Fakultas Tekknik Universitas Muhammadiyah

Lebih terperinci

IRVAN DARMAWAN X

IRVAN DARMAWAN X OPTIMASI DESAIN PEMBAGI ALIRAN UDARA DAN ANALISIS ALIRAN UDARA MELALUI PEMBAGI ALIRAN UDARA SERTA INTEGRASI KEDALAM SISTEM INTEGRATED CIRCULAR HOVERCRAFT PROTO X-1 SKRIPSI Oleh IRVAN DARMAWAN 04 04 02

Lebih terperinci

SEMINAR NASIONAL ke 8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi

SEMINAR NASIONAL ke 8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi SEMINAR NASIONAL ke 8 Tahun 213 : Rekayasa Teknologi Industri dan Informasi DISTRIBUSI LIQUID HOLD UP PADA ALIRAN CINCIN (ANNULAR) AIR UDARA DI PIPA HORIZONTAL MENGGUNAKAN C.E.C.M Liquid Hold-Up Distribution

Lebih terperinci

ANALISIS FAKTOR GESEKAN PADA PIPA HALUS ABSTRAK

ANALISIS FAKTOR GESEKAN PADA PIPA HALUS ABSTRAK ANALISIS FAKTOR GESEKAN PADA PIPA HALUS Juari NRP: 1321025 Pembimbing: Robby Yussac Tallar, Ph.D. ABSTRAK Hidraulika merupakan ilmu dasar dalam bidang teknik sipil yang menjelaskan perilaku fluida atau

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Tinjauan Umum Turbin Tesla Turbin Tesla merupakan salah satu turbin yang memanfaatkan energi fluida dan viskositas fluida untuk menggerakkan turbin. Konsep turbin Tesla ditemukan

Lebih terperinci

STUDI EKSPERIMEN MENGENAI FLUKTUASI TEKANAN DAN TEGANGAN GESER ANTARMUKA PADA ALIRAN STRATIFIED AIR UDARA PADA PIPA HORIZONTAL

STUDI EKSPERIMEN MENGENAI FLUKTUASI TEKANAN DAN TEGANGAN GESER ANTARMUKA PADA ALIRAN STRATIFIED AIR UDARA PADA PIPA HORIZONTAL STUDI EKSPERIMEN MENGENAI FLUKTUASI TEKANAN DAN TEGANGAN GESER ANTARMUKA PADA ALIRAN STRATIFIED AIR UDARA PADA PIPA HORIZONTAL Dony Gunawan 1), Akhmad Zidni Hudaya 2), Indarto 3), 123) Jurusan Teknik Mesin

Lebih terperinci

MAKALAH KOMPUTASI NUMERIK

MAKALAH KOMPUTASI NUMERIK MAKALAH KOMPUTASI NUMERIK ANALISA ALIRAN FLUIDA DALAM PIPA SIRKULAR DAN PIPA SPIRAL UNTUK INSTALASI SALURAN AIR DI RUMAH DENGAN SOFTWARE CFD Oleh : MARIO RADITYO PRARTONO 1306481972 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 47 BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 4.1 PENDAHULUAN Bab ini menampilkan hasil penelitian dan pembahasan berdasarkan masing-masing variabel yang telah ditetapkan dalam penelitian. Hasil pengukuran

Lebih terperinci

PENGARUH DIAMETER NOZEL UDARA PADA SISTEM JET

PENGARUH DIAMETER NOZEL UDARA PADA SISTEM JET i Saat ini begitu banyak perusahaan teknologi dalam pembuatan satu barang. Salah satunya adalah alat penyemprotan nyamuk. Alat penyemprotan nyamuk ini terdiri dari beberapa komponen yang terdiri dari pompa,

Lebih terperinci

I. PENDAHULUAN I.1. Latar Belakang

I. PENDAHULUAN I.1. Latar Belakang I. PENDAHULUAN I.1. Latar Belakang Dalam aplikasi sistem perpipaan seperti pada proses kimia, proses produksi dan distribusi minyak dan gas sering dijumpai junction (percabangan). Ketika aliran dua fase

Lebih terperinci

STUDI KARAKTERISTIK LAJU ALIRAN ENERGI UNTUK FLUIDA AIR DAN UDARA PADA PIPA HORISONTAL

STUDI KARAKTERISTIK LAJU ALIRAN ENERGI UNTUK FLUIDA AIR DAN UDARA PADA PIPA HORISONTAL STUDI KARAKTERISTIK LAJU ALIRAN ENERGI UNTUK FLUIDA AIR DAN UDARA PADA PIPA HORISONTAL Edy Suryono 1*, Agustinus Eko Budhi Nusantoro 2 1,2 Program Studi Teknik Mesin, Akademi Teknologi Warga Surakarta

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008

BAB I PENDAHULUAN. 1 Universitas Indonesia. Analisa aliran berkembang..., Iwan Yudi Karyono, FT UI, 2008 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Suatu sistem transfer fluida dari suatu tempat ke tempat lain biasanya terdiri dari pipa,valve,sambungan (elbow,tee,shock dll ) dan pompa. Jadi pipa memiliki peranan

Lebih terperinci

KAJI EKSPERIMENTAL ALIRAN DUA FASE AIR-CRUDE OIL MELEWATI PIPA SUDDEN EXPANSION

KAJI EKSPERIMENTAL ALIRAN DUA FASE AIR-CRUDE OIL MELEWATI PIPA SUDDEN EXPANSION C.1 KAJI EKSPERIMENTAL ALIRAN DUA FASE AIR-CRUDE OIL MELEWATI PIPA SUDDEN EXPANSION Eflita Yohana *, Ambangan Siregar, Yohanes Aditya W Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro Jl.

Lebih terperinci

Pengaruh Diameter Gelembung Hidrogen Terhadap Penurunan Tekanan (Pressure Drop) Pada Saluran Tertutup Segi-Empat

Pengaruh Diameter Gelembung Hidrogen Terhadap Penurunan Tekanan (Pressure Drop) Pada Saluran Tertutup Segi-Empat Pengaruh Diameter Gelembung Hidrogen Terhadap Penurunan Tekanan (Pressure Drop) Pada Saluran Tertutup Segi-Empat Rachmat Subagyo 1, I.N.G. Wardana 2, Agung S.W 2., Eko Siswanto 2 1 Mahasiswa Program Doktor

Lebih terperinci

Penentuan Sub-sub Pola Aliran Stratified Air-Udara pada Pipa Horisontal Menggunakan Pengukuran Tekanan

Penentuan Sub-sub Pola Aliran Stratified Air-Udara pada Pipa Horisontal Menggunakan Pengukuran Tekanan Penentuan Sub-sub Pola Aliran Stratified Air-Udara pada Pipa Horisontal Menggunakan Pengukuran Tekanan Rianto Wibowo1, a *, Akhmad Zidni Hudaya 1,b, Masruki Kabib1,c, Deendarlianto2,d dan Adhika Widyaparaga2,e

Lebih terperinci

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 31 BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS 4.1 DESAIN PIPA PENSTOCK Desain Pipa Penstock yang akan berkaitan dengan besar debit air yang mengalir melalui Pipa Penstock. Jadi debit optimum air (Qopt)

Lebih terperinci

BAB III FLUIDISASI. Gambar 3.1. Skematik proses fluidisasi

BAB III FLUIDISASI. Gambar 3.1. Skematik proses fluidisasi BAB III FLUIDISASI 3.1 FENOMENA FLUIDISASI 3.1.1 Proses Fluidisasi Bila suatu zat cair atau gas dilewatkan melalui lapisan hamparan partikel padat pada kecepatan rendah, partikel-partikel itu tidak bergerak.

Lebih terperinci

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES)

BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) BAB IV PENGUKURAN KEHILANGAN ENERGI AKIBAT BELOKAN DAN KATUP (MINOR LOSSES) 4.1 Pendahuluan Kerugian tekan (headloss) adalah salah satu kerugian yang tidak dapat dihindari pada suatu aliran fluida yang

Lebih terperinci

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR

ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR ANALISIS FAKTOR GESEK PADA PIPA AKRILIK DENGAN ASPEK RASIO PENAMPANG 1 (PERSEGI) DENGAN PENDEKATAN METODE EKSPERIMENTAL DAN EMPIRIS TUGAS AKHIR Oleh : DEKY PUTRA 04 04 22 013 3 DEPARTEMEN TEKNIK MESIN

Lebih terperinci

BAB II PENGUKURAN ALIRAN. Pengukuran adalah proses menetapkan standar untuk setiap besaran yang

BAB II PENGUKURAN ALIRAN. Pengukuran adalah proses menetapkan standar untuk setiap besaran yang BAB II PENGUKURAN ALIRAN II.1. PENGERTIAN PENGUKURAN Pengukuran adalah proses menetapkan standar untuk setiap besaran yang tidak terdefinisi. Standar tersebut dapat berupa barang yang nyata, dengan syarat

Lebih terperinci

BAB II DASAR TEORI QQ =... (2.1) Dimana: VV = kebutuhan air (mm 3 /hari) tt oooo = lama operasi pompa (jam/hari) nn pp = jumlah pompa

BAB II DASAR TEORI QQ =... (2.1) Dimana: VV = kebutuhan air (mm 3 /hari) tt oooo = lama operasi pompa (jam/hari) nn pp = jumlah pompa 4 BAB II DASAR TEORI 1.1 Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan tersebut. Kenaikan tekanan

Lebih terperinci

STUDI EKSPERIMENTAL PENGUKURAN HEAD LOSSES MAYOR (PIPA PVC DIAMETER ¾ ) DAN HEAD LOSSES MINOR (BELOKAN KNEE 90 DIAMETER ¾ ) PADA SISTEM INSTALASI PIPA

STUDI EKSPERIMENTAL PENGUKURAN HEAD LOSSES MAYOR (PIPA PVC DIAMETER ¾ ) DAN HEAD LOSSES MINOR (BELOKAN KNEE 90 DIAMETER ¾ ) PADA SISTEM INSTALASI PIPA Vol. 1, No., Mei 010 ISSN : 085-8817 STUDI EKSPERIMENTAL PENGUKURAN HEAD LOSSES MAYOR (PIPA PVC DIAMETER ¾ ) DAN HEAD LOSSES MINOR (BELOKAN KNEE 90 DIAMETER ¾ ) PADA SISTEM INSTALASI PIPA Helmizar Dosen

Lebih terperinci

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian 1.1 Tujuan Pengujian WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN a) Mempelajari formulasi dasar dari heat exchanger sederhana. b) Perhitungan keseimbangan panas pada heat exchanger. c) Pengukuran

Lebih terperinci

ALIRAN PADA PIPA. Oleh: Enung, ST.,M.Eng

ALIRAN PADA PIPA. Oleh: Enung, ST.,M.Eng ALIRAN PADA PIPA Oleh: Enung, ST.,M.Eng Konsep Aliran Fluida Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa Jenis dan Viskositas. Masalah aliran fluida dalam PIPA : Sistem Terbuka

Lebih terperinci

INDUSTRI PENGOLAHAN BATUBARA

INDUSTRI PENGOLAHAN BATUBARA (Indra Wibawa Dwi Sukma_Teknik Kimia_Universitas Lampung) 1 INDUSTRI PENGOLAHAN BATUBARA Adapun berikut ini adalah flowsheet Industri pengolahan hasil tambang batubara. Gambar 1. Flowsheet Industri Pengolahan

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 DATA UNCERTAINTY Dalam setiap penelitian, pengambilan data merupakan hal yang penting. Namun error (kesalahan) dalam pengambilan data tidak dapat dihindarkan. Kesalahan tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci