MATERI PRAKTIKUM PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS)

Ukuran: px
Mulai penontonan dengan halaman:

Download "MATERI PRAKTIKUM PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS)"

Transkripsi

1 PRAKTIKUM 4 ANALISA AR-MBA (ASSOCIATION RULE - MARKET BASKET ANALYSIS) Tujuan Praktikum 1. Mahasiswa dapat mengetahui salah satu metode asosiasi dalam data mining. 2. Memberikan pemahaman mengenai prosedurmarket Basket Analysis. 3. Mahasiswa dapat mengolah suatu data yang cukup besar sehingga data tersebut dapat digunakan dengan menggunakan Association Rule. Latar Belakang AR-MBA Dewasa ini, penggunaan mesin pencatat dan pemroses transaksi berteknologi barcode telah umum digunakan pada penjual eceran maupun kecil (toko atau swalayan). Dengan mesin ini, penjual eceran dapat menyimpan data transaksinya dalam suatu basisdata transaksi. Tiap informasi pada transaksi memuat tanggal dan item apa saja yang dibeli. Data ini disebut sebagai basket data. Market Basket Analysis (MBA) merupakan studi mengenai analisis basket data. Salah satu metode yang banyak digunakan dalam MBA adalah association rule mining yang bertujuan menemukan aturan-aturan asosiasi di antara himpunan besar data item dalam basisdata transaksi. Apabila diimplementasikan dalam basis data transaksi, aturanaturan asosiasi ini akan sangat berguna dalam menentukan strategi bisnis seperti mendesain katalog, menata layout, serta merancang kampanye pemasaran dan promosi. Salah satu kemungkinan contoh dari asosiasi misalnya adalah bahwa 80% pelanggan yang membeli produk A juga membeli produk B. Dalam hal ini produk A dan B disebut dengan istilah frequent itemset. Dari frequent itemset tersebut kita dapat menentukan aturan asosiasi antar item dalam frequent itemset.

2 Menggali aturan asosiasi dari basis data transaksi bukan merupakan masalah trivial. Pertama, jumlah transaksi yang terdapat dalam basis data umumnya sangat banyak. Kedua, jumlah kemungkinan frequent itemset meningkat secara eksponensial terhadap jumlah jenis item. Terdapat berbagai algoritma yang dapat digunakan untuk aplikasi AR-MBA, antara lain yaitu algoritma apriori dan algoritma FP-growth. Berikut penjelasan dari kedua algoritma tersebut: Algoritma Apriori Algoritma apriori merupakan suatu algoritma untuk mengurangi ruang pencarian kombinasi item, sehingga analisis dapat dilakukan dengan lebih cepat. Lebih lanjut lagi, aturan-aturan yang dihasilkan dari algoritma apriori dapat diidentifikasi lagi untuk menentukan aturan mana yang dapat memberikan informasi lebih banyak dengan menggunakan ukuran support dan lift ratio. Kemudian, aturan-aturan asosiasi yang telah dihasilkan dapat digunakan sebagai bahan pertimbangan untuk pengambilan keputusan dalam strategi bisnis. Adapun dua proses utama yang dilakukan dalam algoritma Apriori (Han & Kamber, 2006), yaitu : 1. Join (penggabungan). Pada proses ini setiap item dikombinasikan dengan item yang lainnya sampai tidak terbentuk kombinasi lagi. 2. Prune (pemangkasan). Pada proses ini, hasil dari item yang telah dikombinasikan tadi lalu dipangkas dengan menggunakan minimum support yang telah ditentukan oleh user. Algoritma FP-Growth Algoritma FP-Growth merupakan pengembangan dari algoritma Apriori. Sehingga kekurangan dari algoritma Apriori diperbaiki oleh algoritma FP-Growth. Frequent Pattern Growth (FP-Growth) adalah salah satu alternatif algoritma yang dapat digunakan untuk menentukan himpunan data yang paling sering muncul (frequent itemset) dalam sebuah kumpulan data (David Samuel, 2008). Pada algoritma Apriori diperlukan generate candidate

3 untuk mendapatkan frequent itemsets. Akan tetapi, di algoritma FP-Growth generate candidate tidak dilakuka karena FP-Growth menggunakan konsep pembangunan tree dalam pencarian frequent itemsets. Hal tersebutlah yang menyebabkan algoritma FP-Growth lebih cepat dari algoritma Apriori. Karakteristik algoritma FP-Growth adalah struktur data yang digunakan adalah tree yang disebut dengan FP-Tree. Dengan menggunakan FP-Tree, algoritma FP-growth dapat langsung mengekstrak frequent Itemset dari FP-Tree. Penggalian itemset yang frequent dengan menggunakan algoritma FP-Growth akan dilakukan dengan cara membangkitkan struktur data tree atau disebut dengan FPTree. Metode FP-Growth dapat dibagi menjadi 3 tahapan utama yaitu sebagai berikut (Han & Kamber 2006): 1. Tahap pembangkitan conditional pattern base, 2. Tahap pembangkitan conditional FP-Tree, dan 3. Tahap pencarian frequent itemset. Association Rule Asociation dalam data mining adalah pekerjaan untuk menentukan mana atribut yang akan didapatkan bersamaan. Dalam dunia bisnis lazim dikenal istilah affinity analysis. Tugas dari asociation rule adalah mencari aturan yang tidak mengcover untuk mengukur hubungan antara dua atau lebih atribut. Association Rule adalah bentuk jika kejadian sebelumnya kemudian konsekuensinya. (IF antecedent, THEN consequent). Bersamaan dengan perhitungan aturan support dan confidence. Pola asosiasi menjadi salah satu fungsionalitas yang paling menarik dalam penggalian data (Kumar dan Wahidabanu, 2007). Association Rule adalah teknik data mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Contoh dari Association Rule dari analisa pembelian di suatu pasar swalayan adalah bisa diketahui berapa besar kemungkinan seorang pembeli membeli roti bersamaan dengan susu. Dengan pengetahuan tersebut Pemilik pasar swalayan dapat mengatur penempatan barangnya atau

4 merancang kampanye pemasaran dengan memakai kupon diskon untuk kombinasi barang tertentu (Wiwin Suwarningsih, 2008). Menurut Leo Susanto (2003) penggalian kaidah asosiasi mempunyai peranan penting dalam proses pengambilan keputusan. Salah satu contoh penerapan Association Rule adalah Market Basket Analysis. Association Rule menjadi terkenal karena aplikasinya untuk menganalisa isi keranjang belanja di pasar swalayan, sehingga Association Rule juga sering disebut dengan istilah Market Basket Analysis. Association Rule juga dikenal sebagai salah satu teknik data mining yang menjadi dasar dari berbagai teknik data mining lainnya. Konsep Market Basket Analysis Gambar 1. Ilustrasi Penggunaan MBA Market Basket Analysis merupakan salah satu contoh penerapan Association Rule. Untuk menyampaikan ide mendasar dari Market Basket Analysis, dimulai dengan melihat gambar keranjangan belanjaan pada gambar 3.1 yang berisi bermacam-macam barangbarang yang dibeli oleh seseorang disebuah supermarket. Keranjang ini berisi bermacammacam barang-barang seperti roti, susu, sereal, telur, mentega, gula, dan sebagainya. Sebuah keranjang memberitahukan kepada kita tentang apa saja yang dibeli oleh seorang konsumen dalam satu waktu. Sebuah daftar belanjaan yang lengkap yang diperoleh dari

5 semua konsumen memberikan kita informasi yang sangat banyak, dan ini dapat menjelaskan barang-barang apa saja yang paling penting dari bisnis penjualan yaitu apa barang yang dibeli oleh konsumen dan kapan. Setiap konsumen membeli seperangkat barang-barang yang berbeda, dalam jumlah yang berbeda, dan dalam waktu yang berbeda. Market Basket Analysis menggunakan informasi apa yang dibeli oleh konsumen-konsumen untuk menyediakan tanda/informasi yaitu siapa mereka dan mengapa mereka melakukan pembelian tersebut? Market Basket Analysis menyediakan pengertian tentang barang dagangan dengan memberitahukan kepada kita produk-produk mana yang memungkinkan untuk dibeli secara bersamaan dan produk mana yang lebih disetujui untuk di promosikan. Karena dalam Market Basket Analysis tidak hanya memahami kuantitas dari item yang dibeli dalam keranjang itu, tapi bagaimana item yang dibeli dalam hubungannya satu dengan yang lain. Informasi ini dapat digunakan dalam: 1. Lebih menguntungkan periklanan dan promosi. Market Basket Analysis menggunakan iklan dan promosi agar lebih memahami bagaimana pembeli menanggapi dan berkomunikasi atas produk-produk yang ditawarkan, karena tujuan dari retailer adalah Bagaimana mengubah penjualan ini? Apa lagi yang dijual dan apa yang diiklankan?. 2. Penargetan yang lebih tepat dalam mengembalikan ROI (Return of Investment). Market Basket Analysis digunakan untuk mengoptimalkan kampanye dan promosi untuk peningkatan penjualan dan margin dengan penargetan lebih tepat. 3. Loyalitas kartu promosi dengan analisis longitudinal. Longitudinal pengguna Market Basket Analysis memungkinkan pengecer untuk membeli karakter perilaku pelanggan seiring waktu. Retailer menggunakan kartu loyalitas pelanggan untuk menangkap lifecycle data sehingga mereka dapat menganalisis pelanggan dari masa pembelian perilaku seperti belanja. Misalnya, satu mainan pengecer menjelaskan bahwa ia tidak masuk akal untuk menjual satu mesin permainan (dengan sedikit margin) kecuali pelanggan yang juga membeli aksesoris dan perangkat lunak

6 permainan (tinggi dengan margin). Mereka menggunakan Market Basket Analysis terhadap loyalitas kartu data mereka secara keseluruhan untuk menentukan margin pada video game dan penjualan untuk membuat ingatan promosi pelanggan dan mempengaruhi pembeli untuk membeli permainan dan aksesoris dari mereka dan tidak dari pengecer lain. 4. Menentukan tata letak toko yang baru (new store layouts) atau menarik lebih banyak lalu lintas ke toko, menetapkan produk-produk mana yang akan diletakan dalam tempat yang khusus. Market Basket Analysis juga menggunakan ruang untuk meningkatkan perencanaan dan visual merchandising lintas untuk meningkatkan penjualan. 5. Mengidentifikasi ketika persoalannya berpasangan/kupon (issue coupons). Untuk meningkatkan penjualan atau menghabiskan barang yang menjadi inventory. Definisi Market Basket Analysis Bebrapa definisi dari MBA adalah sebagai berikut: Market Basket Analysis adalah teknik matematis yang biasa digunakan oleh marketing yang profesional untuk menyatakan kesamaan antara produk individu atau produk kelompok. Market Basket Analysis berkenaan dengan sekumpulan permasalahan bisinis yang berkaitan untuk mengetahui point of sale dari data transaksi. Market Basket Analysis adalah istilah umum untuk metodologi yang mempelajari tentang komposisi keranjang belanjaan yang dibeli oleh rumah tangga selama 1 kali berbelanja. Market Basket Analysis adalah kumpulan kombinasi produk yang dibeli bersamaan. Market Basket Analysis adalah analisis kecenderungan suatu item terbeli oleh costumer yang sama pada waktu yang bersamaan.

7 Tiga Level Market Basket Data Market Basket Data adalah data transaksi yang menjelaskan tiga perbedaan entitas yang mendasar yaitu : 1. Customers 2. Orders/pembelian 3. Items (barang-barang) Dalam sebuah relational database, struktur data dari market basket data sering terlihat sama. Data Struktur ini didalamnya terdapat empat entitas yang penting. Gambar 2. Relational database Permintaan adalah stuktur data yang fundamental untuk Market Basket Data. Permintaan dapat berupa kejadian suatu pembelian oleh customer. Pembelian juga dapat dilakukan melalui website, grosir, ataupun dari catalog. Semua ini dapat termasuk dalah sebuah pembelian, pembelian tambahan, tipe dari pembayaran, dan data lain yang termasuk dalam suatu transaksi. Beberapa transaksi diberikan identitas khusus. Namun ada beberapa identitas khusus tersebut harus digabungkan dengan data yang lainnya. Sebagai contoh, kita perlu mengkombinasikan empat lahan untuk mendapatkan empat identitas khusus untuk penjualan di toko. Waktu dimulai ketika customer membayar, chain ID, store ID dan lane ID.

8 Barang dalam suatu pembelian digambarkan dalam line items. Data ini termasuk harga pembayaran barang, jumlah barang, pajak yang harus dibayar, mungkin juga termasuk harga (yang digunakan untuk penghitungan margin). Meja barang (item table) biasanya mempunyai hubungan dengan product reference table yang memberikan gambaran lebih jelas mengenai produk yang ada. Gambaran informasinya termasuk hierachy produk dan informasi lain yang mungkin memudahkan dalam menganalisis. Customer table (meja customer) adalah meja pilihan dan harus bisa digunakan ketika customer dapat di identifikasikan. Contoh, di dalam sebuah web site, ada sebuah syarat dalam melakukan registrasi atau ketika customer menggunakan kartu anggota (affinity card) dalam melakukan pembayaran. Walaupun customer table mempunyai area yang menarik, tetapi yang paling penting adalah identitas tersebut. Sebab ini merupakan dasi dari sebuah transaksi setiap waktu. Pengenalan customer setiap saat membuat mungkin untuk dikenali secara cepat, seperti frekuensi pembelian yang dilakukan oleh customer. Tiga level dari market basket data yang penting yang secara cepat dapat memahami permintaan. Ada beberapa dasar pengukuran yaitu: 1. Berapa rata-rata pembelian yang dilakukan customer? 2. Berapa rata-rata barang yang khusus setiap pembelian? 3. Berapa rata-rata barang setiap pembelian? 4. Untuk produk tertentu, proporsi customer apa yang telah membeli produk? 5. Untuk produk tertentu, berapa rata-rata dari pembelian setiap customer yang termasuk dalam barang? 6. Untuk produk tertentu, berapa rata-rata jumlah pembelian dalam suatu pembelian ketika produk dibeli? Pengukuran ini memberikan gambaran untuk sebuah bisnis. Dalam beberapa kasus, ada beberapa pembeli yang berulang, sehingga proporsi dari sebuah pembelian setiap customer mendekati 1. Saran ini digunakan suatu perusahaan untuk meningkatkan penjualan setiap customers. Atau jumlah dari produk setiap pembelian mendekati 1, penyaranan akan kesempatan untuk penjualan silang selama proses pembelian.

9 Hal ini dapat berguna untuk membandingkan pengukuran ini terhadap yang lainnya. Kita telah menemukan bahwa jumlah pembelian dapat menjadi acuan untuk membedakan diantara para customer (costumer yang sesungguhnya/membeli lebih sering dari pada hanya sekedar customer). Gambar 2 menggambarkan tentang hubungan antar customer (jumlah barang khusus setiap pembelian) dengan seberapa dalam hubungannya (jumlah yang dibeli) untuk customer yang membeli lebih dari 1 barang. Data ini bisa berasal dari retailer yang kecil. Bulatan yang paling besar menunjukan jumlah customer yang membeli dua barang sekaligus dalam waktu yang bersamaan., dalam gambar juga dapat dilihat bulatan yang besar menunjukan jumlah customer yang membeli barang yang sama dalam dua kali pembelian. Customers yang baik yaitu mereka yang melakukan pembelian kembali berulang kali. Cenderung untuk membeli bermacam-macam barang dalam jumlah besar. Walaupun, beberapa dari mereka kembali dan membeli barang yang sama sepeti ketika mereka pertama kali membeli. Bagaimana retailer dapat mendorong customers untuk datang kembali dan membeli lebih dan juga barang yang berbeda? Market Basket Analysis tidak dapat menjawab pertanyaan ini, tetapi Market Basket Analysis dapat sedikit dorongan untuk meminta itu dan mungkin menbeikan isyarat yang dapat membantu. Support dan Confidence Penting tidaknya suatu aturan assosiatif dapat diketahui dengan dua parameter, support (nilai penunjang) yaitu persentase kombinasi item tersebut dan confidence (nilai kepastian) yaitu kuatnya hubungan antar item dalam aturan assosiatif. Aturan assosiatif biasanya dinyatakan dalam bentuk : {roti,mentega} {susu} (support = 40%, confidence = 50%) Yang artinya : 50% dari transaksi di database yang memuat item roti dan mentega juga memuat item susu. Sedangkan 40% dari seluruh transaksi yang ada di database memuat ketiga item itu. Dapat juga diartikan : "Seorang konsumen yang membeli roti dan mentega

10 punya kemungkinan 50% untuk juga membeli susu. Aturan ini cukup signifikan karena mewakili 40% dari catatan transaksi selama ini." Analisis asosiasi didefinisikan suatu proses untuk menemukan semua aturan assosiatif yang memenuhi syarat minimum untuk support (minimum support) dan syarat minimum untuk confidence (minimum confidence). Metode Dasar Association Rule Metodologi dasar analisis asosiasi terbagi menjadi dua tahap : 1. Analisa pola frekuensi tinggi Tahap ini mencari kombinasi item yang memenuhi syarat minimum dari nilai support dalam database, yang dapat dirumuskan sebagai berikut: Contohnya pada database transaksi belanja pasar swalayan berikut: Tabel 1. Data Transaksi Diketahui bahwa jumlah transaksi yang memuat {roti,mentega} ada 4 (support 80%), sedangkan jumlah transaksi yang memuat {roti,mentega,susu} ada 2 (support 40%), transaksi yang memuat {buncis} hanya 1 (support 20%) dan sebagainya. Bila ditetapkan syarat

11 minimum dari nilai support untuk pola frekuensi tinggi dalam contoh ini adalah 30%, diperoleh pola frekuensi tinggi yang memenuhi syarat minimum nilai support adalah : Tabel 2. Data Transaksi dengan Frekuensi Tertinggi 2. Pembentukan aturan assosiatif Setelah semua pola frekuensi tinggi ditemukan, barulah dicari aturan assosiatif yang memenuhi syarat minimum untuk confidence dengan menghitung confidence aturan assosiatif A B dengan menggunakan rumus berikut : Bila syarat minimum untuk confidence dari contoh diatas adalah 50% maka salah satu contoh aturan assosiatif yang dapat ditemukan adalah : {telur,susu} {roti,mentega} dengan nilai confidence: Aturan assosiatif lain yang dapat ditemukan diantaranya adalah : Tabel 3. Tabel Association Rule

12 3. Lift / Improvement Ratio Lift Ratio adalah parameter penting selain support dan confidence dalam association rule. Lift Ratio mengukur seberapa penting rule yang teleh terbentuk berdasarkan nilai support dan confidence. Lift Ratio merupakan nilai yang menunjukkan kevalidan proses transaksi dan memberikan informasi apakah benar produk A dibeli bersamaan dengan produk B. Lift / Improvement Ratio dapat dihitung dengan rumus: Sebuah transaksi dikatakan valid jika mempunyai nilai Lift / Improvement lebih dari 1, yang berarti bahwa dalam transaksi tersebut, produk A dan B benar-benar dibeli secara bersamaan. Pemanfaatan Aturan Asosiasi Sesuai namanya, aturan asosiasi yang dihasilkan dalam proses Market Basket Analysis umumnya digunakan pada bisnis retail. Untuk bagian pemasaran, peningkatan penjualan dapat dicapai dengan mengorganisasikan ulang item-item sehingga item-item yang terjual bersama-sama selalu ditemukan bersama. Hal ini akan memicu pembelian dan membantu memastikan pelanggan untuk membeli sebuah item tidak lupa untuk membelinya karena tidak melihatnya. Organisasi retail juga dapat memberikan kupon diskon untuk pembelian item B jika pelanggan membeli item A (jika aturan asosiasi A => B merupakan aturan asosiasi yang kuat). Situs e-commerce juga dapat menggunakan aturan asosiasi untuk memberikan saran (recommender system/suggestive sell) bagi pembeli berdasarkan item-item apa saja yang sudah berada dalam keranjang belanja (shopping cart) mereka. Situs e-commerce terkenal seperti Amazon.com menggunakan sistem pemberi saran ini untuk meningkatkan penjualan.

13 Untuk pemasaran langsung, promosi kepada pelanggan yang sudah ada lebih disukai, karena data pembelian mereka telah diketahui. Perusahaan telah memiliki data para pelanggan dalam basis datanya, dan mengetahui informasi yang signifikan mengenai mereka. Setelah menjalankan Market Basket Analysis, staf pemasaran dapat menghubungi pelanggan atau mengirimkan katalog produk untuk mempromosikan produk yang kira-kira akan menarik untuk mereka beli dengan berdasarkan catatan riwayat pembelian mereka. Amazon.com juga menggunakan sistem ini. Perusahaan tersebut mengirimkan kepada pelanggan untuk menawarkan produk-produk yang kemungkinan menarik untuk mereka beli dengan melihat produk apa saja yang telah mereka beli sebelumnya. Selain dalam bisnis retail, Market Basket Analysis juga dapat diaplikasikan dalam bidang-bidang yang lain. Market Basket Analysis dapat digunakan dalam spam filtering, fraud detection (pendeteksi kecurangan, dalam klaim asuransi misalnya), analisis pembelian kartu kredit, analisis pola panggilan telepon, analisis penggunaan layanan telekomunikasi, dan sebagainya. Situs Google Reader yang merupakan aplikasi web di mana pengguna dapat berlangganan feed dari situs-situs berita atau blog (pengguna akan dapat mengetahui apakah sebuah situs sudah di-update atau belum tanpa harus mengunjungi masingmasing situs) juga menggunakan Market Basket Analysis. Aturan asosiasi yang dihasilkan bersama daftar situs yang dilanggani feed-nya digunakan untuk memberikan saran bagi pengguna mengenai situs lain yang kira-kira menarik untuk ditambahkan dalam daftar feed.

14 Gambar 3. Flowchart Tahapan MBA

15 Studi Kasus Cara mengolah data AR-MBA menggunakan software rapidminer. Contoh data yang dimiliki adalah sebagai berikut: Tabel 3. Sampel data No Dept 1 Dept 2 Dept 3 Dept 4 Dept 5 Dept 6 Dept 7 Dept

16 Langkah-langkah yang dilakukan dalam software adalah sebagai berikut: 1. Buka software rapid miner, klik New Process 2. Pilih File Import Data Import Excel Sheet 3. Kemudian cari data excel tersebut di dalam computer, pilih, klik Next Gambar 4. Membuka data

17 4. Klik Next 5. Klik Next Gambar 5. Data import step 1 Gambar 6. Data import step 2

18 6. Klik Next 7. Klik Next Gambar 7. Data import step 3 Gambar 8. Data import step 4

19 8. Simpan data di folder latihan1 dengan nama training Gambar 9. Data import step 5 9. Klik Finish, akan muncul output seperti gambar di bawah ini Gambar 10. Output import data

20 10. Kemudian drag file training ke dalam kotak Main Process Gambar 11. Drag training file 11. Cari Select Attributes, kemudian drag ke dalam kotak Main Process Gambar 12. Drag select attribute

21 12. Hubungkan training dengan Select Attributes Gambar 13. Menghubungkan data training dengan select attribute 13. Klik Select Attributes, ganti attribute filter by dengan subset. Kemudian klik menu Select Attributes di attributes. Pindahkan semua departemen ke dalam kotak sebelah kanan Gambar 14. Select Attributes: attributes

22 14. Cari Numerical to Binominal, kemudian drag ke dalam kotak Main Process Gambar 15. Proses drag Numerical to Binominal 15. Cari Remap Binominals, kemudian drag ke dalam kotak Main Process Gambar 16. Proses drag Remap Binominals

23 16. Hubungkan Select Attributes dengan Numerical to Binominal, dan Numerical to Binominal dengan Remap Binominals. Kemudian ganti negative value dengan nilai 0 dan positive value dengan nilai 1 Gambar 17. Proses Numerical to Binominal, dan Numerical to Binominal dengan Remap Binominals

24 17. Cari FP-Growth, kemudian drag ke dalam kotak Main Process Gambar 18. Proses drag FP-Growth 18. Cari Create Association Rules, kemudian drag ke dalam kotak Main Process. Lalu hubungkan Remap Binominals ke FP-Growth dan FP-Growth (fre) ke Create Association Rules Gambar 19. Proses Create Assosiate Rules

25 19. Hubungkan FP-Growth (exa) ke res pertama (sebelah kanan) dan Create Association Rules (rul) ke res kedua (sebelah kanan) Gambar 20. Proses menghubungkan FP-Growth ke ras pertama dan Create Association Rules ke res kedua 20. Klik FP-Growth, ganti min support dengan nilai 0.05 Gambar 21. Min Support bernilai 0.05

26 21. Klik Create Association Rules kemudian ganti min confidence dengan nilai 0.05 Gambar 22. Min Confidence bernilai Lalu klik Run, akan muncul output seperti gambar di bawah ini Gambar 23. Output

27 23. Apabila nilai support diganti 0.2 kemudian klik Run, akan muncul output seperti gambar di bawah ini Gambar 24. Output apabila nilai support diganti Rule yang valid adalah yang memiliki nilai Lift Ratio > 1 Gambar 25. Rule valid jika nilai Lift Ratio > 1

28 Dari hasil output di atas, dapat diketahui rules sebagai berikut: 1. Dept1 akan terbeli bersama dengan dept2, dengan tingkat kepercayaan 64,9% dan didukung oleh 50% dari data keseluruhan. 2. Dept2 akan terbeli bersama dengan dept1, dengan tingkat kepercayaan 79,4% dan didukung oleh 50% dari data keseluruhan. 3. Dept1 akan terbeli bersama dengan dept5, dengan tingkat kepercayaan 27,3% dan didukung oleh 21% dari data keseluruhan. 4. Dan seterusnya. DAFTAR PUSTAKA David Samuel Penerapan Stuktur FP-Tree dan Algoritma FPGrowth dalam Optimasi Penentuan Frequent Itemset. Institut Teknologi Bandung. Han Jiawei, and M. Kamber Data Mining: Concepts and Techniques, Morgan Kaufmann, USA. Wiwin Suwarningsih Penerapan Association Rule Mining untuk Perancangan Data Mining BDP (Barang Dalam Proses) Obat. Pusat Penelitian Informatika LIPI

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth

Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Pola Kompetensi Mahasiswa Program Studi Informatika Menggunakan FP-Growth Fitrah Rumaisa, S.T., M.Kom Prodi Teknik Informatika, Fakultas Teknik, Universitas Widyatama E-Mail: fitrah.rumaisa@widyatama.ac.id

Lebih terperinci

2.2 Data Mining. Universitas Sumatera Utara

2.2 Data Mining. Universitas Sumatera Utara Basis data adalah kumpulan terintegrasi dari occurences file/table yang merupakan representasi data dari suatu model enterprise. Sistem basisdata sebenarnya tidak lain adalah sistem penyimpanan-record

Lebih terperinci

Aturan assosiatif biasanya dinyatakan dalam bentuk : {roti, mentega} {susu} (support = 40%, confidence = 50%)

Aturan assosiatif biasanya dinyatakan dalam bentuk : {roti, mentega} {susu} (support = 40%, confidence = 50%) ASSOCIATION RULE (ALGORITMA A PRIORI) Algoritma A Priori termasuk jenis aturan asosiasi pada data mining. Selain a priori, yang termasuk pada golongan ini adalah metode generalized rule induction dan algoritma

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perusahaan ritel yang menyediakan berbagai kebutuhan berkembang pesat bukan hanya di kota besar saja tetapi juga di kota-kota kecil. Untuk memperoleh keuntungan yang

Lebih terperinci

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang

BAB I PENDAHULUAN. Data mining memungkinkan penemuan pola-pola yang menarik, informasi yang 1 BAB I PENDAHULUAN Bab pendahuluan ini membahas tentang latar belakang masalah yaitu fenomena perkembangan data yang terus bertambah tetapi informasi yang dihasilkan monoton, sehingga diperlukan data

Lebih terperinci

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA)

ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) ANALISA DAN PERANCANGAN APLIKASI ALGORITMA APRIORI UNTUK KORELASI PENJUALAN PRODUK (STUDI KASUS : APOTIK DIORY FARMA) Harvei Desmon Hutahaean 1, Bosker Sinaga 2, Anastasya Aritonang Rajagukguk 2 1 Program

Lebih terperinci

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI

DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI DATA MINING ANALISA POLA PEMBELIAN PRODUK DENGAN MENGGUNAKAN METODE ALGORITMA APRIORI Heroe Santoso 1), I Putu Hariyadi 2), Prayitno 3) 1), 2),3) Teknik Informatika STMIK Bumigora Mataram Jl Ismail Marzuki

Lebih terperinci

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan

BAB II TINJAUAN PUSTAKA. pengetahuan di dalam database. Data mining adalah proses yang menggunakan 6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Data Mining Data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan pengetahuan di dalam database. Data mining adalah proses yang menggunakan

Lebih terperinci

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA

PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA PENCARIAN ATURAN ASOSIASI MENGGUNAKAN ALGORITMA APRIORI SEBAGAI BAHAN REKOMENDASI STRATEGI PEMASARAN PADA TOKO ACIICA SKRIPSI Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Lebih terperinci

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket

Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Pengembangan Aplikasi Market Basket Analysis Menggunakan Algoritma Generalized Sequential Pattern pada Supermarket Gunawan 1), Alex Xandra Albert Sim 2), Fandi Halim 3), M. Hawari Simanullang 4), M. Firkhan

Lebih terperinci

Assocation Rule. Data Mining

Assocation Rule. Data Mining Assocation Rule Data Mining Association Rule Analisis asosiasi atau association rule mining adalah teknik data mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Aturan yang menyatakan

Lebih terperinci

APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG

APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG APLIKASI DATA MINING MARKET BASKET ANALYSIS PENJUALAN SUKU CADANG SEPEDA MOTOR MENGGUNAKAN METODE ASSOCIATION RULES PADA PT. SEJAHTERA MOTOR GEMILANG EKA FITRIA WULANSARI Program Studi Teknik Informatika,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Saat ini, perkembangan teknologi telah memberikan pengaruh yang sangat besar di dalam kehidupan manusia. Salah satu pengaruh tersebut di bidang informasi yaitu dalam

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA Pada tinjauan pustaka ini akan dibahas tentang konsep dasar dan teori-teori yang mendukung pembahasan yang berhubungan dengan sistem yang akan dibuat. 2.1 Basis Data (Database) Database

Lebih terperinci

PERANCANGAN PROGRAM APLIKASI MARKET BASKET ANALYSIS UNTUK MENDUKUNG PERSEDIAAN BARANG DENGAN METODE FUZZY C-COVERING

PERANCANGAN PROGRAM APLIKASI MARKET BASKET ANALYSIS UNTUK MENDUKUNG PERSEDIAAN BARANG DENGAN METODE FUZZY C-COVERING PERANCANGAN PROGRAM APLIKASI MARKET BASKET ANALYSIS UNTUK MENDUKUNG PERSEDIAAN BARANG DENGAN METODE FUZZY C-COVERING Zahedi; Charies Chandra Mathematics & Statistics Department, School of Computer Science,

Lebih terperinci

TINJAUAN PUSTAKA Data Mining

TINJAUAN PUSTAKA Data Mining 25 TINJAUAN PUSTAKA 2.1. Data Mining Definisi sederhana dari data mining adalah ekstraksi informasi atau pola yang penting atau menarik dari data yang ada di database. Secara lengkap, Data mining merupakan

Lebih terperinci

PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna

PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI. Diajukan Untuk Memenuhi Sebagian Syarat Guna PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI PADA TRANSAKSI PENJUALAN DI MINIMARKET SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom) Pada Program Studi

Lebih terperinci

APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA)

APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA) Seminar Nasional Teknologi Informasi dan Multimedia 2016 APLIKASI MONITORING KETERSEDIAAN STOK BARANG MINIMARKET DENGAN METODE MARKET BASKET ANALYSIS (MBA) Sugiyatno 1), Adhika Pramita Widyasari 2) 1),

Lebih terperinci

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE

IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE IMPLEMENTASI DATA MINING DENGAN ALGORITMA APRIORI PADA TOKO BANGUNAN UD. RUFI SENTOSA JAYA SAMBIREJO - PARE SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer (S.Kom.)

Lebih terperinci

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE

ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE ANALISA POLA PEMILIHAN PROGRAM STUDI BAGI CALON MAHASISWA DI UNIVERSITAS ABDURRAB MENGGUNAKAN ASSOCIATION RULE Diki Arisandi 1, Nofriandi 2 Jurusan Teknik Informatika, FakultTeknik,Universitas Abdurrab

Lebih terperinci

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang

BAB I PENDAHULUAN. yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah salah satu negara dengan pertumbuhan pasar e-commerce yang cepat dan besar di Asia (Kartiwi, 2006). Pertumbuhan e-commerce yang besar tersebut membuat

Lebih terperinci

ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT.

ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT. ANALISIS DAN IMPLEMENTASI ALGORITMA FP-GROWTH PADA APLIKASI SMART UNTUK MENENTUKAN MARKET BASKET ANALYSIS PADA USAHA RETAIL (STUDI KASUS : PT.X) ANALYSIS AND IMPLEMENTATION OF FP-GROWTH ALGORITHM IN SMART

Lebih terperinci

IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS

IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS IMPLEMENTASI ALGORITMA FP- GROWTH MENGGUNAKAN ASSOCIATION RULE PADA MARKET BASKET ANALYSIS Fitriyani Fakultas Teknik, Universitas BSI Bandung Jalan Sekolah Internasional No. 1-6, Bandung 40282, Indonesia

Lebih terperinci

Implementasi data mining menggunakan metode apriori (studi kasus transaksi penjualan barang)

Implementasi data mining menggunakan metode apriori (studi kasus transaksi penjualan barang) Implementasi data mining menggunakan metode apriori (studi kasus transaksi penjualan barang) Maya Suhayati,M.Kom. Jurusan Teknik Informatika, STMIK Sumedang mayasuh@stmik-sumedang.ac.id ABSTRAK Dalam suatu

Lebih terperinci

PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI

PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI PENGEMBANGAN APLIKASI PENENTUAN TINGKAT KEUNTUNGAN PADA E- COMMERCE DENGAN MENGGUNAKAN ALGORITMA K-MEANS DAN APRIORI Gunawan 1, Fandi Halim 2, Tony Saputra Debataraja 3, Julianus Efrata Peranginangin 4

Lebih terperinci

ASSOCIATION RULES PADA TEXT MINING

ASSOCIATION RULES PADA TEXT MINING Budi Susanto ASSOCIATION RULES PADA TEXT MINING SUSANTO 1 Tujuan Memahami algoritma Apriori dan FP- Growth Memahami penerapannya pada penambangan dokumen Memamahmi algoritma GSP Memahami penerapannya pada

Lebih terperinci

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN

PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN PENERAPAN METODE APRIORI ASOSIASI TERHADAP PENJUALAN PRODUCT COSMETIC UNTUK MENDUKUNG STRATEGI PENJUALAN SKRIPSI Diajukan untuk memenuhi salah satu syarat guna memperoleh gelar Sarjana Komputer (S.Kom)

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Data Mining Menurut Turban dalam bukunya yang berjudul Decision Support Systems and Intelligent Systems, data mining adalah suatu istilah yang digunakan untuk menguraikan penemuan

Lebih terperinci

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek

BAB I PENDAHULUAN. Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Teknologi Informasi sekarang ini telah digunakan hampir di semua aspek kehidupan, contohnya dalam sebuah perusahaan ritel. Dengan sistem yang telah terkomputerisasi,

Lebih terperinci

IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan)

IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan) IMPLEMENTASI DATA MINING PADA PENJUALAN TIKET PESAWAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus: Jumbo Travel Medan) Sri Rahayu Siregar ( 0911882) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma

Lebih terperinci

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan

BAB 1 PENDAHULUAN. retail di Indonesia pada semester I 2010 telah mencapai Rp 40 triliun. Omzet perusahaan BAB 1 PENDAHULUAN 1.1 Latar Belakang Bisnis retail berkembang pesat di Indonesia dalam beberapa tahun ini. Kita dapat menjumpainya di kota-kota besar maupun kota-kota kecil. Menurut ketua umum Asosiasi

Lebih terperinci

Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online

Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online Irene Edria Devina / 13515038 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan

Lebih terperinci

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE

ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE ANALISA POLA DATA HASIL PEMBANGUNAN KABUPATEN MALANG MENGGUNAKAN METODE ASSOCIATION RULE Dewi Sibagariang 1), Karina Auliasari 2) 1.2) Jurusan Teknik Informatika, Institut Teknologi Nasional Malang Jalan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1 Tinjauan Studi Banyak penelitian dilakukan dalam menganalisis keranjang pasar untuk rekomendasi produk. Hal ini dapat dilihat dari banyaknya buku-buku, jurnal ilmiah dan conference

Lebih terperinci

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun.

BAB 2 LANDASAN TEORI. Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. BAB 2 LANDASAN TEORI Pada bab ini akan dibahas tentang konsep dasar dan teori-teori pendukung yang berhubungan dengan sistem yang akan dibangun. 2.1. Data Mining Data mining adalah suatu istilah yang digunakan

Lebih terperinci

APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang)

APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita Anggraeni, Ragil Saputra, Beta Noranita APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA APRIORI (Studi Kasus di Apotek Setya Sehat Semarang) Hapsari Dita

Lebih terperinci

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset

Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset Penerapan Stuktur FP-Tree dan Algoritma FP-Growth dalam Optimasi Penentuan Frequent Itemset David Samuel/NIM :13506081 1) 1) Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Data mining bertujuan untuk menemukan pola-pola yang valid, baru, mempunyai nilai guna, dan mudah dipahami dari data yang ada. Jenis pola yang dihasilkan ditentukan

Lebih terperinci

ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM)

ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM) ANALISIS KETERKAITAN DATA TRANSAKSI PENJUALAN BUKU MENGGUNAKAN ALGORITMA APRIORI DAN ALGORITMA CENTROID LINKAGE HIERARCHICAL METHOD (CLHM) Nurani 1, Hamdan Gani 2 1 nurani_nanni@yahoo.com, 2 hamdan.gani.inbox@gmail.com

Lebih terperinci

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO

PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO PERBANDINGAN ALGORITMA APRIORI DAN ALGORITMA FP-GROWTH UNTUK PEREKOMENDASI PADA TRANSAKSI PEMINJAMAN BUKU DI PERPUSTAKAAN UNIVERSITAS DIAN NUSWANTORO Rizky Mei Anggraeni Program Studi Teknik Informatika,

Lebih terperinci

PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI.

PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI. PENERAPAN ALGORTIMA APRIORI PADA DATA MINING UNTUK MENGELOMPOKKAN BARANG BERDASARKAN KECENDERUNGAN KEMUNCULAN BERSAMA DALAM SATU TRANSAKSI Abstrak Data Mining is the process of extracting knowledge hidden

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN Pada bab ini berisi tentang latar belakang pembuatan dari aplikasi penentuan rekomendasi pencarian buku perpustakaan menggunakan algoritma fp-growth, rumusan masalah, tujuan, batasan

Lebih terperinci

DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT.

DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT. DATA MINING ASOSIASI UNTUK MENENTUKAN CROSS-SELLING PRODUK MENGGUNAKAN ALGORITMA FREQUENT PATTERN-GROWTH PADA KOPERASI KARYAWAN PT. PHAPROS SEMARANG Frismadani Anggita Priyana 1, Acun Kardianawati 2 1,2

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perpustakaan merupakan tempat dimana seseorang mendapatkan pengetahuan, informasi atau hiburan dengan jumlah kategori yang bervarian seperti ilmiah, non fiksi, komedi,

Lebih terperinci

PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING

PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING PENGGUNAAN MARKET BASKET ANALYSIS DALAM DATA MINING Narwati Dosen Fakultas Teknologi Informasi Abstrak Jumlah data yang sangat besar pada suatu perusahaan atau dalam suatu transaksi bisnis, merupakan suatu

Lebih terperinci

BAB III METODE PENELITIAN. Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang

BAB III METODE PENELITIAN. Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang BAB III METODE PENELITIAN Metode penelitian merupakan suatu prosedur beserta tahapan-tahapan yang tersusun secara jelas dan sistematis guna menyelesaikan suatu permasalahan yang sedang diteliti dengan

Lebih terperinci

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA

IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Teknologi Elektro, Vol. 15, No.2, Juli - Desember 2016 27 IMPLEMENTASI ALGORITMA APRIORI UNTUK MENEMUKAN FREQUENT ITEMSET DALAM KERANJANG BELANJA Adie Wahyudi Oktavia Gama 1, I Ketut Gede Darma Putra 2,

Lebih terperinci

METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH

METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH METODE ASSOCIATION RULE DALAM MENGANALISA POLA BELANJA KONSUMEN PADA DATA TRANSAKSI PENJUALAN MENGGUNAKAN ALGORITMA FP-GROWTH Dessy Chaerunnissa 1, Edy Mulyanto, S.Si, M.Kom 2 Teknik Informatika, Fakultas

Lebih terperinci

Analisa Data Mining Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Restoran Joglo Kampoeng Doeloe Semarang

Analisa Data Mining Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Restoran Joglo Kampoeng Doeloe Semarang Analisa Data Mining Menggunakan Algoritma Frequent Pattern Growth Pada Data Transaksi Penjualan Restoran Joglo Kampoeng Doeloe Semarang Tia Arifatul Maulida Fakultas Ilmu Komputer, Universitas Dian Nuswantoro,

Lebih terperinci

PENDAHULUAN TINJAUAN PUSTAKA

PENDAHULUAN TINJAUAN PUSTAKA Latar Belakang PENDAHULUAN Begitu banyaknya fungsionalitas dalam penggalian data terkadang membuat kita harus memilih secara seksama. Pemilihan fungsionalitas yang tepat dalam melakukan suatu penggalian

Lebih terperinci

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62)

Jurnal Edik Informatika Penelitian Bidang Komputer Sains dan Pendidikan Informatika V1.i1(52-62) Analisa Pola Peminjaman Buku Perpustakaan Menggun Algoritma Apriori Azwar Anas Program Studi Pendidikan Informatika, STKIP PGRI Sumbar aans_07@yahoo.co.id http://dx.doi.org/10.22202/jei.2014.v1i1.1439

Lebih terperinci

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan

Cross-Selling: Perangkat Utama Customer Relationship Managem. Meningkatkan Loyalitas Pelanggan Cross-Selling: Perangkat Utama Customer Relationship Management (CRM) Untuk Meningkatkan Loyalitas Pelanggan Seminar Kenaikan Jabatan at Department of Information Systems, Faculty of Computer Science,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Sumber data utama yang digunakan dalam penelitian ini berasal dari data

BAB IV HASIL DAN PEMBAHASAN. Sumber data utama yang digunakan dalam penelitian ini berasal dari data BAB IV HASIL DAN PEMBAHASAN A. Pengumpulan Data Sumber data utama yang digunakan dalam penelitian ini berasal dari data transaksi 3 bulan terakhir yaitu bulan Maret, April, Mei tahun 2012 di swalayan XYZ

Lebih terperinci

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI

PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI PENERAPAN METODE ASOSIASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENGETAHUI KOMBINASI ANTAR ITEMSET PADA PONDOK KOPI Fitri Nurchalifatun Fakultas Ilmu Komputer, Universitas Dian Nuswantoro, Jl.

Lebih terperinci

BAB 2 LANDASAN TEORI. paling sering digunakan dalam dunia pemasaran (Megaputer, 2007). Tujuan dari Market

BAB 2 LANDASAN TEORI. paling sering digunakan dalam dunia pemasaran (Megaputer, 2007). Tujuan dari Market BAB LANDASAN TEORI. Market Basket Analysis Market Basket Analysis atau MBA, merupakan salah satu tipe analisis data yang paling sering digunakan dalam dunia pemasaran (Megaputer, 7). Tujuan dari Market

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Apriori merupakan salah satu algoritma yang terkenal dalam mencari frequent pattern dari database transaksi[8]. Prinsip dari algortima Apriori ini adalah jika sebuah

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Pendahuluan 1.2 Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1 Pendahuluan 1.2 Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1 Pendahuluan Pada jaman modernisasi, teknologi digital mengambil alih dunia dengan terusmenerus berlomba berkreasi tiada henti-hentinya demi tercapainya kemudahan dan kecepatan penyebaran

Lebih terperinci

IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH

IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH IMPLEMENTASI DATA MINING TERHADAP PENYUSUNAN LAYOUT MAKANAN PADA RUMAH MAKAN PADANG MURAH MERIAH Oliver Zakaria 1), Kusrini 2) 1) Teknik Informatika STMIK AMIKOM Yogyakarta Jl. Ring Road Utara Condong

Lebih terperinci

PENERAPAN ALGORITMA APRIORI UNTUK MENENTUKAN FREKUENSI ITEM SET SEBAGAI STRATEGI PENJUALAN DI TOKO PUTRA MANIS SURAKARTA SKRIPSI

PENERAPAN ALGORITMA APRIORI UNTUK MENENTUKAN FREKUENSI ITEM SET SEBAGAI STRATEGI PENJUALAN DI TOKO PUTRA MANIS SURAKARTA SKRIPSI PENERAPAN ALGORITMA APRIORI UNTUK MENENTUKAN FREKUENSI ITEM SET SEBAGAI STRATEGI PENJUALAN DI TOKO PUTRA MANIS SURAKARTA SKRIPSI Disusun sebagai salah satu syarat menyelesaikan Jenjang Strata I pada Jurusan

Lebih terperinci

ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret)

ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret) ANALISA KONSISTENSI POLA PEMINJAMAN BUKU MENGGUNAKAN ALGORITMA FP-GROWTH (Studi Kasus: UPT Perpustakaan Universitas Sebelas Maret) Miranda Nur Qolbi Aprilina 1, Wiranto 2,Widodo 3 1,2 Program Studi Informatika,

Lebih terperinci

IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR

IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR IMPLEMENTASI DATA MINING ALGORITMA APRIORI PADA PENJUALAN SPAREPART MOTOR DI AHAS PUTRA MOTOR SKRIPSI Diajukan Untuk Penulisan Skripsi Guna Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer

Lebih terperinci

MARKET BASKET ANALYSIS (MBA) PADA SITUS WEB E-COMMERCE ZAKIYAH COLLECTION

MARKET BASKET ANALYSIS (MBA) PADA SITUS WEB E-COMMERCE ZAKIYAH COLLECTION MARKET BASKET ANALYSIS (MBA) PADA SITUS WEB E-COMMERCE ZAKIYAH COLLECTION Ari Muzakir Fakultas Ilmu Komputer, Program Studi Teknik Informatika Universitas Bina Darma Email: arimuzakir@binadarma.ac.id Laili

Lebih terperinci

IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS)

IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS) IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK ELEKTRONIK DENGAN ALGORITMA APRIORI (STUDI KASUS : KREDITPLUS) Dewi Kartika Pane (0911801) Mahasiswa Program Studi Teknik Informatika, STMIK Budidarma Medan

Lebih terperinci

SISTEM SISTEM REKOMENDASI BIDANG MINAT MAHASISWA MENGGUNAKAN METODE ASSOCIATION RULE DAN ALGORITMA APRIORI

SISTEM SISTEM REKOMENDASI BIDANG MINAT MAHASISWA MENGGUNAKAN METODE ASSOCIATION RULE DAN ALGORITMA APRIORI SISTEM SISTEM REKOMENDASI BIDANG MINAT MAHASISWA MENGGUNAKAN METODE ASSOCIATION RULE DAN ALGORITMA APRIORI Nama Mahasiswa : NUCIFERA DIAHPANGASTUTI NRP : 505 00 070 Jurusan : Teknik Informatika FTIF-ITS

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA)

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK DI PT. FOCUS GAYA GRAHA MENGGUNAKAN METODE ASSOCIATION RULE Aprisal Budiana Teknik Informatika - Universitas Komputer Indonesia Jl. Dipatiukur 112-114 Bandung

Lebih terperinci

RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI

RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI RANCANG BANGUN SISTEM PENGAMBILAN KEPUTUSAN UNTUK PREDIKSI PEMBELIAN BARANG PADA DISTRIBUTOR LUKCY JAYA MOTOR BERBASIS WEB MENGGUNAKAN METODE APRIORI Candra Irawan Amak Yunus 1 Sistem Informasi, Universitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam

BAB II TINJAUAN PUSTAKA. Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam 12 BAB II TINJAUAN PUSTAKA Bab ini menguraikan tentang teori-teori penunjang yang dipakai dalam melakukan penelitian data mining dengan metode asosiasi menggunakan algoritma apriori yang terdiri dari state

Lebih terperinci

Aplikasi Data Mining dengan Menggunakan Teknik ARM untuk Pengolahan Informasi Rendemen Obat

Aplikasi Data Mining dengan Menggunakan Teknik ARM untuk Pengolahan Informasi Rendemen Obat Aplikasi Data Mining dengan Menggunakan Teknik ARM untuk Pengolahan Informasi Rendemen Obat Wiwin Suwarningsih Pusat Penelitian Informatika, LIPI wiwin@informatika.lipi.go.id Abstrak Rendemen obat merupakan

Lebih terperinci

Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis

Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis Aplikasi Data Mining untuk meneliti Asosiasi Pembelian Item Barang di Supermaket dengan Metode Market Basket Analysis ANDREAS HANDOJO, GREGORIUS SATIA BUDHI, HENDRA RUSLY Jurusan Teknik Informatika Universitas

Lebih terperinci

MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI

MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI MERANCANG SISTEM APLIKASI RULE PENGETAHUAN MENGGUNAKAN ALGORITMA APRIORI PADA TRANSAKSI SWALAYAN HARYS PERDANA NGANJUK SKRIPSI Diajukan Untuk Memenuhi Sebagian Syarat Guna Memperoleh Gelar Sarjana Komputer

Lebih terperinci

Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop

Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop Implementasi Data Mining Algoritme Apriori Pada Sistem Penjualan Kusuma Shop Lutfi Mukaromah 1, Kusumaningtyas 2, Apriliani Galih Saputri 3, Harleni Vionita 4, Rendi Susilo 5,Tri Astuti 6, Lusi Dwi Oktaviana

Lebih terperinci

Mining Association Rules dalam Basis Data yang Besar

Mining Association Rules dalam Basis Data yang Besar Mining Association Rules dalam Basis Data yang Besar S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Agenda Pendahuluan Association Rule Mining Market Basket Analysis Konsep

Lebih terperinci

Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk

Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk Data Mining Dengan Algoritma Apriori untuk Penentuan Aturan Asosiasi Pola Pembelian Pupuk Amrin Program Studi Teknik Komputer AMIK Bina Sarana Informatika Jakarta Jl. R.S Fatmawati no. 24 Pondok Labu,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. mewakilkan objek dan peristiwa yang memiliki arti dan sangat penting bagi

BAB II TINJAUAN PUSTAKA. mewakilkan objek dan peristiwa yang memiliki arti dan sangat penting bagi BAB II TINJAUAN PUSTAKA 2.1. Pengertian Data Data belum dapat dika/takan mempunyai makna penting atau informasi bagi penerima sebelum dilakukan pengolahan data. Data adalah fakta yang dapat dicatat dan

Lebih terperinci

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN

PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN PENERAPAN ASSOCIATION RULE MINING PADA DATA NOMOR UNIK PENDIDIK DAN TENAGA KEPENDIDIKAN A M I UNTUK R U D D PENETAPAN I N POLA SERTFIKASI GURU Program Pascasarjana rusan Teknik Elektro Program Studi Telematika

Lebih terperinci

ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL

ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL Seminar Nasional Sistem Informasi Indonesia, 2-4 Desember 2013 ANALISIS KERANJANG BELANJA DENGAN ALGORITMA APRIORI PADA PERUSAHAAN RETAIL A.A. Gede Bagus Ariana 1), I Made Dwi Putra Asana 2) 1 STMIK STIKOM

Lebih terperinci

PENERAPAN METODE ASOSIASI MENGGUNAKAN ALGORITMA APRIORI PADA APLIKASI ANALISA POLA BELANJA KONSUMEN (Studi Kasus Toko Buku Gramedia Bintaro)

PENERAPAN METODE ASOSIASI MENGGUNAKAN ALGORITMA APRIORI PADA APLIKASI ANALISA POLA BELANJA KONSUMEN (Studi Kasus Toko Buku Gramedia Bintaro) JURNAL TEKNIK INFORMATIKA VOL 9 NO. 2, OKTOBER 2016 120 PENERAPAN METODE ASOSIASI MENGGUNAKAN ALGORITMA APRIORI PADA APLIKASI ANALISA POLA BELANJA KONSUMEN (Studi Kasus Toko Buku Gramedia Bintaro) Dewi

Lebih terperinci

IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART)

IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART) IMPLEMENTASI ALGORITMA FREQUENT PATTERN GROWTH (FP-GROWTH) MENENTKAN ASOSIASI ANTAR PRODUK (STUDY KASUS NADIAMART) Rizka Nurul Arifin Program Studi Teknik Informatika, Universitas Dian Nuswantoro Jl. Nakula

Lebih terperinci

PADA PERUSAHAAN RETAIL MENGGUNAKAN ALGORITMA APRIORI DAN SALES FORECASTING

PADA PERUSAHAAN RETAIL MENGGUNAKAN ALGORITMA APRIORI DAN SALES FORECASTING MARKET BASKET ANALYSIS PADA PERUSAHAAN RETAIL MENGGUNAKAN ALGORITMA APRIORI DAN SALES FORECASTING (Market Basket Analysis in Retail Company Using Apriori Algorithm and Sales Forecasting) Nursanti Irliana,

Lebih terperinci

PENGANTAR SOLUSI DATA MINING

PENGANTAR SOLUSI DATA MINING PENGANTAR SOLUSI DATA MINING Kusnawi STMIK AMIKOM Yogyakarta e-mail : Khusnawi@amikom.ac.id ABSTRAK Data mining adalah salah satu solusi untuk menjelaskan proses pengalian informasi dalam suatu basis data

Lebih terperinci

1 st Seminar on Application and Research in Industrial Technology, SMART Yogyakarta, 27 April 2006

1 st Seminar on Application and Research in Industrial Technology, SMART Yogyakarta, 27 April 2006 Metode Market Basket Analysis menggunakan Algoritma Pincer Search untuk Sistem Pembantu Pengambilan Keputusan Gregorius S. Budhi, Leo W. Santoso, Edward Susanto Jurusan Teknik Informatika, Fakultas Teknologi

Lebih terperinci

PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG

PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG PENERAPAN METODE ASSOCIATION RULE MENGGUNAKAN ALGORITMA APRIORI PADA SIMULASI PREDIKSI HUJAN WILAYAH KOTA BANDUNG Mohamad Fauzy 1, Kemas Rahmat Saleh W 2, Ibnu Asror 3 123 Fakultas Informatika Telkom University

Lebih terperinci

Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p

Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p Journal of Informatics and Technology, Vol 2, No 2, Tahun 2013, p 22-28 http://ejournal-s1.undip.ac.id/index.php/joint APLIKASI DATA MINING ANALISIS DATA TRANSAKSI PENJUALAN OBAT MENGGUNAKAN ALGORITMA

Lebih terperinci

SKRIPSI TI S1 FIK UDINUS 1

SKRIPSI TI S1 FIK UDINUS 1 SKRIPSI TI S FIK UDINUS PENERAPAN ASSOCIATION RULE DENGAN ALGORITMA APRIORI UNTUK MENAMPILKAN INFORMASI TINGKAT KELULUSAN MAHASISWA TEKNIK INFORMATIKA S FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO

Lebih terperinci

JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI)

JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI) JURNAL IMPLEMENTASI DATA MINING PADA TRANSAKSI PENJUALAN BIBIT BUAH DENGAN ALGORITMA APRIORI (STUDI KASUS: UD BUAH ASRI) IMPLEMENTATION DATA MINING OF SALES TRANSACTION FRUIT SEEDLING WITH ALGORITHM APRIORI

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Pengantar Komputer

BAB 1 PENDAHULUAN 1.1 Pengantar Komputer BAB 1 PENDAHULUAN 1.1 Pengantar Komputer Saat ini komputer dan piranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan. Komputer dimanfaatkan dalam segala bidang dikarenakan komputer

Lebih terperinci

ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK

ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI PROMOSI PRODUK Wiwit Agus Triyanto Fakultas Teknik, Program Studi Sistem Informasi Universitas Muria Kudus Email: at.wiwit@yahoo.co.id ABSTRAK Rekomendasi

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... ABSTRAK Analisis asosiasi adalah teknik data mining untuk menemukan aturan asosiatif antara suatu kombinasi item.aturan asosiatif dari analisis pembelian di suatu pasar swalayan adalah mengetahui besarnya

Lebih terperinci

PENERAPAN DATA MINING UNTUK MENGETAHUI POLA ASOSIASI ANTARA DATA MAHASISWA DAN TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FOLD-GROWTH

PENERAPAN DATA MINING UNTUK MENGETAHUI POLA ASOSIASI ANTARA DATA MAHASISWA DAN TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FOLD-GROWTH PENERAPAN DATA MINING UNTUK MENGETAHUI POLA ASOSIASI ANTARA DATA MAHASISWA DAN TINGKAT KELULUSAN MENGGUNAKAN ALGORITMA FOLD-GROWTH Betha Nurina Sari1, Drs.Muh. Arif Rahman M.Kom2, Yusi Tyroni Mursityo,S.Kom,M.S.3

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Pada bab ini dilakukan pendefinisian permasalahan dari penelitian yang akan dilakukan. Dalam Cross Industry Standard Process for Data Mining[3], tahapan ini

Lebih terperinci

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA)

Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 96 IMPLEMENTASI ASSOCIATION RULE TERHADAP PENYUSUNAN LAYOUT MAKANAN DAN PENENTUAN PAKET MAKANAN HEMAT DI RM ROSO ECHO DENGAN ALGORITMA APRIORI Elsa Widiati, S,Kom. 1, Kania Evita Dewi, S.Pd., M.Si 2 Teknik

Lebih terperinci

PENGEMBANGAN E-COMMERCE YANG TERINTEGRASI DENGAN MARKET BASKET ANALYSIS. Rusydi Umar, Rizka Iromas Putri

PENGEMBANGAN E-COMMERCE YANG TERINTEGRASI DENGAN MARKET BASKET ANALYSIS. Rusydi Umar, Rizka Iromas Putri PENGEMBANGAN E-COMMERCE YANG TERINTEGRASI DENGAN MARKET BASKET ANALYSIS Rusydi Umar, Rizka Iromas Putri Program Studi Teknik Informatika Fakultas Teknologi Industri Universitas Ahmad Dahlan Yogyakarta,

Lebih terperinci

IMPLEMENTASI CUSTOMER RELATIONSHIP MANAGEMENT DENGAN MARKET BASKET ANALYSIS PADA TOKO BUKU ONLINE STUDI KASUS: TOKO BUKU TOGA MAS

IMPLEMENTASI CUSTOMER RELATIONSHIP MANAGEMENT DENGAN MARKET BASKET ANALYSIS PADA TOKO BUKU ONLINE STUDI KASUS: TOKO BUKU TOGA MAS IMPLEMENTASI CUSTOMER RELATIONSHIP MANAGEMENT DENGAN MARKET BASKET ANALYSIS PADA TOKO BUKU ONLINE STUDI KASUS: TOKO BUKU TOGA MAS Edi Suryanto Umi Proboyekti, Budi Sutedjo Dharma Oetomo Abstrak Dilihat

Lebih terperinci

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA)

SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) SISTEM REKOMENDASI PEMESANAN SPAREPART DENGAN ALGORITMA FP-GROWTH (STUDI KASUS PT. ROSALIA SURAKARTA) Nur Rohman Ardani 1), Nur Fitrina 2) 1) Magister Teknik Informatika STMIK AMIKOM Yogyakarta 2) Teknik

Lebih terperinci

BAB IV IMPLEMENTASI DAN PENGUJIAN Bab ini akan membahas mengenai implementasi dari sistem yang telah dibuat. Pengujian akan dilakukan pada setiap menu untuk memastikan bahwa sistem berjalan dan menghasilkan

Lebih terperinci

Link Analysis (Superset) 3 Kategori Link Analysis (#1) 3 Kategori Link Analysis (#2) Association Rule Mining. 3 Kategori Link Analysis (#3)

Link Analysis (Superset) 3 Kategori Link Analysis (#1) 3 Kategori Link Analysis (#2) Association Rule Mining. 3 Kategori Link Analysis (#3) Knowledge Discovery in Databases (IS704) dan Data Mining (CS704) Kuliah #7: Association Rules Mining (Bagian 1) Gunawan Jurusan Teknik Informatika Link Analysis (Superset) Tujuan: Mencari hubungan antara

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang Bab 1 Pendahuluan BAB 1 PENDAHULUAN 1.1. Latar Belakang Pada era globalisasi saat ini, perkembangan teknologi tidak dapat dihindarkan dalam kehidupan manusia. Perkembangan teknologi yang ada, memiliki

Lebih terperinci

ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN

ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN 1 ANALISIS ALGORITMA APRIORI UNTUK REKOMENDASI PENEMPATAN BUKU PADA PERPUSTAKAAN 1 Uma Mazida, 2 Ricardus Anggi Pramunendar, M.Cs Program Studi Teknik Informatika S1 Fakultas Ilmu Komputer Universitas

Lebih terperinci

Seminar Nasional Ilmu Komputer (SNIK 2015) - Semarang, 10 Oktober 2015 ISBN:

Seminar Nasional Ilmu Komputer (SNIK 2015) - Semarang, 10 Oktober 2015 ISBN: SISTEM REKOMENDASI KULINER UNTUK MAHASISWA UNIVERSITAS SEBELAS MARET SURAKARTA MENERAPKAN ALGORITMA APRIORI POSITIF NEGATIF DAN BINARY HAMMING DISTANCE Belladona Shelly Agasti 1, Ristu Saptono 2, Hasan

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PENJUALAN BARANG MENGGUNAKAN ALGORITMA APRIORI NASKAH PUBLIKASI. diajukan oleh Dirga S Chaniago

SISTEM PENDUKUNG KEPUTUSAN PENJUALAN BARANG MENGGUNAKAN ALGORITMA APRIORI NASKAH PUBLIKASI. diajukan oleh Dirga S Chaniago SISTEM PENDUKUNG KEPUTUSAN PENJUALAN BARANG MENGGUNAKAN ALGORITMA APRIORI NASKAH PUBLIKASI diajukan oleh Dirga S Chaniago 13.11.6854 kepada FAKULTAS ILMU KOMPUTER UNIVERSITAS AMIKOM YOGYAKARTA YOGYAKARTA

Lebih terperinci